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Abstract: Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia
cells as the focus of research on Alzheimer’s Disease (AD). Researchers are confronted with an
astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifi-
cations. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for
AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of
the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ

receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological
responses towards various Aβ species is described. Furthermore, we discuss the importance of differ-
ent types of amyloid precursor protein processing for the generation of these Aβ variants in microglia,
astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures
and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms
in Aβ-driven signaling pathways in combination with the production and activity of different Aβ

variants might be crucial factors for the initiation and progression of different forms of AD. A deeper
assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies
for individualized medicine.

Keywords: Amyloid Beta; Alzheimer’s Disease; APP; neuroinflammation; glia; microglia;
neurodegeneration; cell-surface receptors

1. Introduction

The neuroinflammatory activity of microglia has, since its discovery, been suspected
to contribute to Alzheimer’s Disease (AD) [1–3]. Early reports referred to an invasion of
reactive microglia at the site of senile plaques [4,5]. Moreover, it was observed that both
microglia and astrocytes display exacerbated pro-inflammatory activity in disease-affected
brain areas [6]. This led to the theory that glial cells are either directly involved in the
pathogenesis of AD or are the immune system’s defensive shield against it [1]. Recent
advances have solidified both presumptions and thus placed the inflammatory activity of
glial cells as the focus of AD research [3].

AD is closely linked to the deposition of misfolded amyloid peptides in plaques and
the occurrence of neurofibrillary tangles consisting of hyperphosphorylated tau protein [7].
While these discoveries were made more than three decades ago [8], the precise role of Aβ

in neuroinflammation and neurodegeneration is still incompletely understood [9]. Progress
is hampered by some enormous challenges in Aβ research, ranging from a sophisticated
peptide process involving multiple proteases [10,11], to complex physiochemical properties
of the resulting peptides [12], leading to different oligomeric structures [13] that ultimately
elicit miscellaneous physiological effects on neurons, glia, and immune cells [3,7]. We now
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know that glial cells express a wide array of receptors such as triggering receptor expressed
on myeloid cells 2 (TREM2), toll-like receptors (TLRs), and formyl peptide receptors (FPRs),
which are capable of directly interacting with extracellular Aβ (see Figure 1). Several
other molecules, such as NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3),
transient receptor potential cation channel, subfamily M, member 2 (TRPM2), and cluster of
differentiation 36 (CD36) are further key modulators of the inflammatory Aβ cascades [14].
More than 100 Aβ peptides with varying lengths, structure, and chemical modifications
have been described [10,11,15]. However, most studies focused only on the two most
common variants, Aβ1-42 and Aβ1-40. Thus, the effects of many other fragments that are
generated under physiological conditions and are present in significant amounts in affected
brain areas remain to be elucidated. We here aim to provide an overview of the wide range
of interactions between glial cells and these neglected Aβ variants in the inflammatory
cycle of AD. In this context, we discuss the influence of different glia cell types and their cell-
surface receptors on APP processing, extracellular cleavage, and chemical modifications of
different Aβ species. Finally, we discuss the impact of these variants on neuroinflammation
and summarize the current knowledge of gene variants in Aβ receptors on the perception
of different Aβ species.

Figure 1. Membrane topology and domain architecture of microglial Aβ-binding receptors. Some
receptors are shown exemplarily to underpin the diverging domain architecture und potential Aβ-
binding site positions as far as identified (red arrows). Relative location of polymorphisms to binding
sites are indicated by yellow diamonds. Proportion of domains has been neglected. For RAGE,
binding of Aβ is assumed to occur as a dimer on the dimeric receptor [16]. In addition to cleaved
soluble RAGE and TREM2, additional soluble splice forms exist [17,18].
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2. The Role of Glia in Neuroinflammation

Today we know that an aberrant behavior of both microglia and astrocytes occurs
even at early stages of AD where typical cognitive symptoms and neuronal decay are not
yet observed [19–21].

Microglia are the driving force behind the immune defense of the central nervous
system (CNS) [3]. As highly motile cells, they survey their environment for pathological
stimuli—either from exogenous sources such as bacteria and viruses, or from endoge-
nous structures such as debris of damaged cells and misfolded proteins [22]. Due to its
complex structure, the CNS and especially its neuronal network is highly vulnerable to
pro-inflammatory stress and cell damage [23]. Therefore, the inflammatory response of
microglia has to strike a finely tuned balance between an effective removal of the pathogens
and the remaining viability of the surrounding neuronal cells [1,23]. This requires a strictly
regulated network of cell-surface receptors and intracellular signaling molecules that care-
fully control secretion of pro- and anti-inflammatory cytokines and chemokines, generation
of oxidative stress through the release of reactive oxygen species (ROS), and phagocytic
uptake and degradation of pathogens and cell debris [24]. In addition to these functions,
microglia also contribute to the maintenance of healthy brain homeostasis [24,25]. Here,
they support neuronal survival and proliferation through constant cross talk with neigh-
boring neurons and astrocytes, and release of trophic factors such as insulin growth factor
1 (IGF-1) or transforming growth factor β (TGFβ) [26,27]. Microglia also help to coordinate
the functional state of neurons [28] because they participate in the development of neu-
ronal networks by removing dysfunctional synapses through synaptic pruning [29] and by
promoting formation of new synapses through the release of factors such as brain-derived
neurotrophic factor (BDNF) [30,31]. Because of their multifaceted roles, microglia have an
enormous capability to rapidly change their expression profile and phenotype depend-
ing on the encountered stimuli [32]. In a healthy environment, they possess a ramified
morphology with wide soma and long branches that help to sense their local environment
in order to pursue supportive and vigilant roles. After detection of harmful stimuli, they
undergo significant molecular and morphological changes to assume a reactive phenotype
with an amoeboid shape and initialize pro-inflammatory processes that help to eliminate
pathogens from the CNS [3]. Historically, the amoeboid phenotype has been classified
as the pro-inflammatory M1-type and the ramified morphology as the anti-inflammatory
M2-type [3]. Recent studies demonstrated that these classifications are an oversimplifica-
tion because microglia can adopt several different pro- and anti-inflammatory states with
distinct gene expression profiles that depend on their local microenvironment and ageing
of individual cells [32,33]. In addition, RNA-seq analysis of transgenic AD mice provided
evidence for the existence of multiple Disease-Associated Microglia (DAM) subsets, show-
ing unique expression profiles [34] in different forms of neuroinflammation [34,35]. For
the sake of clarity, we still refer to the sum of all pro-inflammatory microglial cell types as
“reactive microglia”.

Clear evidence indicates that reactive microglia can detect and respond to Aβ. Over
the last decade it has become apparent that there is no single interaction partner for
extracellular Aβ. Instead, reactive microglia display a large number of different receptors
that are potential binding partners. Depending on the environment, disease type, and
age of the respective human host, different subsets of reactive microglia exist that express
discrete combinations of these receptors that modulate their inflammatory responses. The
currently known direct Aβ interaction partners expressed in microglia include structurally
diverse molecules such as triggering receptor expressed on myeloid cells 2 (TREM2), its
co-receptor sialic acid binding Ig-like lectin 3 (CD33), cluster of differentiation 36 (CD36),
toll-like receptors (TLRs), formyl peptide receptors (FPRs), receptor for advanced glycation
endproducts (RAGE), chemokine-like receptor 1 (CMKLR1), macrophage receptor with
collagenous structure (MARCO), Nucleolin, transient receptor potential cation channel,
subfamily M, member 2 (TRPM2), and fragment crystallization receptors (FcRs) (see
Figure 1).
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Astrocytes are the most abundant cell type in the CNS [36]. They build a supportive
framework for neuronal networks that helps to mediate blood flow in cerebral tissues and
to regulate the allocation of metabolites and neurotransmitters [36,37]. Astrocytes maintain
the integrity of the blood–brain barrier and mediate bidirectional transport processes
between the CNS and the periphery [38,39]. Their gate-keeping function also comprises
the transport of waste products out of the CNS via the glymphatic system and through the
blood–brain barrier (BBB) [40,41]. In addition, astrocytes form a complex communication
network that exchanges information through the release of signaling molecules [42]. They
are in constant cross-talk with neurons, microglia, and oligodendrocytes to uphold a healthy
environment in the CNS, and actively participate in neuronal signal transduction and the
control of synaptic plasticity [42]. Similar to microglia, astrocytes are able to undergo gliosis
to adopt different reactive states with distinct morphology and gene expression profiles [43].
In a pro-inflammatory environment, astrocytes assume their reactive phenotypes where
they suspend many supportive functions. Their reactive forms enable them to compensate
microglial dysfunction and to engage in phagocytic roles [44]. Accordingly, astrocytes
express many pro-inflammatory modulators that are also found on microglia, including
Aβ-interaction partners such as TLRs [45], FPRs, and RAGE [46]. Their interaction with
Aβ induces severe functional disturbances such as decreased release of neurotrophic and
protective factors and a dysregulation of calcium levels, which in turn leads to massive
disruptions in gliotransmission and the induction of apoptotic pathways [47]. In addition,
astrocytes are able to internalize Aβ and express a number of Aβ-degrading enzymes such
as metalloendoproteases like neprilysin (NEP) and insulin-degrading enzyme (IDE) [48],
and the matrix metalloproteases MMP-2 and MMP-9 [49], which helps them to support
microglia in the clearance of Aβ (reviewed in [50]). Furthermore, several studies have
proposed that astrocytes influence Aβ clearance by mediating the transport of Aβ into the
CSF and through the BBB into the bloodstream [51–53].

Oligodendrocytes are myelinating glial cells of the central nervous system that pro-
duce the insulating sheath of axons, which is essential for enhancing axonal action potential
conduction [54,55]. In addition, they also contribute to axoglial metabolic support and
elimination of oxidative radicals [55]. Not much is known about the involvement of
oligodendrocytes in the pathology of AD. However, they express some of the cell-surface re-
ceptors that can interact with Aβ such as TLR4 [56,57] and RAGE [58]. Interestingly, recent
studies observed molecular heterogeneity of oligodendrocytes in AD mouse models and
patients [59–64] and three distinct activation states of oligodendrocytes have been identified
via single-cell RNA sequencing [65]. Moreover, white matter degeneration and myelin loss
have been documented in brains of AD patients [66,67] and studies first theorized that AD
might be in part a response to age-related myelin breakdown [68]. Importantly, defects of
myelin integrity or demyelinating injuries were recently shown to be drivers of amyloid
deposition in vivo [69]. Further detailed investigations are necessary to examine the impact
of oligodendrocytes in AD and the contribution of white matter degeneration to AD.

3. Processes That Lead to the Generation of Non-Canonical Aβ Variants

Aβ1-42 and Aβ1-40 are by far the best-studied variants in AD research but proteolytic
processing of APP generates many more fragments (see Table 1). Thus, in a given biological
setting, the different glial cell types and neurons are usually confronted with a much
wider spectrum of Aβ variants whose properties and cellular effects are yet insufficiently
examined. In general, one can distinguish between four different groups of non-canonical
variants: N- and C-terminal abridged peptides, elongated peptides, and peptides containing
post-translational modifications (PTMs) (see Figure 2A). A given peptide precursor may
be subjected to different cleavage forms and modifications, which gives rise to a wide
range of possible combinations of truncations and chemical modification (proteolytic
conversion of APP and its modification processes are extensively reviewed in [11]). In
addition, different Aβ species tend to form heteromeric aggregates with varying structural
properties that may trigger further chemical modifications [12,13]. Several lines of evidence



Cells 2022, 11, 3421 5 of 46

argue that these non-canonical Aβ peptides are of importance in the pathogenesis of AD.
Firstly, N-abridged species are the most common form of Aβ peptides and comprise about
70% of all Aβ variants found in human brains [8,70]. Second, their levels in the CSF are
directly associated with the onset of AD [71]. Third, some chemical modifications such as
pyroglutamylated Aβ, which are dominant in AD but not during normal aging, only occur
on abridged peptides [72]. Fourth, some familial APP mutations such as the well-known
Swedish, French, or German variants alter APP processing and the ratio of abridged Aβ

variants, which may directly influence the progression of AD (see Figure 2B) [73].

Table 1. Overview of abridged and/or modified Aβ-species detected in the brain or CSF
of AD patients. Superscript description indicates modification at the respective amino acid
(glyco-Y10 = glycosylation at tyrosine at position 10 of the Aβ-domain sequence, ox-M35 = oxidation
at methionine at position 35, pyro-E3/11 = pyroglutamylation at glutamate at position 5 or 11,
race-D-S26 = racemization of D-conformation serine at position 26).

Aβ Fragments Modification Source References
C-ABRIDGED

1–13 to 1–20 - CSF [74,75]
1–15 to 1–20 glyco-Y10 glyco-Y10 CSF [76]
1–16 to 1–17 - Brain, CSF [74,75,77]
1–20 - Brain [70]
1–28 - CSF [74]
1–30 - CSF [74,75]
1–31 - Brain [70]
1–33 to 1–34 - CSF [74,75]
1–37 to 1–40 - Brain, CSF [74,75,78]
1–37 ox-M35 to 1–40ox-M35 ox-M35 CSF [74]

N-ABRIDGED
2–42 to 11–42 - Brain [78,79]
2–40 - Brain [79,80]
3–40/42pyro-E3 pyro-E3 Brain [78,80]
4–42 ox-M35 to 5–42 ox-M35 ox-M35 Brain [70]
4–40 - Brain, CSF [74,78]
4–43 - Brain [78]
5–40 - Brain [79,80]
8–42 ox-M35 ox-M35 Brain [70]
9–40 - Brain [78]
11–42 - Brain [80]
11–42 ox-M35 ox-M35 Brain [70]
11–42 pyro-E11 pyro-E11 Brain [78,79]
11–42 pyro-E11, ox-M35 pyro-E11, ox-M35 Brain [70]
17–42 - Brain [81]

C- & N-TRUNCATED
2–14 - CSF [75]
2–16 - Brain [77]
3–15 to 3–17 - Brain [74,77]
3–15 to 4–15 glyco-Y10 glyco-Y10 CSF [76]
3–19 pyro-E3 to 3–20 pyro-E3 pyro-E3 Brain [80]
3–24 pyro-E3 pyro-E3 Brain [80]
4–16 to 5–16 - Brain [77]
4–17 to 5–17 glyco-Y10 glyco-Y10 CSF [76]
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Table 1. Cont.

Aβ Fragments Modification Source References
C- & N-TRUNCATED

4–18 to 4–20 - Brain [80]
4–23 to 4 -25 - Brain [80]
4–34 - Brain [80]
4–37 - Brain [80]
4–37 ox-M35 to 4–40 ox-M35 ox-M35 Brain [80]
5–20 - Brain [80]
11–23 pyro-E11 to 11–25 pyro-E11 pyro-E11 Brain [80]
11–27 pyro-E11 pyro-E11 Brain [80]
11–30 - CSF [74]
11–34 - Brain [70]
25–35/40 race-D-S26 race-D-S26 Brain [82]

CANONICAL FORMS
1–38 to 1–40 - Brain, CSF [74,78,79]
1–42 - Brain, CSF [74,78,79]
1–43 - Brain [83]
1–40/42 ox-M35 ox-M35 Brain [70]

1–40/42race-D-S26 race-D-S26 Brain, CSF [76,82]
1–40/42 race-D-D7 race-D-D7 Brain [84,85]

Of note, with respect to these non-canonical Aβ variants, data from the currently
available animal models are of limited use since the number of non-canonical Aβ variants in
these models diverges significantly from those of most human AD patients, and especially
the levels of N-abridged peptides are highly reduced [70,87]. This is likely due to the
fact that the Aβ sequence from the most common humanized AD mouse models contain
specific mutations of the APP gene or genes of its processing enzymes that are found
in some rare familiar cases of AD but not in the majority of patients (Figure 2B) [88,89].
For example, the commonly used APP/PS1 mouse line expresses human APP bearing
the Swedish mutation K670N/M671L and mutant human Presenilin-1 [90]. Similarly, the
popular 5xFAD mouse model expresses human APP with a non-natural combination of
the mutations K670N/M671L (Swedish), I716V (Florida), and V717I (London), and human
Presenilin-1 bearing the mutations M146L and L286V [91]. Thus, in comparison to the
average human population, these mouse models likely have a bias in APP processing [92].
Nonetheless, humans and transgenic mice share two competing principal pathways for
APP processing (see Figure 3). Depending on which cleavage process takes place first, this
will lead to different N- and C-terminal amyloid variants that can comprise a length of up
to 49 residues [93]. An initial cleavage by α-secretase activity results in short N-terminally
abridged peptides starting at position 17, whereas an initial cleavage by β-secretases
produces a wide range of Aβ peptides starting at position 1 or 11 [10]. Formally, only
peptides that are cleaved at the β-site should be considered as true amyloid β peptides.
However, most authors use the “Aβ” abbreviation to also refer to other peptides that are
generated through alternative cleavage sites in the amyloid β domain. For simplicity, we
will therefore also use this nomenclature, although we are aware that the term amyloid
alpha would be more appropriate for fragments that are cleaved by α-secretases. These
enzymes produce the membrane-bound α-C-terminal fragment (αCTF) from APP, which
is then processed by γ-secretase into amyloid variants comprising the Aβ-domain 17-X,
which are also called p3 peptides [94].
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Figure 2. Truncated and modified Aβ species. (A): Depiction of N- and C-truncated Aβ variants
and their potential modification sites as described in Kummer and Heneka, 2014. Motifs for β-sheet
formation are indicated in red (race = racemization, iso = isomerization, pyro = pyroglutamylation,
phos = phosphorylation, glycol = glycosylation, nitra = nitration, ox = oxidation). (B): Aβ peptide with
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polymorphisms of APP that directly influence the amino acid composition of its Aβ domain (up) [86]
and the proposed cleavage sites of various secretases and enzymes (down) [11]. Polymorphisms are
classified according to their proposed pathological influence [86]. NEP = neprilysin, PLG = plasmin,
ACE = angiotensin converting Enzyme, IDE = insulin-degrading enzyme, M2 = MMP-2, M9 = MMP-9,
ECE1/2 = endothelin converting enzyme 1/2, β2 = BACE2, CATB = cathepsin B.

Figure 3. The amyloidogenic and non-amyloidogenic pathway of APP processing. (A) The non-
amyloidogenic pathway is starting by α-secretase cleavage of APP which leads to the release of
soluble APPα (sAPPα) and concomitant generation of the α-C-terminal fragment (α-CTF). Subsequent
cleavage of the α-CTF by γ-secretase leads to the secretion of the small fragment p3 and release of
the APP intracellular C-terminal domain (AICD) into the cytosol. In the amyloidogenic pathway,
APP is first cleaved by β-secretase to produce soluble APPβ (sAPPβ) and the membrane retained
β-C-terminal fragment (β-CTF). Further processing of the β-CTF by γ-secretase releases AICD as
well as the Aβ peptide, which can form neurotoxic oligomers. Aβ production was reported to
be higher in neuronal cultures compared to astrocytes or microglia cultures [95,96]. 3D structures
(PDB: 1IYT) are based on NMR experiments by Crescenzi and colleagues [97]. (B) Glial cells mainly
produce N-abridged Aβ peptides (up to 60%) such as Aβ2/3-X or Aβ4/5-x, while neurons produce
predominantly Aβ peptides starting at position 1 (80%) [98].

β-secretase activity leads to the generation of the classical variants Aβ1-42 and Aβ1-40
mainly via BACE1 (β-site amyloid precursor protein cleaving enzyme 1). BACE1 produces
membrane-bound β-C-terminal fragments (β-CTF) by cleaving APP at position 1 (β-site) or
at position 11 (β’-site) of the Aβ-domain that are subsequently further processed either by
α- or γ-secretases. Cleavage by an α-secretase produces p3 peptides and corresponding N-
terminal fragments Aβ1–14 to Aβ1–16. γ-secretase activity is mediated by multiple proteins
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such as APH-1, PEN-2, Nicastrin, and Presenilin-1 or Presenilin-2 [10]. Peptides that result
from γ-secretase activity end with residues ranging between position Aβ x-37 to Aβ x-43.
This process is thought to occur through multiple separate intermediate cleavage steps,
where mostly three amino acids are cut off within each step [10]. The cleavage process
usually starts at position 48 or 49, continues at position 45 or 46, and ends at position 38,
40, or 42. More rarely, peptides ending at position 34, 37, 39, or 43 are generated [10]. The
C-terminal variability is due to the imprecise cleavage of γ-secretases whose recognition
motifs are not depending on an exact amino acid sequence. In the healthy brain, 50% of
the peptides generated this way end at position 40, 16% at position 38, and 10% at position
42 [99]. These ratios shift in AD, leading to a higher production of peptides ending at
position 42 [10]. The reason for this is not fully understood; however, mutations of either
APP or γ-secretase enzyme complexes can lead to a lowered binding of Aβ to the protease
complex, which may then result in a premature release of the cleaved peptides [10]. In
addition to these longer variants, γ-secretase can also generate shorter peptides (Aβ1–14 to
Aβ1–16); however, the exact pathways have not been identified, yet [100]. In addition to
processing by traditional secretases, Aβ and APP are targeted by a wide range of enzymes
and peptidases that can either cut APP directly or interact with Aβ peptides after their
generation (see Figure 2B) (reviewed in [11]). These include matrix metalloproteinases such
as MMP2 and MMP9, which mainly interact with extracellular or internalized Aβ in glial
cells or deposition of fibrillary Aβ aggregates or others such as meprin-β that cleave APP
directly in its membrane bound form [11]. This leads to an extensive repertoire of possible
peptides (see Table 1).

3.1. N-Abridged Aβ Species

Aβ2-X and Aβ3-X are thought to be generated by APP cleavage by the metalloprotease
meprin-β or after cleavage of “full-length” Aβ1-X by the exopeptidase aminopeptidase
A [101]. Not much is known about the differences between Aβ2-X and non-abridged
variants regarding their biological effects. However, Aβ2-40 shows a higher aggregation
propensity than Aβ1-40 and can seed further aggregate formation of Aβ1-40 [102]. Cleavage
by meprin-β depends on a specific recognition motif in APP that includes amino acids
neighboring the N-terminus of Aβ [102]. This motif is altered in some APP mutants such
as the Swedish APP variant, which leads to a diminished processing by these enzymes
and a lower number of these variants in patients that carry this mutation [102]. Of note,
many popular humanized AD mouse models such as 5xFAD and APP/PS1 mice express
the Swedish APP mutation [92]. Thus, these mice have a low amount of Aβ2-X. By contrast,
these N-terminal truncations are frequent in human AD patients [103].

Aβ4-X variants are abundantly found in dense amyloid plaque cores of human AD
patients and 5xFAD mice [104]. Interestingly, Aβ4-X peptides appear to be more com-
monly released by microglia and astrocytes than by neurons, but the exact processing
mechanism is currently unknown [98]. Several studies suggest that a disintegrin and
metalloproteinase with thrombospondin motifs (ADAMTS4) and neprilysin may generate
these truncations [104–106]. ADAMTS4 has been implicated in the generation of variants
such as Aβ4-40 and Aβ4-42 [105]. Both show increased aggregation rates and a similar
neurotoxicity as non-abridged Aβ [95,107]. Clearance of oligomeric Aβ4-40 and Aβ4-42
from the brain is markedly reduced compared to their non-abridged counterparts [108],
which may indicate reduced or hampered interactions with glial cells. Of note, injections
of Aβ4-40 or Aβ4-42 into the brain of mice elicit behavioral deficits and impaired memory,
which were comparable with those induced by Aβ1-42, while injections with Aβ4-38 had no
effect [95]. Interestingly, transgenic mice expressing human Aβ4-42 in their hippocampus
do not develop plaques but still suffer from hippocampal pyramidal neuron loss and
behavioral deficits [95,109].

Aβ11-X peptides are generated by the β-secretase processing pathway after cleav-
age at the β’-site. Aβ11-40 and Aβ11-42 levels are commonly elevated in the brain of AD
patients [70,79]. They are approximately as abundant as Aβ1-42 and can comprise up to
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20% of the peptide content in plaques [70,79]. Decreased levels of Aβ11-X in the CSF are
associated with the onset of symptoms in AD and have thus been proposed as a biomarker
for AD [71]. In plaque cores, Aβ11-X co-localizes with Aβ1-42 and is therefore believed
to contribute to early plaque formation [110]. In vitro studies demonstrated that Aβ11-40
leads to increased neurotoxicity exceeding that of the canonical Aβ1-40 [111]. Furthermore,
Aβ11-40 is capable of rapidly forming fibrils [112] and can therefore act as a cross-seed for
the deposition of other Aβ species in plaques [111]. Interestingly, homogenous aggrega-
tion of Aβ11-40 decreases its neurotoxicity while heterogeneous aggregates of Aβ11-40 and
Aβ1-40 are even more harmful than monomeric or homogeneous oligomers of Aβ1-40 [111].
Surprisingly little is known about the effects of Aβ11-40 on glial cells. However, we recently
showed that Aβ11-40 activates the human glial cell line U87 via FPR1 [113].

Aβ17-40 and Aβ17-42 are p3 peptides that are generated via the α-secretase processing
pathway. P3 peptides are found in diffuse plaques of AD patients [114] and microglia
of AD patients contain various N-terminally abridged Aβ species [115]. Cell culture
experiments indicate that they might be produced in even higher amounts than Aβ1-42
and Aβ1-40 [116]. Of note, the presence of Aβ17-X in the CSF is positively correlated
with cognitive impairment of AD patients [71], which argues for a contribution of these
peptides to AD. However, they are difficult to detect because many commonly used Aβ

antibodies are not selective for Aβ1-42 and cross-react with p3 fragments and other N-
terminally abridged variants [117]. In addition, many established protocols for isolating
Aβ peptides from brain and CSF samples are not suitable for p3 peptides due to their high
hydrophobicity and insolubility, which excluded them from many studies that evaluated
Aβ levels [118]. Moreover, since several non-canonical proteases such as IDE, NEP and
MMP9 have cleavage motifs within the p3 sequence (Figure 2B), it is likely that additional
p3 peptides with highly variable C-termini exist. However, these potential variants have
not been studied so far. Historically, Aβ17-X were classified as non-amyloidogenic because
they did not display fibrillary aggregation and deposition. However, recent advances have
cast doubt on these assumptions because conflicting data regarding the amyloidogenic
capabilities of p3 peptides exist (reviewed in [94]). While early reports found no evidence of
toxic fibril formation by p3 peptides [119], more recent studies found that p3 peptides form
fibrils and soluble oligomers [120–122] with even faster aggregation kinetics than Aβ1-40
or Aβ1-42 [107,120]. Aβ17-40 and Aβ17-42 induce pro-inflammatory cytokine production in
human and murine glial cell lines, leading to neuronal decay through pro-inflammatory
caspase-activation in neuronal cell lines [107,123], which triggers pro-inflammatory activity
after injection into mouse brains [124]. Moreover, we recently showed that all human FPRs
can detect Aβ17-40 and that FPR1 is activated at 30-fold lower concentrations by the peptide
than by Aβ1-42 [113].

3.2. C-Terminal Variants

Aβ1–43 is produced by γ-secretase cleavage and can be found abundantly in amyloid
plaques [125–127]. Its levels are heightened in both spontaneous and familiar AD patients,
but not in age-matched controls [128]. In particular, familiar AD cases with mutations
in the γ-secretase subunit PS1 show an elevated generation of Aβ1–43 compared to other
species [129,130]. Unlike shorter variants, only low amounts of Aβ1–43 are found in the
CSF [131] and cerebral blood vessels [125]. Aβ1–43 is highly amyloidogenic and neurotoxic
in mouse neuronal primary cultures and cell lines [132,133]. Furthermore, injections of
Aβ1–43 into APP mice lead to severe depositions of Aβ1–42, indicating the potent capability
of Aβ1–43 to seed the aggregation of other variants [134].

Aβ1–37 to Aβ1–39 are produced by the traditional β-secretase pathway. Compared
to canonical Aβ1–42 and Aβ1–40, these C-abridged peptides appear to be harmless or at
least significantly less neurotoxic [135,136]. Aβ1–38 forms oligomers and fibrils, but its low
abundance in plaques indicates that it is easily cleared from the CNS. Furthermore, levels
of these C-abridged peptides in CSF are altered in patients with AD [137]. Functionally,
C-abridged Aβ species can act as a scavenger for Aβ1–42 and Aβ1–40 because they can



Cells 2022, 11, 3421 11 of 46

form aggregates with these peptides, leading to reduced synaptic disruption, reduced
neurotoxicity, and lowered amyloidogenicity [136]. In a Drosophila melanogaster model,
expression of Aβ1–42 led to severe neuronal and behavioral pathologies, but co-expression
of either Aβ1–37, Aβ1–38 or Aβ1–39 attenuated these effects [135]. In addition, a lower
ratio of soluble Aβ1–42/Aβ1–38 (i.e., a higher Aβ1–38 content) was associated with a later
age-at-death in male AD patients [136].

Aβ1–34 is present in the brain and CSF of AD patients and AD mouse models [138,139].
Its levels are highly increased in the CSF of AD patients compared to healthy controls [139].
Interestingly, Aβ1–34 is also commonly found in brain vessels in early AD stages but
diminishes with further progression of the disease [139]. Aβ1–34 generation processes have
not been fully elucidated. In cell culture experiments and transgenic mice, generation of
Aβ1–34 depended on initial BACE1 activity [139], but its C-terminal truncation is likely
produced through procession of Aβ1–40 or Aβ1–40 by glia-derived metalloproteases such as
MMP2 and MMP9 [140]. Thus, Aβ1–34 is thought to be a degradation marker for clearance
activity of microglia in early stages of AD [138–140]. Interestingly, an in vitro study reported
that, Aβ1–34 protected APP-expressing HEK293 cells against caspase-3-mediated apoptosis,
which may indicate that Aβ1–34 is not just a side product of degradation processes but may
also have resolving properties [141].

Aβ1–14 to Aβ1–16 are commonly generated during APP processing but are thought
to be harmless [142] because they do not elicit pro-inflammatory glia signaling, are not
capable to form amyloidogenic aggregates, and are most likely quickly degraded. Increased
levels of these fragments in the CSF indicate increased β-secretase activity and have thus
been proposed as a biomarker for Aβ production [78,100].

3.3. Post-Translational Aβ Modifications (PTMs)

Pyroglutamylation refers to the conversion of glutamate into pyroglutamate, which can
occur in N-abridged Aβ peptides at position 3 (Aβ3-x

pyro-E3) and position 11 (Aβ11-x
pyroE11).

This process was shown to be catalyzed by glutaminyl cyclase in vitro [143,144] and also
in vivo [145,146]. Pyroglutamate highly influences the secondary structure of Aβ, lead-
ing to an enhanced β-sheet structure, higher hydrophobicity, and increased aggregation
propensity [147]. AβpyroE species are peculiarly abundant in senile plaques [78,148] and
are also present in diffuse, soluble aggregates [149,150]. Aβ3-X

pyro-E3 is highly amyloido-
genic and can seed the aggregation of other Aβ species, which increases fibril formation
significantly [151,152]. Such cross-seeded aggregates appear to be more neurotoxic than
homogenic aggregates and may thus contribute to the pathological effects of AD [152].
Unlike most Aβ variants, AβpyroE is only associated with the progression of AD but not
with ageing [72]. In pre-clinical AD patients without senile plaque formation, Aβpyro is not
initially present within soluble aggregates [149] but appears during further progression of
the disease when patients experience their first cognitive symptoms [149,153]. Deposition
of Aβ3-40

pyro-E3 into insoluble plaques precedes deposition of Aβ1–42 and Aβ1–40 [148]
and may thus be involved during the onset of early symptoms. Aβ3-X

pyro-E3 species also
accumulate in lysosomes of microglia [154] where they are suspected to cause lysosomal
failure, microglial decay, and subsequent progression of AD [155,156]. In addition, pyrog-
lutamylation may affect protease-mediated decay, and influence the capabilities of Aβ to
interact with cell-surface receptors. For example, murine NMDAR recognizes Aβ but not
Aβ3-X

pyro-E3 [157]. Furthermore, experiments with porcine primary microglia revealed
that Aβ3–42

pyro-E3 is more potent to enhance E. coli phagocytosis than the non-abridged
peptide (360). Unfortunately, production and deposition of AβpyroE in most AD animal
models is not comparable with human AD patients because in APP transgenic mouse
lines initial plaques are devoid of Aβ3-X

pyro-E3 species [158–160]. Nonetheless, in some
cases mouse models can provide valuable insights into the biological effects of AβpyroE

species. For example, 5xFAD mice overexpressing the human glutaminyl cyclase show
an increased AβpyroE production, plaque formation, and behavioral symptoms, while the
glutaminyl cyclase knockout reduces plaque deposition and rescues behavioral perfor-
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mance [145]. Moreover, treatment of APP/PS1 mice with antibodies against Aβ3-X
pyro-E3

ameliorates behavioral symptoms and decreases amyloid plaque numbers, which is likely
due to FcR-mediated clearance by microglia [161].

Isomerization of Aβ occurs mainly at asparagine (N) and aspartate (D) residues and
is commonly detected at position 1 (Aβiso-D1) and 7 (Aβiso-D7) [162]. Isomerization happens
through spontaneous, non-enzymatic reactions. Thus, its probability increases throughout
the lifetime of Aβ [163]. In plaque core preparations, Aβ species with iso-D1 and iso-D7
are more common than other variants and are present in higher concentrations than in
“younger” diffuse plaques or vascular depositions [164,165]. Of note, isomerization has
a strong impact on the secondary structure of Aβ and leads to faster aggregation and
deposition [166,167]. Aβiso-D7 also shows an increased neurotoxicity through excessive NO
generation [168,169] and inhibits the α7 Nicotinic receptor, which has been implicated in
long-term memory formation [168]. Microglia can internalize isomeric Aβ [164]; however,
isomeric Aβ is more resistant against degradation in microglial lysozymes [163] and against
intracellular and extracellular proteases [163,170], which fosters lysosomal failure [155,156].

Phosphorylation can potentially occur at serine residues 8 (Aβpho-S8) and 26 (Aβpho-S26)
and at tyrosine residue 10 (Aβpho-T10) [13]. These modifications are thought to occur mainly
through extracellular kinases or after internalization. Aβpho-S26 accumulates in early AD
stages in neurons, but only low concentrations are present in extracellular plaques [171,172].
It can assemble into soluble oligomers that do not form fibrils and exhibit increased neu-
rotoxicity in cell culture experiments [172]. Aβpho-S8 levels are elevated in later stages
of AD where it mainly occurs in compact plaques [173]. A phosphorylated serine at po-
sition 8 increases the stability of Aβpho-S8 aggregates by attenuating their recognition by
degrading enzymes and inhibiting microglial clearance [174,175]. Due to the clearance
resistance, Aβpho-S8 species may contribute to plaque spreading [175]. In this context, Hu
and colleagues showed that Aβ1-42

pho-S8 can cross-seed with non-modified Aβ1-42, which
generates aggregates with elevated neurotoxicity [152].

Oxidation is mainly caused by radicals such as ROS and NO and can occur at the
methionine (M) at position 35 (Aβox-M35). Aβox-M35 molecules are abundantly released
by reactive microglia. Oxidation disrupts fibril formation and destabilizes oligomer
formation [176,177]. Since generation of oxidative stress is a hallmark of neuroinflam-
mation, the amount of oxidized Aβ is thought to increase during the progression of AD.
Oxidized Aβ species with varying length have been identified in brain and CSF samples
of AD patients [70,74,80]. A study by Head and colleagues found oxidized species in
46% of diffuse plaques and in 98% of cored plaques [178]. Oxidized Aβ was found in
plaque-invading microglia of AD patients [178]. However, so far it has not been elucidated
if oxidation influences interactions between Aβ and microglia.

Racemization converts amino acids from their L- into D-conformation. For Aβ, racem-
ization was observed in aspartate residues (D) at position 1 (AβD-D1) and in seryl residues
(S) at position 26 (AβD-S26) [13]. Racemization of aspartic acid increases the fibrillary aggre-
gation kinetic [179]. In addition, further modifications such as sylation and nitration were
observed [13]. However, their biological relevance is yet unclear. Some studies suggest
that these PTMs may also influence the aggregation properties of Aβ and could influence
cross-seeding with other Aβ species [152].

3.4. Splice Variants of APP

The APP gene is highly conserved in mammals, consists of 18 exons, and spans over
290 kilobases [89,180]. Ten APP splice variants have been described that range between 639
to 770 amino acids [89]. The three variants APP695, APP751, and APP770 make up almost
the complete protein quantity [181,182]. APP770 is the longest isoform and contains all
exons [181,182]. In comparison, APP751 does not include exon 7, which encodes for an
additional Kunitz-type protease inhibitor (KPI) domain that protects the protein against
proteolytic cleavage by certain enzymes [183]. APP695 lacks both exons 7 and 8,and is
therefore deficient of the KPI domain from exon 7 and an OX-2 domain from exon 8, which
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is thought to influence cell-surface binding [184]. All three mayor isoforms contain the full
Aβ sequence and can thus potentially be processed into Aβ and p3 peptides. Interestingly,
APP695 is the most common isoform in the brain and is mostly expressed by neurons,
whereas APP751 and APP770 are more dominant in glial cells [181,182,184].

3.5. APP Processing Is Different in Neurons, Astrocytes, Microglia, and Oligodendrocytes

Neurons are beyond doubt the primary source for the canonical Aβ1-40 and Aβ1-42
variants [185,186]. They mostly express the APP isoform APP695 and only minor amounts
of APP751 and APP770 [187,188]. Neuronal mRNA levels of APP are approximately
10-fold higher [189] than in other cell types and neurons produce approximately four-fold
more soluble APP proteins than astrocytes and microglia [190]. In line with this, Aβ

production was also shown to be elevated in neuronal cultures compared to astrocytes or
microglia cultures [96]. This is corroborated by a study reporting a ~7× higher generation of
Aβ1-40 secreted by neuronal cultures compared to Aβ released from astrocytic cultures [98].
Neurons predominantly secrete Aβ peptides starting at position 1 (80%), whereas those
released from astrocytes and microglia represent mainly N-terminally abridged Aβ peptides
including Aβ2/3-x and Aβ4/5-x (Figure 3B) [98], suggesting that secretase levels are different
in the respective cell types. In line with this, BACE1 protein levels were reported to be more
abundant in cultured neurons compared to astrocytes, whereas BACE2 showed a higher
presence in astrocytes [191]. Furthermore, neurons produce 3.4 times more Aβ17-x than
Aβ1-40-43, while astrocytes generate 7.8 times more Aβ17-x than Aβ1-40-43, indicating a higher
rate of α-secretase cleavage in astrocytes compared to neurons [96]. Protein expression
of PS1, the catalytic domain of the γ-secretase complex, was shown to be comparable in
neurons and astrocytes, suggesting no major difference regarding γ-secretase processing in
both cell types [191].

In astrocytes, all three major splice forms of APP, APP695, APP751, and APP770,
were shown on the protein level [192]. Splice forms APP751 and APP770 seem to be
predominant [190,192], while APP695, which is the major described APP splice form in
neurons [187,188], has a lower abundance. This might contribute to differences regarding
the proteolytic conversion of APP between astrocytes and neurons. In contrast to neu-
rons, only 40% of the secreted Aβ peptides are cleaved at position 1 in astrocytes [98].
This is of interest, because N-terminally abridged Aβ species are prevalent in neuritic
plaques [77,95,193,194]. N-terminally abridged Aβ species from astrocytes and microglia
may therefore contribute to a higher proportion to the formation of neuritic plaques than
peptides derived from neurons. In line with this idea, cell culture experiments demon-
strated that astrocytes and microglia indeed secrete higher amounts of N-terminally Aβ

variants such as Aβ2/3-40 and Aβ4/5-40 [98]. Proteolytic conversion of these variants does
not depend on BACE1 activity but is likely mediated by plasma-membrane associated
cathepsin B (CatB) [195]. However, a number of other proteases such as meprin β [196],
neprilysin [197], myelin basic protein [198], the metalloproteinase ADAMTS4 [105], and
aminopeptidases [199] may also contribute to the production of these N-terminally mod-
ified Aβ variants [11,200]. By contrast, the proportions of the C-terminal Aβ variants
Aβ1-37, Aβ1-38, Aβ1-39, and Aβ1-42 to Aβ1-40 did not differ between neurons, astrocytes,
and microglia [98], indicating no differences in the C-terminal Aβ peptide-trimming by
γ-secretase between these different cell types [10]. Cortical astrocyte cultures have lower
BACE1 protein levels and higher levels of BACE2 than corresponding neuron cultures [191].
In line with the finding that APP is processed by BACE2 at position 19–20 and 21–22,
Western blot experiments demonstrated a more efficient generation of Aβ1-15, Aβ1-19, and
Aβ1-20 in astrocytes of APP/PS1 mice [191]. However, the isolation of primary astrocytes
typically yields cultures with mostly reactive phenotypes [201], and these therefore possess
presumably higher APP protein levels than resting astrocytes since it has been shown
that APP expression in reactive astrocytes is substantially increased following neuronal
damage [202]. By contrast, only little APP expression is documented in resting astrocytes
in vivo [203]. Therefore, primary cultures may not exactly reflect the in vivo situation of
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the cell types analyzed. Of note, BACE1 protein and APP levels can be induced by 300 to
600% through stimulation of astrocytes by cytokine combinations or Aβ1-42 [204].

In microglia, APP protein expression was reported at an early stage [205,206]. All
three major splice forms, APP695, APP751, and APP770, are present in microglia cell
cultures [192]. However, microglia express more than 50% of their APP mRNA as tran-
scripts as APP695, which encoded for the KPI-domain; approximately 22% of total APP
mRNA represented APP770 mRNA, 45% APP751/L-APP752 mRNA, 25% L-APP733
mRNA, and approximately 4% APP695 and L-APP677 [207]. Furthermore, BACE1 ex-
pression has been indicated on a protein as well as the mRNA level in microglia cells [208].
The presence of α-secretase ADAM10 in microglia was also shown via an upregulation of
ADAM10 after reduction in cortical activity [209]. Interestingly, protein amounts of gamma
secretase subunits such as PS1 and Nicastrin are increased in activated microglia [210].

The whole APP processing machinery is present in microglia under certain conditions.
However, the impact of microglia on APP processing has not been characterized extensively,
yet. Microglia produce mainly N-terminally modified Aβ peptides including Aβ2/3-x and
Aβ4/5-x [98], suggesting a possible contribution of N-abridged Aβ species from microglia
to the peptides found in vascular and neuritic plaques [77,194]. Several studies with the
immortalized mouse microglial cell line BV-2 revealed an interaction of microglia with
the extracellular matrix that affects APP secretion as well as the intracellular biogenesis
of APP [207]. APP expression and release of soluble APP was highest after adherence to
uncoated plastic surfaces [207]. A further study using this cell line showed that Aβ25-35 and
lipopolysaccharide treatment induced Aβ secretion [211]. APP is expressed on the surface
of microglia cells and it is upregulated due to their activation [205,206]. Direct stimulation
of APP with agonist antibodies also led to robust activation of microglia [212,213]. Even
an activation of microglia via Aβ-binding to APP has been indicated [214]. Collectively,
these data indicate that APP itself can serve as a cell-surface receptor that helps regulating
microglial activation.

In oligodendrocytes, analysis of mRNA transcripts identified the APP splice forms
APP695, APP751, and APP770 [215]. Interestingly, a lower molecular weight form of
full-length APP was more substantially expressed than higher molecular weight forms,
suggesting that oligodendrocytes, similar to neurons [216], may express more APP695 than
APP751 and APP770 [217]. Adult oligodendrocyte progenitor cells (aOPCs), which were
purified from a >4-month-old rat brain, generally expressed BACE1, APP, and components
of the γ-secretase complex such as Presenilin-1, anterior pharynx-defective 1 (APH1), and
Nicastrin [218]. APP protein expression in oligodendrocytes has also been shown via
immunostaining of rodent brain [219–221], as well as in cell culture [215,217,222]. More-
over, ADAM10 expression has been documented in oligodendrocytes of the developing
brain at later embryonic stages [223]. APP processing analyses in a cell line of murine
OPCs (Oli-neu) [224] documented generation of the APP intracellular domain (AICD) by
γ-secretase and production of an APP C-terminal fragment, which increases after treat-
ment with a γ-secretase inhibitor [225]. A more detailed study even addressed various
differentiation stages of cultured aOPCs and APP processing [218]. These aOPCs can
be maintained for several months in media containing Fibroblast growth factor 2 (FGF2)
which promotes survival and proliferation of aOPCs positive for NG2 (chondroitin sulfate
proteoglycyan NG2/CSPG4), a marker for aOPCs [218]. Interestingly, FGF2 withdrawal
increased expression of full-length APP as well as Aβ1-42 production. aOPC cultures in-
cluding only 0 or 1 ng/mL FGF2 secreted ~four-fold higher ratios of Aβx-42 to total Aβ

than cultured fetal rat neurons, suggesting a high rate of γ-secretase processing in these
aOPC cultures [218]. α-CTF accumulated in media without FGF2 while β-CTF and the p3
fragment increased with elevated FGF2 concentrations, suggesting that γ-secretase prefers
the APP α-CTF as a substrate at higher concentrations of FGF2. Further proteases that
are capable of processing Aβ have also been found in oligodendrocytes. One example
is ADAMTS4, which is exclusively expressed in oligodendrocytes in mouse brain and
generates Aβ4-x from both full-length APP and Aβ1-x [105]. Mass spectrometric profiles
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of different Aβ species from 5-day-old OPC cultures from WT and ADAMTS4 KO mice
confirmed release of Aβ4-x species from these cells [105]. Interestingly, ADAMTS4 mRNA
levels were increasing during the culture period of 5 days, suggesting a higher conversion
of APP by ADAMTS4 in myelinating oligodendrocytes [105]. Oligodendrocytes therefore
seem to be a source of secreted Aβ4-x peptides [105], which corresponds to the finding of
N-terminally abridged Aβ variants such as Aβ2/3-40 and Aβ4/5-40 secreted by microglia
and astrocytes in contrast to neurons [98].

4. Cellular Responses of Glial Cells towards Aβ

4.1. Contribution of Aβ Internalization and Degradation

Microglia help to remove toxic peptide Aβ isoforms from the CNS via internaliza-
tion and subsequent degradation by several mechanisms (see Figure 4) [226]. Various
microglial receptors are able to mediate uptake of Aβ by endocytosis via formation of
receptor-peptide complexes. However, different aggregates seem to preferentially interact
with different types of cell-surface receptors. For example, FPRs help in the clearance of
Aβ1-42 monomers and small oligomers [227–229], whereas fibrillary aggregates are not
efficiently internalized [230,231]. Scavenger receptors such as SR-A [232], SR-B1 [233], and
CD36 [234,235] appear to prefer the uptake of fibrillary forms of Aβ1-42, whereas TLRs
have been reported to mediate the internalization of monomeric, oligomeric, and fibrillary
Aβ1-42 [226]. TLR2 [236,237] and TLR4 [238] induce the uptake of Aβ1-42 and trigger inter-
nal degradation processes. In addition, microglia can also internalize Aβ1-42 via unspecific
uptake mechanisms, such as pinocytosis through phosphoinositid-3-kinase (PI3K) [239] or
Ras-related C3 botulinum toxin substrate 1 (Rac1)-dependent pathways [240]. Internaliza-
tion leads to different internal degradation processes in microglia. In cell culture experi-
ments, fibrillar Aβ1-42 was effectively degraded through autophagy by lysosomes [241–243].
The acidic environment in lysosomes enables the formation of compact Aβ1-42 aggregates
that are resistant against further degradation [155,156]. Microglia can release these ag-
gregates as microvesicles into the extracellular space where they contribute to plaque
formation and neurotoxic effects [155,156]. This can trigger a vicious cycle of apoptotic
pathways [155] involving an aberrant activation of the NLRP3 inflammasome [244] and the
apoptosis of microglia [155]. Some studies suggest that the release of degradation-resistant
Aβ1-42 from dying microglia might be the driving force behind plaque deposition since
microglia-deficient animal models show only minimal Aβ1-42 plaque formation [245,246].
Interestingly, autophagy of Aβ in microglia seems to become less efficient with disease
progression [247].

4.2. Contribution of NLRP3 Signaling

The wide range of interaction partners for Aβ leads to a number of equally diverse and
complex interactions between different signaling cascades in the inflammatory response
of microglia (see Figures 4 and 5) [3,23]. These cascades are mainly regulated by inflam-
masomes, which are cytosolic protein complexes that mediate inflammatory responses
of immune cells [249]. In AD, formation of the NLRP3 inflammasome and subsequent
caspase-1 activity have been proposed to be driving forces in the microglial response to
Aβ [248]. The main components of this inflammasome are the cytosolic receptor NLRP3,
the adaptor protein adaptor protein apoptosis-associated speck-like protein containing
a caspase activation and recruitment domain (ASC), and the inactive precursor form of
caspase-1 (pro-caspase-1) [248,250]. Priming and assembly of the NLRP3 inflammasome is
initiated by an activation of NF-κB pathways that are typically induced by extracellular
stimulation via surface receptors [248] such as TLRs [236], CD36 [251], and FPRs [252]. This
leads to NLRP3 upregulation, which then recruits ASC and pro-caspase-1 for inflamma-
some formation [3,248]. Upon a second signal, which is either triggered by cell-surface
receptors or through direct interaction of NLRP3 with internalized Aβ [253], the primed in-
flammasome complex autocatalyzes pro-caspase-1 through the adaptor protein ASC into its
active state, which subsequently triggers transformation of interleukines and cytokines into
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their biologically active forms [248]. Of note, microglia release inflammasome components
such as ASC specks into the extracellular space, where they can be a seed for Aβ, which may
propagate plaque formation [254]. In general, detection of Aβ induces the release of Il1β,
IL6, IL8, IL33, IL34, and other inflammatory factors such as TNFα. IL1 and its isoform Il1β
belong to the most prominent representatives because upregulation of Il1β already occurs
at the earliest stages of plaque evolution [255]. Il1β release increases APP production in
neurons [256,257] and influences APP processing via upregulation of proteases [258–260].
High IL1 levels were found in brain tissue [261,262] and cerebrospinal fluid [261] of AD
patients and APP/PS1 mice [262]. Il1β induces further self-production in microglia and as-
trocytes, leading to a self-potentiating inflammatory feedback loop [263]. This is associated
with neuronal toxicity, exacerbated synaptic loss and aberrant glial activation.

Figure 4. Cellular responses of microglia after detection of Aβ. Microglia are capable of perceiving
soluble Aβ peptides and insoluble aggregates via multiple cell-surface receptors, which then induce
varied cellular responses such induction of cell migration, cytokine and chemokine release, secretion
of proteases, and generation of oxidative stress [3,23]. These processes are in part regulated by the
intracellular NLRP3 inflammasome. The release of inflammasome components (ASC specks) may
lead to seeding of Aβ and may thus contribute to plaque formation [248].

4.3. Contribution of Oxidative Stress

Generation of ROS and radical nitrogen species (RNS) is a typical pro-inflammatory
action of microglia to remove extracellular pathogens [3,264]. Microglia can release an
oxidative burst, which is usually driven by the transmembrane enzyme complex NADPH
oxidase (NOX) [264]. NOX activity is triggered as a secondary effect after the phagocyto-
sis of pathogens or the detection of PAMPS or DAMPS by cell-surface receptors such as
TREM2 [265] and FPRs [266]. This leads to the generation and release of ROS into the extra-
cellular space. Unfortunately, this does not only target harmful pathogens but also harms
neighboring cells, beneficial proteins, and lipids [264]. The healthy brain combats oxidative
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stress through a complex antioxidant system, which includes radical scavengers such as
glutathione that protect cell organelles from damage and dysfunction [264,267]. However,
aberrant release of ROS and RNS can overwhelm this antioxidant defense system, leading
to severe damage through lipid peroxidation, protein oxidation, and DNA damage [264].

Figure 5. Aβ-mediated activation of microglia. Direct detection of Aβ (e.g., by TREM2, TLRs, FPRs,
RAGE) or indirect stimulation through Aβ-mediated processes (e.g., TRPM2 activation by ROS,
detection of autoantibodies against Aβ by FcRs) leads microglia to adopt their reactive phenotype
in which they utilize intracellular signaling pathways and metabolic processes to initiate their pro-
inflammatory response.

Generation of oxidative stress has been described as a hallmark feature of AD [7].
Signs of oxidative damage are commonly found in the brain, CSF, blood, and urine of
patients [268–271]. In particular, brain areas afflicted with large plaque and NFT depositions
show high levels of oxidated proteins and lipid peroxidation. Next, regulatory factors
of NOX are upregulated in AD brain tissue [272,273]. Aβ triggers ROS release through
activation of microglial cell-surface receptors. The ROS effects are initially dampened by
the antioxidant system, but chronic exposure of cells to Aβ leads to its depletion and thus
the subsequent exacerbation of oxidative damage [274]. Aβ-mediated oxidative stress
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then disrupts synaptic signaling, induces astrocyte activation, and leads with increasing
levels to neuronal death. In addition, ROS activates TRPM2, which propagates the pro-
inflammatory activity of microglia and initiates apoptotic pathways in neurons [275].
Apoptotic cells subsequently release additional DAMPs that are perceived by microglia
and further stimulate the pro-inflammatory machinery, thus leading to the self-renewal of
oxidative stress. Moreover, oxidative stress leads to increased production of Aβ through
modulation of APP procession pathways [276–279]. Treatment of neuronal cell lines with
H2O2 increases expression and activity of β- and γ-secretases that mediate the production
of pathogenic Aβ species [276,278,279]. In particular, γ-secretase activity seems to be
susceptible to the effects of oxidative stress and may result in increased β-secretase levels
through yet unknown pathways [279,280]. In addition, oxidative stress can directly facilitate
the generation of modified Aβ species through oxidation at position 35 or nitrosylation at
position 10 [13].

4.4. Interaction of Aβ with Other Neuropathological Proteins

Amylin (also known as islet amyloid polypeptide (IAPP)) is a peptide hormone gen-
erated by islet β cells in the pancreas that is co-secreted with insulin into the blood stream
during regulation of blood glucose levels [281]. Amylin-Aβ aggregates are present in
cerebral plaques of patients with familiar AD [282]. In CSF samples of familiar AD patients,
high Amylin concentrations are associated with decreased Aβ1-42 levels, which suggests
that Amylin may influence Aβ1-42 transport between the brain, CSF, and blood [282,283].
Interestingly, the Amylin receptor may also be able to interact with Aβ [284]. Amylin and
Aβ1-42 share a sequence homology of more than 50% and form similar β-sheet structures.
Moreover, Amylin can act as a seed for Aβ1-42, which can lead to amorphous heterocom-
plexes that display a highly increased neurotoxicity compared to either pure Amylin and
Aβ1-42 aggregates [285].

Prion protein (PrP) is a cell-surface protein encoded by the PRNP gene, which is
ubiquitously expressed throughout human tissues, but is most abundant in the brain
(reviewed in [286]). Here, PrP is mainly expressed in astrocytes and neurons, but low levels
are also present in microglia and oligodendrocytes [287–289]. In addition to its membrane-
anchored isoform, soluble PrP variants have been described [290,291]. PrP’s biological
functions are not fully elucidated but several studies argue for PrP contribution to synapse
formation and neuronal signal transduction [292–294]. Its physiological form is dominated
by an α-helical secondary structure and is referred to as PrPc (cellular form) [286]. However,
under pathological condition, PrP undergoes a structural shift into a neurotoxic isoform
with predominant β-sheet conformation, also called PrPsc (scrapie form) [295]. Formation of
PrPsc is thought to be contagious, leading to further conversion of PrPc into their pathogenic
form [296]. PrPsc form aggregates with itself and other proteins that are highly neurotoxic
and lead to severe disruption of normal CNS functions [295]. PrP is commonly found
in the diffuse and dense plaques of AD patients and where it can be co-localized with
Aβ [297–299]. In addition, PrP can directly bind Aβ in both its soluble and membrane-
bound form [300,301]. However, the biological consequences of these interactions are
still debated because deletion of the PRNP gene did not ameliorate plaque formation in
APP/PS1 mice but ameliorated behavioral and cognitive symptoms [302,303]. Interestingly,
PrP was shown to modulate BACE1 activity and thus the production of Aβ, but had only
diminished effects on processing of the Swedish APP variant [304,305].

5. Genetic Variants Affecting Microglial Response to Aβ

Microglia and other glial cells express various receptors and molecules that can either
directly bind Aβ at the cell surface, which leads to altered cell signaling, or interact with it
indirectly, which modifies Aβ detection or degradation (Figure 5).

TREM2 is a cell-surface receptor that is highly expressed in microglia. It mostly detects
phospholipids and glycolipids that are released from host-derived apoptotic cells or from
invading pathogens (Yeh 2017), but is also able to interact with multiple peptides and
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proteins such as Aβ and various Apolipoproteins (Apo) including APOE and APOA1 [306].
TREM2 is capable of inducing cell activation and migration towards Aβ1-42 [307]. In
TREM2-deficient AD mouse models such as modified APP/PS1 and 5xFAD, microglia
do not congregate around senile plaques and thus do not respond to the progressing
plaque load [306]. In recent years, this receptor has received much attention, since loss
of TREM2 leads to nearly complete absence of microglial reactivity in mice [308,309]. In
addition, several genome-wide association studies (GWASs) in humans found mutations
and polymorphisms of the TREM2 gene to be a high-risk factor for familiar forms of AD
(see Table 2).

Table 2. Microglial Aβ-binding/binding-modulating receptors and identified AD-associated
polymorphisms and mutations. Search for polymorphisms and mutations was conducted using
PubMed text search or UniProt https://www.uniprot.org/uniprotkb/.../entry#disease_variants,
accessed from 20 June to 4 August 2022. * In the case that no association with AD has been described
yet, known polymorphisms or mutations affecting receptor functions are listed.

Receptor Alternative Receptor
Names

Binding to Aβ
Demonstrated in Ref. Function

Polymorphisms/
Mutations

Associated with AD
Ref.

Amylin receptor
calcitonin receptor

and receptor activity
modifying protein 3

human fetal
microglial (HFM)
cultures and BV-2,
oligomeric soluble

Aβ1-42

[310] Increase IL-6 secretion

No association with
AD described

Cys40Trp/Phe100Ser/
Leu147Pro variant

associated with
reduced Amylin

potency *

[311]

CD33 SIGLEC3 No direct binding - Blockade of TREM2 rs3865444C [312–315]

CD36

Platelet glycoprotein 4
Fatty acid translocase

(FAT)
Glycoprotein IIIb

(GPIIIB)
PAS IV

Primary murine
microglia, fibrillary

Aβ 1-42

[235]
Increase ROS

production and Aβ
phagocytosis

rs7755 rs3211956
rs3211892

[316]
[317]

CMKLR1
(Chemokine-like

receptor 1)

Chemerin-like
receptor 1 1

G-protein-coupled
receptor ChemR23
G-protein-coupled

receptor DEZ

stably transfected rat
basophilic leukemia
(RBL) cells, primary
microglia, N9 cells,

Aβ-1-42

[318]
Activation of G

proteins and
β-arrestin pathways

No association with
AD described -

FPR1/2
(fMet-Leu-Phe
receptors 1/2)

N-formyl peptide
receptor (FPR)

N-formylpeptide
chemoattractant

receptor

Rat primary
astrocytes and

microglia,
[319]

Intracellular calcium
mobilization, cell

migration and
superoxide anion

release

No association with
AD described

-human Aβ1–42 [113]

transfected HEK293
cells and glial U87

cells, Aβ42 and
N-truncated forms

MAC1
(Macrophage

antigen complex 1)

integrin CD11b/CD18
receptor

CR3

Primary microglia
enriched culture,

mice, Aβ-42

[320]

Adhesive interactions
mediation of the

uptake of
complement-coated

particles and
pathogens

No association with
AD described

[321]

Various polymor-
phisms/mutations in

CD18 causing
leukocyte adhesion

deficiency, e.g.,
rs552407409 *

MARCO
(Macrophage
receptor with
collagenous
structure)

SCARA2

Microglia from
neonatal rats,
fibrillary and

non-fibrillary Aβ-42

[319,
322]

Inflammatory
response

No association with
AD described -

https://www.uniprot.org/uniprotkb/.../entry#disease_variants
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Table 2. Cont.

Receptor Alternative Receptor
Names

Binding to Aβ
Demonstrated in Ref. Function

Polymorphisms/
Mutations

Associated with AD
Ref.

NMDA-R
(NMDA receptor)

glial cells in rat
cerebellar granule cell
cultures, small Aβ1-42

oligomers

[323]
Decrease in plasma
membrane potential

-421C/A in sporadic
AD, North Han

Chinese populations

[324]
[325]

3723 G/A (rs3739722),
Taiwanese population [326]

rs1806201 T, Southern
Italy population [327]

rs10845840, US
populations [328]

C2664T, Chinese Han
population

not found
in [329]

Nucleolin Protein C23

EOC2 cells,
transfected HEK cells,

monomeric and
fibrillary Aβ1-42

[330]

Chromatin
decondensation,

pre-rRNA
transcription, and

ribosome assembly

No association with
AD described -

RAGE (Receptor
for advanced
glycosylation
end products)

-
Human primary

microglia, soluble Aβ
and plaques

[331]
instigates

pro-inflammatory
mediators

G82S [332–334]

cAI (Scavenger
receptor type AI)

Macrophage
scavenger receptor

types I and II
Macrophage

acetylated LDL
receptor I and II

CD204

human fetal microglia,
microglia from
newborn mice,

fibrillary aβ

[233]
Phagocytosis of

soluble and
fibrillar Aβ

No association with
AD described -

SRBI (Scavenger
receptor class B

member 1)

CD36 and LIMPII
analogous 1 (CLA-1)
CD36 antigen-like 1

Collagen type I
receptor,

thrombospondin
receptor-like 1

human fetal microglia,
microglia from
newborn mice,

fibrillary aβ

[233]
Decreases amyloid

fibrillar and
plaque formation

Gene is included in a
region on

chromosome 12 with
linkage to AD [335],

polymorphisms were
not found associated

[336]

rs387906791,
rs74830677, impact on

cholesterol
metabolism *

[337]
[338]

SRCL (scavenger
receptor with
C-type lectin)

Collectin-12
Collectin placenta
protein 1 (CL-P1;

hCL-P1)
Nurse cell scavenger

receptor 2
Scavenger receptor
class A member 4

CHO-K1 cells,
fibrillary A-β [339]

Aβ and
Gram-positive,
Gram-negative

bacteria and yeast
phagocytosis

No association with
AD described -

TLR2/
TLR4/
CD14

(Toll-like receptor
2/4/6/
CD14)

CD282/CD284/
Monocyte

differentiation
antigen CD14

CD14: soluble murine,
fibrillary human

Aβ-42

[340] Instigates
inflammatory

response and Aβ
phagocytosis

P249S (TLR6)
260C/T (CD14)

[341]
[342]

CD14/TLR2/4: BV2
microglia, fibrillary

Aβ
[343]

TREM1 (Triggering
receptor expressed
on myeloid cells 1)

CD354
mouse primary

microglia, monomeric
Aβ1-42

[65]
Amplifying

inflammatory
responses

rs6910730G [344]

TREM2 (Triggering
receptor expressed
on myeloid cells 2)

immobilized
TREM2-FC,

oligomeric and
monomeric Aβ1-42

[307]
[345]

Regulates microglial
activity, chemotaxis,

and process
outgrowth

R47H
R62H

[346–349]
[350,351]

[352]
[353]

H157Y
D87N
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Table 2. Cont.

Receptor Alternative Receptor
Names

Binding to Aβ
Demonstrated in Ref. Function

Polymorphisms/
Mutations

Associated with AD
Ref.

α6β1 integrin

CD49 antigen-like
family member F

VLA-6 CD49f/
Fibronectin receptor

subunit β
Glycoprotein IIa

(GPIIA)
VLA-4 subunit β

CD29

BV-2 cells, fibrillary
Aβ25-35 and Aβ1-42

[354]
increase ROS

production and Aβ
phagocytosis

No association with
AD described

TLRs comprise a family of pattern recognition receptors (PRRs) that detect pathogen-
associated molecular patterns (PAMPs) from exogenous sources such as bacteria and fungi,
but can also recognize damage-associated molecular patterns (DAMPs) from endogenous
sources [355]. There are ten receptor subtypes (TLR1–10) in humans that are all expressed
in the central nervous system (CNS) as well as in other tissues [355,356]. In microglia,
TLRs induce cell activation after detection of harmful stimuli and initiate the inflammatory
cascade which includes the upregulation of additional PRRs and the production of cytokines
and reactive oxygen species (ROS) [357]. In the context of AD, TLR2 and TLR4 are of special
interest since they are capable to detect Aβ1-42. Both TLR2 and TLR4 mediate the phagocytic
uptake and degradation of Aβ in microglia [236,358] and induce typical pro-inflammatory
cascades such as the release of Il1β and TNFα as a response to the peptides [359]. Their
expression is upregulated in inflamed brain tissue and in plaque-invading microglia of
human AD patients [359] but also in microglia derived from APP/PS1 mice [238]. APP/PS1
mice with dysfunctional TLR4 display decreased cytokine levels [360] but also more severe
plaque formation [238]. Similarly, TLR2-deficient APP/PS1 animals show accelerated
cognitive impairment and increased Aβ1-42 concentrations in the brain [237]. On the
contrary, in a study with APP/PS1 mice, long-term administration of TLR2-inhibiting
antibodies decreased microglial activity, improved cognitive performance, and lowered Aβ

plaque load [361].
CD36 is a class B scavenger receptor that is expressed in microglia, astrocytes, and

neurons in the CNS, and in various peripheral cell types such as innate immune cells,
myocytes, and endothelial cells [362]. CD36 is mostly known as a fatty acid transporter
but is also involved in lipid metabolism and the regulation of inflammatory responses in
immune cells [363]. Its ligands include various structural proteins of the extracellular matrix
such as collagens and thrombospondins. In addition, CD36 interacts with fibrillary Aβ,
which induces a pro-inflammatory activation of microglia [235,364]. Upon detection of Aβ,
CD36 mediates cell migration and subsequent binding to Aβ fibrils [364]. It contributes to
cytokine production [251] and generation of oxidative stress [234]. In addition, CD36 may
act as a co-receptor for other PRRs that interact with Aβ. For example, activation of CD36
can lead to the formation of complexes with TLR2 and TLR6, thus eliciting internalization
and degradation of Aβ1-42 [365]. Of note, in human brain samples, expression of CD36 is
detected in microglia proximal to Aβ plaques [366]. However, Ricciarelli and colleagues
reported that CD36 is also highly expressed in healthy people with senile plaques [366].

RAGE is a receptor mainly binding advanced glycation endproducts, which are
generated by non-enzymatic glycation and oxidation of proteins and lipids [367,368]. Inside
the CNS, the receptor is mainly expressed in neurons and glial cells, but can also be found in
many other tissues outside the brain [369,370]. Six isoforms of RAGE have been identified.
The most common variant is integrated into the membrane (mRAGE), while the other five
soluble isoforms lack the transmembrane region (sRAGE) and are thus either cytosolic or
secreted into the extracellular space [371]. Moreover, RAGE can be cleaved by ADAM10
and ADAM17, which are also involved in APP processing [18]. RAGE was first associated
with AD due to its ability to bind oligomeric Aβ1-42, which triggers pro-inflammatory
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responses in microglia [46,372]. RAGE is involved in Aβ trafficking and clearance through
the blood–brain barrier [373] and is thought to modulate secretase activity in neurons,
thereby influencing APP processing and Aβ production [374]. Furthermore, RAGE may
act as a co-receptor for FPRs that enhances the uptake of Aβ1-42 in microglia [46]. More
recently, a possible contribution to AD through interaction with Amylin (also known as islet
amyloid polypeptide) was proposed [375]. In microglia of APP/PS1, mice expression of
human RAGE exacerbates the production of pro-inflammatory cytokines such as Il1β and
TNFα, increases the production of Aβ1-42 and Aβ1-40, and promotes cognitive decline [376].
In contrast, RAGE-deficient APP/PS1 mice showed a decreased concentration of Aβ1-42
and Aβ1-40 and improved spatial memory [374].

FPRs are a small family of G-protein-coupled receptors comprising three receptor
subtypes (FPR1, FPR2, and FPR3) in humans [377,378] that are expressed in the innate
immune system and a number other cell types, including microglia [379]. FPRs mainly
detect formyl methionine-containing peptides that occur in bacteria as PAMPs released
during bacterial infections and in mitochondria [380,381], where they are released as
DAMPs by damaged cells [381]. They also bind some neuropathological peptides such as
Aβ1-42 [231,266] and prion protein fragment PrP106-126 [382]. In particular, FPR2 has been
implicated in AD through its interactions with Aβ1-42. In microglia, FPR2 mediates uptake
of Aβ1-42 [227,229,383] and triggers the inflammatory response against it. In inflamed brain
areas of AD patients, FPR2 is upregulated in reactive glia [231]. Interestingly, microglia
from APP/PS1 mice show an increase in the murine FPR1 and FPR2 [46], and treatment
of APP/PS1 mice with a competitive FPR inhibitor ameliorated cognitive impairment,
reduced plaque load, and lessened microglial reactivity [384]. The role of the FPR subtypes
in the response to non-canonical Aβ species is not well examined. However, our recent
study provided the first in vitro evidence that FPRs can detect N-terminally abridged Aβ

species, and that FPR1 and FPR3 may also be involved in detection of Aβ1-42 [113].
MARCO is a Class A scavenger receptor that is mainly expressed in macrophages

and glial cells. It mainly binds poly-anionic ligands such as low-density lipoproteins and
environmental particles such as TiO2 and Fe2O3 [385], but has also been shown to capture
bacterial PAMPS such as lipopolysaccharides and oxidized lipoproteins, and even helps
to engulf whole bacteria in macrophages [386–388]. Several studies suggest that MARCO
may also bind both fibrillary and non-fibrillary Aβ, either directly or through interactions
with other receptors [322]. MARCO modulates intracellular activation of NLRP3 and limits
extracellular detection by in glial cells [389]. Furthermore, MARCO can form complexes
with FPR2 that facilitate uptake of Aβ1-42 and may influence FPR signaling [319].

Chemokine-like receptor 1 (CMKLR1) is a G-protein-coupled receptor that is mainly
expressed in white adipose tissue and immune cells such as microglia, macrophages, and
dendritic cells [390]. CMKLR1 interacts with endogenous ligands such as the adipokine
Chemerin, and helps to modulate metabolic processes and cell proliferation, especially dur-
ing glucose processing, adipogenesis, and angiogenesis [390]. In immune cells, CMKLR1 in-
duces chemotaxis and pro-inflammatory cascades, but is also involved in anti-inflammatory
signaling through interactions with pro-resolving ligands such as Resolvin E1 [391]. In
brain tissue of AD patients, CMKLR1 is upregulated and co-localizes with Aβ1-42 [318].
Furthermore, Aβ1-42 binds to the receptor in an in vitro expression system [318]. In primary
mouse microglia and cell lines, interactions between CMKLR1 and Aβ1-42 induce cell
migration, internalization of Aβ1-42, and MAPK-dependent inflammatory activation [318].
Knockout of CMKLR1 in APP/PS1 mice leads to increased Aβ deposition but also mortality
and cognitive impairment [392]. CMKLR1-deficient mice and wild type mice that were
treated with a CMKLR1 inhibitor were more resistant against a chemically induction of Tau
hyperphosphorylation [392].

Nucleolin is a phosphoprotein mainly distributed in the nucleolus of many cell types,
and is also expressed at the cell surface of macrophages and microglia [330,393]. It can
bind DNA, RNA, and amyloid-like proteins [393,394]. Inside the nucleus it has been im-
plicated in regulating DNA and RNA metabolism, chromatin structure, and ribosome
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assembly [394]. At the cell surface it has been implicated in the cellular-entry of various
viruses such as human immunodeficiency virus (HIV) and respiratory syncytial virus
(RSV). In primary rat microglia, Nucleolin also robustly recognizes monomeric and fibril-
lary Aβ1-42 and mediates its phagocytosis, but shows only weak binding to Aβ1-40 [330].
Furthermore, Nucleolin interacts with APP mRNA [395], which may result in modulation
and increase APP and Aβ production [396,397].

TRPM2 is a non-selective calcium-permeable cation channel [398]. Activation of
TRPM2 is thought to contribute to warmth-sensing in neurons [399] and to the regulation
of cytokine secretion in immune cells [400]. The ion channel does not directly interact
with classical ligands but instead senses mediators of oxidative stress such as ROS and
excessive nitric oxide [401]. In microglia, detection of Aβ1-42 by other receptors leads
to the induction of oxidative stress, which in turn activates TRPM2 and induces rapid
calcium influx, which triggers cytokine production through the NLRP3 inflammasome [402].
This may lead to a self-renewal of TRPM2 activation since cytokine release can trigger
further production of ROS, thus propagating a vicious cycle of pro-inflammatory cascades.
Knockout or pharmacological inhibition of TRPM2 in primary mouse microglia attenuates
microglial activation by Aβ1-42 and inhibits production of TNFα [403]. Next, TRPM2-
deficient APP/PS1 mice show improved spatial memory and reduced microglial reactivity,
but no change in plaque load [404].

CD33 is a cell-surface receptor in myeloid cells that is exclusively expressed in mi-
croglia within the CNS [405,406]. Through interactions with sialic acids, CD33 can bind
glycans and glycolipids. Of note, due to its short extracellular domain, it is assumed that
CD33 mainly interacts with ligands on the surface of the cell [406]. In microglia, CD33 does
not bind Aβ1-42 but is thought to interact with other receptors—especially with TREM2—to
modulate their signaling and inflammatory responses [407]. Several GWASs have identified
CD33 as a high-risk factor for the development of AD (see Table 2). Expression of CD33
is increased in microglia of AD patients and is positively correlated with insoluble Aβ1-42
levels and plaque burden [408]. Deletion of the CD33 gene in microglia derived from
human-induced pluripotent stem cells or in primary mouse microglia improves uptake of
Aβ1-42 [407,408] and leads to increased oxidative burst and production of pro-inflammatory
factors [407]. In accordance with these in vitro data, CD33-deficient APP/PS1 mice show
reduced brain levels of insoluble Aβ1-42 as well as amyloid plaque burden [408]. Injection
of a viral system encoding microRNA against CD33 in APP/PS1 mice resulted in reduced
expression of CD33 and decreased cerebral levels of soluble Aβ1-42 and Aβ1-40 [409].

The family of FcRs comprises several receptors that are expressed in microglia and
many other immune cells, and can bind the Fc-region of different antibody subtypes.
Interestingly, plaque-invading microglia show a strong expression of FcRs [410]. In
several animal studies, immunization against Aβ1-42 led to a significant reduction in
plaque load [411,412] and removal of Aβ1-42 from CSF [413,414]. A possible explanation
is that autoantibodies against Aβ1-42 bind aggregates in senile plaques that are then de-
graded through FcR-mediated clearance by microglia. However, other studies suggest that
these effects are independent from FcRs [415]. During the progression of AD, the blood–
brain barrier is weakened, which may allow peripheral cells and molecules to enter the
brain [411,412]. This permits the entry of antibodies that can bind to Aβ aggregates. A sub-
sequent binding of this complex to FcRs on microglia may help to clear these pathological
peptides from affected brain areas [413,414]

Genome-wide association studies (GWASs) and genetic linkage studies associated
with late onset AD (reviewed, e.g., in [416,417]) revealed the importance of genes with a
regulatory role for microglia and immune responses. In particular, receptors that are ex-
pressed on microglia, such as TREM2 and CD33, have been identified by these approaches.
This underpins the key role of microglia in perception of Aβ, the regulation of the brain’s
inflammatory response to these deleterious peptides, and the removal of the resulting
aggregates. For many other putative microglial Aβ receptors (for a summary see Table 2),
such as MARCO, identification of AD-related polymorphisms has not yet been carried out.
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With regard to “binding to Aβ” of these putative receptors, it has to be taken into account
that, in most cases, the direct physical binding has not been proven yet. In most cases, bind-
ing has been assumed due to pharmacological or genetic interventions in cells or animals.
Exemptions are CD14 or TREM2, where immunoprecipitations were conducted [307,340].

Taken together, these observations argue that a delicate balance of differently modified
or processed Aβ variants may finally orchestrate immune responses via a number of differ-
ent microglial receptors that show a differential presence in different microglia subtypes. A
detailed analysis regarding Aβ variant-reactivity or potential selectivity of most receptors
is missing to date. Moreover, knowledge on the effect of identified polymorphisms of the
receptors regarding recognition of modified/abridged Aβ peptides is even scarcer. Another
layer of complexity is added by the fact that some mutations may alter the proteolytic
processing, either indirectly through microglial receptor signaling or directly through SNPs
in the processing proteases that may affect the cleavage pattern, processivity, and shedding.
TREM2 SNPs are a good example of such complex mutual effects. They have been shown
to accumulate in cell protrusions in close proximity to Aβ plaques [346] that can be cleaved
by the metalloproteases ADAM10/17 C-terminal to histidine 157 [17,418–420]. The amount
of soluble (s) TREM2 is increased in the CSF of AD patients and seems to sustain microglial
viability, and to trigger inflammatory responses by the Akt–GSK3β–β-catenin and NF-κB
pathway in vitro [421,422]. Consequently, its beneficial capacity lowers ApoE4-related risk
of cognitive decline [423]. Carriers of the R47H TREM2 polymorphism show higher levels
of sTREM2 in CSF than non-carriers [347]. The p.H157Y variant that was identified in
the Han Chinese population within the stalk region of the receptor enhances shedding of
TREM2 [419,424]. Other variants, such as the TREM2 p.T66M mutation, led to reduced
secretion of a soluble partition of the receptor [347,350]. While the amount of R47H TREM2
on the cell surface remained stable despite elevated secretion of sTREM2 [350], uncleaved
plasma-membrane tethered p.H157Y TREM2 was found to be severely reduced [419]. An as-
sociation of the two SNPs within the human α-secretase ADAM10 promoter, rs514049A/C
and rs653765C/T, with AD could not be clearly demonstrated [425,426]. However, the latter
was found to be correlated with lowered ADAM10 mRNA levels in PBMCs of CC versus
CT/TT carriers and with a lowered level of soluble (s) RAGE in plasma [426]. RAGE is also
expressed on microglia [427] and processed by ADAM10 [428]; therefore, the ADAM10
promoter polymorphisms may also play a role in related inflammatory processes in the
brain, even if this has not been investigated yet. Moreover, the RAGE polymorphism G82S
itself influences shedding as a significant association between G82S genotypes and sRAGE
plasma concentrations in samples from non-diabetic/non-obese Koreans [429].

Membrane topology and architecture of the putative or identified Aβ receptors on
microglia are quite diverse (see Figure 1), and the intense phagocytic activity of these cells,
in general, requires a dynamic membrane architecture. Therefore, polymorphisms in the
receptor-encoding genes themselves or in genes of the interaction partners may not only
orchestrate Aβ perception. Lipidomic analyses of microglial CD11b-positive small extracel-
lular vesicles from the cryopreserved parietal cortex of a restricted number of patients and
controls indicated not only increased levels of TREM2, but also a proinflammatory lipid
profile in AD (e.g., increase in the most abundant monohexosylceramide d18:1/24:1 [430]).
Moreover, an increase in cholesterol was observed that might influence fluidity of the
membrane, in addition to other receptor-modifying pathways such as synthesis of ligands.
Sequestration of cholesterol in astrocytes, for example, affected APP processing and accu-
mulation of Aβ peptides [431], and serum starvation induced shedding of BACE1, which
could be further aggravated by cholesterol efflux mediated by methyl β cyclodextran [432].
TREM2 itself has been shown to act as a regulator of brain cholesterol metabolism, and
TREM2-deficient microglia fail to degrade myelin-derived cholesterol [433]. How its poly-
morphisms or binding of different Aβ variants might interfere with this function has not
been addressed to the best of our knowledge.

In sum, this indicates that activation of microglia by Aβ variants can be affected not
only directly by genetic variants of the receptors, but also by their impact on receptor
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processing or on other functions of the receptors that subsequently reflect on Aβ-driven
signaling pathways. A deeper understanding of relevance of the single observed variants
for the distinct receptor functions on the microglial surface therefore has to be the focus of
research in the future to estimate their potential as therapeutic targets or their relevance in
individualized medicine.

6. Secondary Structure and Oligomerization Critically Affect Aβ Neurotoxicity

Different aggregate forms of Aβ that lead to plagues have long been suspected to be
the major culprit of AD. However, there is clear evidence indicating that the formation of
insoluble aggregates alone is insufficient to trigger typical neuroinflammation and neu-
rodegeneration. First, the formation of insoluble Aβ plaques also occurs during normal
aging in many people who do not suffer from AD [434,435]. Second, some patients display
typical AD symptoms but show only low plaque formation [436]. Third, transgenic APP
mice already show a pronounced plaque formation before the onset of neuroinflammatory
events [437]. Finally, therapeutic approaches for plaque removal did not ameliorate cog-
nitive symptoms in human patients [9]. This indicates that at least a second factor has to
contribute. Increasing evidence suggests that the formation of soluble oligomers and/or
differences in the secondary structure might be the second culprit that triggers the initial
inflammatory events. For example, soluble Aβ1-42 oligomers are highly neurotoxic and can
induce strong pro-inflammatory activity in glial cells [438,439]. Next, the Osaka mutation,
a familiar form of AD that causes a loss of glutamate at position 22 of Aβ, leads to Aβ

peptides with enhanced soluble oligomer formation capability but which are unable to
form fibrils, and can therefore not be deposited as insoluble plaques (reviewed in [440]).
Studies that injected soluble Aβ1-42 oligomers into healthy rodents’ brains observed strong
neurodegenerative effects, including aberrant neuroinflammation, synaptic disruption,
neuronal death, and cognitive deficits [441–443]. For example, Aβ*56, a distinct species of
Aβ oligomers with a molecular weight of 56 kDa, was proposed as a promising candidate
to explain the genesis of AD, since the injection of such aggregates could induce strong
cognitive decline in rat models [444]. However, recent investigations have questioned
the validity of these studies [445]. In addition, other studies could not detect Aβ*56 in
tissue [439,446] or CSF samples [438,446] of human AD patients or AD model mice. Next,
a number of other studies reported no or only mild pathological effects of Aβ oligomer
injection into the brain of animals [447,448]. The interpretation of the divergent results is
still problematic. However, technical issues cannot be excluded because these studies used
a plethora of different protocols that varied strongly in terms of buffer composition, pH
value, aggregation kinetics, Aβ concentration, temperature, aggregation time, and agitation.
Numerous studies have demonstrated that even small deviations in the environmental
conditions lead to drastic differences in secondary structure, the solubility of the resulting
aggregates, and their capabilities to elicit biological effects [449,450].

The secondary and tertiary structure of Aβ is an extremely critical factor for its
oligomerization and bio-activity (reviewed in [12]). The secondary structure of Aβ1-40 and
Aβ1-42 may assume multiple discrete conformations with α-helix or β-sheet conformers,
which can undergo rapid changes depending on environmental factors [451,452]. Aβ1-42
possesses two motifs that are capable of forming β-sheets: the highly hydrophobic core
motif KLVFFAE (Aβ16-22) [453] and the C-terminal region IIGLMVGGVVIA (Aβ30-41) [451].
β-sheet formation is essential for aggregation, since β-sheet regions of individual peptides
self-assemble into cross-linked structures with parallel or antiparallel organization (cross-
β patterns) that self-assemble interlinked fibrils and protofibrils [12,454,455]. This self-
assembly from monomers in solution is first auto-catalyzed by the formation of nuclei,
small aggregates with especially high thermodynamic energy states. These energy levels
lead to faster association than dissociation rates of monomers and small oligomers to
the nucleus and thus drive further aggregation [456]. This process is enhanced through
secondary nucleation where other fibrils or protofibrils in the solution associate with the
initial nucleus and accelerate its growth. The nucleation and growth phase finally ends
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in fibril formation since the fibrillary state is thermodynamically the most stable form of
any peptide assembly [456]. In particular, the inflexible hydrophobic C-terminus of Aβ is
thought to initiate the transformation from α-helical to β-sheet structure that is needed
for the formation of nuclei [12,451]. Accordingly, C-terminal truncation decreases the
hydrophobic region and increases the structural flexibility of Aβ, which in turn decreases
its propensity to form β-sheets. This may explain why Aβ species with longer C-termini
tend to be more amyloidogenic then shorter variants.

Of note, many soluble Aβ variants and their oligomers are present as metastable
species with distinct thermodynamic energy levels [457,458]. Some studies have pro-
posed the existence of a α-pleated sheet conformation in a subset of these soluble Aβ

oligomers that might set them apart from non-toxic fibrils and are not generated by typ-
ical nucleation [459–461]. The α-pleated sheet conformation is thought to be structurally
similar to β-sheets but may exhibit a distinct biological effect. However, the biological
relevance of α-pleated sheet conformations is still debated. A recent study by Shea and
colleagues utilized probes designed to catch α-pleated sheet peptides in a transgenic Aβ

Caenorhabditis elegans model and in transgenic APP mice, which resulted in a reduction in
soluble Aβ oligomers in both models [460].

Taken together, these findings highlight the high importance of keeping track of Aβ’s
secondary structure during the investigation of its biological effects. This is especially
necessary in studies performed with synthetic Aβ peptides. In general, synthesis processes
are not performed under physiological conditions and, therefore, can produce peptides
with altered conformations [462]. During synthesis, Aβ peptides already aggregate; thus,
there is little control over the Aβ species that comprise the final end product [462]. Next,
most peptide synthesis processes depend on counter ions such as trifluoracetate or hy-
drochloride, which are bound to the final synthesis product and can highly influence the
solubility, nucleation, and aggregation kinetic of generated Aβ peptides [463,464]. Thus,
the use of Aβ peptides derived from different companies and synthesis processes can
produce largely different biological effects [113,465], which may additionally vary from
batch to batch [456,465]. Various methods have been developed to minimize these aggre-
gation artefacts, e.g., dissolving synthetic Aβ in harsh solvents such as DMSO, HFIP, or
NH4OH [450,466,467]. However, several studies provided evidence that these treatments
can compromise the secondary structure of Aβ [468,469].

Taken together, these findings highlight the need for standardization protocols that
improve the comparability and reproducibility of Aβ research. All in vitro experiments
should be performed with Aβ obtained from at least two independent sources to validate
the observed biological effects and to avoid potential artifacts [113,456,465]. Inexpensive
methods such as Thioflavin T aggregation assays or analysis via SDS-PAGE should be
used to give some insight regarding the aggregation state of Aβ. Next, all experimental
conditions have to be described very carefully because the exact assay buffer composition,
pH value, incubation time, assay temperature, and Aβ storage conditions can all influence
the outcome of experiments. Finally, it is essential to also report negative or non-conclusive
data obtained with different Aβ variants and manufacturers, since these can still provide
valuable information for other researchers and may help to elucidate the bigger picture of
the still mysterious Aβ.

7. Concluding Remarks

In summary, the currently available data clearly argue for a significant contribution
of non-canonical Aβ variants to the pathogenesis and progression of AD. However, there
is still an amazingly large lack of knowledge on the precise contribution of most of these
variants. Next, it seems that the influence of gene polymorphisms regarding the recognition
of modified or abridged Aβ peptides is even scarcer. Amazingly, only 20 polymorphisms
of Aβ interaction partners have so far been clearly associated with AD. Given that for
TREM2 alone nearly 200 single nucleotide exchanges have been reported, and that at
least 16 other interaction partners exist, presumably thousands of additional SNPs still
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await a careful analysis of their impact on receptor interaction, proteolytic processing, and
shedding. Next, there is clear evidence that microglia, astrocytes, and oligodendrocytes
are key players in the production and release of non-canonical Aβ variants. Therefore, the
interplay of these cell types with neurons has to be better characterized. Finally, there is
a clear need for standardized protocols in in vitro studies and more information on the
Aβ peptide composition in in vivo studies. The current literature already provides ample
evidence that chemical modifications, extracellular environment, and precise quantities of
different amyloid species have a strong influence on the aggregation and bio-activity of
Aβ variants. In a recent study, we even showed that supposedly identical Aβ peptides are
highly subjectable to solvent- and manufacturer-dependent effects [113]. For the sake of
reproducibility, it is thus of uttermost importance to work with more than one peptide in
all in vitro experiments, to very precisely report all experimental conditions, and to include
data on the secondary structure, 3D conformation, and aggregation kinetics [113,456,465].
In vivo studies urgently need to gather more information on the precise Aβ variant com-
position, the existing oligomers, and their 3D structure. This will help to identify the key
variants and their structural requirements for a given physiological effect.
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