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In general relativity, all vacuum black holes are described by the Kerr solution. Beyond general
relativity, there is a prevailing expectation that deviations from the Kerr solution increase with
the horizon curvature. We challenge this expectation by showing that, in a scalar-Gauss–Bonnet
theory, black holes scalarize in a finite, adjustable window of black-hole masses, bounded from
above and below. In this theory, there is an interplay between curvature scales and compactness,
which we expect to protect neutron stars and other less compact objects from scalarization. In
particular, black-hole uniqueness can be broken at supermassive black-hole scales, while solar-mass
black holes remain well-described by the Kerr solution. To probe this scenario, observations targeting
supermassive black holes are necessary.

Introduction. Our current best description of gravity,
general relativity (GR), predicts that all vacuum black
holes throughout the Universe, spanning a mass range
of at least ten orders of magnitude, should be described
by the Kerr metric [1]. This prediction of black-hole
uniqueness is referred to as the “Kerr hypothesis” [2], and
is supported by uniqueness [3, 4] and no-hair [5] theorems.
Simultaneously, stringent constraints on modifications of
GR arise from the outstanding agreement of its predictions
with observations in the weak-field regime at solar-system
scales [6]. This motivates us to explore modifications of
GR that give rise to distinct gravitational phenomena
exclusively in the strong-field regime. One such example
is scalarization [7–15] – see Ref. [16] for a review – which
is a strong-gravity phase transition endowing black holes
and neutron stars with scalar hair.

Scalarization can be induced by coupling a real scalar
field to the Gauss–Bonnet invariant, G = R2−4RµνR

µν +
RµναβR

µναβ . Through this coupling, the effective mass of
scalar field fluctuations depends on G, which can become
tachyonically unstable around Kerr black holes, circum-
venting no-hair theorems [11]. The unstable GR black
hole undergoes scalarization, settling into a new station-
ary, non-Kerr geometry, and thereby breaking black-hole
uniqueness in certain regimes. Observations of black
holes in the range of a few solar masses, conducted by the
LIGO-Virgo-KAGRA (LVK) collaboration [17–19], binary
pulsars [8, 20, 21], and other strong-field tests typically
impose constraints on the length scale of new couplings
at the order of kilometers [22–29]. In the conventional
framework, scalarization is thus unattainable for black
holes with intermediate and supermassive mass scales.
Hence, the prevailing expectation is that black holes in
these mass ranges should be well-described by the Kerr
metric, even when solar-mass black holes are not [30].

In this Letter, we present a counterexample to this
prevailing expectation. We introduce a model where
black-hole uniqueness is maintained below a threshold

FIG. 1. Instability region of Schwarzschild spacetime (hatched
region) and the region in which we find scalarized black holes
(red shaded region) for the theory in Eq. (1). At the upper end
of the mass window, the scalarized solution branches off the
Schwarzschild branch continuously (as indicated by the dashed
curve). At the lower end, there is no continuous transition
between the two black-hole configurations.

value of the black-hole mass, but is violated above, as
shown in Fig. 1. Moreover, our model incorporates a mech-
anism that prevents the scalarization of neutron stars,
thus satisfying stringent constraints. Our findings carry
significant implications as they suggest the potential exis-
tence of scalarized black holes across a spectrum of mass
scales that can, for instance, be probed with the future
Laser Interferometer Space Antenna (LISA) [31, 32], and
with very-long-baseline-interferometry observations by the
Event Horizon Telescope (EHT) collaboration [33–37].
The model. We consider the following action

S =
1

16π

∫
d4x

√
−g

[
R− (∂ϕ)2 + α1F (ϕ)G

− 2α3
2F (ϕ)

(
ψG − ψ2

2

)]
,

(1)
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where α1 and α2 are coupling constants with dimensions
of length squared [38], and ϕ and ψ are real scalar fields.
While ϕ is dimensionless, ψ has the same dimension as the
Gauss–Bonnet invariant G, inverse length to the fourth.
The equations of motion resulting from the action (1) are

Gµν = ∂µϕ∂νϕ− 1
2gµν

[
(∂ϕ)2 − α3

2ψ
2F (ϕ)

]
− 4 ∗R∗

µανβ∇α∇β
[(
−α1 + 2α3

2ψ
)
F (ϕ)

]
,

(2)

□ϕ =

[
−α1G + 2α3

2

(
ψG − ψ2

2

)]
F ′ (ϕ)

2
, (3)

ψ − G = 0, (4)

where ∗R∗
µανβ is the double dual of the Riemann tensor.

The equations of motion are manifestly second order, and
thus our model belongs to a bi-scalar extension [39, 40] of
Horndeski’s theory [41, 42]. The scalar ψ is not dynamical
but, instead, acts as a Lagrange multiplier, such that the
model is on-shell equivalent to one with a G2 term in
the equation of motion (3) for ϕ. This also relates the
model to a well-known class of modified theories of gravity
known as “f(G) gravity” [43–46].
We require that the coupling function F (ϕ) satisfies

F (0) = 0, F ′ (0) = 0, F ′′ (0) > 0. (5)

The first two conditions impose that vacuum solutions
of GR are solutions of the theory, when the scalar field
takes the constant value ϕ = 0 [47]. The third condition
results in a tachyonic instability that we discuss in detail
below. Without loss of generality, we assume F ′′ (0) = 2.
Other values of F ′′ (0) can be absorbed into a redefinition
of α1 and α2. For small perturbations δϕ around ϕ = 0,
linearizing Eq. (3) leads to(

□− µ2
eff

)
δϕ = 0, µ2

eff(r) = −α1G + α3
2G2, (6)

where we have used the ψ equation of motion (4) and
µeff is the position-dependent effective mass of the per-
turbations. Scalarization is tied to a sufficiently negative
squared effective mass, that can make the perturbations
tachyonically unstable. The salient new feature of our
proposal is already visible here: the effective mass is deter-
mined by a competition between two different terms. At
sufficiently low curvature, the first term dominates and the
theory behaves similarly to standard scalar-Gauss–Bonnet
gravity [9–12]. At sufficiently high curvature, however,
the second term dominates and, since it is always positive,
prevents scalarization.
(In)stability of the Schwarzschild black hole. For
now, we focus on a general static and spherically symmet-
ric background metric

ds2 = −a(r) dt2 + b(r)−1 dr2 + r2(dθ2 + sin2 θ dφ2), (7)

which may describe either a black hole or the spacetime
of a stellar object. The scalar-field perturbations can
be separated as δϕ = u(r) exp(−iωt)Yℓm(θ, φ)/r, where
Yℓm are the spherical harmonics. In terms of a radial
coordinate dr∗ = dr/

√
ab, the perturbation Eq. (6) takes

a Schrödinger-like form

d2u

dr2∗
+

(
ω2 − Veff

)
u = 0, (8)

where the effective potential is

Veff(r) = a(r)

[
ℓ (ℓ+ 1)

r2
+

1

2ra

d(ab)

dr
+ µ2

eff

]
, (9)

and where µ2
eff is given in Eq. (6). In this work we focus

on monopolar perturbations, and thus set ℓ = 0. For a
Schwarzschild black hole, for which a = b = 1 − 2M/r,
a sufficient condition for the existence of an unstable
mode is [9, 48]

∫ +∞
−∞ Veff(r∗) dr∗ < 0. Heuristically, this

condition, which would signal a bound state in quantum
mechanics, is indicative of the existence of a mode with
positive imaginary frequency, i.e., an exponentially grow-
ing perturbation. Computing the integral, this condition
is equivalent to

1− 6

5

α1

M2
+

9

22

( α2

M2

)3

< 0, (10)

where we used that G = 48M2/r6 in the Schwarzschild
spacetime. When α2 = 0, we recover the usual Gauss–
Bonnet scalarization result [9–12]. Instead, when 0 <

α2/α1 <
4×111/3

5×32/3
≈ 0.855, the inequality (10) is respected

between two positive real values of M . There is thus a
finite mass window, bounded from above and from below,
within which the Schwarzschild solution must be unstable.

The inequality (10) is only a sufficient condition for
instability. To conclusively establish instability, we use
the S-deformation method [49–51]. For perturbations as
in Eq. (8), this method establishes the linear stability
of a black hole and amounts to showing that a smooth
deformation function S(r) exists such that

dS

dr
=
S(r)2 − Veff(r)

1− 2M/r
. (11)

For each choice of α1, α2 and M , we solve Eq. (11) nu-
merically, imposing the boundary condition S(2M) = 0.
Our results are presented in Fig. 1, where the hatched
region shows the Schwarzschild instability region, where
we could not find a deformation function. For each value
α2/α1 > 0, this corresponds to a mass window bounded
from above and below. We have also numerically solved
the perturbation Eq. (8) in the Schwarzschild background,
for a time-independent scalar (i.e., for ω = 0). We ex-
pected to find solutions if the scalarized branch connects
continuously to the Schwarzschild branch; we were not
able to find solutions to the perturbation equation for
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masses near the lower bound of the mass range. Further,
we found no solutions to the perturbation equation for
values α2/α1 ≳ 0.902, indicating that scalarized black
holes cease to exist past this value for the ratio of the
couplings.
Scalarized black holes. We will now establish the exis-
tence of a new branch of scalarized solutions in the mass
window where the Schwarzschild solution is unstable. For
this, we work with the most general ansatz for a spheri-
cally symmetric, static metric, in isotropic coordinates,

ds2 = −fN 2 dt2 +
g

f

(
dρ2 + ρ2 dθ2 + ρ2 sin2 θ dφ2

)
,

(12)

where N = 1− ρH/ρ and f and g are functions of ρ, with
ρH the coordinate location of the event horizon. To con-
struct the (numerical) scalarized solutions, we follow the
approach of Ref. [52], using a publicly available code devel-
oped by one of us [53]. The numerical method, boundary
conditions and validation of the code are discussed in
the Supplemental Material. The Arnowitt-Deser-Misner
(ADM) mass M follows from the asymptotic behavior of
the metric function gtt ∼ −1+2M/ρ+O

(
ρ−2

)
. The scalar

ϕ with scalar charge Q behaves as ϕ ∼ Q/ρ + O
(
ρ−2

)
near spatial infinity. The entropy of the black hole does
not follow the Bekenstein-Hawking relation [54, 55], but
can be defined as an integral over the horizon [56, 57]

S =
AH

4
+

1

4

∫
H
d2x

√
γ
(
α1 − 2α3

2ψ
)
F (ϕ)R̃, (13)

where γ is the determinant of the induced metric on the
horizon H, R̃ is its Ricci scalar, and AH = 4πρ2Hg/f |H is
the area of the event horizon. To construct the numerical
solutions, we chose the quadratic-exponential coupling
commonly used in the literature [9, 12], which behaves
quadratically around ϕ = 0, is known to produce stable
solutions in the scalar-Gauss–Bonnet model [58], and
satisfies the conditions (5)

F (ϕ) =
1

6

(
1− e−6ϕ2

)
. (14)

We have confirmed that for each nonzero value of α2/α1,
scalarized solutions exist only within a mass window
bounded from above and below, as shown in Fig. 1, where
the red shaded region denotes the domain of existence
of scalarized black holes for each coupling ratio α2/α1.
While the bifurcation points from the Schwarzschild so-
lution were notably in agreement with the upper bound
S-deformation predictions, the termination point of the
scalarized black hole branch differed, in general. In partic-
ular, for couplings obeying α2/α1 ≲ 0.3, the endpoint of
the scalarized branches occurs for values of the mass higher
than those obtained with the S-deformation method. This
suggests a mass range where stable, spherically symmetric
and static black hole solutions are entirely absent. On
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FIG. 2. Scalar charge (upper panel), entropy (middle panel),
and horizon area (lower panel) of the scalarized solutions as
functions of M/

√
α1. The scalar charge is normalized to the

value of the coupling, while the entropy and horizon area are
compared with those of a Schwarzschild black hole with the
same mass.

the other hand, for higher α2/α1 the scalarized branch
ends for masses smaller than those obtained with the S-
deformation method, leading to a mass range where stable
Schwarzschild black holes and scalarized black holes co-
exist. As we approach the maximum value α2/α1 ≈ 0.902,
the endpoint of the scalarized branches also approach
the lower-bound values obtained with the S-deformation
method. In contrast to typical scenarios in standard
scalar-Gauss–Bonnet gravity, where branches terminate
in singular solutions [27], we detect no singular behavior
in the solutions when inspecting the Ricci and Gauss–
Bonnet scalars at the black hole horizon. Instead, we
observe a decline in the accuracy of the scalarized solu-
tions as we approach the end of the scalarized branch,
and at a certain point, the code ceases to converge to a
scalarized solution. Past this point, our numerical method
only finds Schwarzschild black holes. We hypothesize that
this is connected to an overall diminishingly negative ef-
fective mass squared entering the scalar field equation as
M/

√
α1 decreases, as observed in our numerical analysis.
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Beyond a certain threshold, the negative contributions to
the scalar field equation seem insufficient to support the
existence of a scalarized black hole.

As shown in Fig. 2, the entropy of the scalarized solution
is greater than that of a corresponding Schwarzschild
black hole, except in proximity to the termination of
the existence domain in certain instances, such as for
α2/α1 = 0.5 and α2/α1 = 0.7. This trend signifies an
entropic preference for scalarized solutions in most cases.
Notably, the physical quantities exhibit non-monotonic
deviations from those of GR, with regions where they are
both smaller and larger. This is evident, for instance, in
the variation of the horizon area as shown in Fig. 2. The
scalar charge Q normalized to the length scale

√
α1 is

also shown in Fig. 2. Plots for other physical quantities
of interest in astrophysical contexts are shown in the
Supplemental Material.

Scalarization in neutron stars and other less com-
pact objects. We do not, in general, expect scalarization
to occur in neutron stars or other stellar objects. Using the
Tolman-Oppenheimer-Volkoff (TOV) equations [59, 60],
the Gauss–Bonnet invariant of a star described by the
metric (7) can expressed as [11, 61]:

G =
48m2

r6
−

128π
(
m+ 2πr3p

)
ε

r3
, (15)

where m = r (1− b) /2 is the mass function, and p and ε
are the pressure and energy density inside the star, respec-
tively. At the surface, the energy density becomes zero,
and m becomes constant and equal to the ADM mass M .
The Gauss–Bonnet invariant smoothly connects with that
of the Schwarzschild metric, while being predominantly
negative in the interior of the star [11]. Hence, in our
context, an instability could only be triggered at the outer
region of the star or in its exterior.

We have solved the TOV equations for a neutron star
model with M = 1.4 M⊙, employing the AP4 equation
of state [62]. In Fig. 3, we plot the effective potential
(9) for scalar perturbations around this neutron star solu-
tion, considering various values of α2/α1 and assuming√
α1 ≈ 106 M⊙. With increasing α2/α1, the negative

regions in the effective potential become progressively
weaker and shift further away from the surface of the
neutron star. The effective potential within the star is
overwhelmingly positive if α2 ̸= 0. Consequently, we ex-
pect that scalarization of neutron stars can be avoided, at
least if both couplings are sufficiently large, i.e., α1 ≫ M⊙
and α2 ≫ M⊙.

Defining the compactness of a body with ADM mass
M and radius rs as C = 2M/rs, the effective potential in
Eq. (9) is proportional to an overall factor of C3 in the
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FIG. 3. The dimensionless effective potential M2Veff for scalar
perturbations around a neutron star with M ≈ 1.4 M⊙ and
radius rs ≈ 11 km, described by the AP4 equation of state [62],
considering various values of α2/α1 and assuming

√
α1 ≈

106 M⊙.

exterior region (r ≥ rs) where the metric is Schwarzschild

M2Veff =
1

4
C3 (r/rs − C)

(r/rs)4

[
1− 2

√
3α1

√
G

+ 2
√
3
(
α2

√
G
)3

]
.

(16)

We observe that when two objects possess different masses,
but their Gauss–Bonnet curvature near the surface is of
the same order of magnitude, the effective potential of
the less compact object is suppressed by a factor of C3.
This suppression makes it more challenging for the less
compact object to undergo scalarization. Therefore, as-
trophysical bodies like the Sun (for which C ∼ 10−6),
exhibit an extremely weak effective potential near their
surface, even if black holes (for which C = 1) with the
same surface Gauss-Bonnet curvature are scalarized. Con-
sequently, we do not anticipate scalarization to occur, for
instance, within the solar system. Similarly, we do not
expect that laboratory experiments which are sensitive
to curvatures of the same order as the horizon curvature
of a supermassive black hole, can probe the scalarized
regime. The weak negative regions that could potentially
exist in Veff for less compact objects may, moreover, be
partially or entirely eliminated by adding a small explicit
mass term for the scalar ϕ to the action in Eq. (1).
Conclusions and outlook. There is a widely accepted
expectation that, if the Kerr hypothesis breaks down, it
does so above a critical curvature threshold. We present
the first paradigmatic example of a theory in which this
expectation does not hold true, because black-hole unique-
ness is broken – and the Schwarzschild solution is unstable
– in a finite and bounded window of horizon curvature,
or, equivalently, black-hole mass. This window depends
on the two coupling constants α1 and α2 in the action.
If both coupling constants are of the same order of mag-
nitude and there is no hierarchy of length scales, the
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window is narrow and targets a specific black-hole mass
scale M ∼ √

α1 ∼ √
α2. Conversely, it is necessary to

introduce a hierarchy of scales into the theory in order to
obtain an expansive window. Dependent on the value of
α1 ∼ α2, different observational channels can constrain
the theory.

First, if the mass window lies within the solar-mass
range, our theory can be constrained by LVK observa-
tions [17–19]. For instance, an equal-mass binary may
start out as a binary of two Schwarzschild black holes,
but end up in the mass window in which the merger
remnant may be scalarized. This is in contrast to other
scalarization scenarios in the literature and could lead to
a detectable mismatch between the expected and the ob-
served post-merger phase of the gravitational-wave signal
[63, 64].

Second, if α2 and α1 are such that solar-mass black
holes are described by the Schwarzschild solution, but
supermassive black holes are not, LVK observations are
insensitive to the modification of GR and observations
of supermassive black holes constitute the only pathway
to constrain the theory. We expect that this can already
be constrained from existing EHT observations [33–36]
and will address this in future work. Given the factor of
roughly 103 between the mass of Sgr A* and M87*, it
may well be that only one of them is scalarized, because a
hierarchy between α1 and α2 must be introduced in order
to scalarize both. Future upgrades of the EHT [37, 65]
and planned space-based gravitational-wave observatories
like LISA [31, 32], TianQin [66] or Taiji [67] may also
probe the theory. As a first step in this direction, one
may focus on extreme-mass-ratio-inspirals (EMRIs), in
which a small (nonscalarized) black hole orbits a large
(scalarized) black hole because EMRIs are an important
observational target for LISA. Another possibility, is to
analyze the coalescence of massive black-hole binaries,
which may be detected by LISA with signal-to-noise ra-
tio reaching thousands [68–70]. To determine whether
stellar orbits and gas dynamics near supermassive black
holes [71–74] as well as x-ray observations [75, 76] also
provide constraints, one should characterize deviations
in the post-Newtonian expansion. If supermassive black
holes surpass the instability threshold due to accretion,
the resulting spontaneous transition may also result in
observable signatures [77, 78]. In addition, the stochastic
gravitational-wave background from a population of su-
permassive black holes may be modified by scalarization
and affect pulsar-timing-array data [79–84].

As α2/α1 decreases, the window widens (see Fig. 1) and
the theory may be constrained at various black-hole mass
scales. Moreover, we find indications for a mass gap, i.e.,
a range of black-hole masses for which no stable branch
of spherically symmetric and stationary solutions exists.
To further understand the different black-hole branches
and understand whether the mass gap persists beyond
spherical symmetry, we plan to study rotating black-hole

solutions. At nonzero spin, minimally and nonminimally
coupled scalar fields can trigger new instabilities due to
superradiance [85, 86] and spin-induced scalarization [13–
15].

Finally, the upper curvature bound may even be taken
to cosmological scales. The present theory might provide
a screening mechanism which hides cosmological modifica-
tions from solar-system (and even galactic) observations,
see, e.g., [87] for review. The latter application assumes
that our results on black-hole (non)uniqueness carry over
to cosmological spacetimes. This motivates us to general-
ize the presented paradigmatic example to a larger class
of theories. We expect that theories with several scalars
and distinct effective masses may exhibit similar effects.
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SUPPLEMENTAL MATERIAL

Numerical method

In our numerical setup, we utilize the compactified radial coordinate x = 1 − 2ρH/ρ, which maps the interval
[ρH ,∞[ to [−1, 1]. The boundary conditions we impose are as follows: at the horizon (x = −1), our functions obey
f − 2∂xf = g + 2∂xg = ∂xϕ = ∂xψ = 0. To ensure asymptotic flatness, we impose that f = g = h = 1, and ϕ = ψ = 0
at x = 1. To solve the differential-algebraic system resulting from the field equations (2), (3) and (4), our code employs
a pseudospectral method together with the Newton-Raphson root-finding algorithm (see Refs. [52, 88]). We expand
each of the functions in a spectral series with resolution Nx in the radial coordinate x. The spectral series we use for
each of the functions F (k) = {f, g, ϕ, ψ} is given by

F (k) =

Nx−1∑
i=0

α
(k)
i Ti(x), (i)

where Ti(x) denotes the i-th Chebyshev polynomial, and α
(k)
i are the spectral coefficients of the k-th function. We

have typically used a resolution Nx ∼ 40.
From the physical quantities of the solutions, we can estimate the accuracy of the numerical solutions using a

Smarr-type relation they should obey

M = 2THS +
1

4π

∫
d3x

√
−g F (ϕ)

[
□ϕ
F ′(ϕ)

+ α3
2ψ

2

]
, (ii)

where TH = 1
2πρH

f√
g |H is the Hawking temperature of the solutions. We assessed the numerical accuracy of our

solutions through multiple approaches. Firstly, we considered Eq. (ii), recognizing that it is susceptible to numerical
errors due to numerical integration. Additionally, we examined the order of magnitude of the last retained spectral
coefficient, and the minimization of the residuals. In general, the Smarr relation yielded errors on the order of O

(
10−8

)
.

However, as we approached the end of the existence domain for scalarized solutions with sufficiently large couplings,
errors increased to around O

(
10−4

)
. This error pattern aligns with what is observed with our code in the standard

scalar-Gauss–Bonnet case, where it underwent thorough testing [27, 52] and faithfully reproduced results from the
existing literature [9–12]. The last retained spectral coefficient typically yielded an error estimate approximately a few
orders of magnitude smaller than that of the Smarr relation, while the norm of the residuals consistently dropped below
O
(
10−10

)
. Finally, we observed that the bifurcation points from Schwarzschild, for each value of α2/α1, agree with

high-accuracy with the upper bound values derived from the S-deformation method, providing a final test to the code.

Physical quantitites of interest of scalarized solutions
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FIG. 4. Physical quantities characterizing scalarized solutions for a selection of α2/α1 values. Progressing from left to right and
top to bottom, these include: the value of ϕ at the horizon, the Hawking temperature, the perimetral location of the light ring,
perimetral location of the innermost stable circular orbit (ISCO), the geodesic frequency at the light ring, and the geodesic
frequency at the ISCO. With the exception of the value of ϕ at the horizon, we compare all quantities to those of an equivalent
Schwarzschild black hole.
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