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3CERN, Theoretical Physics Department, 1 Esplanade des Particules, CH-1211 Genéve 23, Switzerland
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One of the primary scientific objectives of the Laser Interferometer Space Antenna (LISA) is to
probe the expansion of the Universe using gravitational wave observations. Indeed, as gravitational
waves from the coalescence of a massive black hole binary (MBHB) carry direct information of the
luminosity distances, an accompanying electromagnetic (EM) counterpart can be used to determine
the redshift. This method of bright sirens enables one to build a gravitational Hubble diagram to
high redshift when applied to LISA. In this work, we forecast the ability of LISA-detected MBHB
bright sirens to constrain cosmological models. As the expected EM emission from MBHBs can be
detected up to redshift z ∼ 7 with future astronomical facilities, we focus on the ability of LISA to
constrain the expansion of the Universe at z ∼ 2−3, a poorly charted epoch in cosmography. We find
that a model-independent approach to cosmology based on a spline interpolation of the luminosity
distance-redshift relation, can constrain the Hubble parameter at z ∼ 2− 3 with a relative precision
of at least 10%.

PACS numbers: 04.30.-w, 04.30.Tv
Keywords: LISA - Post-Newtonian theory

I. INTRODUCTION

In the next decade, the Laser Interferometer Space An-
tenna (LISA) [1] will observe gravitational waves (GWs)
from the coalescence of massive black hole binaries (MB-
HBs) of mass 104 − 107 M⊙ at redshifts up to z ∼ 20.

For nearly 40 years, these systems have been consid-
ered as the key to a method that can shed light on the
cosmic expansion history of our Universe [2, 3]. Indeed,
a coalescing binary system can be considered as a stan-
dard siren because the final burst of GWs carries direct
information of the luminosity distance of the source. The
GW signal is degenerate in the redshift, however, mean-
ing that additional information is required to infer the
distance-redshift relationship.

If an electromagnetic (EM) counterpart is associated
with the coalescence, the redshift may be determined
with spectroscopic or photometric follow-up observations
[4–11]. This approach to constructing a standard-siren
distance-redshift relationship is usually referred to in the
literature as the method of bright sirens. In the absence
of an EM counterpart, the redshift may be estimated
probabilistically by cross-correlating the region hosting
the GW merger with galaxy catalogs [12–18]. This ap-
proach is referred to as the method of dark sirens. Fi-
nally, the redshift may also be inferred from the detected
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mass distribution of the source. Due to cosmic expan-
sion, the gravitational waveform determines the product
M(1 + z) where M is the intrinsic, rest-frame mass pa-
rameter. Assuming a parametrized functional form for
the intrinsic mass distribution, the cosmological parame-
ters can be constrained together with the parameters de-
scribing the mass distribution [19, 20]. This approach has
been recently named the method of spectral sirens. The
dark and spectral siren approaches can be combined in a
single inference methodology where both information on
the intrinsic distribution of sources and cross-correlation
with galaxy catalogs provide stringier cosmological con-
straints [21–23]. Further approaches have been proposed
to test cosmology with GWs, for example, by exploiting
the cross-correlation of the weak lensing of both GWs
and galaxy fields [24, 25], prior knowledge either of the
equation of state of neutron stars [26, 27] or of the merger
rate evolution of GW sources [28, 29].

A new, independent method to determine the distance-
redshift relationship would provide valuable information
about the nature of our Universe. The standard ΛCDM
model provides a good fit to the bulk of cosmological
data. However, in recent years, several tensions be-
tween late- and early-Universe measurements have arisen.
The most famous one is the Hubble constant H0 ten-
sion wherein early-time measurements from the Cosmic
Microwave Background (CMB) report a value of H0 ∼
67 km/s/Mpc [30] and late-time measurements from su-
pernovae (SNe) obtain H0 ∼ 72 km/s/Mpc [31]. (See
also [32–34] and reference therein for recent reviews on
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the topic.) Whether these tensions are due to systemat-
ics in the different measurements and datasets or are the
hints of new physics is a pressing, open question.

In Fig. 1 we report the redshift range covered by dif-
ferent cosmological probes (see also Fig. 52 in [35] for a
similar plot). The three main measurements in the lit-
erature are the CMB at early-time and SNe and BAO
at late-time. However, while the former is at z > 1000,
the latters can test the expansion up to z ∼ 2 [36] and
z ∼ 2.5 [37], respectively.

Moving to standard sirens, current ground-based de-
tectors are expected to detect NS-NS and NS-BH merg-
ers up to z ∼ 0.1 [38]. Third-generation ground-based
detectors as Einstein Telescope (ET) [39] and Cosmic
Explorer (CE) [40], together with EM facilities as Fermi
[41] and Theseus [42], should be able to detect the GW
signal and the EM emission up to z ∼ 2.5 in X-ray and
up to z ∼ 3 in γ-band [43]. The dark sirens approach
can be, in principle, applied to any type of standard
sirens, i.e. compact object binaries in ground-based in-
terferometers or in the high-frequency portion of LISA
band [13, 15, 44] and extreme-mass ratio inspiral (EM-
RIs) [16, 45, 46]. However, independently from the type
of source, this technique is limited to z ∼ 1-1.5 by the
completeness of the galaxy catalogs. Concerning spectral
sirens, current detectors are limited at z ∼ 1.5 at design
sensitivity [47–50], but ET and CE can potentially ex-
pand this approach up to z ∼ 3. The peak of the star
formation rate is at z ∼ 2−3, meaning that the number of
BHs and NSs will decrease quickly at higher redshifts [51]
and BHBs will not provide strong constraints on H(z) at
z ≳ 2 (see Fig. 1 in [20]). MBHs can also be used as
spectral sirens even if, at the moment, we do not expect
any particular feature in their mass distribution and a
consistent study is still missing. Finally, the detection of
the GW signal from a MBHB merger together with the
identification of the host galaxy, might probe the expan-
sion of the Universe up to z ∼ 8 [4, 10, 52], depending
on the astrophysical model assumed. However, although
MBHBs may become interesting sources to test alterna-
tive cosmological models at high-redshift [53–57], there
are large uncertainties on the expected rates of MBHB
mergers (see Sec. 2.4.2 in [58]), on the modeling of the
EM counterpart and on the possibility to identify the
host galaxy at high redshift.

In the lower part of the plot, we show other cosmolog-
ical probes that have been exploited in the recent years.
Here we describe briefly the probes at z > 3 and refer
the interested reader to [35] for a complete review.

Quasar have been proposed as standardizable candles,
exploiting the non linear relation between the X-ray and
UV luminosities ([59] and reference therein). This re-
lation should represent an universal mechanism taking
place in quasars and their emission can be detected up
to z ∼ 7. However the selection of the samples is affected
by observational issues, leading to an intrinsic dispersion
of 0.2 dex (even if this value reduces to 0.12 with high-
quality data [60]), and the majority of quasars is located

at z < 4.
Similarly, gamma-ray bursts (GRBs) can be promoted

to cosmological probes exploiting correlations between
rest- and observer-frame quantities, as the relation be-
tween the intrinsic peak energy and the total radiated en-
ergy [61]. GRBs can be detected up to very high redshift
z ∼ 9-10 and, emitting in γ and hard X-ray band, they
are not affected by dust absorption. However the corre-
lations can not be calibrated in a cosmology-independent
way due to the lack of low-redshift events. Therefore the
parameters describing the empirical relations have to be
fitted together with the cosmological parameters [62] or
calibrated with lower redshift standard candles, as SNe
[63].

Neutral hydrogen intensity mapping consists in ex-
ploiting the 21 cm emission to map the large-scale struc-
tures [64]. Even if the single galaxies are not resolved,
the neutral hydrogen follows the matter density fluctu-
ations, providing information of the Universe evolution.
This emission can be detected up to very high redshift
but there might be contamination from other sources.

The secular redshift shift consists in measuring the
variation in redshift due to an expanding Universe [65].
Any type of redshift indicator can be used (absorp-
tion/emission lines and feature in the spectrum) and the
approach is completely cosmological model-independent.
However it require long observing time and it might not
be as accurate as other cosmological probes.

Standard sirens represent a new cosmological probe to
test the expansion of the Universe. Motivated by the
redshift range from Fig. 1, in this work we examine the
potential of MBHBs as bright sirens to constrain the cos-
mic evolution of the Universe at intermediate redshifts.
In particular, current knowledge of the properties of MB-
HBs suggests that we may be able to probe the expansion
across redshifts 2 ≲ z ≲ 8, a territory that is still poorly
explored in modern cosmology.

We built this paper on the previous work done in Man-
giagli et al. 10 (hereafter ‘M22’) where we explored the
number of MBHBs mergers emitting a detectable EM
counterpart under different astrophysical models and EM
configurations. Here we focus on the subset of EM coun-
terparts (EMcps), i.e. systems with :

1. GW signal-to-noise ratio (SNR) above 10;

2. Detectable EM emission;

3. Sufficiently accurate sky-localization, depending on
the EM telescopes considered (see [10] for more de-
tails).

We assume to be able to identify the host galaxy of
EMcps and to get an independent measurement of the
redshift. In other words, EMcps are standard sirens, i.e.
systems that can be used to test the expansion of the Uni-
verse. For each astrophysical population, we build 100
realisations to perform cosmological tests. We divide the
analysis in two branches: the first focuses on local Uni-
verse quantities such as the local Hubble constant, Ωm or
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FIG. 1. Redshift range covered by several cosmological probes. On the right and on the top, the three main cosmological
probes, i.e. CMB, BAO and SNe. In the middle, the standard sirens forecasts with different approaches for future 3G detectors
and LISA. In the bottom part, other emerging cosmological probes. The acronyms stand for cosmic chronometers (‘Cosmic
Chronomet.’), time delay cosmography (TDC), cluster strong lensing (CSL) and clustering of standard candles (CSC). Bright
sirens from MBHBs can probed the expansion of the Universe up to z ∼ 8 where few other cosmological probes are available.
We refer to [35] for more details on each of the techniques listed in the plot.

late-time dark energy models while the second explores
LISA capabilities to constrain H(z) at z ≳ 2 using vari-
ous strategies, both model-dependent and -independent.

The paper is organised as follows. In Sec. II we re-
view the results of M22. In Sec. III we introduce some
useful notions in cosmology and we present the models
we tested in this work. The catalogues of MBHBs are
constructed in Sec. IV and the likelihood is formulated
in Sec. V. In Sec. VI we present the analysis setup and
discuss some caveats. In Sec. VII we report our main re-
sults. In Sec. VIII we conclude with some final remarks
and comments. In Appendix A we check that the num-
ber of realisations are sufficient to provide solid results.
In Appendix B we assess the Gaussianity of the lumi-
nosity distance posterior distributions. In Appendix C
we discuss a test we adopted to determine informative
realisations. In Appendix D we derive a redshift where
the correlation between the Hubble parameter and Ωm is
minimum.

II. REVIEW OF M22

In this section we briefly summarise the main results
of M22. We build our methodology on the previous work
done by [4] with some major improvements. Since this
work is a follow-up of M22, here we limit to summarise
the most important results and refer the interested read-
ers to the original paper.

There are still large uncertainties on the populations
of MBHBs that LISA will observe, mostly due to the lack
of observational evidences. Therefore we have to rely on
simulations. In the past years, semi-analytical models
(SAMs) have established as one of the possible approach
to predict the population of merging MBHBs. In this
work we adopt the SAM developed in [66] (with contri-
butions from [67–69]) to track the evolution of MBHs
across cosmic time. We consider three different astro-
physical models:

1. Pop3: a model where MBHs grow from light seeds
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BHs that are the remnant of young metal-poor
Pop3 stars. This model takes into account the delay
between the galaxy merger and the MBHB merger;

2. Q3d: in this case, MBHs originate from the col-
lapse of proto-galactic disks at 104−106 M⊙. Time-
delays between mergers are included;

3. Q3nd: a heavy-seed scenario, similar to Q3d, but
without merger time-delays, leading to an increase
number of MBHB mergers.

The three population models above yield three quali-
tatively different catalogs of MBHB mergers across cos-
mic time. Among these, we are interested in the MBHB
mergers producing an EM counterpart.

Even larger uncertainties affect the EM emission from
MBHBs. Even if few binary-AGN candidates at sub-
parsec separation have been reported (see Part II in [70]
for a recent review), these systems are still far from
merger in the LISA frequency band and more massive
than the ones LISA will be able to detect. The behaviour
of gas in a rapidly changing space-time is yet unclear so
we have to rely again on simulations. During the in-
spiral phase, General Relativity MagnetoHydroDynamic
(GRMHD) simulations showed that the binary excavate
a cavity in the circumbinary disks and streams of gas flow
from the inner edge to form minidisks around each BHs
[71–76]. While UV photons are produced by the inner
edge of the circumbinary disk, a large amount of X-ray
radiation is emitted by the minidisks [77, 78]. The mo-
tion of the binary is expected to imprint a modulation in
the EM emission [79]. If the binary is already ‘on’ years
before the merger, the modulation might appear in opti-
cal and, possibly, it can be detected with surveys as LSST
[80]. In the last phase of the inspiral, the modulation can
be instead detected in X-ray with future telescopes, such
as the Advanced Telescope for High ENergy Astrophysics
(Athena) [81, 82].

During or after the merger, flare or jet emissions are
expected at different wavelengths and on timescales of
weeks or months [83–85]. Additional transient features
might be produced by a re-brightening of the accretion
disk or by internal shocks in the gas, adjusting to the
new gravitational potential [86].

To test the expansion on the Universe with bright MB-
HBs sirens, we get the luminosity distance estimate from
the GW signal and the redshift from the EM counter-
part. As in M22, if the source is sufficiently bright in
optical, its redshift can be determined with the Vera C.
Rubin Observatory [80, 87]. Otherwise, the host galaxy
can be identified in radio with the Square Kilometre Ar-
ray (SKA) [88] telescope or in X-ray with Athena [89] .
The source redshift can be subsequently determined with
photometric or spectroscopic observations performed, for
example, with the Extremely Large Telescope (ELT) [90].

In M22, we defined a GW event with EM counterpart
(EMcp for the rest of the paper) as a system whose EM
counterpart can be detected by any of our strategies and

TABLE I. Average number of EMcps in 4yr for ‘maximising’
and ‘minimising’ case.

(in 4yr) Maximising Minimising
Pop3 6.4 1.6
Q3d 14.8 3.3
Q3nd 20.7 3.5

whose sky localization is sufficiently accurate to fall in-
side the aforementioned telescopes field of view (FOV).
Therefore, these sources represent the subset of MBHB
systems for which we have both the luminosity distance
and the redshift measurements.

The rate of EMcps changes significantly depending on
the processes responsible for the production of the EM
counterpart (i.e. the accretion rate or the jet opening
angle for the radio emission), on the assumptions of the
environment surrounding the MBHBs (i.e. the AGN ob-
scuration) and on the sky localization provided by LISA.
In order to simplify the presentation of results, in M22
we considered two models, labelled as ‘maximising’ and
‘minimising’. The two main differences between these
models were that in the former there was no AGN ob-
scuration and the radio flare emission was isotropic while,
in the latter, we included the AGN obscuration and the
radio flare emission was collimated with an opening angle
of ∼ 30◦. In Tab. I we report the average number of EM-
cps for each model, assuming 4yr of observations. The
‘maximising’ model predicts on average between ∼ 7 and
∼ 20 EMcps in 4 yr, depending on the astrophysical pop-
ulation, while in the ‘minimising’ one we expect ∼ 2 − 3
EMcps. The AGN obscuration and the collimated jet
emission are the two main factors that drastically reduce
the number of EMcps.

Standard siren cosmology is one of the LISA science ob-
jectives that strongly depends on the number of sources
and on the mission time [3]. In this study, we consider
only the ‘maximising’ case and not the ‘minimising’ one,
due to its limited number of EMcps. If the ‘minimising’
case will result to be the one closer to reality, the cosmol-
ogy science case with bright MBHBs will be undermined
if LISA will operate for only 4 yr. However we note that
in 10yr the heavy models (Q3d and Q3nd) in the min-
imising case predict ∼ 3.3×10/4 ∼ 8.2 EMcps which are
close to the number of EMcps in the Pop3 model in the
‘maximising’ case but in 4yr.

III. COSMOLOGICAL MODELS

In the standard Friedmann-Lemâıtre-Robertson-
Walker (FLRW) formalism, we can define the universe
metric as [91, 92]

ds2 = −c2dt2 + a2(t)

(
dr

1 −Kr2
+ r2dΩ

)
(1)
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with K = 0,−1,+1, a(t) the scale factor and c the light
speed. From the FLRW, we can derive the Friedmann
equations as

H2 =
8πG

3
ρ− Kc2

a2
(2)

ä

a
=

−4πG

3

(
ρ +

3P

c2

)
(3)

where H = (da/dt)/a = ȧ/a is the Hubble rate, G the
gravitational constant and ρ and P are the sum of the
energy densities of all the components of our universe,
i.e. (ρ, P ) = (ρr + ρm + ρΛ, Pr + Pm + PΛ), where the
subscripts ‘r’, ‘m’ and ‘Λ’ refer to radiation, matter and
dark energy, respectively. Each component satisfy the
continuity equation

ρ̇i + 3H

(
ρi +

Pi

c2

)
= 0 (4)

where i runs over the individual components. Eq. 4 can
be easily solved if we assume Pi = ωiρic

2 where ωi is the
equation of state for the i-component. For example, in
the standard ΛCDM model, the equations of state are
wi = (1/3, 0,−1) for radiation, matter and dark energy,
respectively. Plugging these values in Eqs. (2-4), we ob-
tain the Hubble rate as (from this moment we neglect the
contribution from radiation, i.e. ρr = 0, and we assume
a flat universe, i.e. K = 0)

H(z) = H0

√
Ωm(1 + z)3 + (1 − Ωm) (5)

where H0 = h× 100 km/(s ·Mpc) is the Hubble constant
at the present day, Ωm = 8πGρm,0/(3H2

0 ) is the matter
relative energy density today and z = 1/a − 1 is the
redshift. For our fiducial cosmological model, we adopted
h = 0.6774 (H0 = 67.74 km/(s · Mpc)) and Ωm = 0.3075;
we note that in this case, ΩΛ = Λc2/3H2

0 is fixed by the
condition

∑
i Ωi = 1 (from Eq. (2)), i.e. ΩΛ = 1 − Ωm.

Assuming that the Universe is flat, we can define the
luminosity distance dL(z) and the comoving distance
dC(z), respectively as

dL(z) = c(1 + z)

∫ z

0

dz′

H(z′)
(6)

dC(z) =
dL(z)

1 + z
= c

∫ z

0

dz′

H(z′)
. (7)

A final useful remark for the future discussions is that,
under the assumption of a flat Universe, the comoving
distance dC is related to H(z) as in Eq. 7 and we can
express H(z) as the inverse of the derivative in z of the
comoving distance, i.e.

H(z) = c

(
d

dz
dC

)−1

. (8)

A. Local Universe models

In this work, we test the standard cosmological model
and two additional beyond ΛCDM models. In particular,
we analyse the following models:

1. (h,Ωm) : Standard ΛCDM model. This is a two-
parameters model where we fit for (h,Ωm) using
Eq. 5.

2. (h,Ωm, ω0, ωa): one of the most adopted
parametrization of the dark energy equation of
state in the literature is the Chevallier-Polarski-
Linder (CPL) formalism [93, 94] where one defines

ω(z) = ω0 + ωa(1 − a) = ω0 + ωa
z

z + 1
. (9)

With this equation of the state, the Hubble rate
becomes

H(z)

H0
=

(
Ωm(1 + z)3 + (1 − Ωm)

× exp

[
− 3ωaz

1 + z

]
(1 + z)3(1+ω0+ωa)

)1/2

.

(10)

Here we fit for (h,Ωm, ω0, ωa) assuming ω0 = −1
and ωa = 0 as fiducial values.

3. (h,Ωm, ω0,Ξ0): Alternative gravity theories with
non trivial dark energy models predicts that GWs
do not scale as 1/dL even if they travel at light
speed. In such theories the luminosity distance
measured by GWs assuming the usual 1/dL scal-
ing may differ from the luminosity distance mea-
sured by EM observations. One phenomenologi-
cal parametrization that encompass several of these
models is [57, 95]

dgwL (z)

demL (z)
= Ξ0 +

1 − Ξ0

(1 + z)n
, (11)

where dgwL and demL are the luminosity distances
as measured by GW and EM observations, respec-
tively. In this case the Hubble rate is expressed
as in Eq. 10. This is a 4-parameters model where
we fit for (h,Ωm, ω0,Ξ0) assuming ω0 = −1 and
Ξ0 = 1 as fiducial values (these values correspond
to ΛCDM) and fixing n = 2.5 and ωa = 0 in the
inference process.

B. High-redshift Universe approaches

By the time LISA will be operational, EM telescopes
as Euclid [96], LSST [80] or LiteBIRD [97] will have pro-
vided accurate measurements on the expansion of the
Universe up to z ≲ 2 − 3. However, thanks to the fact
that we expect to detect the EM counterpart of MBHB
mergers up to z ∼ 8, we may wonder how we can use



6

0 1 2 3 4 5 6 7 8 9
z

0

2

4

6

8

10
d C

(z
)

[G
pc

]

ΛCDM dC

Matter-only, zp = 3
Linear fit
EMcps

FIG. 2. Representation of the redshift bins and matter-only
approximation models, according to the legend. The blue line
corresponds to the comoving distance in the standard ΛCDM
Universe; the yellow dotted-dashed line represents the matter-
only approximation from Eq. 13 with zp = 3 and the two or-
ange dashed lines the redshift bins approach in Eq. 14 for two
redshift bins with zp = 1.5 and zp = 3 (black stars). Green
points correspond to the MBHBs from a random realisation of
Q3d with the corresponding errors on redshift and comoving
distance, accounting also for lensing and peculiar velocities
errors as described in Sec. IV. For low-redshift events, the er-
rors are smaller than the size of the dot.

these systems to test the high redshift portion of the Uni-
verse (up to the redshift where we have both the EM and
GW signal).

Differently from the previous models, here we present
methods that focus on the estimate of cosmological pa-
rameters at z > 1. The first one introduces a possible
deviation to the matter equation of state; the second and
third models have in common that the cosmological in-
ference is performed over two parameters (H(zp), dC(zp))
corresponding to the Hubble value and the comoving
distance at a given pivot redshift zp; the last one is a
model-independent approach based on the splines inter-
polations. More in details, these approaches are:

1. (h,Ωm, β): we introduce a deviation to the matter
equation of state of the form ωm = β. In this case,
Eq. 5 becomes

H(z) = H0

√
Ωm(1 + z)3(1+β) + (1 − Ωm). (12)

This is a 3-parameters model where we fit for
(h,Ωm, β), assuming β = 0 as our fiducial value.
The scope of this model is to test if LISA can put
constraints on the cold dark matter equation of
state if it deviates from zero at high redshift; for
this reason we decide to place this model in the
‘high-redshift’ part even if we still have h and Ωm

in the inference. Note that this is a simple phe-
nomenological model which can be applied only to
the late-time universe. Strong constraints would
apply if CMB or other early universe observations

would be taken into account. We must thus as-
sume that ordinary ΛCDM evolution happens at
say z ≳ 10 (i.e. outside the range of LISA MBHB
multi-messenger data).

2. Matter-only approximation: Since we aim at
constraints at high redshift, one reasonable as-
sumption is that the Universe is matter-dominated,
i.e. H(z) = H0

√
Ωm(1 + z)3/2. In this case, the co-

moving distance can be written as

dC(z) = dC(zp)+2(1+zp)H−1(zp)

(
1−
√

1 + zp√
1 + z

)
. (13)

This is a 2-parameters model and we infer
(h(zp), dC(zp)). For both parameters, we assume
the ΛCDM values as the fiducial ones.

3. Redshift bins: According to Eq. 8, H(z) is the
slope of the comoving distance relation. If we con-
sider a small redshift interval around a pivot red-
shift zp, we can approximate the dc − z relation as
a Taylor expansion at zp as

dC(z) = dC(zp) +
c

H(zp)
(z − zp). (14)

This is also a 2-parameters model and we fit the
same parameters as in the matter-only model,
though H(zp) does not have the same exact mean-
ing of the corresponding parameter in the previous
model, but they coincide to first order in the limit
z → zp. We note that this approach is independent
from the chosen cosmological model.

4. Splines interpolation: In this model, we inter-
polate the luminosity distance at several knots red-
shifts with cubic polynomials. The final prod-
uct of the inference is the multi-dimensional
posterior distribution on the dL at the knots.
For the splines, we adopt the implementation
in ‘InterpolatedUnivariateSpline’ from SciPy
[98].

For clarity, in Fig. 2 we show an example of the red-
shift bins model for two bins at zp = 1.5 and zp = 3 re-
spectively and the matter-only approximation with pivot
redshift zp = 3. For all the models we report more de-
tails on the technical implementation and some caveats
in Sec. VI.

IV. CATALOGUES CONSTRUCTION

For each astrophysical model, we have 90 years of data
and we want to construct different Universe realisations,
depending on the LISA mission observational time (tm).
We proceed in the following way:
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1. We compute the average intrinsic number of merg-
ers per year, Λi, multiplying the total number of
mergers in the 90 years of data by 1/90. The aver-
age intrinsic number of events during a certain time
mission λi is obtained as λi = tm ·Λi. For example,
assuming tm = 4 yr, the average number of events
in 4 years is 691, 31 and 475 for Pop3, Q3d and
Q3nd, respectively, as reported in the first column
of Tab. (III) in M22;

2. Since each realisation is independent from the oth-
ers, we extract the intrinsic number of events in
each realisation according to a Poisson distribution
with mean λ = λi. Each realisation is constructed
drawing random events from the 90 years of data
up to λ;

3. In each realisation, we select only the events that
are EMcps (i.e. satisfy the requirements of SNR,
detectability of the EM emission and sky localiza-
tion accuracy)[99].

For our purpose, we need the luminosity distance and
redshift of the EMcps and the corresponding errors on
these quantities. While the former is provided directly
from the catalogues, the latter requires some considera-
tions.

For the luminosity distance, we consider the marginal-
ized posterior distribution from LISA data analysis pro-
cess. However, in the real case, the recovered luminos-
ity distance will not be centered around the true values,
as different sources of errors are expected to affect our
data. First of all, LISA sensitivity is expected to fluc-
tuate around an average value due to the orbital motion
of the spacecrafts and the instrumentation. This noise is
expected to shift the posterior distribution on the lumi-
nosity distance by a factor draw from a Gaussian distri-
bution with the same dispersion of the posterior. More-
over, the inhomogeneous distribution of matter between
the source and the observer will affect the propagation
of the GW signal and potentially affect the recovered pa-
rameters [100]. Since the weak-lensing depends on the
amount of matter, it plays a significant role at high red-
shift, dominating the error budget at z ≳ 2. We model
this source of error as [101]

σlens

dL
=

 0.061
2

(
1−(z+1)−0.264

0.264

)1.89
for z ≤ 9.35

0.034 + 0.015z for z > 9.35
(15)

for Pop3 and as

σlens

dL
=

0.096

2

(
1 − (z + 1)−0.62

0.62

)2.36

(16)

for the two massive astrophysical models. Similarly to
[52, 102], we also take into account the possibility of spe-
cific observations along the line of sight of the GW event
to estimate the amount of matter and reduce the lensing

100 101
z

10−4

10−3

10−2

10−1

σ 6
8/

d L

σlens/dL

σdelens/dL

σpv/dL

FIG. 3. Scatter plot of the luminosity distance uncertainty at
1σ from LISA parameter estimation as a function of redshift.
Blue points correspond to all MBHBs simulated for the Q3d
model and to the luminosity distance uncertainties adopted
in the analysis. Green line represents the errors from peculiar
velocities as in Eq. 19. Red (yellow) dashed line corresponds
to the lensing error as in Eq. 16 without (with) the delensing
correction. The grey dotted-dashed line corresponds to the
arbitrary cut-off we impose on the 1σ error on dL: we rerun
the systems (grey points) whose dL error was originally above
this grey line without the parameters describing the sky po-
sition of the binary, i.e. assuming perfect localisation thanks
to the EM counterpart. For points below the grey line, the
error on dL is, in all cases, dominated by lensing or peculiar
velocities.

error. We estimate the delensing factor as [52]

Fdelens = 1 − 0.6

π
arctan

( z

0.073

)
. (17)

The final lensing uncertainty is then

σdelens = Fdelensσlens. (18)

The peculiar motion of the host galaxy will add an ad-
ditional source of uncertainty, especially at low redshift.
We model the peculiar velocity error as [103]

σpv

dL
=

[
1 +

c(1 + z)2

H(z)DL(z)

]√⟨v2⟩
c

(19)

where ⟨v2⟩ = 500 km/s, in agreement with the value ob-
served in galaxy surveys.

In Fig. 3, the grey points represent the luminosity dis-
tance uncertainty for the MBHBs simulated in the Q3d
model as a function of redshift. As expected, lensing
dominates the error budget at z > 2 for the majority
of sources while peculiar velocities are relevant only at
z < 0.6. However it is clear that there is a sub-population
of events for which the uncertainty on the luminosity
distance from LISA data analysis is larger than the lens-
ing or peculiar velocities errors. Therefore, we decided
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FIG. 4. Ratio of the luminosity distance error without the
sky position in the analysis over luminosity distance error
from the full analysis. Both errors are at 90% level. Colors
and line styles correspond to the three astrophysical models,
as reported in the legend.

to rerun the parameter estimation for the systems with
σ68,dL

> 0.5σdelens or 0.5σpv (the grey dotted-dashed
line), assuming that the detection of the EM counterpart
allow to localise precisely the galaxy hosting the merger.
In this way, we can remove the two parameters describ-
ing the binary sky position from the inference of the GW
signal and obtain better estimates on the luminosity dis-
tance (blue points).

In Fig. 4, we show the ratio of the luminosity distance
uncertainties with and without the sky position for the
subset of systems whose dL uncertainties was originally
above the grey dotted-dashed line in Fig. 3. Overall, we
find an improvement in the estimate of the luminosity
distance up to one order of magnitude for the two massive
models. However, in Pop3 the gain is slightly less, due
to the intrinsic low mass of these systems that make the
the parameter estimation more complicated. We have a
single MBHB merger in the Q3nd model for which the
ratio is larger than unity due to the stochastic behaviour
of the MCMC chains.

To take into account the aforementioned sources of er-
rors in luminosity distance for each MBHB event, we pro-
ceed in the following way:

1. We compute the 1σ dispersion of the luminosity
distance posterior, σ68,dL

, and shift all the dL sam-
ples by a random value extracted from N (0, σ68,dL

)
where N is a Gaussian distribution;

2. To take into account the lensing and peculiar ve-
locities errors, we scatter all the dL samples xi as

xi,new = xi + xN (0,σdelens) + xN (0,σpv) (20)

where xN (0,σdelens) and xN (0,σpv) are random num-
bers extracted from a Gaussian distribution with

zero mean and the corresponding standard devia-
tion;

3. Finally, we shift all the samples by a random value

extracted from N (0,
√
σ2
delens + σ2

pv).

Step (1) models the effect of LISA noise realisations while
steps (2) and (3) represent the fact that lensing and pe-
culiar velocities are expected to spread our luminosity
distance posteriors and to shift them with respect to the
true value. At the end of this procedure, for each event,
we have a new dL posterior distribution that is wider
than the original one and not centered on the dL value
from the assumed cosmology.

Moving to the redshift, it can be obtained by the EM
counterpart. We assume that such measurement provides
an estimate of the true source redshift ztrue and its un-
certainty σz. The value of σz depends on the technique
adopted to detect the EM emission and on the magni-
tude of the source. If the EM emission is detected with
LSST, we can measure the redshift of the source pho-
tometrically with an error σz = 0.031(1 + z) [104]. For
ELT, if the source is sufficiently bright, the redshift can
be spectroscopically estimated with ∆z = 10−3. Other-
wise, we can measure the redshift photometrically with
the Lyman-α (∆z = 0.2) or the Balmer break (∆z = 0.5)
as summarised in Tab. I of M22 (c.f. see also the discus-
sion at the end of Sec. IVD). We also stress that while
the spectroscopic error depends only on the spectral res-
olution of the instruments, the redshift uncertainties for
the photometric measurements are more uncertain and
it has to be considered as conservative. For ELT, these
errors correspond to the 90% confidence interval. There-
fore we can simply assume that, if the system is detected
with ELT, σz ≃ ∆z/2 where ∆z might be 10−3, 0.2, 0.5.

Similarly to dL, we also scatter our observations in
redshift: for each EMcp, we extract a new redshift to
perform the cosmological inference zem as

zem = ztrue + Ntrunc(0, σz) (21)

where Ntrunc is the truncated normal distribution, to
avoid the extraction of negative redshift values at small
redshift.

V. LIKELIHOOD CONSTRUCTION

In this section we describe the Bayesian formal-
ism adopted in this study. Suppose we observe
N gravitational events xgw = {xgw,1, . . . , xgw,N} to-
gether with their corresponding EM counterparts xem =
{xem,1, . . . , xem,N}. The posterior distribution on the
set of cosmological parameters θc based on some cos-
mological model H and on the total set of observations
{xgw, xem} can be expressed as [16, 105]

p(θc|xgwxemθmHI) =
p(xgwxem|θcθmHI)

p(xgwxem|θmHI)
π(θc|HI) ,

(22)
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where θm collect the parameters describing the as-
trophysical populations and I collects all the nec-
essary background information The quasi-likelihood
p(xgwxem|θcθmHI) can be rewritten as a function of the
GW signal and EM counterpart parameters. We define

θ̂bin as the set of GW signal parameters minus the lu-

minosity distance dL and θ̂env as the set of parameters
describing the surrounding environment where the EM
counterpart is produced minus the redshift z. In our case

θ̂bin corresponds to the two rest-frame BH masses, sky
position, inclination, polarization, final phase and time
to coalescence and the two spin magnitudes. The set of

parameters θ̂env corresponds to the parameters necessary
to produce the EM counterparts as described in M22.

The quasi-likelihood p(xgwxem|θcθmHI) can be ex-
panded as

p(xgwxem|θcθmHI) =
p′(xgwxem|θcθmHI)

α(θcθm)
(23)

p′(xgwxem|θcθmHI) =

∫
dθ̂bindθ̂envddLdz

× p(xgwxem|θ̂binθ̂envdLz θcθmHI)

× p(θ̂binθ̂envdLz|θcθmHI).

(24)

Let’s start working out the expression in the integral
in Eq. 24. The second term in Eq. (24) defines how the
parameters of the GW and EM events depend on the
astrophysical population for a given cosmology. It can
be split in the following way

p(θ̂binθ̂envdLz|θcθmHI) = (25)

p(θ̂binθ̂envz|θcθmHI)p(dL|zθcHI) (26)

where the first term determines how the parameters of
the events depend on the population, whereas the sec-
ond term p(dL|zθcHI) defines how luminosity distance
and redshift are related. In the analysis we assume that

p(θ̂binθ̂envz|θcθmHI) can be treated as a constant in our
inference. We do not fit the population parameters θm
and we expect that θ̂binθ̂env to be mostly affected by as-
trophysical processes, rather than θc or the cosmolog-
ical and background prior HI. Therefore, we assume
that the impact of changing cosmology does not affect
the distribution of events. Assessing this assumption
would require rerunning the SAM model multiple times
which is computationally prohibitive. For our purposes,
constant quantities can be discharged so only the term
p(dL|zθcHI) remains.

The first term in the integral of Eq. (24) defines how
the GW and EM data {xgw, xem} are related to the mod-
els that fit the data. It can be simplified assuming that
the GW and EM measurements are independent. We
also suppose that GW event depends only on the binary
parameters, leading to

p(xgwxem|θ̂binθ̂envdLz θcθmHI) = p(xgw|θ̂bindL θcHI)

× p(xem|θ̂envθczHI).

(27)

We assume that the EM observation depends only on
the redshift of the source, and we can write the EM coun-
terpart likelihood as:∫

dθ̂envp(xem|θ̂envθczHI) = p(zem|z). (28)

Moreover, the luminosity distance can be expressed as
a function of z and the cosmological parameters θc so we
can rewrite the integral in Eq. 24 as

p′(xgwxem|θcθmHI) =

∫
dθ̂binddLdz

× p(xgw|θ̂bindL θcHI) p(zem|z)

× δ(dL − dcL(z, θc))

(29)

where dcL(z, θc) is the luminosity distance according to
a specific cosmological model [106] as the ones specified
in Sec. III and the δ(. . . ) comes from the p(dL|zθcHI)

term. The quantity p(xgw|θ̂bindL θcHI) can be expressed
as the ratio between the posterior distribution of the bi-
nary parameters and the prior, i.e.

p(xgw|θ̂bindL θcHI) =
p(θ̂bindL|xgw)

p(θ̂bindL)
. (30)

Since we assumed uniform prior, Eq. 29 becomes

p′(xgwxem|θcθmHI) =

∫
ddLdz

× p(dL|xgw) p(zem|z) δ(dL − dcL(z, θc))

(31)

where we marginalized over θ̂bin to obtain p(dL|xgw).
The property of the delta function δ(f(z)) = δ(z −

z0)|∂zf(z0)|−1, where f(z0) = 0 allows to rewrite the
above equation as follows

p′(xgwxem|θcθmHI) =

∫
ddLdz p(dL|xgw) (32)

× p(zem|z)δ(z − zc(dL, θc))

∣∣∣∣ddL(z, θc)

dz

∣∣∣∣−1

,

(33)

where we denote zc(dL, θc) as the redshift for a given
luminosity distance and cosmological parameters, i.e. the
inverse of dcL(z, θc). We can now solve the integral in
redshift and obtain

p′(xgwxem|θcθmHI) =

∫
ddL p(dL|xgw) (34)

× p(zem|zc(dL, θc))
∣∣∣∣ddL(zc(dL, θc), θc)

dz

∣∣∣∣−1

.

(35)
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From the LISA parameter estimation we have the pos-
terior p(dL|xgw) and the associated samples diL. This
allows to evaluate the integral in a Monte Carlo way:

p′(xgwxem|θcθmHI) = (36)∑
di
L∈p(dL|xgw)

p(zem|zc(diL, θc))
∣∣∣∣ddL(zc(diL, θc), θc)

dz

∣∣∣∣−1

.

(37)

For the likelihood of the EM counterpart we adopted
a Gaussian form as

p(zem|z) =
1√

2πσ2
z

exp
[
− 1

2

(zem − z)2

σ2
z

]
. (38)

The quantity α(θcθm) in Eq. 23 is the selection func-
tion and it takes into account that not all the GW events
or all the EM counterparts are observed [107] The fact
that we observe only a sub-sample of the entire popula-
tion might lead to biased estimates if not properly ac-
counted for. On a practical level, selection effects can be
understood thinking that, for example, some combina-
tions of h and Ωm might move sources outside/inside the
GW (or EM) horizon changing the luminosity distance
of the source. The computation of the selection function
requires the integration of the integral in Eq. 24 over all
the possible combinations of {xgw, xem} above the respec-
tive detection thresholds. Before delving into the calcu-
lation of this quantity, we checked how the number of
EM counterparts changes for different values of (h,Ωm).
We picked the median realisation for the Q3d model and
the pair of samples (h,Ωm) that give the smallest and
largest luminosity distance. For these two values of dL we
recomputed the EM counterpart for each MBHB in our
catalogs and we rescaled the sky localization as in [108] in
order to quantify the number of EMcps that could enter
or exit the analysis, varying the cosmological parameters.
For Q3d we find a difference of ∼ 0.35 EMcps in 4 yr of
observation. Since the variation is negligible, we simply
assume that α(θcθm) ∼ const., and neglect its contribu-
tion in the analysis. This assumption is also motivated
by the actual results of cosmological inference because
we do not observe any strong bias coming from selection
effects.

VI. INFERENCE ANALYSIS

Following the procedure described in Sec. IV, we gen-
erate 100 realisations of 4 and 10 yr of LISA observations
for the three astrophysical models. We run the MCMC
for 2500 iterations with n × 16 walkers where n corre-
sponds to the number of parameters in the model.

In Tab. II we report the prior range for the parame-
ters over which we performed the inference in the ‘Local
Universe’ models. In the first two cases we assume uni-
form priors while for the (h,Ωm, ω0,Ξ0) model, we fol-
low the same approach of [57]: since the proposed mod-

TABLE II. Inferred parameters and the corresponding priors
for the ‘Local Universe’ models. In agreement with [57], in
the last model, we adopt normal priors as N [µ, σ] (for ω0, Ξ0

we consider truncated normal distributions). In the last case,
the prior on h and Ωm are based on CMB+BAO+SNe data.

Model Parameter Prior

(h,Ωm)
h U [0.2, 1]
Ωm U [0, 1]

(h,Ωm, ω0, ωa)

h U [0.2, 1]
Ωm U [0, 1]
ω0 U [−3,−0.3]
ωa U [−2, 2]

(h,Ωm, ω0,Ξ0)

h N [0.6774, 0.012]
Ωm N [0.3075, 0.0124]
ω0 truncated N [−1, 1] in [−3,−0.3]
Ξ0 truncated N [1, 0.5] in [0,+∞]

ification can be measured only with GWs, we assume
CMB+BAO+SNe priors for h and Ωm.

Moving to the ‘High-redshift Universe’ scenarios, we
assume uniform priors for the (h,Ωm, β) model. How-
ever additional considerations are necessary for the other
approaches.

A. Matter-only approximation

Since in the matter-only model we assume that the
Universe is matter-dominated, we have to choose values
of zp sufficiently large. In our case we consider two values:
zp = 2 and zp = 3. In the former case, the matter-only
approximation is accurate [109] at ∼ 2 − 1% in the red-
shift range 1 < z < 7, while in the latter we have an
accuracy of ∼ 4% already at z = 1. As a consequence,
in order to avoid significant biases in the reconstructed
parameters, we chose to remove the EMcps at low red-
shift. In particular, in the case zp = 2, we remove all the
EMcps at z < 1 while for zp = 3 we remove all systems
at z < 1.5. We do not apply any cut at high redshift
where deviations are below ∼ 1% at z = 10.

B. Redshift bins approach

In the redshift bins approach we approximate the co-
moving distance as Eq. 14 in a redshift interval. There-
fore we consider only the EMcps that fall in that par-
ticular bin and discharge all the others [110]. One can
easily see that there are two competing effects: on one
hand, one would like to increase the size of the redshift
bin as much as possible in order to include more EMcps;
on the other hand, extending the redshift range leads to
an inaccurate representation of the dC − z relation (the
relation is not anymore a straight line) which introduce
significant biases in the recovered (h(zp), dC(zp)). The
redshift bins approach might also leads to biased results
for the comoving distance by construction: if we have
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FIG. 5. Example of JS divergence computed between the
posterior distribution of h(zp = 3) and an uniform prior be-
tween [0.1, 50] versus the inferred median value of h(zp = 3).
Each point corresponds to a single realisation for each as-
trophysical model, according to legend. The horizontal grey
dotted-dashed line corresponds to the arbitrary cut-off of
0.5 on the value of the JS divergence (more details in the
text). The blacked dashed line represents the true value of
h(zp = 3) ∼ 3.06, according to ΛCDM. Uninformative real-
isations show inferred median values at ∼ 25, corresponding
to the midpoint of the prior range, and JS divergence closer
to 0, i.e. the posterior is similar to the prior.
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FIG. 6. Cumulative distribution of events with p-value
smaller or equal to the abscissa. Colors and line styles accord-
ing to legend. The dotted lines represent the 90% uncertainty
region expected from the finite number of realisations. The
dashed black line represents the expected value. Grey dashed
line: same as the orange one for Pop3 but including all the
realisations. It is clear that selecting only the informative re-
alisations provide results consistent with the expected values.

TABLE III. Inferred parameters and the corresponding priors
for the ‘High-redshift Universe’ models. First three columns
as in Tab. II. Fourth and fifth columns represent the pivot
redshift (if applicable) and the corresponding redshift range.
In the last column we report the number of EMcps in 10 yr
in the redshift range. For most of the parameters we choose
uniform priors but see Sec. VI for more details. For the priors
on the splines check specifically Sec. VIC.

Model Parameter Prior zp [zmin, zmax]
EMcps
in 10 yr

(h,Ωm, β)
h U [0.2, 1]

- [0,+∞]
16.0

Ωm U [0, 1] 37.0
β U [−3, 3] 51.7

Matter-only
approx.

dC(zp)/Gpc
h(zp)

U [1, 9]
U [0.2, 5]

2 [1,+∞]
13.2
31.2
43.2

3 [1.5,+∞]
11.0
27.2
36.2

Redshift
bins

dC(zp)/Gpc
h(zp)

U [0.1, 50]
U [0.1, 50]

1 [0.8, 1.3]
1.9
2.8
5.1

1.5 [1.2, 2.0]
3.2
6.0
9.1

2 [1.7, 2.8]
3.9
8.9
11.2

2.5 [2.0, 3.5]
4.9
11.3
15.3

3 [2.0, 4.0]
6.1
14.7
20.7

3.5 [2.6, 5.0]
5.7
15.2
20.3

4 [3.0, 5.0]
4.1
13.1
17.0

5 [3.5, 6.0]
3.9
12.5
16.1

Splines
interp.

dL(z = 0.2)

dΛCDM
L - [0, 7]

16.0
35.8
51.5

dL(z = 0.7)
dL(z = 2)
dL(z = 4)
dL(z = 6)

EMcps only close to the bin edges, the inference recovers
a comoving distance that it slightly smaller than the ex-
pected value at the pivot redshift, while the slope is still
the same. Therefore the lower and upper limit of the
redshift bin play an important role in the inference and
we choose them in order to have the maximum number
of EMcps in a redshift bin without compromising the re-
covered parameters or the accuracy (≲ 3% in most cases)
between the linear approximation and ΛCDM.

Depending on the astrophysical models and on the red-
shift bin we might not have many EMcps ( at low or high
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redshift) or the EMcps in the bins might have large dL
and z uncertainties (at high redshift). In these cases,
we have to be extra cautious because if the data are not
sufficiently informative, the priors play a pivotal role.

For both h(zp) and dC(zp) we impose an uniform prior
between [0.1, 50] (in the corresponding units). However,
in standard ΛCDM, we expect that h(z = 0) = 0.6774
and h(z = 7) ∼ 8.5. Considering these values, a prior
extending up to 50 might seem too broad and not realistic
of our current and future ‘degree of belief’ on h(z). Here
we justify our choice.

Originally we had chosen smaller priors for h(zp) and
dC(zp), symmetric and centered on the true values as-
suming ΛCDM. However, after a deeper inspection of
the results, we noticed that some realisations were not
informative, i.e. the posteriors on h(zp) and dC(zp) were
identical to the priors. As expected, this happened if the
data were not sufficiently informative, i.e. small number
of EMcps in a given bin or dL and z uncertainties too
large. Without accounting for these uninformative reali-
sations, our forecasts would have been prior dominated.

To distinguish between informative and uninformative
realisations, we apply the Jensen-Shannon (JS) diver-
gence [111] between the posterior and the prior distri-
butions for h(zp) and dC(zp). Our argument is that, if
the realisation is informative, the posterior distribution
will be significantly different from the prior and the JS
divergence will be close to 1. If the realisation is uninfor-
mative the posterior will be instead similar to the prior
and the JS will be closer to 0.

In Fig. 5 we show an example of the JS divergence com-
puted between the posterior in h(zp) and a flat uniform
prior in [0.1, 50]. On the x-axis we report the inferred
median value of h(zp = 3). Especially for Pop3, it is
clear that there is a sub-population of realisations with
median value h(zp = 3) ∼ 25 (the midpoint of the bin)
and low JS divergence, indicating that those realisations
would not provide any constraint on h(zp = 3). As ex-
pected Pop3 show the largest number of uninformative
realisations due to the smaller average number of EMcps
and larger errors on luminosity distance and redshift.

In order to get rid of the uninformative cases, we select
as informative realisations only the ones with JS diver-
gence > 0.5 . This value is somewhat arbitrary but we
provide more details on this choice in Appendix C. We
decide to apply this criteria only on the posterior distri-
bution for h(zp) because it’s the parameter we are mostly
interested in in this approach.

Moreover, in order to further support the choice of this
value, we present a probability-probability (PP) plot of
the p-value following the approach in [112] and consid-
ering only the informative realisations. For each infor-
mative realisation, we compute the quantile in which is
contained the true value and we assume n =p-value×N
and N = Ninfo−real where Ninfo−real corresponds to the
number of informative realisations. We show an example
of the PP plot for zp = 3 in Fig. VI B. For h(zp), the
pp-plots follow the diagonal line and they are compati-

ble with the corresponding errors. The results for dC(zp)
are a bit worse but still compatible with the overall er-
rors. This is due to the nature of the bin approach which
tends to produce slightly biased results for the comoving
distance. It’s also clear that, if we include all the reali-
sations (N = 100), there is a significant deviation in the
cumulative distribution of the p-value from the expected
one, as showed by the grey line.

We note that the JS divergence and the PP plot tell
us two different information: the former quantify the dif-
ference between the posterior and the prior distribution
without telling us where the posterior peaks; the latter
tell us the fraction of realisations that contain the true
value in a given percentile interval.

In all the results for the redshift bins approach, we
applied the JS divergence and the PP-plot to assess the
number of informative realisations. We extended this
analysis also for the other cosmological models but we
found no particular issues with them. We note indeed
that these tests were necessary for the particular nature
of the redshift bins approach: most of the other models
adopt a functional form for the dL − z relation that is
more complicated than a simple straight line and cover a
wider range of redshifts. Therefore, even with a smaller
number of EMcps, these models can provide reasonable
constraints because we are adding an ‘a priori’ additional
information on our Universe model. The only exception
is represented by the splines interpolation model. How-
ever, in this case, we have typically more EMcps than in
the redshift bins case.

Finally, since the bin approach is the most sensitive to
the number of EMcps, we perform this analysis assuming
only the scenario of 10 years of time mission. If LISA
will provide data for only 4 yr, this analysis could not be
performed.

C. Splines interpolation

For the splines interpolation model, we approximate
the luminosity distance with cubic polynomials. We fix
the knots at z = [0.2, 0.7, 2, 4, 6] with the additional in-
formation that the luminosity distance dL(z = 0) = 0.
In order to avoid issues at high redshift, we remove all
the systems at z > 7. The result of the inference is a
5-dimensional posterior distribution of the dL values at
the aforementioned knots. The dL posteriors can then
be easily converted into dC posteriors at the knot red-
shifts and we can evaluate the slope of the splines to
obtain information on H(z) at any redshift. Contrary
to the redshift bins model, splines allow us to use the
entire population of EMcps. To construct the prior on
the luminosity distance at a given knot, we take samples
from the uniform priors in (h,Ωm) and convert them in
dL assuming ΛCDM, i.e. according to Eq. 5. The re-
sulting dL distribution is assumed as the prior and we
repeat this process at each of the knots. We note that
we use ΛCDM only to fix the priors for the luminosity
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distance: the splines approach is model-independent, and
we have tested that the choice of priors does not impact
our results.

VII. RESULTS

In this section we present the results of our inference
analyses applied to the cosmological models mentioned
in Sec. III. In what follows relative uncertainties on the
inferred parameters are reported for the Q3d (Pop3)
{Q3nd} model following this bracket convention.

A. Local Universe results

In Fig. 7 we report the relative errors at 90% confi-
dence level for h and Ωm as in the (h,Ωm) model (aka
ΛCDM,) for 4 yr and 10 yr of LISA mission. For the rel-
ative uncertainty on h, we predict a median uncertainty
of 5.1% (6.3%) {2.3%} in 4 years. These figures improve
to 2.0% (2.2%) {1.5%} in 10 years.

Overall Q3nd provides the best estimates because it
has on average ∼ 3 times more EMcps than Pop3. How-
ever moving from 4yr to 10yr of observations, the uncer-
tainties for the Pop3 model reduce by a factor ∼ 3 while
in Q3nd the reduction is only ∼ 1.5. This is due to the
fact that the estimates on the cosmological parameters

improves as ∼ N
−1/2
EMcps so we have larger improvements

when the number of events is small. Our estimates are
affected by large uncertainties: for the Q3d model and
in 4 yr, for example, the relative uncertainty vary from
few percent up to ∼ 20%. As we move to 10 yr, the
uncertainties variability decreases because we have more
EMcps and we are less sensitive to single events in each
realisation.

For Ωm, we expect relative uncertainties of 23% (32%)
{13%}, in 4 yr and of 10% (12%) {8%} in 10 yr. We note
that h is typically determined better than Ωm. Indeed
the former corresponds to the first derivative of dL(z) at
z = 0 and dL(z = 0) = 0 is fixed. This means that a
single precise measurement at high z can constrain h to
a tight value (similarly to the CMB). To constrain Ωm

we need to probe the curvature (e.g. second derivatives)
of dL(z) meaning that we need multiple precise measure-
ments at high-redshift, i.e. where the curvature of dL(z)
is more pronounced, to get a good precision on Ωm.

In Fig. 8 we show the correlation between (h,Ωm) for
three representative realisations of Q3d for the case of
4 yr. We ranked all the realisations according to the
area covered by the samples. This quantity keeps track
of the correlation between the two parameters and it is
more representative than the separate error in each of
them. Following this procedure, we obtain the areas for
all the 100 realisations in Q3d. Here we plot the reali-
sations with the area closest to the median, the 5th and
the 95th percentiles. The parameters (h,Ωm) are nega-
tively correlated because small values of h require large

value for Ωm to compensate in the dL − z relation. We
highlight this feature as other cosmological probes have
different orientations for the correlation. For example,
EMRIs are expected to have more positive correlation
between h and Ωm [16] and combining different types of
sources we would be able to further break degeneracies
between cosmological parameters [114–116].

We also use the samples on (h,Ωm) to get the errors
on h(z) or dL(z) at higher redshifts. Following Eq. 5 and
Eq. 6, we can convert each pair of (h,Ωm) samples in
a sample for h(z) or for the luminosity distance at any
redshift. We note that the forecasts obtained in this case
are based on the assumption of ΛCDM. In Fig. 9 we re-
port the relative errors on h(z) and dL(z) as a function
of redshift. The best constraints on h(z) are achieved
at z ∼ 0.5, because at low redshift we expect better con-
straints on h0 than on Ωm and vice-versa at high redshift.
Moreover, we also find that z ∼ 0.5 is where the corre-
lation between h(z) and Ωm is zero (more details in Ap-
pendix D). Starting from 4 yr of time mission, at z ∼ 0.5
we expect a relative uncertainty on h(z) of 1.2% (1.7%)
{1.0%}. Above z ≳ 2, the relative errors flatten around
7% (9%) {4%} while at z = 0 we recover the previous re-
sults. If we will have 10 years of data, the uncertainties
at z ∼ 0.5 will improve to 0.7% (0.9%) {0.6%} while at
z ≳ 2 the relative uncertainties will be between 2% and
5% , depending on the MBHB population model.

For dL(z), we find the same trends of h(z) but the
best constraints are obtained at z ∼ 1. In particular, in
4 yr at z ∼ 1 we predict dL(z) relative errors of 1.4%
(1.6%) {0.9%}. While in 10 yr, we expect the errors to
be between 0.5% and 0.8% at z ∼ 1 and at ∼ 1 − 2% for
z ≳ 4.

The results from MBHBs can be compared to other
cosmological probes. In particular, we can compare Fig. 9
with Fig. 2 of [113]: note that we are plotting the 90%
error while they are reporting the 1σ uncertainty so the
values from Fig. 9 should be divided by a factor ∼ 1.6
for a proper comparison. At low redshift, the results for
h(z) with MBHBs are slightly worse than what we might
be able to do with other cosmological probes: in 4yr, at
z ∼ 1 the median relative error for Q3d is ∼ 4 times larger
than the forecasts for HIRAX and one order of magni-
tude larger than the ones expected from DESI. However
MBHBs provide comparable results with an high-redshift
version of HIRAX at z > 5. Concerning the luminosity
distance, at z ∼ 1, the relative error from Q3d model
is < 2 larger than the forecasts from DESI but at the
same level of HIRAX. As we move to higher redshifts
our forecasts tend to flatten thanks to the high-redshift
sources while the predictions from EM probes degrade
quickly: for example MBHBs predict better constraints
than a high-redshift version of HIRAX at z ∼ 4 and than
a stage 2 intensity mapping experiment at z ∼ 6 .

For the (h,Ωm, ω0, ωa) model, we report the uncer-
tainties on h, Ωm and ω0 in Fig. 10. As expected, the
presence of two additional parameters worsen the esti-
mates on h and Ωm. In 10 yr, h is constrained to ∼ 10%
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FIG. 7. Cumulative distributions of the relative uncertainties for h (left panel) and Ωm (right panel) in the (h,Ωm) model,
namely ΛCDM. Solid (dashed) lines correspond to 10 (4) yr of observations. Colors represent different astrophysical models as
described in the legend and the grey area represents uncertainties larger than 100%. We expect relative errors of ≲ 5% for h
in 4 yr and ≲ 2% in 10 yr. For Ωm, we forecast relative errors ≲ 10% only in 10 yr.
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FIG. 8. Corner plot for (h,Ωm) for the median, the 5th and
95th percentile realisations of Q3d (more details in the text)
for the (h,Ωm) model in 4 yr. Colors according to legend.

accuracy and Ωm at ∼ 20− 30%. We also find that ω0 is
poorly constrained with uncertainties > 30% in all cases
while ωa is unconstrained. As showed by previous work
[4, 57], we conclude saying that in this scenario LISA
could hardly provide information.

In Fig. 11 we report the uncertainties on Ξ0 and ω0 for
the (h,Ωm, ω0,Ξ0) model. For this scenario we adopt the
same CMB priors of [57] in order to assess LISA ability
to constrain Ξ0 only with standard sirens and we report
the 1σ uncertainty. In comparison to [57], we obtain un-
certainties on Ξ0 approximately 2-3 times larger. This
is due to the fact that, in [57], the authors also included
information from CMB, BAO, and SNe, leading to a bet-
ter estimate of ω0 and, consequently, of Ξ0 (this can be
appreciated from their Fig. 17 and Fig. 18). In 4 yr, the

median relative errors on Ξ0 are 7.6% (8.9%) {7.0%}.
Assuming 10 years of observation, the estimates improve
to 4.9% (7.1%) {4.1%}, respectively. Due to the choice of
priors on h and Ωm, the uncertainties on these parame-
ters are comparable with the prior, i.e. the priors are too
strong respect to the data, so we choose not to report
them.

We can also compare our results with the forecasts
for EMRIs [46], although, in this case, the comparison
is not straightforward due to the different analysis se-
tups. In their fiducial model and assuming only Ξ0 as
free parameter, the authors report an error of 8.5% at
90% C.I. This value is slightly better than our results in
4 yr. However, when more parameters are left free to
vary, the reported errors on Ξ0 in [46] are larger than
ours. Taking into account the uncertainties from the dif-
ferent priors adopted, we expect MBHBs and EMRIs to
provide similar constraints on Ξ0.

B. High-redshift Universe results

In Fig. 12 we report the results of the analysis for the
(h,Ωm, β) model, i.e. assuming ωm = β as the matter
equation of state. As expected, the addition of β worsen
the constraining power on h. In 4 yr, h is constrained at
11% (10%) {4.9%}, while in 10 yr the estimates improve
to 3.8% (3.4%) {2.5%}.

Concerning the matter part, Ωm and β are degenerate:
if β decreases, Ωm increases to compensate. We find
that in 4 yr Ωm is unconstrained and, for this reason, we
decided to not plot it. In 10 yr, Ωm can be constrained
with large uncertainties of ∼ 30− 40%. For β, we expect
constraints of 18% (23%) {14%} and 10% (14%) {8.0%}
in 4 yr and 10 yr, respectively.

The fact that β is constrained while Ωm is not can
be understood looking at how they appear in Eq. 12.
While Ωm acts a multiplicative factor, β is an exponen-
tial. Therefore a small variation in β can lead to a large



15

10−2

10−1

σ 9
0/

h(
z)

Mission time: 4 yr

10−2

10−1

Mission time: 10 yr

0 1 2 3 4 5 6 7 8
z

10−2

10−1

σ 9
0/

d L

0 1 2 3 4 5 6 7 8
z

10−2

10−1

Pop3
Q3d
Q3nd

FIG. 9. Relative errors at 90% for h(z) (upper panels) and dL(z) (lower panels) as a function of redshift from the (h,Ωm)
model, i.e. assuming ΛCDM. Error bars also correspond to 90%. Colors correspond to different astrophysical models, according
to the legend. Uncertainties are obtained from the (h,Ωm) samples, assuming Eq. 5 . To be compared with Fig. 2 of [113] but
note that they report the uncertainties at 1σ so our values must be divided by a factor ∼ 1.6 for proper comparison. To avoid
null values in the lower panels, the first point for dL is at z = 0.1.

10−1

σ90/h

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
re

al
is

at
io

ns

Pop3
Q3d
Q3nd

10−1 100

σ90/Ωm

0.00

0.25

0.50

0.75

1.00

10yr 4yr

10−1 100

σ90/ω0

0.00

0.25

0.50

0.75

1.00

Model: (h,Ωm,ω0,ωa)

FIG. 10. Same as Fig. 7 but with h,Ωm and ω0 from the (h,Ωm, ω0, ωa) model. ωa is unconstrained and not reported. The
addition of two parameters worsen the estimates on (h,Ωm).

difference in the expected luminosity distance. Or, in
other words, if β varies, Ωm has to vary even more in
order to compensate and reproduce the expected dL − z
relation.

Moving to the matter-only approximation, in Fig. 13
we report the relative uncertainties at 90% on h(zp) and
dC(zp) for zp = 2 and zp = 3. Starting from h(zp),
we find overall better results at zp = 2 than zp = 3. For
example, in 10 yr we predict median errors of 3.8% (6.0%)
{3.6%} at zp = 2 and 6.8% (11%) {6.8%} at zp = 3. We
recall that for the case at zp = 2 (zp = 3), we removed
all the systems at z < 1 (z < 1.5). As a consequence, the
case zp = 2 contains overall more standard sirens than
the one at zp = 3, leading to better estimates.

Moving to the comoving distance dC(zp) and still in
10 yr, we expect relative uncertainties at 0.9% (1.5%)
{0.9%} at zp = 2 and 1.3% (2.3%) {1.3%} at zp = 3.
Similarly to the case for h(zp), we obtain better estimates
at zp = 2 than at zp = 3.

It is interesting to compare these results with the un-
certainties reported in Fig. 9. The estimates on h(zp = 2)
in the matter-only approximation are marginally worse
while at z = 3 the difference increases to a factor of
∼ 2 − 3. This is expected because in the matter-only
approximation we removed the low-redshift sources so
there are effectively less EMcps. The results for the dis-
tance uncertainties are more similar between the two ap-
proaches: we think that the explanation resides in the
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FIG. 11. Absolute uncertainties at 1σ for ω0 and Ξ0 for the (h,Ωm, ω0,Ξ0) model. Note that we report the absolute 1σ
uncertainties for comparison with Tab.2 in [57]. The uncertainties on h and Ωm are not reported because they coincide with
the CMB priors. We can constrain Ξ0 to < 10% using only standard sirens.

10−2 10−1

σ90/h

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
re

al
is

at
io

ns

10yr 4yr

10−1

σ90,β

0.00

0.25

0.50

0.75

1.00

Pop3
Q3d
Q3nd

Model: (h,Ωm,β )

FIG. 12. Same as Fig. 7 but for h and β for the (h,Ωm, β) model. The parameter β models possible deviation for the matter
equation of state, i.e. ωm = β and it should be constrained with a relative accuracy of < 20% with 4 yr of observations and
≲ 10% in 10 yr.

fact that the comoving distance appears in Eq. 13 as a
simple normalizing factor for the whole expression, lead-
ing to better estimates even with less EMcps.

In Fig. 14 we report the uncertainties on h(zp) and
d(zp) from the redshift bins approach, assuming 10 yr
of observation. Following the discussion in Sec. VI B,
the cumulative distributions do not reach the value of 1
but the fraction of informative realisation in that partic-
ular redshift bin. For example at zp = 1, we have 49
(43) {77} informative realisations out of 100 in total. It
can be appreciated that the number of informative re-
alisation is small at low redshift (zp = 1), then it start
increasing, reaching the maximum at zp = 3 and then
it decreases again at higher redshifts. The largest frac-
tion of informative realisations at zp = 2.5 − 3 reflects
the redshift distribution of merging MBHBs (c.f. solid
green line in Fig.1 of M22). At z < 1.5 we do not expect
many events so the number of uninformative realisations
increases. The same argument can be applied at high
redshift z > 3.5, where we also expect larger errors on
the luminosity distance and redshift of the source.

A part from zp = 1 where the number of informative
realisation is below 50% even for Q3d, we have the best

constraints on h(zp) at zp = 3 with 75% of the realisation
predicting a relative error on h(zp) smaller than 30% for
the massive models, while this fraction decreases to only
25% for Pop3. Comparing these results with the uncer-
tainties reported in Fig. 9, it is clear that the redshift
bins approach is less performing. Even if the prospect
of a model-independent test is appealing, the small num-
ber of EMcp in each bin makes it feasible only between
1.5 < z < 3.5 if the Q3 models are the correct ones.

Motivated by the model-independent technique
adopted with the redshift bins, we searched for another
model-independent method that could allow us to use
the entire set of EMcps. The results of this search is the
splines interpolation model, whose results are reported
in Fig. 15. Starting from dL, we predict errors < 10%
between 0.7 < z < 4 in 4 yr of observations. In the
case of 10 yr of observation, we reach 1 − 2% precision
in between 0.7 < z < 3 while at z > 4 we have few
percents precision uncertainties with wider error bars.
If we compare our results with Fig.2 of [113], we see
that splines provide estimates that are competitive with
future EM observations. The fact that we obtain better
estimate at z ∼ 6 than at z ∼ 4 is due to the nature
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FIG. 13. Same as Fig. 7 but for h(zp) and dC(zp) from the matter-only approximation. Left panels: zp = 2. Right panels:
zp = 3. In 10yr of observation, we expect constraints on h(zp = 2) at 3− 5% and on h(zp = 3) at ≲ 10%.

of the splines that do not possess a rigid model by
construction.

Moving to h(z), splines can provide constraints < 10%
up to z ≲ 3 in 10 yr of observations. With the splines
we break the correlation between h and Ωm because the
cosmological model is not anymore fixed and, as a con-
sequence, the best estimates are not anymore at z ∼ 0.5
as in Fig. 9.

VIII. DISCUSSIONS AND CONCLUSIONS

In this paper we provide forecasts on LISA ability to
constrain the expansion of the Universe, combining the
luminosity distance information from the GW signal of
MBHBs with the redshift, obtained from the identifica-
tion of the host galaxy. We built this paper following
the results of M22 [10] where we estimated the number
of EMcps, i.e. systems for which we have a detectable
EM counterpart and a sufficiently good sky localization.
Since these sources provide independent estimates on dL
and z, they can be considered as standard sirens, perfect
tools for cosmological tests. The additional advantage of
MBHBs is that we expect to detect their EM counterpart
up z ∼ 7−8, which means that we can use these systems
to test the expansion of the Universe at intermediate red-
shifts 2 ≲ z ≲ 8.

Starting with 90 years of simulated data, we generated
100 realisations of our Universe for three astrophysical
models, assuming 4-year and 10-year mission durations.
For each event, we convolved the dL posterior distribu-
tions from the LISA data analysis process with the ex-
pected errors from lensing and peculiar velocities. Re-
garding the redshift error, we assumed a Gaussian distri-
bution. We split the analysis in ‘Local Universe’ models
where we focused on local measurements, as the Hubble
constant at z = 0, and in ‘High-redshift Universe’ mod-
els where we explored LISA abilities to put constraints
on h(z) with z ≳ 2. For each model, we performed the
Bayesian inference of the corresponding cosmological pa-
rameters and we combined the 100 realisations to provide
realistic forecasts of LISA capabilities.

As a general trend, we find that LISA will likely not

provide estimates on h and Ωm competitive with future
EM measurements due to the limited number of expected
EMcps. For instance, assuming ΛCDM, LISA will con-
strain h with a relative error of less than 5% in 4 years
and less than 2% in 10 years, while Ωm is constrained
with an accuracy of only 10% in 10 years. If the Hubble
tension remains unresolved by around 2040, LISA obser-
vations of MBHBs can potentially shed light on the true
value of h, addressing one of cosmology’s long-standing
challenges. LISA will also not be particularly sensitive to
deviations in the dark energy equation of state: assuming
the standard CPL formalism to describe dark energy, we
found constraints on ω0 greater than 30− 40% in almost
all cases and no constraining power on ωa. However,
LISA can test alternative gravity theories where GWs
do not propagate as photons even if they have the same
speed [57]: we found that MBHBs-only observations can
constrain Ξ0 to < 10% in just 4 yr.

The detection of the EM counterparts from MBHBs
up to z ≲ 8 gives us the possibility to test the expansion
of the Universe in a still unmapped range. As MBHBs
can only be observed with LISA, this represents a unique
science case for the mission. To fully assess LISA ca-
pabilities, we investigated four ‘High-redshift Universe’
models to constrain the matter equation of state or the
value of the Hubble parameter at certain pivot redshifts.

In the (h,Ωm, β) model we tested LISA ability to de-
termine the matter equation of state, assuming ωm = β.
LISA constrains β within 10% (20%) in 10 yr (4 yr) of
observations. However, in this analysis, we also discov-
ered that LISA has no constraining power on Ωm due to
its degeneracy with β.

In the matter-only approximation we assumed that the
Universe is matter-dominated and we defined a dL − z
relation with h(zp) and dC(zp) as unknown parameters.
We found that h(zp = 2) can be constrained at 3−5% in
10 yr while h(zp = 3) is constrained with an accuracy <
10% in the same time interval. For the comoving distance
we expect few percent precision in almost all cases.

In the redshift bins model we interpolated dL(z) as a
straight line around a pivot redshift zp. The advantage of
this approach is that we do not assume a functional form
for h(z) (the only assumption at the level of the lumi-
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FIG. 14. Same as Fig. 7 but for h(zp) and dC(zp) from the redshift bins approach at different pivot redshifts, according to
the x-axis labels. Colors represent different astrophysical models as reported in the legend. The cumulative distributions reach
the fraction of informative realisations (see Sec. VIB): for example at zp = 3.5, only ∼ 75% of the Q3d and Q3nd realisations
provide useful constraints.

nosity distance is that the Universe is flat) but only the
EMcps falling in a given redshift bin can be considered
in the analysis. The simple nature of the cosmological
model (c.f. for example with the ΛCDM where h(z) is
expressed as in Eq. 8) and the smaller fraction of EMcps
available for the analysis required a more thoughtful ap-
proach to avoid results that would have been dominated
by priors. In order to identify the informative realisa-
tions, we computed the JS divergence between the pos-

terior and the prior distributions of h(zp) and we retained
only the realisations with JS > 0.5 . Following this pro-
cedure, the largest number of informative realisations is
achieved at zp = 3 because it is where the distribution of
the EMcps peaks in redshift. However, the constraints
on h(zp = 3) are only at ∼ 20%. At lower redshift we
still have a similar precision in the recovered values of
h(zp) because dL and z errors are smaller but the num-
ber of informative realisations decrease due to the lack of
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FIG. 15. Relative errors at 90% for dL(z) (upper panels) and h(z) (lower panels) as a function of redshift from the splines
interpolation model. Error bars also correspond to 90%. Light blue boxes highlight the uncertainties at the knot redshifts. To
be compared with Fig. 9 but we switched the order of dL(z) and h(z) because the outcomes of the splines are the dL posterior
distributions at the knots. To be compared also with Fig. 2 of [113] but note that they report the uncertainties at 1σ so our
values must be divided by a factor ∼ 1.6 for proper comparison. Splines can constrain the luminosity distance to < 10% in 4
yr at 1 < z < 4 and up to z ∼ 6 in 10 yr of observations.

sources. At higher redshifts (zp > 3.5) the lack of EM-
cps and the larger errors lead naturally to a decrease of
the informative realisations and to worse constraints on
h(zp).

The key results of this work are presented in the splines
interpolation model where we fit the dL− z relation with
cubic splines polynomials from z = 0 up to z = 7. The
outcomes of the analysis are the dL posterior distribu-
tions at 5 knots redshifts that can be used directly to
determine the luminosity distance or, if the derivative is
computed, the Hubble parameter at any redshift. In this
model, we recover the luminosity distance with an error
of < 10% up to z ∼ 6 with 10 yr of data, a forecast
competitive with future EM-only observations.

During the realisation of this manuscript, we also
tested additional models. Most of them predict a dL − z
relation different from ΛCDM. Since our data are con-
structed according to the ΛCDM model, we can make
predictions only assuming this cosmology or any exten-
sion of it; any alternative cosmology leads to systematic
biases in the recovered parameters. In particular, we
tested:

1. A phenomenological expression where the luminos-
ity distance is approximated by a third-order poly-
nomial expansion [59]. The expected dL − z rela-
tion is close to ΛCDM at small redshift but but
deviates at z > 2, resulting in systematic biases in
the recovered h. For this case, we also attempted
to expand the luminosity distance in redshift (scale

factor) around a general pivot redshift (scale fac-
tor) but with no success.

2. A phenomenological tracker model [113] where the
dark energy equation of state undergoes a smooth
transition, parameterised by four additional param-
eters. This model aroused our interest because the
transition might happen in the matter-dominated
era, at 1 < z < 7. However the large number of pa-
rameters (6 = 4 + h + Ωm) and the limited number
of EMcps make the model challenging to test with
MBHBs.

3. A dark energy model, in which the cosmological
constant switches sign at a certain z† due to a tran-
sition from an anti-de Sitter to a de Sitter Universe
[117]. Assuming ΛCDM, z† → +∞, so we were
only able to establish lower limits on this parame-
ter. Since it was not particularly informative, we
decided to remove it.

4. A vacuum metamorphosis model [118, 119] where
the Ricci scalar R evolves during cosmic history un-
til a certain z⋆ where it freezes to R = m2, being
m the mass of the scalar field. The interest in this
model lies in the fact that it is not a phenomeno-
logical description but rather a consequence of first
principles theory. However, the predicted dL − z
relation by this model differs from the ΛCDM one,
leading to strong biases in our estimates.
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In this work, we restrict our analyses to MBHBs.
However LISA will also observe EMRIs and, at higher
frequencies, the early inspiral stellar-mass binary black
holes. Both of these populations can in principle be used
as dark (or spectral) sirens [13, 15, 16, 44–46]. We expect
LISA constraints to significantly improve when EMRIs
and MBHBs are analyzed together [114, 115]. The for-
mer will probe the low-redshift portion of the Universe,
while the latter will test the intermediate redshift range.
This interplay between the redshift range probed by dif-
ferent LISA source populations will help breaking degen-
eracies in the dL(z) relation, substantially improving the
constraints we found in the present study.
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Appendix A: Convergence of the realisations

Since we adopted mock catalogues of MBHB merg-
ers, one important question is how many realisations are
necessary in order to provide reliable estimates on the
cosmological parameters. If the number of realisations is
too small, the results are strongly affected by the Pois-
son noise, i.e. we might have better or worse estimates
respect to the median value, depending on the MBHBs
we randomly select. However, we expect that after a suf-
ficiently large number of realisations the average results
will not be anymore sensitive to the particular realisa-
tions. To answer this question, we generate 900 addi-
tional realisations respect to the 100 that were used for
the results in the main text, for a total of 1000 real-
isations. For each of these additional realisations, we
performed the inference only in the (h,Ωm) model. In
Fig. 16 we show the median relative uncertainty in h and
the range of the 90 percentile for the three astrophysical
models as a function of the number of realisations. As ex-
pected, if we consider < 10 realisations, the median and
90 percentile values fluctuate by a factor of ∼ 2. After
100 realisations, the average results stabilise, justifying
the choice of 100 realisations that we adopted through-
out the entire analysis.

Appendix B: Gaussianity of the luminosity distance
posteriors

In this appendix, we discuss the gaussianity of the lu-
minosity distance posterior distributions. This approxi-
mation has been extensively used in the past, in all the
analysis performed with a fisher matrix (by construction,
the fisher matrix ‘assumes’ that the posterior is a Gaus-
sian distribution). Here we check the validity of this ap-
proximation.

In Fig. 17, we report:

1. the ratio between the true luminosity distance and
the median of the posterior distributions;

2. the ratio between the variance from the fisher and
from the posterior distributions;

3. the skewness of the luminosity distance posterior
distributions;

4. the kurtosis of the luminosity distance posterior
distributions;

for the entire Q3d catalogue and for the subset of EM-
cps. If we consider the entire population of MBHBs, it is
evident that the results from the fisher analysis are not
fully compatible with the Bayesian results. However if
we consider the sub-population of EMcps, the posterior
distributions appear more Gaussian with median values
closer to the real luminosity distance and the ratio of
the variances peaking at 1. Similarly, also the skewness
and the kurtosis are more centered around the zero, as

expected from a normal distribution. We obtain similar
results for Pop3 and Q3nd.

Appendix C: Assessment of the JS convergence
statistic

In this appendix, we present further details on the JS
divergence adopted to distinguish between informative
and uninformative realisations in the case of the redshift
bins approach. As reported in the main text, the value
of the JS divergence depends on the choice of the prior
adopted. In Fig. 18 we show the JS divergence for three
different types of priors:

1. Uniform in [0.1, 50];

2. Logflat in [0.1, 50];

3. Uniform in [0.1, 10].

The first one corresponds to the prior adopted in the
analysis in the main text. As expected different priors
lead to different JS divergence values. In particular, both
the logflat prior and the uniform prior in [0.1,10] present
smaller JS divergences. This stems from the fact that
in the logflat case we give more weight to small values
of h(zp), where the true value is. In the uniform case
between [0.1,10], the JS values are smaller because the
range of the prior is narrower and, therefore, the poste-
riors look more similar to the priors. Moreover in the
uniform case in [0.1,10], we can observe some realisa-
tions with low JS divergence and median value ∼ 5, the
midpoint of this prior range. As expected, this subset
of systems correspond to the uninformative realisations.
From Fig. 18, it is clear that the choice of the threshold
for the JS divergence depends on the adopted prior. As
discussed in the main text, this value is somewhat ar-
bitrary, and we aim to understand if there is a way to
justify or support this choice.

In Fig. 19 we present the scatter plot of the JS di-
vergence in the logflat or in the uniform in [0.1, 10] case
versus the JS values from the uniform prior in [0.1, 50]
adopted in the main text. Both cases exhibit a monotonic
behavior (with only a few exceptions for Pop3 at small
JS values), granting us the possibility to change priors,
keeping the same informative realisations. For example,
a JS divergence threshold of 0.5 for the uniform prior
in [0.1, 50] roughly corresponds to the same value for a
logflat prior in [0.1, 50]. However, if we adopt a uniform
prior in [0.1, 10], we need to lower the threshold to ∼ 0.2
to maintain consistency in the analysis and select the
same systems. While this comparison allows us to make
prediction that are less dependent on the choice of the
prior, the open question remains on how to set the “first”
threshold. In the main analysis with the uniform prior
in [0.1, 50], we fixed the JS divergence threshold at 0.5 in
order to eliminate the spurious points with the inferred
median values of h(zp) ∼ 25.
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FIG. 16. Median relative uncertainty on h as a function of the number of realisations. Errors bars represent the 90 percentile.
For all astrophysical models, 100 realisations are sufficient to construct a statistically representative sample.
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FIG. 17. Upper left panel: ratio between the true value of
the luminosity distance and the median value from the dL
posterior distributions. Upper right panel: ratio between the
1σ uncertainty from fisher analysis and from dL posterior dis-
tribution. Lower left panel: skewness of the dL posteriors.
Lower right panel: same as the left one but for the kurtosis.
Aquamarine (crimson) lines correspond to the distribution for
the entire catalogues (the subset of EMcps). This plot is only
for the Q3d model. Overall, the dL posterior distributions for
the EMcps can be considered as Gaussian distributions.

Performing the cosmological analysis with different pri-
ors and fixing the thresholds following the scaling rela-
tions in Fig. 19, we found that the uninformative realisa-
tions were always the same, irrespective of the adopted
priors. Finally, in Fig. 20 we report the number of in-
formative realisations as a function of the JS threshold
for the uniform prior in [0.1, 50]. As expected, setting
a value close to 0 renders all realisations informative,
while a value close to 1 makes none of them informative.
However, it’s worth noting that there isn’t a ’plateau’
around the value of 0.5 we adopted, so the presented fig-
ures might slightly change with an increase or decrease
in the threshold.

Appendix D: Pivot parameter for (h(z),Ωm)

A set of variables might present some degree of corre-
lation. Therefore, a natural approach is to construct a
new set of variables where the correlation is zero. In the
context of dark energy, this approach has been adopted
by several studies in the past (see [120] for the original
idea and [121] for an application). Assuming the same
dark energy expression in Eq. 9, one can search for a
pivot redshift zp (or corresponding scale factor ap) where
the error on ω(a) is minimized. It can be demonstrated
that this redshift corresponds to

1 − ap = −σω0ωa

σ2
ωa

(D1)

where σω0ωa
corresponds to the correlation between ω0

and ωa and σ2
ωa

corresponds to the variance for ωa. In
order to explain the fact that we have the best constraints
on h(z) at z ∼ 0.5 in Fig. 9, we want to find a redshift for
which the correlation between h(z) and Ωm is minimum.
We start defining the variance-covariance matrix between
h and Ωm as

Σh,Ωm
=

(
σ2
h σhm

σhm σ2
m

)
(D2)

where σ2
h (σ2

m) corresponds to the variance for h (Ωm)
and σhm is the correlation term. We want to go from
the old set of variables (h,Ωm) to the new set formed
by (h(z),Ωm) with z that will be specified imposing the
minimum correlation. Following the rules for the prop-
agation of errors, we can write the variance-covariance
matrix for (h(z),Ωm) as

Σh(z),Ωm
= J Σh,Ωm

JT. (D3)

where J is the Jacobian of the transformation defined as

J =

(
∂h(z)
∂h

∂h(z)
∂Ωm

∂Ωm

∂h
∂Ωm

∂Ωm

)
. (D4)

Performing the calculation, we get
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Σ11
h(z),Ωm

=
hz
(
z2 + 3z + 3

) (
hσ2

mz
(
z2 + 3z + 3

)
+ 4σhm

(
Ωmz

(
z2 + 3z + 3

)
+ 1
))

+ 4
(
Ωmσhz

(
z2 + 3z + 3

)
+ σh

)2
4Ωmz (z2 + 3z + 3) + 4

(D5)

Σ12
h(z),Ωm

=
hσ2

mz
(
z2 + 3z + 3

)
+ 2σhm

(
Ωmz

(
z2 + 3z + 3

)
+ 1
)

2
√

Ωmz (z2 + 3z + 3) + 1
(D6)

Σ22
h(z),Ωm

= σ2
m (D7)

We highlight three points:

1. The element Σ22
h(z),Ωm

is left unchanged from the

transformation as expected because Ωm remains
the same;

2. If we set z = 0 in Σ11
h(z),Ωm

, we recover the original

value of σ2
h;

3. For the term Σ12
h(z),Ωm

, if we insert the value of

variance-covariance matrix from the median real-
isation, we find that the expression has a zero at
z ∼ 0.6, compatible with the results in Fig. 9.
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