
Citation: Alonso-Serrano, A.;

Schuster, S.; Visser, M. Emergent Time

and Time Travel in Quantum Physics.

Universe 2024, 10, 73. https://

doi.org/10.3390/universe10020073

Academic Editor: Norma G. Sanchez

Received: 14 December 2023

Revised: 26 January 2024

Accepted: 28 January 2024

Published: 2 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Emergent Time and Time Travel in Quantum Physics
Ana Alonso-Serrano 1,2,† , Sebastian Schuster 3,*,† and Matt Visser 4,†

1 Institut für Physik, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin, Germany;
ana.alonso.serrano@aei.mpg.de

2 Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Potsdam Science Park,
Am Mühlenberg 1, 14476 Potsdam, Germany

3 Ústav Teoretické Fyziky, Matematicko-Fyzikální Fakulta, Univerzita Karlova, V Holešovičkách 747/2,
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Abstract: Entertaining the possibility of time travel will invariably challenge dearly-held concepts in
fundamental physics. It becomes relatively easy to construct multiple logical contradictions using
differing starting points from various well-established fields of physics. Sometimes, the interpretation
is that only a full theory of quantum gravity will be able to settle these logical contradictions. Even
then, it remains unclear if the multitude of problems could be overcome. Yet as definitive as this
seems to the notion of time travel in physics, such recourse to quantum gravity comes with its own,
long-standing challenge to most of these counter-arguments to time travel: These arguments rely on
time, while quantum gravity is (in)famously stuck with the problem of time. One attempt to answer
this problem within the canonical framework resulted in the Page–Wootters formalism, and its recent
gauge-theoretic reinterpretation as an emergent notion of time. Herein, we will begin a program to
study toy models implementing the Hamiltonian constraint in quantum theory, with an aim toward
understanding what an emergent notion of time can tell us about the (im)possibility of time travel.

Keywords: time travel; quantum gravity; minisuperspace; Page–Wootters formalism; emergent time;
relational dynamics

1. Introduction

As fascinating as the notion of time travel is, its long list of problematic issues, ranging
from the classical [1,2] & [3] (p. 212ff) to the quantum theoretical [4–7], presents a very solid
case against it, and its absence is effectively a feature of the universe accessible to human
experience. Yet, if one wants to look closely at these arguments, cracks and loopholes start
to appear, many of which shall be mentioned in the following. To an extent, it almost seems
as if the best evidence against any notion of time travel is that of our daily experienced
notion of time and causality, our intuition. Still, the known universe is bigger than our
day-to-day experiences; in particular, the field of high-energy physics is ripe with examples
that are experimentally, observationally, or theoretically open to inquiry, where various
concepts or preconceived notions of human-scale physics have to be let go. In no field of
theoretical physics is this more apparent than in the quest for quantum gravity. The field
of contenders is large, and still growing; it includes string theory, loop quantum gravity,
quantum geometrodynamics, asymptotic safety, causal dynamical triangulation, causal
set theory, and Hořava–Lifshitz gravity. . . each comes with its own set of new notions
beyond what can be experienced directly by human senses. Yet, these proposals still have
to address, in one way or another, an issue plaguing quantum gravity from its beginning:
time. This problem of time, and its eventual resolution, will naturally also impact what these
theories have to say about (or against) time travel.
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The ‘problem of time’ in classical canonical gravity is settled by a careful, gauge-
theoretic analysis [8] that distinguishes the different roles played by the Hamiltonian, either
in the constraint/gauge fixing or in the definition of observables, respectively. In quantum
gravity, however, the problem of time remains (at the very least) a topic of active discussion
and research [9–11]. The reason for this goes back even before a theory of quantum gravity
was the focus. While there are ways to give position and momentum a meaning in terms of
operators on (rigged) Hilbert spaces in quantum mechanics, this cannot be carried over to
time and energy. This was concerning to researchers in quantum mechanics early on, as the
time-energy uncertainty relations proved to be both reliable and instructive, while not
fitting into the standard paradigm of the Robertson–Schrödinger uncertainty relations for
(generic) Hermitian operators. Only the proof of Mandelstam and Tamm in 1945 improved
this uncertainty relation’s foundation while also raising the question of why a different
approach was needed [12]. Essentially, a series of impossibility results for time operators
canonically conjugate to a Hamiltonian were presented: Schrödinger used an approach
based on normalizability [13], similar to the argument for why plane waves require a rigged
Hilbert space. Pauli, in a footnote, used a simpler argument, juxtaposing discrete spectra
and the continuous translation in energy such a time operator would induce [14,15]. Finally
(and in reply to what will be discussed shortly), Unruh and Wald provided a general
argument for semi-bounded Hamiltonians linked to unitarity [16]. At first glance, two
quite distinct approaches were developed in reply to these no-go results.

One approach was similar in spirit to the answer to early counterarguments to plane
waves, e.g., eigenstates of definite position and momentum. With position and momentum,
one relaxes the idea of being restricted to the Hilbert space and instead works in a rigged
Hilbert space [17–19]; here, when faced with the above-cited no-go results concerning
time operators, one relaxes the idea of Hermiticity. Instead, one introduces the notion of a
positive operator-valued measure (POVM). It can represent not just perfect measurements
yielding a definite eigenstate, but also imprecise measurements [20]. Moreover, this al-
lows one to address the measurement problem in the quantum field theory [21], phase
observables [22], or the already-mentioned imprecise measurement processes [20,23]—
and more importantly for the present context—this approach allows a notion of time
measurement [24]. Since the no-go theorems relate to Hermitian operators, the more gen-
eral POVMs are not ruled out as time observables. As we will see, the context of time travel
allows one to avoid these no-go results by other means, too. Still, the bigger picture of
gauge theory provides the most pertinent background for extensions of the model to be
described in this paper.

Another approach that developed independently from POVMs was to carefully dis-
tinguish between a clock and time. Paraphrasing Einstein [25], time is meaningful only
after specifying the clock measuring it. Early on, in developing canonical quantum grav-
ity, DeWitt [26] pointed out how different subsystem operators in a given Hamiltonian
constraint could serve as an effective clock. Page and Wootters then took this idea and
made it more general and workable, by phrasing time evolution in terms of conditional
probabilities linking different subsystems [27,28]1. This Page–Wootters (PW) formalism
was soon challenged on various grounds by Unruh, Wald [16], and Kuchař [29], leading to
this approach lying dormant for some time.

Recent developments then made the latter approach re-emerge [30–35], and both
approaches converge [36,37]. This also allowed one to address and re-contextualize the
earlier criticisms of the PW formalism [37,38]. In essence, the clocks chosen within PW
formalism become part of a gauge-theoretic picture of clocks, with the ‘physical Hilbert
space’ being a ‘clock-neutral’ picture, and different clocks representing different ‘gauge
conditions’ [37]. These results form part of a larger research program that aims to ground
the rulers and clocks at least implicitly employed in external symmetries with an operational
underpinning [39–44]. For our purposes, below, the key takeaway is that the PW formalism
still works, provided its defects and criticisms are understood as being related to issues
already familiar from electromagnetism. One has to choose whether a calculation should
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be gauge-fixed or gauge-independent. Depending on the question at hand, one or the other
will be better suited for calculations or understanding. Our model below will be too simple
to fully showcase these developments, but given the criticisms the PW formalism faced, it
is important to keep the resolution in mind.

Within this Special Issue’s scope, many other pertinent links of time and time travel
to quantum physics could be made. A selected, non-exhaustive list would include the
following: Deutsch CTCs and (non/retro-)causal quantum processes [45–49], simulation
of time (travel) in analogs [50–52], and semi-classical/quantum stability [4–7,53], et cetera.
For the purposes of this article, we would like to highlight two further research avenues.
One is that of different notions of time. Yet another, non-exhaustive list would at least
include cosmological time, psychological time, parameter time, thermodynamic time, and
dynamical versus kinematical time. While this distinction is studied mostly in the context
of ‘the arrow of time’ [54], it is worth pointing out that many counterarguments to time
travel have to rely on some conflation of these concepts. To provide just one example,
if thermodynamic arguments are brought forth, one needs to establish a more-or-less direct
relation between the thermodynamic notion implied by the second law2 and the notion
of time invoked in time travel. This itself does not have to be the same notion as that of
general relativity (GR), where time travel can be identified with closed time-like curves
(CTCs) or related concepts [56]. In theories other than GR, a different notion of time might
be relevant to describe time travel!

The other important point to make is that, despite all the counterarguments, time travel
is just one notion of many with questionable ‘physicality’ [57]. Even within the context of
GR, other notions of physicality vie for validity with the absence of time travel; for example,
various kinds of completeness (geodesic, hole-free, . . . ) or the validity of various kinds of
energy conditions. These notions, however, are not all compatible with each other [58–63].
One might find oneself in the uncomfortable situation that a dearly held and important
property (stability, completeness, fulfilled energy conditions, . . . ) will require time travel
to be permitted; this is just within GR. Other theories are unlikely to be free from such
problems, especially as many of the comforting no-go theorems are specifically proven
within the context of GR. It is, therefore, not surprising that in the context of classical
field theories of gravity alone, there exist many different ways to realize time travel. This
includes wormholes [3,64], warp drives [65], cosmologies [66–69], maximally extended
space–times (such as Kerr near the central ring singularity) [70], and more mathematical
construction techniques [71–73]. The latter can also be employed to distinguish between,
for example, time travel (CTCs) and time machines (whatever structure creates or causes
CTCs) [59,60,73].

This finally brings us to the goal of this paper: We want to study what can be said about
the viability of time travel if time itself is only an emergent concept, as in PW formalism.
Concretely, we will be studying an example of two non-interacting harmonic oscillators sim-
ilarly constrained to a fixed total energy of zero as in a Wheeler–DeWitt (WDW) equation,
i.e., it will mimic a minisuperspace model of time travel. This toy model is by no means
meant to exhibit an exhaustive description of whether and how time travel can arise in
PW formalism. This model should not be taken literally as a minisuperspace model, as no
gravitational model is canonically quantized to arrive at it; rather, it demonstrates possible
phenomenology. We will see that the results in our toy model point to an extraordinarily
bland version of Novikov’s self-consistency conjecture [74–76].

Outline

Following the preceding introduction to and overview of the related research question
in Section 1, we will provide an introduction to the methods employed. In Section 2, we
briefly summarize the PW formalism. In Section 3, we demonstrate POVM’s utility for
implementing time observables in the context of a single harmonic oscillator. The main part
of this paper then employs these concepts in Section 4, focusing on two harmonic oscillators
subjected to a WDW-like Hamiltonian constraint equation. We close by discussing our
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results and pointing out future directions and open questions in Section 5. Finally, the ap-
pendices present additional details and context. Appendix A reviews the mathematical
definition of a POVM, Appendix B collects results concerning periodic time in the quantum
harmonic oscillator, supplementing the discussion of Section 3.1; Appendix C presents
additional details concerning the construction of the paper’s figures.

We will use natural units, in which G = h̄ = c = 1.

2. The Page–Wootters Formalism

Let us consider a quantum system (‘the universe’) that separates into two subsystems,
a ‘clock’ system and a ‘residual’ system. The PW formalism is our first (and most important)
ingredient for studying time travel without time (or rather, time travel with only an
emergent notion of time). It is a proposal to give operational meaning to measuring the
time evolution of the residual subsystem in the larger quantum system (the ‘universe’) with
respect to the other, (mostly) decoupled ‘clock’ subsystem. Partly, this separation into the
‘clock’ and ‘residual’ (in the literature, often, ‘rest’) system is motivated by the problem
of time encountered in quantum gravity. In terms of the total Hilbert space, H, the clock
Hilbert space, HC, and the residual Hilbert space, HR, this means:

H = HC ⊗HR. (1)

Subsequent developments and refinements sometimes further separate what we call
HR into evolving and ancillary/memory/supplementary/. . . systems, but for our purposes,
we will not follow this line of thinking, at least in this current paper. In future work, it
would be interesting to see whether such an approach could provide a notion of time
travel that—contrary to the GR CTCs—only allows for a finite number of temporal round
trips. Each of these Hilbert spaces is equipped with a Hamiltonian acting on these separate
Hilbert spaces, such that

Ĥ |Ψ⟩ =
(

ĤC ⊗ 1R + 1C ⊗ ĤR

)
|Ψ⟩ = E |Ψ⟩ , (2)

where |Ψ⟩ is a state in the total Hilbert space, H. In line with Schrödinger’s 1931 footnote,
this state, |Ψ⟩, is required to be in a definite, fixed eigenstate of Ĥ with total energy E. More
generally, the PW formalism remains viable even for density matrices ρ̂, with the above
case regained by setting ρ̂ = |Ψ⟩ ⟨Ψ|.

Examples of such systems are usually constructed by symmetry, reducing the WDW
equation of quantum gravity, the quantized Hamiltonian constraint of GR:

Ĥ |Ψ⟩ = 0. (3)

In this expression, we gloss over many technicalities (such as operator ordering,
domain issues, topological concerns, and configuration space considerations. . . ) [19,26,77],
as our focus lies less on quantum gravity and more on the emergent notion of time that the
PW formalism provides. Still, we will occasionally take inspiration from quantum gravity.
In particular, one can consider our final model to be a crude example of a minisuperspace
model that has not been found through symmetry reduction. Here, we want to point out
that the many questions addressed by the minisuperspace models of quantum black holes
or quantum cosmology will not and cannot appear in our context. Most notably, there
will be an absence of gravitational singularities, whose avoidance has been a mainstay of
quantum gravity.

The key step for formulating the PW formalism now lies in describing the evolution
of the system encoded through a tuple (HR, ĤR) in terms of the evolution of (HC, ĤC).
For this, one picks some initial state |ψ(0∗)⟩C ∈ HC, which is then evolved using the clock
Hamiltonian, according to

|ψ(θ∗)⟩C := e−iĤCθ∗ |ψ(0∗)⟩C . (4)
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This corresponds to the familiar idea of the unitary time evolution of states in the
Schrödinger picture through a Hamiltonian, but at this level of the discussion, it is a
definition. The Schrödinger or Heisenberg equations of motion would then be a result of
this approach [27,36].

The evolution of the subsystem, ĤR, is then evaluated in terms of relative probabilities
with respect to these clock states. To do this, let us first define the projector

P̂θ∗ := (|ψ(θ∗)⟩C C⟨ψ(θ∗)|)⊗ 1R (5)

of a given state onto particular ‘clock time states’ |ψ(θ∗)⟩C in HC, leaving states in HR

unchanged. Then, the evolution in HR by ĤR with respect to the clock states is given by
the following expression:

E(ĤR|θ∗) =
tr
(

ĤR P̂θ∗ ρ̂
)

tr
(

P̂θ∗ ρ̂
) . (6)

This gives the conditional expectation value of the residual Hamiltonian ĤR when the
clock (state) ‘reads’ θ∗. The technical requirements behind this interpretation are stationarity,

[Ĥ, ρ̂] = 0, (7)

and commutativity of ĤR and ĤC, which we enforce by the block structure of Ĥ encoded
in Equation (2). These assumptions are quite strong, especially once one wants to include
an interaction Hamiltonian coupling HC and HR on the right-hand side of Equation (2).
Given the recent clarification on this issue provided by [30,31,36,37], we want to return to
such generalizations at a later point, but stick to these more restrictive assumptions in the
present context.

Some general comments are appropriate at this point: First, fixing the initial total
state |Ψ⟩ can, in general, greatly change the time evolution as described by Equation (6).
Second, to reiterate: This is not the most sophisticated or modern implementation of the
PW formalism; see the previous paragraph. Third, without further specifying a particular
system comprised of the various Hamiltonians present in Equation (2), we cannot even
begin our investigation. This holds true for the sort of time evolution people expect—one
without time travel—as well as for the more unexpected kind, which showcases a notion of
time travel. The next step will be to lay the groundwork for our toy model, specifying the
state and the evolution.

Time Travel in the Page–Wootters Formalism

In order to prepare for this next step, let us first connect the PW formalism to some of
the notions mentioned in the introduction. In particular, we would like to talk about time
travel in this setting. The simplest way to achieve this is to demand that the domain from
which our time parameter θ is taken is S1, i.e., periodic. By itself, this will not guarantee a
useful notion of time travel. A simple way to see this is by looking at everyday clocks: They
are all periodic. Only a calendar, also keeping track of years, would be a truly non-periodic
clock. One does not travel back in time when one wakes up at the same time each morning,
just because the alarm clock is periodic.

Instead, we will try to find a way to implement the simplest possible version of
time travel. This is (Novikov) self-consistency. When the clock returns to a state, the
remainder of the system will also return to the same state it had when the clock was last
in this state. This situation can, at least in some systems and models, also yield existence
results, though usually at the expense of uniqueness [76,78–81]. So far, however, the PW
formalism presented here does not allow for this. The evolution of the clock as prescribed
by Equation (4) is ignorant of the domain from which to draw θ∗.

In order to alleviate this problem, we will borrow concepts from the POVM approach
to time operators already mentioned in the introduction, which will be discussed in more
detail in the next section. In order to incorporate this in PW formalism, we note that the
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key ingredient for comparing the evolution of the clock with that of the remainder system
is encoded in the definition of the projector onto clock states; see Equation (5). The goal,
thus, will be to not only influence the clock evolution through a convenient choice of the
global state |Ψ⟩, but also make a judicious choice regarding the clock states themselves,
and how to identify them in a meaningful way.

3. POVMs, the Harmonic Oscillator, and Time

The second ingredient of our investigation is a particularly simple example of time
operators and POVMs: The harmonic oscillator [22,24,82–84]. As a ubiquitous model
system in all fields of classical and quantum physics, it is likely to be an instructive
ingredient, even in our systems, following a Hamiltonian constraint similar to the WDW
Equation (3). Our discussion will follow the presentation of the two just-mentioned articles,
adapted to the notation chosen for our application. Concretely, it is possible in the POVM
framework to introduce time with a periodic domain through a phase POVM. Similar to
time operators, an operator representing a phase variable has been difficult to construct
in a mathematically rigorous manner. Here, the problems are tied to issues of boundary
conditions, hermiticity, and the domain of operators not given in standard notation. As with
time operators, the more general setting of POVMs provides a way around this. Since a
time operator would ideally be canonically conjugated to the Hamiltonian (as suggested by
the energy-time uncertainty relation), and a phase operator would ideally be canonically
conjugated to the number operator, the connection to periodic time is easily made.

In our toy model of harmonic oscillators (further specified below in Section 4), we will
identify phase and time. This also provides the easiest way to rigorously define time travel,
making use of Novikov’s self-consistency conjecture: A system comprised of a clock and
dynamical system—with respect to clock time—undergoes time travel if the dynamical
system state is the same after each full clock period. This definition could, in principle,
be relaxed. For example, this could only occur a finite number of times. Furthermore,
an emergent notion of time allows one to make such a statement merely approximate.
This will allow us to rigorously study notions of time travel that do not fully fall into this
framework of self-consistency; for example, only parts of the system could undergo time
travel. We hope that such models that include the clock itself can shed light on when a
system is ‘merely periodic in time’ versus when it actually undergoes time travel. In our final
Section 5, we will further expound on this. Importantly, a requirement of self-consistency
will preempt any of the traditional paradoxa constructed out of it.

3.1. Time and Phase Operators for the Harmonic Oscillator

Leaving the mathematical formalities (mostly) aside, we will now introduce the specific
POVM used in our simple model of time travel. Formal, supplementary details regarding
the definition of POVMs can be found in Appendix A. For the purposes of this section,
we will drop all label indices and only look at the simple, standard harmonic oscillator
with Hamiltonian:

Ĥ =
1
2

â† â +
1
2

. (8)

We want to construct a time operator for this. In order to do so, we look at the polar
decomposition of the ladder operator â [85] (Thm. VIII.32):

â = Ŵ |̂a|. (9)

Here, |̂a| is easy to define as

|̂a| := n̂1/2 =
√

â† â. (10)
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The ‘operator’ Ŵ, however, is less simple than its occurrence in a ‘polar decomposition’
might suggest, i.e., it will not be unitary. More concretely [22]:

ŴŴ† = 1, (11)

but
Ŵ†Ŵ = 1− |0⟩⟨0| ̸= 1. (12)

The phase or time states to be used are now constructed as eigenstates |θ⟩ of Ŵ.

Ŵ |θ⟩ = eiθ |θ⟩ . (13)

While these eigenstates do exist, given the properties of Ŵ, they are now only an
overcomplete set of eigenstates3 So, different eigenstates, |θ⟩ and |θ′⟩, will not be orthogonal,
and expressing a general state |ψ⟩ in terms of these eigenstates will not be unique anymore.
Each of these states |θ⟩ can be written as follows:

|θ⟩ = ∑
n≥0

einθ |n⟩ . (14)

Now is the time to define a concrete POVM. In this instance, let us define for all Borel
sets X of [0, 2π):

B0(X) :=
1

2π

∫
X
|θ⟩⟨θ|dθ, (15)

= ∑
n,m≥0

1
2π

∫
X

ei(n−m)θ |n⟩⟨m|dθ. (16)

The index 0 is the first indication of what is to come: Different points on the unit circle
S1 can be chosen as the starting points. In the above definition, one starts with the positive
real axis, i.e., we choose our angle θ from [0, 2π), as opposed to from [θ∗, θ∗ + 2π) for some
θ∗ ∈ [0, 2π).

Using
1

2π

∫ 2π

o
ei(n−m)θ dθ = δnm (17)

and
∞

∑
n=0

|n⟩⟨n| = 1 (18)

one can see that
B0([0, 2π)) = 1, (19)

which means that B0 is a normalized POVM. So, B0 represents an observable in the sense of
POVMs. Note that in the context of the definition of a POVM, in the present example, we
have that Ω = S1.

From the POVM side of things, this gives all the ingredients needed for the calculations
to follow. However, for a more comprehensive understanding of the physics of time
involved in the harmonic oscillator, it is worthwhile to point out additional considerations
concerning such periodic time variables. We presented these observations in Appendix B.

4. Time Travel in Two Harmonic Oscillators Subject to a Hamiltonian Constraint

The goals for the present article are modest. We want to study a model as simple as
possible, which is subject to a constraint reminiscent of the WDW Equation (3). As we also
want to capture time travel as defined above, we need two ingredients: A periodic clock
system (HC, ĤC) and a system (HR, ĤR) that evolves in the sense of the PW formalism (at
least) as periodic as the clock itself. Then, it would be an instance of a quantum system
fulfilling the Novikov self-consistency conjecture. Based on the discussion of harmonic
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oscillators above, the simplest system would be to use a single harmonic oscillator for each
ĤR and ĤC, respectively. To allow for more generality, we will not demand their respective
frequencies, ωR and ωC, to be the same, a priori. Then, our model will have the following
Hamiltonian in the full Hilbert space H:

Ĥ |Ψ⟩ =
(

ωC n̂C +
ωC

2
1C︸ ︷︷ ︸

ĤC

−ωR n̂R −
ωR

2
1R︸ ︷︷ ︸

−ĤR

)
|Ψ⟩ = 0. (20)

This means that the system Hamiltonian ĤR and the clock Hamiltonian ĤC are part
of a WDW-like equation. Naturally, this implies that it falls into the framework of the PW
formalism for a stationary Hamilton equation Ĥ |Ψ⟩ = E |Ψ⟩ with energy E = 0.

The previous two sections gave us the two most important ingredients in place: First,
the way to measure time evolution with respect to a clock system using the PW formal-
ism’s conditional probability (6). Second, the required clock states given by Equation (13),
which we will measure evolution, and its representation in terms of the harmonic oscillator
eigenstates; see Equation (14). Now, we can make use of it by implementing the Hamilto-
nian constraint (20) into this model. What remains to be done, though, is to specify more
explicitly the type of total state that |Ψ⟩ ∈ H the ‘universe’ (as described by Ĥ) is in.

4.1. Important Note on the Difference to Quantum Cosmology

Having introduced the model, it is easy to recognize it as a variant of a model already
used in the context of quantum cosmology [86–89]. There is, however, an important
distinction, both mathematically and interpretationally. One of the goals of quantum
cosmology is to use symmetry reduction to arrive at minisuperspace models testing aspects
of quantum gravity. In the context of (quantum) cosmology, this is often the status of
Hawking-type singularity theorems in quantum gravity: Can a cosmological singularity be
avoided or not [26,77,90,91]? In many, if not most situations, this leads to the demand that
the configuration space, R2, of the two harmonic oscillators be limited to the half-plane,H2,
as one of the variables corresponds to the non-negative scale factor, a. The scale factor at
a = 0 corresponds to a gravitational singularity. Restricting one harmonic oscillator to only
a half-plane for its configuration space variable, however, inevitably leads to the inability
to use the very convenient, powerful, and simple algebraic methods in terms of the ladder
operators used so far in the present paper.

Our present goals, however, are different. We want to study time travel in a quantum-
theoretic framework, but in a manner that is as theory-agnostic as possible. Hence, we will
simply not assume that Equation (20) necessarily has its origins in a Hamiltonian formula-
tion of general relativity or similar gravitational theories. This means that Equation (20),
with the domain used, is an explicit input. It very well could be derived from a specific
gravitational model in a specific gravitational theory through symmetry reduction. Should
this not be possible, it still may serve as a toy model. In particular, the process of symmetry
reduction (to arrive at minisuperspace models) itself may be a fraught undertaking. Our
assumption will be that such an equation with the full configuration space R2 is available,
and, likewise, so are our corresponding trusty ladder operators. This also bypasses issues
such as the precise nature of the inner product on the quantum gravitational wave func-
tions, as already discussed in [26] (§9). Two extremal options for inner products (with many
in between) are a quantum harmonic oscillator on the one side and a wave equation on
the other. We assume the inner product structure is the one familiar from and resulting
in standard quantum mechanics. Naturally, this leads to many directions to extend our
present model, and we will come back to these in our concluding Section 5.

In conclusion, and as a conscious distinction to quantum cosmology, our toy model (20)
for time travel will be treated using a ladder operator approach of quantum mechanics.
This allows us to use the methods introduced in the previous two sections, and hopefully
also provides easy extensions in diverse directions.
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4.2. A Boring Model of Time Travel

Looking for a square-integrable solution to Equation (20) introduces a new, additional
condition on this equation, only if the following is met:

ωR

ωC
=

2nC + 1
2nR + 1

, where nC, nR ∈ N0, (21)

This commensurability condition will have far-reaching consequences for our simple toy
model in what is to come4. In fact, these results will (for this toy model, at least) be so
far-reaching that the precise nature of the time operators employed or their respective
states used as the initial state of the clock becomes immaterial. The interested reader can
find more details on a possible choice of time operators useful for the current purposes in
Appendix B.

Quite generally, the wave function of the ‘universe’, |Ψ⟩, will have the following form:

|Ψ⟩ = ∑
n,n′

An,n′ |n⟩C ⊗ |n′⟩R . (22)

Our calculation will proceed in three steps based on this general form.

1. The simplest possibility is a diagonal An,n′ . We will demonstrate that this leads,
at least according to the PW formalism, to the simplest time evolution possible. We
will demonstrate how this time evolution can be interpreted as a particularly boring
case of the Novikov self-consistency conjecture.

2. We derive a quite general statement about An,n′ when it is non-diagonal. Concretely,
introducing two sparse matrices ∆1, ∆2 and a diagonal matrix D, it will take the
following form:

A = ∆T
1 D∆2. (23)

3. A general identity for the conditional probabilities (6) in our toy model is derived.
4. Using the previous two steps, we will prove that the results of the first step carry over

to non-diagonal An,n′ , too.

In the first step, let us calculate the components of Equation (6). This will tell us
straightforwardly what we want to know.

tr
(

ĤR P̂θ∗ ρ̂
)
= tr

([
1C ⊗ ĤR

]
[(|ψ(θ∗)⟩C C⟨ψ(θ∗)|)⊗ 1R] [|Ψ⟩⟨Ψ|]

)
, (24)

=
〈
Ψ
∣∣[(|ψ(θ∗)⟩C C⟨ψ(θ∗)|)⊗ 1R]

[
1C ⊗ ĤR

]∣∣Ψ〉. (25)

With the currently assumed diagonal form for An,n′ , we can evaluate

(1C ⊗ ĤR) |Ψ⟩ = ∑
n

An

(
n +

1
2

)
|n⟩C ⊗ |n⟩R , (26)

which in turn, using R⟨m|n⟩R = δmn, turns Equation (25) into

tr
(

ĤR P̂θ∗ ρ̂
)
= ∑

n
|An|2

(
n +

1
2

)
|C⟨n|ψ(θ∗)⟩C|

2. (27)

Going back to the definition of |ψ(θ∗)⟩C, Equation (4), we note that

C⟨n|ψ(θ∗)⟩C = e−i(n+ 1
2 )θ∗

C⟨n|ψ(0∗)⟩C . (28)

This finally leads to

|C⟨n|ψ(θ∗)⟩C|
2 = |C⟨n|ψ(0∗)⟩C|

2, (29)
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from which we can deduce that

tr
(

ĤR P̂θ∗ ρ̂
)
= tr

(
ĤR P̂0∗ ρ̂

)
, (30)

and, after a similar lead-up, likewise for the denominator of Equation (6) that

tr
(

P̂θ∗ ρ̂
)
= tr

(
P̂0∗ ρ̂

)
. (31)

It follows immediately that

E(ĤR|θ∗) = E(ĤR|0∗). (32)

To put it differently, the result (32) means that with respect to such diagonal states of
the ‘universe’, no time will pass, irrespective of the chosen clock states. As was frequently
pointed out in the literature, much of the evolution is fixed by the choice of the full state
|Ψ⟩ ∈ H, so at this point, this might just be an artifact of an overly specific type of state.
Still, even for these states, it is interesting that changing clock states cannot change the
result. It is important to note that we make no claims concerning more general models;
this analysis heavily relies on the structure of our two-harmonic oscillator model. We will
postpone the discussion of the implications of time travel until after presenting the more
general results of ‘step three’ for non-diagonal An,n′ .

Two examples of states |Ψ⟩ with diagonal An,n′ and isotropic oscillators
(i.e., ωC = ωR =: ω) are presented in Figure 1, with different choices for a dispersion
parameter β. In this case, the coordinates a, χ can be assigned to either system (clock or
residual), and were chosen to allow for easy comparison with the closely related examples
of quantum cosmology found in [87]. More details about the construction of the wave
packets are presented in Appendix C.

(a) (b)
Figure 1. Illustration of wave packets solving our toy model for time travel with ωC = ωR. Details
regarding the construction of these solutions to the Hamiltonian constraint Equation (20) can be
found in Appendix C. In comparison, quantum cosmological applications of this equation constrain
themselves to only a half-plane a ≥ 0. More general wave functions with ωC ̸= ωR will have less
symmetry than the pictured examples. (a): Dispersion-less packets, corresponding to a parameter
choice β = 1. (b): Wave packets with a strong dispersion, β = 0.03.

As a preliminary second step for the discussion of non-diagonal An,n′ , it is instruct-
ive to reexamine the commensurability condition. By plugging the ansatz (22) into the
Hamiltonian constraint (20), for all values of n and n′, we have the following:(

ωCn +
ωC

2
− ωRn′ − ωR

2

)
An,n′ = 0. (33)
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This implies that either An,n′ = 0 or if An,n′ ̸= 0 that(
ωCn +

ωC

2
− ωRn′ − ωR

2

)
= 0, (34)

which is equivalent to the original commensurability condition (21). Given that this condi-
tion yields a ratio of two odd numbers, we can rephrase n and n′ as follows:

n = s(2p + 1) + p; n′ = s(2q + 1) + q; s, p, q ∈ N0. (35)

This equation gives additional insight into the coefficients An,n′ . In components, we
can write the following:

An,n′ =
∞

∑
s=0

δn,s(2p+1)+p ds δn′ ,s(2q+1)+q (36)

which, in ‘matrix form’, appears as follows:

A = ∆T
1 D∆2, (37)

where D is diagonal and ∆1, ∆2 are sparse matrices connecting s to n and n′, respectively.
The third step takes a look at the numerator of the conditional probability of the PW

formalism, Equation (6). Note that Equation (25) is fully general and needs no diagonality
of An,n′ in its derivation. Its last two factors can now be evaluated with our general
ansatz (22):

(1C ⊗ ĤR) |Ψ⟩ = ∑
n,n′

An,n′

(
n′ +

1
2

)
|n⟩C ⊗ |n′⟩R . (38)

As in the first step, we can then use the orthonormality of the Fock states |n′⟩C,R and
cyclicity of the trace to show that

tr
(

ĤR P̂θ∗ ρ̂
)
= ∑

m,n,n′

(
C⟨m|ψ(θ∗)⟩C A∗

m,n′

)(
An,n′

[
n′ +

1
2

]
C⟨ψ(θ∗)|n⟩C

)
. (39)

Next, let us employ the definition of |ψ(θ∗)⟩C, Equation (4):

C⟨m|ψ(θ∗)⟩C = C⟨m| e−iĤCθ∗ |ψ(0∗)⟩C , (40)

= e−i(m+ 1
2 )θ∗

C⟨m|ψ(0∗)⟩C . (41)

This allows us to rearrange Equation (39) to

tr
(

ĤR P̂θ∗ ρ̂
)
= ∑

m,n
Qm,ne+i(n−m)θ∗ (42)

where

Qm,n :=

([
∑
n′

A∗
m,n′ An,n′(n′ + 1/2)

]
C⟨m|ψ(0∗)⟩C C⟨ψ(0∗)|n⟩C

)
(43)

This effectively demonstrates how the choice of the universe’s state |Ψ⟩ and the
chosen initial clock state |ψ(0∗)⟩C together fully determine the time evolution of our model.
Equation (43) can equivalently be expressed in ‘matrix form’ as

Q = D†
1 A†D0 AD1, (44)

where D1 is a complex diagonal ‘matrix’, and D0 is a real diagonal ‘matrix’.
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A closely related identity can also be found using similar arguments for the denomin-
ator of Equation (6), reading

tr
(

P̂θ∗ ρ̂
)
= ∑

m,n

([
∑
n′

A∗
m,n′ An,n′

]
C⟨m|ψ(0∗)⟩C C⟨ψ(0∗)|n⟩C e+i(n−m)θ∗

)
. (45)

Note that this is again of the form (42), though with a simpler ‘Q’ for which D0 = 1.
This means any general statement that can be shown for Q will hold for the corresponding
part appearing in Equation (45).

In our fourth and final step, we shall bring together result (37) for An,n′ and result (44)
for Qm,n to greatly constrain the conditional probabilities of Equation (6). Concretely,
inserting the former into the latter gives the following:

Q = D†
1(∆

T
1 D∆2)

†D0(∆T
1 D∆2)D1, (46)

= D†
1∆†

2D∗(∆∗
1 D0∆T

1 )D∆2D1. (47)

In this expression, let us investigate the central, bracketed term, ∆∗
1 D0∆T

1 :(
∆∗

1 D0∆T
1

)
ss′

= ∑
n′

δn′ ,s(2q+1)+q[D0]n′δn′ ,s′(2q+1)+q, (48)

=: (D3/2)ss′ , (49)

another diagonal matrix. This in turn means that even more terms in the middle of
Equation (47) reduce to yet another diagonal matrix D2, defined as

D2 := D∗(∆∗
1 D0∆T

1 )D = D∗D3/2D. (50)

This, then, allows us to greatly simplify the structure of Q itself:

Q = D†
1(∆

†
2D2∆2)D1, (51)

whose middle part in brackets can, using the same approach as in Equation (48), be shown
to be diagonal. Finally, it follows that Q itself is diagonal.

What is essential for this result is the specific form of A; Equation (37). Modifying the
underlying model will, therefore, likely change this result. For the PW formalism in our
context, though, the result is far-reaching. If we take Equation (42), we see that for diagonal
Q, the term ei(n−m)θ∗ = 1, as n = m. The same observation holds for the denominator of the
PW conditional probabilities (6); Equation (45). So, as in our first step when considering
diagonal An,n′ , even the general case produces trivial time evolution.

At first glance, this seems to be a very unremarkable result and, therefore, of little
use for any interesting physics question. Ironically, this is not the case in our present
situation, in which we are discussing time travel. An evolution that is simply constant is
certainly still trivially a case of Novikov’s self-consistency conjecture. Given that nothing is
happening, one might even go so far as to say that it gives an odd entry to the intersection
of the Novikov self-consistency conjecture and the ‘boring physics conjecture’ [3]. It is
simultaneously both time travel and the absence of all evolution.

This result is also a marked departure from results in quantum cosmology [89,92].
The reason for this disparity is the limited domain of the scale parameter in the models of
the form (20). Most importantly, limiting a harmonic oscillator to half of its configuration
space will prevent the application of ladder operators as we used them in the above
analysis. This again demonstrates how ‘simple’ changes to the model can quite radically
change results.
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5. Interpretation, Discussion, and Outlook

Despite the disappointingly boring outcome of our particular model, our toy model
serves its purpose as a proof-of-concept study. It demonstrates the feasibility of future
model building of quantum systems with periodic, emergent notions of time as a tool
to study time travel. The obvious model-dependence of the PW formalism through its
dependence on |Ψ⟩, the ‘state of the universe’, means that different models might have
very different conclusions as to what sort of time evolution is possible. As even collections
of harmonic oscillators become increasingly complex once interactions start to enter, neces-
sitating many different heuristics or approaches across fields [23,93], it is unlikely that the
PW formalism can be fully general even when discussing whether time travel is possible
based on the first principles of quantum theory.

In the absence of a fully general result, we still believe that some general conclusions
can nevertheless be achieved. Analytically tractable models beyond the one presented in
our study should be possible, especially given that POVMs and the PW formalism feature
prominently in the modern, gauge-theoretic consolidation of emergent time in quantum
theory. The use of POVMs in future extensions was part of the motivation to highlight
them as much as we did in our discussion, despite the final result not relying on them.

The goals of such a future model-building task would contain the following:

• More and different subsystems; more in the sense of more harmonic oscillators, differ-
ent in terms of adding various combinations of other systems. Also, ancillary systems
could be used. For example, in the context of time travel, one can ask the following
question: Can ancillary or memory systems allow for (more or less self-consistent)
time travel to be limited to just a fixed, finite number of round trips as opposed to the
infinite traversability of the GR CTCs?

• In a closely related step, one would introduce various interactions among the subsys-
tems. These will greatly change the outcome of our above analysis.

• Ultimately, the combination of these two model-building drives can try to investig-
ate entropic arguments in the context of time travel. If self-consistent time travel in
quantum systems with an emergent notion of time is possible, are such configurations
potentially favored or disfavoured on thermodynamic grounds? In particular, entropy
concepts geared toward constrained or fixed energy systems, like ‘observational en-
tropy’ [94–96], promise access to new arguments for or against time travel without
having to rely on mixing different concepts of time (GR’s dynamic time vs. thermody-
namic time vs. parameter time vs. . . . ) or on any kind of explicit notion of time; the
entropic arguments in such systems would similarly be based on emergent notions,
just as the notion of time itself is.

• Similarly, this exercise should be able to further clarify the difference between a peri-
odic clock time and time travel as such. Obviously, some kind of synchronicity between
the residual system and the clock system has to hold for the latter. Yet the above-
mentioned research directions would allow one to turn concepts like self-consistency
into less of a binary. After all, if time is emergent, its absence might be ill-suited for
human survival but still allow a valid physical system that describes something ‘close’
to a quantum system with self-consistent, observable time travel. In a sense, this
would be a first step toward rigorously testing Hawking’s chronology protection.

• Much of the current research that led to a reimagining of the PW formalism as a gauge
fixed picture aims to ask what happens when one changes frames, i.e., clocks. Once the
model systems for time travel are complex enough (and, thus, more complex than our
Equation (20)), a natural question is: What happens to time travel in such quantum
reference frame transformations? And, linking to the previous point, does this differ
from the situation for merely periodic clocks?

• Lastly, the previous two points hint at the possibility of making time travel more of
a local, emergent notion in a large system. This is, for one, an explicit way to study
time travel classically as a CTC in a space–time manifold; see, for example, [59,81].
For another, this is similarly done in quantum physics, ranging from the rigorously
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and explicitly local [46,97] to the more imprecise and only implicitly local [45,98]. Yet,
so far, these approaches all had to rely on an ad hoc introduction of ‘background’ time.

Other avenues along similar lines warrant a closer look at the framework of quantum
gravity. In the canonical approach, for instance, different inner products can be considered,
so at least changing the mathematical framework drastically; this raises the question of how
much the physical interpretation changes or has to change in tandem. Other approaches
to quantum gravity, apart from the canonical ones, can also test emergent notions of time
in their respective frameworks. Apart from a question of tractability, this was part of the
motivation to keep our toy model somewhat agnostic and conservative with respect to a
theory of quantum gravity.

Independent of which direction one would want to take, we believe that our first
result shows that emergent notions of time in quantum physics can lead to a multitude of
questions and interpretational conundra pertaining to time travel. The very introduction of
such emergent time concepts undermines most traditional arguments against time travel.
The concepts evoked in these arguments simply have to rely on notions that are not valid
in more ab initio approaches.
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Appendix A. Formal Definition of POVMs

In this appendix, let us present the formal definition of a POVM. An operator Â on a
Hilbert space H is called positive if

∀ |ψ⟩ ∈ H : ⟨ψ|Â|ψ⟩ ≥ 0. (A1)

The positivity of an operator is often denoted as ‘Â ≥ 0’. An operator B is called a
POVM if and only if it is an additive map from a Borel σ-algebra A of subsets of a set Ω to
operators on H such that

(i) for all sets X ∈ A, B(X) ≥ 0 (‘positivity’),
(ii) for disjoint X, Y ∈ A, B(X ∪ Y) = B(X) + B(Y) (‘additivity’),
(iii) for all sequences of sets Xn ∈ A, such that ∩∞

n=1Xn = ∅, all operators B(Xn) have 0̂
(the zero operator) as the greatest lower bound.

For more details, see [20] (p.71, Def.4.5). A POVM that fulfills B(Ω) = 1 is called
normalized.

Normalized POVMs are a more general notion of observable compared to that of
observables being unbounded, self-adjoint operators on H. The (set-theoretic) ‘universe’ Ω
corresponds to possible measurement outcomes. In this sense, additivity and normalization
link measurements—as described by POVMs—to the theory of probability, as set down in
the Kolmogorov axioms. They allow for more and wider notions of imprecision than those
encoded in density matrices [20,23]. In ‘standard quantum mechanics’, the measurement
process of an observable, Â, according to the Born rule, projects onto a subspace formed by
eigenvectors of Â with set eigenvalue Ai. In the terminology of POVMs, this corresponds
to ‘projection-valued measures’ (PVMs) and PVMs ⊊ POVMs.

Appendix B. Time Operators for a Harmonic Oscillator

In this appendix, we want to draw attention to some additional background regarding
POVMs and phase or time operators in the context of harmonic oscillators.

With the POVM B0 of Equation (15) in place, we can now define a large number of
new, self-adjoint operators [24]. To do this, we associate to each real-valued, bounded,
and measurable function f on [0, 2π) the operator B̂0[ f ], defined as

B̂0[ f ] :=
1

2π

∫ 2π

0
f (θ) |θ⟩⟨θ|dθ, (A2)

= ∑
n,m≥0

1
2π

∫ 2π

0
ei(n−m)θ f (θ) |n⟩⟨m|dθ. (A3)

This procedure fixes the set X in the original POVM B0, and then uses it to construct
various Toeplitz operators. Different choices for f can be found in the literature (see,
for example, [83]), but we will focus on one of the simplest options:

f (θ) = θ. (A4)

This will give us a time operator T̂0, which we calculate with the above expressions
to be

T̂0 = B̂0[θ] = ∑
n ̸=m≥0

1
i(n − m)

|n⟩⟨m|+ π1. (A5)

However, this operator is not unique. First of all, we could have chosen a different
starting point for our angles, changing the index 0 at that point. There is also a different,
but more physically motivated point of arriving at additional time operators. The time
operator T̂0 can be covariantly shifted to a new operator T̂θ∗ :

T̂θ∗ := eiĤθ∗ T̂0e−iĤθ∗ . (A6)
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This covariant shift property is a general feature of such time operators from POVMs,
see [24], which is increasingly becoming prominent and clear in modern implementations [37,99].
Importantly, while all such T̂θ∗ fulfill canonical commutation relations with Ĥ (when the res-
ulting operator is well-defined), different time operators will not commute with each other:

θ∗ ̸= θ′∗ mod 2π =⇒ [T̂θ∗ T̂θ′∗ ] ̸= 0. (A7)

These results deserve some commentary. The reason why these time operators are
still self-adjoint, despite the illustrious list of no-go theorems given in the introduction,
is two-fold [24]: One, they are hardly unique. Any change in the starting point (phase)
will yield a different time operator. A covariant shift similarly yields new time operators.
Two, the domain of time is now periodic. The no-go theorems usually target R as the
domain for time θ, or propose that the time would be unique in some sense. In the present
context, it is more a question of when one starts the periodic clock, and what period the
clock has. It is also worth pointing out that our time operators subtly fail to satisfy the
expected time-energy uncertainty. It will not hold for all states in H, but only for a densely
defined set [83,84]. This latter restriction is not an issue for our purposes, at least in the
present article, and the other reasons for evading the no-go theorems are what permit our
application in the context of time travel.

Appendix C. Detailed Construction of Depicted Wave Packets

For Figure 1, we adapted the plots of [87] to our present context with a larger configur-
ation space. For ease of comparison, we kept the notation for the wave functions the same.
We do, however, emphasize that, in our context, one should not interpret a as a scale factor.
Our investigation is not quantum cosmology, it is just inspired by a particular model of it
due to its simplicity.

A general solution of Equation (20) can be expressed in configuration space variables
a, χ instead of the Fock space picture adapted throughout the remainder of the article.
For illustrative purposes, this is preferable. We will restrict our attention to symmetric
wave functions, where a and χ can be assigned equally well to the clock system ĤC or the
residual system ĤR. While our enlarged configuration space (compared to that of quantum
cosmology) might change the overall normalization, it will not change the qualitative
behavior of the wave functions. Therefore, we also copy the normalization of reference [87].

A wave function with two Gaussians centered around χ = ±χ0, each of width β,
at time/position a = 0, is given by

Ψ(a, χ) =
∞

∑
m=0

c2m
H2m(a)H2m(χ)√
22m(2m)!H2m(0)

exp
(
−1

2
a2 − 1

2
χ2
)

, (A8)

where Hn(x) is the n-th Hermite polynomial and the expansion coefficients are

cn =
1√
2nn!

√
2β

1 + β2 exp

(
−

χ2
0

2(1 + β2)

)(√
1 − β2

1 + β2

)n

Hn

(
χ0√

1 − β4

)
. (A9)

These coefficients cn simplify further for the ‘coherent case’, i.e., when β = 1, to

cn = exp
(
−1

4
χ2

0

)
χn

0√
2nn!

. (A10)

Note that index m in Equation (A8) is meant to make it more explicit that the sum runs
only over even n.
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Notes
1 With a bit of hindsight, Schrödinger already anticipated this in his footnote on page 245 of [13] [here, in our translation, and

keeping the somewhat convoluted grammar of the original]: “An interesting application of this is the following: if one knows of a
system composed of several, coupled subsystems only the total energy, then it is impossible to know more about the distribution
of energy across the subsystems than the statistical, time-independent data, which already follows from the knowledge of the
total energy. Except for the case that individual subsystems are in truth fully decoupled, energetically isolated from the others.”

2 One would also have to brush aside that standard thermodynamics has to artificially graft time onto its formalism in the first
place, leading to the very name ‘thermodynamics’ being rather unintuitive compared to other occurrences of ‘dynamics’ in
physical terminology [55].

3 Such overcomplete states find ample application in, for example, the context of coherent states [23].
4 Deviating from the commensurability condition even a little would lead to non-normalizable wave functions. In the context of

quantum cosmology, such wave functions can be encountered, such as the no-boundary proposal [77] (p. 282). For the sake of our
(not necessarily gravitational) toy model, we believe that this would add another layer of interpretational problems best left for a
separate study.
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