2311.12093v1 [gr-gc] 20 Nov 2023

arxXiv

Gravitational wave populations and cosmology with neural posterior estimation
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We apply neural posterior estimation for fast-and-accurate hierarchical Bayesian inference of
gravitational wave populations. We use a normalizing flow to estimate directly the population hyper-
parameters from a collection of individual source observations. This approach provides complete
freedom in event representation, automatic inclusion of selection effects, and (in contrast to likelihood
estimation) without the need for stochastic samplers to obtain posterior samples. Since the number
of events may be unknown when the network is trained, we split into sub-population analyses that
we later recombine; this allows for fast sequential analyses as additional events are observed. We
demonstrate our method on a toy problem of dark siren cosmology, and show that inference takes
just a few minutes and scales to ~ 600 events before performance degrades. We argue that neural
posterior estimation therefore represents a promising avenue for population inference with large

numbers of events.

I. INTRODUCTION

Hierarchical Bayesian analysis (HBA) provides the sta-
tistical framework to combine individual gravitational
wave (GW) observations to answer questions about entire
populations. Starting from a population model ppop(0|A)
for source parameters # depending on population hyper-
parameters A, with prior p(A), HBA characterizes the
population in terms of the posterior distribution p(A|D¢),
where D¢ is a catalog of GW observations. With over 100
observations by the LIGO-Virgo-KAGRA Collaboration
[IH7] to date [8], HBA has been used to constrain a wide
variety of population properties including mass and spin
distributions [9H33], and fundamental physics [34-47].

When combined with redshift information, GWs can
also be used to constrain cosmology. Indeed, the joint
GW and electromagnetic observation of GW170817—a
standard siren—constrained the Hubble constant Hy to
within ~ 20% [48, 49]. However, the vast majority of
observations are of binary black holes, with no electro-
magnetic counterpart. In these cases, statistical dark
siren methods using HBA can nevertheless still place
constraints on cosmology. This can be done by either
correlating GW signals with galaxy catalogs [45, [50H56]
or by involving assumptions on the source binary mass
distribution [39] 40, H7H6T].

Here, we focus on the mass spectrum method: given
a population model in the source frame, the predicted
distribution of detector frame masseﬂ and luminosity
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1 Recall the relation between detector frame masses my and source

distance depends on the population and the cosmological
parameters. By comparing this predicted distribution to
the one observed with gravitational waves (GWs), we can
therefore jointly constrain population and cosmological
parameters.

However, the current uncertainty on Hy from GW ob-
servations is much larger than from studies of the cosmic
microwave background [62] or supernovae [63] and it will
not be before O(10*) binary black hole mergers [39, [F9-
61], or several hundred binary neutron stars [64] that
their uncertainty will be comparable. Networks of fu-
ture detectors, such as the Einstein telescope (ET) and
Cosmic Explorer (CE), will provide the requisite large
number of observed events, reaching far into the cosmic
past. This will allow for the precise inference of cosmolog-
ical parameters, using bright sirens [65], in conjunction
with galaxy catalogs [66H7I] and features in the mass
spectrum [57), 58|, [TTH73]. Conventional population analy-
ses (hierarchical Bayesian inference methods) require an
analytic population model, and are slow when analyzing
a large number of events. The large number of events of
the upcoming detector networks calls for new methods
for the measurement of the hyperparameters (e.g., Hy)
with GW events

In this work, we apply neural posterior estimation to
population inference of GW signals. The specific illustra-
tive problem we set out to solve is to obtain constraints
on cosmological parameters through the dark siren mass

frame masses ms are related as mq = (1 4+ 2)ms. Throughout,
we assume the contribution from proper motion to be negligible
against the cosmological redshift.

2 Since the hyperparameters describe the overall distribution of
source parameters rather than the single-event ones, the extrac-
tion of the hyperparameters is also referred to as hierarchical
inference.
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spectrum methoﬂ addressing the aforementioned issues.
In addition to the gain in computational speed, simulation-
based approaches can, in principle, directly incorporate
predictions from astrophysical simulations, without hav-
ing to resort to phenomenological descriptions of the
resulting source parameter distributions. We summarize
the analyzed GW data by posterior samples of the pa-
rameters of the individual eventsEI, but the method could
be applied to any input data that summarizes the GW
observations sufficiently well. It is therefore particularly
adapted to future analysis chains that rely on other deep
learning algorithms. In principle, our method can also
account for additional uncertainty from latent variables,
which are difficult to account for in conventional methods
or when modeling the population likelihood. For example,
this could include the use of different waveforms for the
production of single-event posterior samples.

The learning task is to approximate the posterior
p(A|D¢), where A is the set of hyperparameters describing
the population model and the cosmological parameters,
and D¢ is the GW catalog data. We propose a deep
neural network scheme that learns directly the posterior
distribution of the population parameters — including the
selection effect. In particular, this approach allows us to
infer population properties in a likelihood-free way (also
referred to as simulation-based inference), requiring solely
the simulation of observed event data.

A number of previous studies have applied machine
learning techniques to aspects of the population inference
problem. In [74], machine learning was used to esti-
mate the selection function, while [T5H78] used machine
learning to represent the population likelihood (including
selection effects in the latter two cases). By contrast,
in our approach we directly model the population pos-
terior distribution, which circumvents the need for an
additional MCMC analysis to obtain the hyperparameter
posterior since posterior samples are produced directly
through importance sampling. Additionally, [76] learned
the population likelihood (in the bright siren case — as-
suming an EM counterpart), but used a toy model for the
single-event posterior distribution, whereas our method
uses posterior samples generated with the realistic deep
learning model dingo [9]. It has been shown that this
model agrees very well with the true posterior distribution
in the parameter ranges we consider.

The network’s architecture used here is that of a con-
ditional normalizing flow [80H84]. This framework allows
one to generate a distribution conditioned on data, and
to draw samples from the distribution efficiently. This
method has been applied to a large variety of problems

3 We note, however, that the proposed method of population anal-
ysis with deep neural networks is not limited to this application.
In principle, our scheme could use electromagnetic, or GW data
or both to produce constraints on the cosmological or population
parameters.

4 In the following, we refer to these as single-event posterior sam-
ples.

Variable Description
GW data

0 Single-event BBH parameters

Single-event posterior distribution
GW catalog

Dc A catalog C' of GW observations

Number of observed GW events

Population parameters

A Hyperparameters
Ppop(0|A) Population model
Hyperparameter posterior from
a catalog C, cf. Sec.

Selection bias

p(A|Dc)

£(A)

Machine learning

nsub ~ Number of events per sub-population

Hyperparameters posterior estimate
q(A[Dc)
from a GW catalog C'

TABLE 1. Overview of the variables and quantities used.

in science [75} [79, 85HIT]. In particular, it has acceler-
ated single-event parameter estimation for compact binary
coalescences by several orders of magnitude, see dingo
[79, R9HOT]. Whereas the latter model outputs posterior
samples of individual event parameters given the esti-
mated noise spectral density and measured strain for that
event, the model described in this work outputs the dis-
tribution of the hyperparameters given posterior samples
of the individual events.

The structure of this paper is as follows. In Section [[TA]
we begin by revisiting the classical approach to population
inference utilizing Bayesian statistics. Following this, in
Section [[TB1] we outline our divide-and-conquer strategy,
which splits the population into smaller sub-populations
for independent analysis, subsequently merging them to
obtain the final result analysing the complete catalog. In
Section [[II, we then provide an overview of the astrophys-
ical assumptions that underlie our study. The training
dataset, along with its number of entries, is then presented
in detail in Sec.[[V] From these training datasets, we train
our models and present the results, which are described
in Section [V} accompanied by a comparison against the
traditional Bayesian approach. Finally, in Section [VI] we
discuss our results and possible extensions to our work.

II. METHODS

We now outline the conventional hierarchical Bayesian
population analysis and relate it to the deep neural net-
work approach in Sec. [[TB] The classical approach will
function as our reference point against which we will com-



pare the outcomes with the normalizing flow (NF) method.
We refer to the classical method as HBA (hierarchical
Bayesian analysis) and to the neural network model as
neural posterior estimation (NPE).

To facilitate the following discussion, we introduce some
notation (see also tab. [I| for a summary of the variables
used). We denote the set of hyperparameters as A — this
can include cosmological parameters such as Hy and the
parameters describing the mass, spin and redshift distri-
bution of individual events. The true source parameters
are written as 6, and the distribution of data, D, given
the true parameters as p(D|6). The latter term is the
single-event GW likelihood. The population model is de-
noted as ppop(f|A), and we use K to denote a collection
of events. For instance, 0 = {0;};ck is the set of true
parameters of events in the set K. In this notation, the
probability of drawing the true parameters 6 from the
population model is then

T Poop(651A) (1)

JjeEK

ppop eK |A

since individual sample draws are independent. The
number of events in the GW catalog is denoted as
Nops = card(C), with card(X) the number of elements
in the set X.

A. Hierarchical Bayesian population method

The goal of extracting population and cosmological pa-
rameters from GW data is classically approached with a hi-
erarchical Bayesian analysis (HBA) [10], 12, 16l 59, [60, 921-
97]. We wish to infer the posterior distribution of A,
based on a set of GW events D¢ := {D;}icc. With the
catalog D¢ the posterior of A can be rewritten with Bayes’
theorem as p(A|D¢) = p(A)p(Dc|A)/p(Dc), where p(A)
denotes the prior knowledge of A, p(D¢|A) is the hierarchi-
cal likelihood, and p(D¢) is the evidence, the probability
of observing data D¢.

Using then the HBA scheme, the posterior of the hy-
perparameters informed from N, events is given by
(marginalizing over the overall rate of events) [98HI00]

Noy
p(ADc) =

p(Dc|A) =

p(A)
p(DC)

ﬁs fp D ‘9 Ppop (9J|A)d93 (2)
Dc it [ pact(05) ppop(051A)d6;

the prior on A is denoted as p(A) and the prior probability
of the data as p(D¢). The uncertainty in our knowledge
of single-event parameters is encoded in the likelihood

p(Dj|0;) of obtaining data D;, given the true parameters
6;. Finally, the probability of detection, given the source
parameters 0, is denoted by pget(0) and depends (amongst
other factors) on the detector sensitivity, the number of
detectors and the detection threshold. This encodes the

fact that not all data is included in the set D¢, but we
choose segments of data in which we are confident that
signals of astrophysical origin are present. This selection
is a property of the data alone. The data is the sum
D = h(f) + n of the pure signal h(f) and the noise n.
The detection probability is the probability that this data
lies in the region we define as a detected source, i.e.,
Pdet () = [ etecteq 47 P(D]). The denominator (in the
product) of the above equation accounts for this selection
effect — not all GW sources have the same probability of
detection. It is common to define the detected fraction of
the population £(A) == [ paet(0) ppop(8|A)dE. In general,
it is difficult to evaluate this term, and one usually relies
on an injection campaign to produce a set of detected
GW signals. We will show that our method accounts for
the selection effect, bypassing the explicit computation
of £(A). Effectively, we perform an injection campaign
during the generation of the training data and hence,
the cost is amortized over the repeated evaluation of the
neural population posterior.

There is some freedom in the representation of the
GW data D;: we focus here on posterior samples, that
approximate the uncertainty of the source parameters
0 (such as the component source frame masses, or the
luminosity distance). The posterior samples follow the
distribution 6 ~ p(A|Dy,), and we denote the assumed prior
under which the posterior samples were created as myicmc-
In the following, we use 05, to denote the ith posterior
sample from the GW event k (compare to Eq. @), and
Npost,k 15 the number of posterior samples for this event.
The numerator of Eq. is usually approximated by
summing over posterior samples of the individual GW
events. The population likelihood as informed by one
GW event Dj, can then be rewritten as

ostk P éz \A
i M (0 )) 3)

i=1 TMCMC (Gik

p(Dx|A) =

where the sum above is taken over the posterior samples
01 ~ p(0;x|Dx). To evaluate the full population posterior
of Eq. (2, one multiplies the individual contributions of

Eq. (3)-

B. Neural posterior estimation (NPE) methods

Hierarchical Bayesian analysis becomes increasingly ex-
pensive as the number of sources included in the analysis
increases, due both to the cost of obtaining the poste-
rior samples for each event, and the cost of combining
the events to obtain the population posterior. The use
of machine learning approaches is becoming increasingly
widespread in the physical sciences, as these often provide
a fast and efficient way to complete complex analysis tasks.
In a gravitational wave context, dingo has been shown to
generate posterior distributions nearly indistinguishable
from those produced by standard sampling algorithms



in a small fraction of the time [91], while residual differ-
ences can be efficiently eliminated through importance
sampling [I0I]. We hope to see similar benefits from the
application of machine learning methods to population
inference. A major complication is that the number of
events that will be observed is not typically known a pri-
ori. Not only does this present the difficulty of generating
an arbitrarily large training dataset, but neural networks
typically have fixed input dimension. We overcome this
problem by implementing a strategy that divides the
GW catalog into smaller sub-populations, each containing
O(10 — 100) signals. Our model then learns the posterior
distribution analyzing a sub-population of events. We com-
bine the intermediate results (the population posterior of
each sub-population) to derive the population posterior of
the entire catalogEI We will now elaborate on the model
loss, how to combine sub-populations of events, the NF’s
architecture and the generation of the training dataset.

1. Sub-population analysis

To simplify the problem, we split the GW catalog
into smaller sub-populations. Calling one of these sub-
populations Dk = {Dy }rek, the model we propose then
approximates the population posterior from analyzing
D, converging to the term p(A|{Dy}rek). One then
obtains the complete posterior analyzing all events by
combining the individual posteriors of each of the sub-
populations. This approach ensures the computational
cost to generate the training dataset is not too large.

The catalog C' is divided into sub-populations of events,
{K;}, where each of the K contains ng,p eventsﬂ That is,
the K, for i € {1,2,...,np}, define a (random) distinct
partition of C, i.e.

C=K UK ... UKy, (4)

with ny, := Nops/Nsub. The machine learning model pro-
duces a population posterior ¢(A|Dg,) for each of the
sub-populations, which approximates p(A|Dg,). The re-
peated application of Bayes’ theorem yields the complete
posterior informed by all events in C, i.e.

oipe) = i Tlaaipe). 6)

with p(A) the prior on the hyperparameters and

N is a normalization constant given by N~! :=
[T a(ADK,) /p(A)™~1]  dA. In the limit

5 The hyperparameters samples are combined via importance sam-
pling, as detailed in Sec.

6 Throughout, we assume the length of the subset of events ngyl,
to divide the total number of events Ngpg.

4

q(A|Dc) = p(A|D¢), N = ([T;2, p(Dk,)) /p(Dc), where
p(Dx.,) = / p(Dic,|Dp(A) dA

o0c) = | [ﬁpwmm] pAYdA. (6)

Below in Sec. [[V] we assume a uniform prior of the hy-
perparameters A so that the denominator in equation
also amounts to a normalization constant. If the model
correctly learns the posterior distribution that analyzes a
sub-population of events, we should have the approxima-
tion

q9(A[Dc) ~ p(A|Dc) . (7)

The target distribution is conditioned on the observed
data. In general, this could be a large space, making the
learning task more complex. However, not all components
of the data are informative about the target distribution.
It is clear from the form of a standard HBA, Eq. ,
that one possible summary of the data for each event is
the set of samples from the individual event parameter
posterior distribution. Therefore, we make the choice to
represent the input data via a set of posterior samples for
the GW events. The neural network (NN) then learns the
population posterior from the posterior samples of the
individual signals in one sub-population. We denote the
set of posterior samples of the events in K as Oy and the
number of posterior samples per event as npest, assumed
to be equal for all events. We define,

éK = {éijl ’LEK, ]: 1,2,..-,npost—1,npost} ’ (8)

where

Oie ~ p(0|Di), 9)

for 7 an event in the sub-population K. From our choice of
the data representation, we can then schematically write

4(A|Dx) ~ q(Albx) (10)

In principle, however, the network could learn the popu-
lation posterior from any representation of the data Dy
that is sufficiently informative; this could be the Fourier-
transformed or the time-domain strain data. Of course,
no matter the representation of the data, the resulting
posterior distribution should be the same.

The neural networks used in this work have O(1057%)
parameters that are optimized during the training process
to minimize the chosen loss function, ensuring that the
learned function converges to the desired distribution. We
take the loss function to be proportional to the Kullback-
Leibler (KL) divergence (up to an additive constant),
which is defined as [I02]

D) = [ ple)tos (523) dr. (1)



The KL divergence is positive semi-definite, and is zero
only if p = ¢. Also, note that the KL divergence is not
symmetric in the distributions p and ¢. Thus, it can
be seen as a (generalized) distance between the target
distribution and the one learned by the network.

The objective is thus to minimize Dkp(p(A|Dk) ||
q(A|Dk)). In reality, we will be approximating p(A|Dx)
by p(A|fk), since we assume that the data Dy is summa-
rized accurately by the single-event posterior samples Or.
This can be done by minimizing the loss

L= Ep)Eppop (0510 Ep(Dic10:0) Ep(oe D) |
—10g (a(Aldx))] , (12)

where we have introduced the expectation value

Eptein f (2 )] = / deplaly) fla.y) . (13)

The right hand side of Eq. is the expectation value
over four distributions. Averaging over noise realizations,
Dy, and population draw, 0, we can apply Bayes’ theo-
rem successively to obtain the equality (see app.

L=E, ;B 08 [q(AwK)} . (14)

From the definition of the KL divergence in Eq. , we
rewrite the above equation as

L=E,;,, | Dxu(p(Alox) || a(Al6x))
~ Dict(p(Adx) [ 1)] - (15)

Thus, this expression is (up to a constant and the expec-
tation value over p(fx)) the KL divergence between the
model ¢(A|fk) and the target distribution p(A|f). Since
the KL divergence is minimized for p = ¢, it follows that
the above loss is also minimized for p(A|fx) = q(Alfk),
and if the network is properly trained, q(A\éK) will ap-
proximate p(A|é k). If a network achieved the minimum
loss for every possible choice of input parameters, éK,
then it would perfectly represent the population posterior.
In practice, this will not be achievable. By averaging the
loss over noise realizations, Dk, and population draws,
0k , we ensure that learning effort is expended to represent
the distribution best for values of fx that are more likely
to be observed in practice.

To evaluate the loss value of Eq. one has to eval-
uate an expectation value over four distributions. We
approximate these expectation values by Monte Carlo
averaging, i.e.

1
]L%N Z

{A, Dk, }

Q(AV|DK,1/) ) (16)

where N is the number of samples drawn as follows: ac-
cording to the prior p(A) we draw population parameters.

For each sample A, we create the cosmological model,
draw ng,, true events, simulate ng,, observed strains
(passing some specified selection threshold) and produce
Npost POsterior samples. For computational reasons, we
precompute the samples {A,, Dk, } and call the resulting
data the training dataset. The loss is then minimized
over choices for the NN parameters during the training
process.

Note that at no point in the process is the (true) popu-
lation posterior explicitly evaluated. The above scheme
relies solely on the simulation of data rather than on
evaluating the hierarchical Bayesian likelihood in Eq. .
As such, it differs fundamentally from the HBA since it
does not require explicit likelihood evaluations, making
it applicable when the likelihood is unknown or compu-
tationally expensive. Also, by construction, the model
contains the selection effect term &(A) appearing in the
denominator of Eq. . We thus avoid the computation
of this term during inference.

In some cases the NPE results differ from the HBA ap-
proach for reasons we elaborate below. These differences
can be corrected by reweighting the NPE samples to the
target HBA posterior using importance sampling weights

w(A) = }M . (17)

a(A|Dc)

This is possible because we have access to the learned
NPE posterior density, and have an explicit expression
for the target HBA density. We show this procedure
on one example in Sec. [VA] Importance-sampling can
also provide a validation: an unchanged posterior (af-
ter reweighting) implies that the model has learned the
correct HBA distribution.

2. Combining sub-populations of events

In the previous section, we have subdivided the complex
problem of obtaining the posterior distribution from cata-
logs of GW events into multiple simpler problems, namely
to obtain the posterior distribution from a sub-population
of GW events. We thus train a model ¢ to approximate
the population parameter posterior informed by a subset
of events Dg,, i.e. p(A|Dk,). One is eventually inter-
ested in the posterior as informed by the event catalog
C= Uzl:blKl To obtain this distribution we apply the
following procedure:

1. With the model, we draw Npyop A samples from
each of the posteriors q(A|Dg,) analyzing a sub-
population of GW events — these are our proposal
samples. In total, we have ny, X Nprop samples.

2. Out of these, we randomly choose Npop, sam-
ples. The chosen samples follow the distribution

Qinit(A|éC) = nilb Z:‘L:bl Q(A|DK1)

3. We evaluate the combined population posterior ac-
cording to Eq. for the proposal samples with



our model; to obtain ¢(A|f¢). From this, we can
compute the weights w as

A aMe)  ppe=r [Ty a(A Dk, )
’LU(A|6‘(;) = ~ = 1 nH s
Ginit (A]0c) o 2ic1 4(ADk,)

(18)
where we applied the definition of q(A|éC) in Eq.
in the second equality.

4. The samples are importance-weighted according to
w(Alfc) above. The reweighted samples follow the
desired distribution g(A|6c).

In order to apply this procedure it is vital that one can
sample from the distribution and that one has access
to the probability with which the samples are created.
The architecture of a normalizing flow allows for this.
The generation of random samples with normalizing flows
is rapid, making the scheme fast. We will apply the
procedure in practice and compare it to the conventional
HBA method in Sec. [Vl

Other scheme are also possible: one could multiply
the hierarchical (neural) posterior (dividing out the prior,
cf. Eq.|p) that analyze each of the sub-populations (the
probability of which is given by the flow) and use MCMC
sampling to recover the combined posterior (that analyzes
the entire catalog). The sampling method we outlined
above avoids running a full MCMC analysis, which would
further increase the computing time. We have compared
the two approaches for selected cases and found very good
agreement.

C. Flow architecture

The following section summarizes the building blocks
that make up our NPE model. The proposed machine
learning model combines two embedding neural networks
for data compression and a normalizing flow for popula-
tion posterior generation as described in Fig. In the
following, we refer to the full algorithm simply as the
“model”.

The posterior samples from all events in one sub-
population represent a large dataset that we seek to
reduce with two embedding networks that summarize
(7) the individual events in a first stage and (i) the set
of all summaries of ng,p, events produced by the first em-
bedding network. The flow is then conditioned on the
output of the second embedding network. Fig. [l shows a
schematic overview of the model architecture.

The first embedding network summarizes each single-
event posteriorm This network takes as input data the

7 As input data of the first embedding network, we use the stan-
dardized posterior samples (subtracting the mean and dividing
by the standard deviation of the respective variable). This stan-
dardization of the input data is a common practice in machine
learning (ML) and allows for faster convergence of the model.

collection of mpest posterior samples of the component
masses and the luminosity distance (following Sec. ;
that is a three-dimensional posterior distribution for the
Nsub €vents in the sub-population. We have found that
16 “summary” parameters for the single-event posterior
are sufficient to recover the population posterior. The
first embedding network is identical for each event. If the
flow analyzes ngup events, we thus have 16 X ngy,}, scalars
describing the input data after applying the first embed-
ding network. These data are then further summarized
by an additional embedding network, whose output feeds
into the flow. We choose this second summary to have 64
and 256 parameters for the two models we train in the
result section below. The embedding network parameters
(summarizing the input data) also implicitly appear in
the loss (cf. Eq. and are therefore optimized jointly
with the parameters that define the flow transformation
as discussed below. The two embedding networks signifi-
cantly reduce the number of free parameters in the model,
leading to less overfitting.

As anticipated, the normalizing flow is conditioned on
the output of the second embedding network and com-
putes an approximation of the true population posterior
p(A|Dk). In general, the normalizing flow performs a
transformation that maps the physical variables (here the
hyperparameters Y := A) to an unphysical variable Z
that follows the normal distributionﬂ One can rapidly
generate samples in A ~ ¢(A|Dg,) by drawing samples
from the normal distribution (Z ~ N (= 0,0 = 1)) and
applying the flow transformation to them, i.e. A = g(Z).

We use the nflows [103] package to construct this trans-
formation, where the flow transformation from Z to Y is
constructed from a sequence of simple transformations.
In our case, these are piecewise rational quadratic cou-
pling transforms [104] in analogy to those implemented
in [9()]E| The number of coupling transforms is referred
to as the number of flow steps. The parameters govern-
ing the coupling transforms are trained to minimize the
loss defined in Eq. . We have investigated different
choices of parameters and found that four flow steps, each
parameterized by a fully connected residual network with
32 parameters and five to fifteen layers provided the best
results. Table [[V] summarizes the details of the specific
network architecture. Throughout, we use graphics pro-
cessing units (GPUs) to accelerate both the generation
of single-event posterior samples and the training of the
normalizing flow.

8 We follow the standard notation as used in the review of normal-
izing flows of [84]
9 See app. [A| for additional details on these transformations.
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FIG. 1. Overview of the data reduction with the embedding networks and the conditioning of the normalizing flow. This method
reduces the data dimension from initially nsub X npost X 3 to 128. Note that the embedding network 1 is identical for all GW
events. This data summary reduces the number of adjustable NN parameters and hence simplifies the training process.

IIT. ASTROPHYSICAL AND INSTRUMENTAL
SETUP

In the following we describe our assumptions on the
astrophysical population of binary black holes (BBHs),
the detector network, the detection criterion and the
generation of waveforms.

A. Assumptions on the population distribution

Throughout this work, we model sources as uniformly
distributed in comoving volume in a flat ACDM universe
described by the Hubble constant, Hy, and the matter
content, 2,,. We fix the latter to Q,, = 0.3 and assume
it to be known. This assumption is straightforwardly
relaxed, but this is beyond the scope of our work here.

The two training datasets we construct follow the

POWER LAW source frame mass distribution[[®] This
source frame mass model is characterized by four param-
eters. The minimum mass my;, and the maximum mass
Mmax limMit both source frame masses from below and
above, respectively. In addition, we have two power law
slope parameters o and 8 characterizing the distribution
of masses according to

p(ml,S|Am) = NmiSX[mmin,mmax] (ml,S) , o (19)
p(m275|m175, Am) = N/mg,sx[mminyml,s] (m275) )

where we have defined the normalization constants A
and AN’, as well as the set of hyperparameters A, =

10 This is the simplest of the four source frame mass distribution
considered currently by the LIGO-Virgo-KAGRA collaboration

[10; 12, [16].



{Mmin, Mmax, &, B}. Finally, x is the characteristic func-
tion, defined as

Ny (@) = {1 if x € [a,b] (20)

0 otherwise.

B. Assumptions on BBH sources

We focus on precessing BBHs in quasi-circular orbits,
characterized by 15 parameters: the component (detector
frame) masses of the BHs, m1_q, m2 4, the two spin vectors
described by their magnitudes, a1, as, angles of reference,
@12, ¢j1, and tilts, 01, 02, as well as the time of coalescence,
t., the phase at coalescence, ®., declination and right
ascension of the sky position, dsp and agp, luminosity
distance, dy, the inclination of the orbital plane with
respect to the line of sight, 6;, and polarization angle, ).
We assume sources to be distributed uniformly in the sky,
we draw the spins isotropically over the sphere and the
spin magnitudes uniformly between 0 and 0.99.

The IMRPHENOMXPHM waveform [105] is used to
model the gravitational wave signal of the BBH coales-
cences in the frequency domain.

C. Assumptions on waveform and the detector
network

We assume the O1 sensitivity curve [I] for the Laser
Interferometer Gravitational wave Observatory (LIGO)
Hanford and LIGO Livingston detectors and impose as a
selection criterion a signal-to-noise ratio (SNR) threshold
of 12. Given a detected GW signal, we then use the
deep learning tool dingo [79, @I] to analyze the strain
data and produce single-event posterior samples. Due to
limitations in the size of the parameter space of signals
that can be reliably analyzed we restrict the mass range
of signals to a conservative mass cut-off in source frame
mass of my s > mg s > 18 M@B This lower bound on the
mass range directly implies a lower bound on the prior of
Mmin We can explore. Also, recall that the mass spectrum
method uses only the component masses and luminosity
distance. We thus discard the remaining single-event
parameters. See table [[TI] for the priors on the training
set and, by extension, the prior learned by the model.

IV. TRAINING DATASETS

The number of events per sub-population, ng,p, is a
free parameter of this approach, the optimal value of
which we would like to determine. To study this, we

1 In the near future, the lower bound of dingo’s mass range is
expected to decrease to 5 Mg.

build two different training sets and train models on each
one, assuming the same detector network and with the
population model, described in Sec. [T} In the following,
we refer to a hyper-sample, as one population of events
that share the same hyperparameters. Training set low
has 6.7 x 10° hyper-samples, which is ten times more
hyper-samples than that of training set high (which has
4.4 x 10* hyper-samples). However, training set low has
only ten events per population, which is 20 times less than
training set high (which has 200 events per hyper-sample).
Overall, the two datasets contain approximately the same
number of GW events (and posterior samples) and hence,
their information content (and their computational cost)
is also approximately equal. For this reason, the perfor-
mance of the models trained on the respective datasets
can be directly compared. Training dataset low only
allows small event sub-populations (< 10), but with an
in-depth training on many population examples, whereas
training dataset high allows for large sub-populations at
the price of a limited number of populations.

A. Training set low

Each hyper-sample of the training data contains the
true value of the hyperparameters, A, ten events and 200
associated posterior samples in three variables: the (detec-
tor frame) component masses and luminosity distance. In
total, the data associated to one population hyper-sample
thus contains 6000 = 10 x 200 x 3 scalars.

During one training epoch, we randomly choose ngyp
events among the ten events for each hyper-sample with
Npost Tandom posterior samples each. This sampling
method increases the variability of the input data. After
several trials, we have found that the model provides
a good approximation to the population posterior if it
analyzes six events per sub-population (ng,n, = G)E The
same reasoning applies to the number of posterior samples,
100 posterior samples per event seem to be sufficient
to produce a faithful approximation (although see the
discussion below in Section .

A summary of the training dataset low can be found
in table [l

B. Training set high

With future GW detector networks in mind, we also
construct a training dataset that allows for models that
analyze a much larger number of events. Each population
hyper-sample of the training set high includes 200 events

12 The combination of sub-populations of events delivers more re-
liable posterior distributions if the number of events per sub-
population (ngp) is high. However, the time to generate the
training dataset limits the maximum value ng,, which therefore,
cannot be set arbitrarily high.



Summary of training datasets

Study low high
# training population samples 6.7 x 10° 4.4 x 10%
# available events per population 10 200
# available posterior samples per event 200 200

TABLE II. Properties of the two generated training datasets.

Summary priors

Metaparameter  Prior Unit
Hy 1(40,140) kms™! Mpc™*
Mmin U(18,30) Mg
Mmax U(37,47) Mg
e U(-2,2) -
ﬂ u(_27 2) -

TABLE III. Summary of priors assumed for the two training
datasets. The uniform prior is denoted as U.

with 200 posterior samples per event. The data associated
to each hyper-sample thus includes 120, 000 = 200x 200 x 3
scalars. The model we train below selects randomly 100
out of the 200 available events during each training epoch.
For each of these events, the flow chooses 100 out of 200
posterior samples at random. Thus, each input population
sample includes 30,000 = 100 x 100 x 3 scalars. Again,
this method of drawing a subset of the available data is
introduced to reduce overfitting. For training set high
we find that ng,p, = 100 gives the best performing models.
This is the result of a trade-off; given that one hyper-
sample contains 200 GW events, if ng,, is set higher
the variability of the training data is not high enough,
and if ng,}, is too low we cannot analyze a large number
of events, since too many sub-populations have to be
combined. Empirically, we find that the model does not
produce reliable results above O(10 — 20) combinations
of different sub-populations.

C. Training the networks

Given the training data, we train different models by
minimizing the loss we have introduced in Eq. 7 vary-
ing the network parameters, as well as the number of GW
events that are taken as input parameters. The param-
eters describing the flows that yield the best agreement
with standard HBA results are summarized in table [Vl
The network trained on dataset low (which we refer to
in the following as model low) had a training time of
~ 5.5 hours. In Fig. we present the training and test
loss curves for the model. Based on the loss curves, we
conclude that the model can generalize effectively to data
that were not included in the optimization process.

The training time of model high was 82 minutes. The
shorter training time (compared to model low) is due to

Summary of the normalizing flow parameters

Model
low high
Variable
Events per
6 100
batch nsub
Posterior samples
100 100

per event npost

Dimensions embedding (512, 256°, (512, 256,
network 1 128, 64) 128, 64)
Dimensions embedding (512%, 256*, (10242, 5122,
network 2 1282, 64%) 256)
Flow steps 3 4
Spline points 8 6
Hidden dimensions
32 32
(spline network)
Hidden layers
5 15
(spline network)
Training epochs 200 300
Learning rate 0.0001 0.0001
Scheduler Plateau Plateau
Batch size 1024 1024

TABLE IV. Architecture of the embedding networks and the
normalizing flow. For the hidden layers of the embedding
networks we use the tuple notation X" := (X, X, ..., X), with
X repeated n times.

the smaller number of hyper-samples in training dataset
high. The associated training and test loss curves of
model high are plotted in Figure 2b] We discuss the
resulting respective posterior distributions in Sec. [VA] for
the training set low and Sec. [V B for training set high.

V. RESULTS
A. Results with model low

As a first validation step, we generate the P-P-plot
of the model. To this end, we draw 1000 population
hyper-samples from the training dataset, input the cor-
responding posterior samples in the model, and sample
q(A|Dk,) for each. From the A samples, we compute
the percentile in which the true value of the population
lies and sort the resulting percentiles by value. The cu-
mulative density of the percentiles is shown in Fig.
If the model correctly infers the hyperparameters, the
figure should follow the diagonal within a reasonable er-
ror interval. From the Kolmogorov—Smirnov (KS) test
(comparing the computed percentiles against the uniform
distribution), we obtain p-values between 27% and 93%,
which is expected for five variables, indicating that the
model reconstructs the population posterior correctly.
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FIG. 2. Loss for the (left) model low and (right) model high. Since the test loss (blue) and train loss (orange) do not differ
much, we conclude that the models generalize well to unseen data.
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FIG. 3. The P-P-plot for 1000 injections for model low (left) and 2500 injections for model high (right). We find p-values as
indicated in the legend, indicating that the models reconstruct the population posterior correctly. However, the lowest p-values
of model high is slightly lower than the model low. The mmax parameter of model high has the lowest value, with 15.7%.

The above tests only include ngy, = 6 events per pop-
ulation. To further validate our results, we generate a
detected population with 60 GW events. With dingo,
we produce posterior samples for each of these events
and run a classical Monte Carlo Markov chain (MCMC)
analysis (with an analytical likelihood, using icarogw
[60]) on these samples. The resulting hyperparameter
posterior distribution serves as our ground truth. This

scheme differs from the classical approach (for instance
in [I6] 92]) as the computationally expensive parameter
estimation (PE) has been carried out with dingo. This
“crossing” from the likelihood-free inference part to the
classical inference (with icarogw) is a simplification and
comes at a cost. If dingo does not correctly estimate
the single-event posterior distribution, the resulting dis-
tribution of the hyperparameters with icarogw will not



represent the ground truth. We will discuss below for
model high the possible consequences of this assumption.
Note that it is possible to correct for possible inaccuracies
of dingo by importance sampling. However, since this
significantly increases the computation time we do not
choose to pursue this here.

In parallel, we apply our model to the same single-event
posterior samples and combine the results with the impor-
tance sampling step that was outlined in Sec.[[TB2] This
procedure is applied for twelve different populationsE
Fig. @] shows one out of these twelve distributions, with
a model that analyzes 60 events in total. Since the net-
work was trained for ng,, = 6 events, we divide the input
data in ny, = 10 sub-populations. The result shows that
it is possible to combine the output of multiple model
evaluations and obtain the correct population posterior.
This figure is representative of the majority of cases —
we generally see good agreement between the two meth-
ods. We have also verified that the (arbitrary) division of
events in the different sub-populations does not impact
the resulting population posterior.

To make this comparison more quantitative, we com-
pute the Jensen-Shannon (JS) divergencﬂ between the
NPE and HBA results for each of the variables in A.
Tab. [V] collects these values. The lower the JS diver-
gence, the better the agreement between two distributions.
The JS divergence for single-event PE with LALINFER-
ENCE (for identical runs with different random seeds) is
~ Tx10~*nat [106]. For two icarogw runs with the same
settings, we find JS divergences between 3 x 1073 nat and
10~*nat. The JS divergences observed in our experiments
are an order of magnitude higher than these baselines.
Thus, there exists potential for further refinement in our
approach. The problems appear almost exclusively for
two hyperparameters: the minimum and maximum mass
of the population, m;, and my.x, and out of the two,
the minimum mass proves to be the more difficult pa-
rameter. Out of the 60 JS divergences we have analyzed
(twelve populations with five hyperparameters each), 16
had a JS divergence larger than 0.01. The population
models which proved to be most difficult to reconstruct
were populations 1, 7 and 10, where population 1 and 7
both have low Hubble constant. Additionally, population
7 has mpy.x = 38 Mg, very close to the boundary of the
prior for which the model was trained (mmax = 37 Mg).
It is well known the neural network performance decreases
close to the prior boundary. We show in the next section
that it is possible to recover the HBA result by applying
importance sampling to the samples produced from our
model.

13 Each population has a different Hubble constant, and variables
parametrizing the source frame mass distribution. The details of
the populations are given in tab.

14 The JS divergence is a symmetrized version of the KL divergence
that was defined in Eq. .
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JS divergence (1072 nat)

Population
0 Mmin Mmax «a I3
0 6.4 26.4 4.9 2.9 1.6
1 (Fig. } 10.0 70.9 15.3 17.7 4.0
2 3.8 6.3 11.9 4.1 5.8
3 3.2 4.3 4.2 8.5 1.5
4 (Fig. } 7.0 10.3 3.5 0.9 1.4
5 0.9 4.2 7.2 6.8 0.8
6 1.8 6.6 11.6 8.1 3.5
7 2.6 16.4 18.4 34 21.3
8 8.9 4.6 4.5 3.4 1.0
9 2.3 10.1 17.2 6.2 2.1
10 30.6 10.2 21.8 4.0 0.8
11 3.4 4.1 11.1 6.9 2.6
Mean 6.73 14.53 10.97 6.07 3.86
Median 3.61 8.36 11.35 5.16 1.81

TABLE V. JS divergence (in units of 107> nat) for all hyper-
parameters and all twelve populations. The mean and median
values over all populations are also presented. The most prob-
lematic parameters are mmin and mmax. We have indicated
which population are plotted in later sections, corresponding
to cases where our model differs weakly or strongly to the
conventional approach.

1. Fuailing of the model and recovery from importance
sampling

In certain cases the NPE samples do not agree with
the HBA samples. However, we have access to the proba-
bility associated with which each population sample was
generated through the construction of the NF. We can
therefore obtain the HBA result by calculating the (con-
ventional) population likelihood for each sample, p(A|D¢),
and reweighting the NF samples to this target likelihood,
using the weights determined by Eq. . Fig. [5| shows
this procedure on the example of population 1, and model
low. For comparison, to produce the classical result (with
24,000 samples) took (parallelizing on 16 cores) ~ 8 hours,
whereas the flow produced 300,000 samples in 2.3 minutes.
Applying an additional importance sampling step (paral-
lelizing on 16 cores) generated an effective sample size of
10% in ~ 3.3 hours. This gain in computation time is due
to the reduced number of likelihood evaluations with the
NPE (3 x 10°) when compared to the HBA (1.7 x 10°).
These computation times do not include the times for
single-event parameter estimation (here carried out with
dingo and therefore, within minutes).

When combining more than 10 — 20 sub-populations of
events, the resulting NPE posterior becomes unreliable.
Consequentially, model low cannot analyze more than
~ 100 events. This might be caused by model low not
resolving the fine structure in the posterior distribution
that becomes important when combining large event sets.



We thus rely on training set high to construct a model
that can analyze a larger number of events as we now
elaborate.

B. Results with model high

To show the capability of the model to reconstruct the
population posterior given a large number of observed
events, we use training set high to construct a model ana-
lyzing ngu, = 100 GW events. Fig. 2D shows the resulting
loss curves of the training and test dataset, respectively.
The train and test loss coincide, suggesting that the model
can process unseen input data and generate accurate hy-
perparameter posterior distributions. Fig. 3D shows the
P-P-plot of model high with 2500 population realiza-
tions, implying that the network has correctly learned the
desired posterior distribution.

We have verified that when analyzing 100 GW events
that the NN is in good agreement with the HBA for all the
populations described in table [VIl Considering a larger
number of events, we focus on one specific population,
with the parameters Hy = 67 kms™' Mpc™!, mmin =
20.1 Mg, Mmax = 42.9Mg,a = 0.6 and 3 = —0.5. Fig. [6]
compares the posterior of our model and the classical
posterior, analyzing 600 events. Although the posterior
distributions overlap, they show a significant deviationE
The computation time for the conventional approach was
127 hourd™] and for our model 7 minutes.

The reason for the discrepancy in Fig. [f]is still an open
question: as anticipated above, we make an approxima-
tion of the ground truth. We use dingo to estimate the
single-event posterior distributions, and these samples
are then subsequently analyzed by icarogw to derive the
hyperparameter posterior. To decrease the computation
time we did not perform importance sampling on the gen-
erated dingo samples for the individual event posteriors.
This can degrade the performance of the estimation of the
single-event posterior. From a preliminary analysis, we
find that some posterior distributions as inferred by dingo
differ from the PE samples of bilby. In the near future,
we hope to perform a full PE on all events and compute
the ground truth from conventional analyses alone. How-
ever, we emphasize that even if the dingo algorithm is not
a perfect approximation to the single-event posterior, this
does not invalidate our approach — by construction the
NPE model learns the posterior distribution marginalized
over the dingo uncertainty.

There are other potential sources of the discrepancy,
such as the smaller number of hyper-samples represented
in the training dataset high. We have checked that the
posterior resulting from a model trained with training set

15 As previously, we can successfully recover the HBA result through
importance sampling.

16 This computation time was for an injection set (used to compute
the selection effect) of 1.4 x 10% detected GW signals.
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low is compatible with a posterior trained with training
set high.

Moreover, we find a strong dependence of the HBA
results on the number of posterior samples per event (if the
number of posterior is not “high enough”). This potentially
additional source of uncertainty is now discussed.

1. Impact of the number of posterior samples

The HBA scheme usually processes O(10% — 10%) pos-
terior samples per event. Since the NPE model works
with a significantly lower number, this section explores
the consequences of this approximation.

We carry out the HBA using 100 posterior samples per
event, for 300 events in total. The population analyzed
is the same as in the previous paragraph. We repeat
the HBA many times, using a different set of posterior
samples for each event each time. This leads to a scatter
of the population posterior, as shown in Fig. [7]

For the hyperparameters with more scatter (in par-
ticular Hy and my,;,) the NPE differs more from the
individual HBAs and gives posteriors that are broader,
covering the range over which the individual HBAs vary.
So, the NPE is mass-covering, i.e. it has support across
the scatter of the posterior that arises from the limited
number of posterior samples. This indicates that the NPE
marginalizes over the additional uncertainty arising from
this approximation. This behavior is also expected from
the construction of the loss in Eq. — if the model
q(A|Dg) has no support on the support of p(A|Dg), the
loss diverges. As a consequence, future analyses will either
have to increase the number of posterior samples or use a
more complete summary of the GW signal. In this limit,
we expect to find a closer agreement between these two
methods.

VI. CONCLUSION

Future planned detector networks will detect up to a
hundred thousand GW sources each year, allowing for
high-precision measurements of the parameters character-
izing the population, including cosmological parameters.
With these many events, fast methods, such as machine
learning, will be essential for population inference and
related analyses, e.g., tests of general relativity (GR).

In this work, we have demonstrated that normalizing
flows can rapidly produce the posterior distribution of
cosmological and population parameters inferred from
observed GW dark sirens. We have introduced a loss
function one has to maximize for the NF to converge to
the true posterior distribution. Within this setup, the
posterior learned naturally incorporates selection effects.
Normalizing flows prove to be flexible enough to approxi-
mate the posterior distribution of up to 600 GW events.

However, there are instances where the results from
the flow do not align with the standard results from the
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FIG. 4. Results from model low (NPE, blue) compared to a conventional hierarchical Bayesian analysis (HBA, green). The
posterior analyzes 60 GW events of population no. 4 (cf. app. . The one and two sigma intervals are indicated as two-dimensional
contours and dashed lines mark the true values of A. We could produce an effective sample size of ~ 8 x 10* posterior samples
in 2.5 minutes of computation time. In total, we have verified our results on a total of twelve populations. For the largest
discrepancy between our model and the conventional approach consider the result in Fig.[5] The “PE” stands for individual
event parameter estimation which, in both cases, uses the dingo algorithm.

HBA. An almost perfect agreement can still be obtained
by performing importance sampling on the samples out-
puted by the neural network, using the standard HBA
likelihood for the weights. This process increases the com-
putational time of our method, but still requires O(10)
fewer likelihood evaluations than in the standard HBA
approach.

The reasons for the discrepancies between HBA and our
method are still unresolved. The single-event posterior
samples generated by dingo could deviate from the true
single-event posteriors, possibly leading to biases in the
HBA results. Our method relies on an arbitrary data

summary (provided the summary contains the majority
of the signal information)m As long as the flow trains
on this summary data, the model should recover the true
hyperparameter posterior. Indeed, the network could,

17 The choice we made here, to represent data by physical posterior
samples, 6, is not the only possibility. For instance, another
approach would be to directly compress the strain data. This
compressed data can then provide the input for the population
inference with a NF. As such, our approach is particularly adapted
to a population analysis relying on other NN summaries.
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FIG. 5. Results from model low (NPE (PE: DINGO), blue) compared to a conventional hierarchical Bayesian analysis (HBA)
(green). The posterior analyzes 60 GW events of population no. 1 (cf. app. [C). The one and two sigma intervals are indicated as
two-dimensional contours and dashed lines mark the true values of A. As the NF and the classical analysis differ, most notably
in the variable mmuin, we perform an importance sampling with the classical likelihood. The resulting posterior is shown in red

(NPE (weighted)) and agrees well with the classical result.

in principle, compensate for the eventual incorrect rep-
resentation of the GW data, but we have not explicitly
shown this in the present work. Moreover, we currently
use 100 posterior samples per GW event which also leads
to an additional uncertainty. To produce reliable poste-
rior distributions one has to use a sufficient number of
posterior samples per event, posing a potential bottleneck
for analyses of 3G detector data. Indeed, future analyses
might have to limit the number of posterior samples for
computing efficiency, resulting in an additional uncer-
tainty our approach can marginalize over. Alternatively,
a possibility is that the model has not accurately learned
the population posterior, but we have performed several
tests that make this scenario unlikely.

Our approach requires to divide the observed popu-

lation into sub-populations of fixed dimensionality to
use as input for the network. Errors in the learning
of the posterior accumulate when combining the results
of sub-populations. In practice, we find that when the
model is repeatedly evaluated to combine a large number
(O(10 — 20) x ngyp) of sub-populations of events, instabil-
ities appear that prevent the production of an accurate
posterior, i.e. GW catalogs with Nops/nsub & 10 cannot
be robustly analyzed with the current framework. A more
robust network architecture might be needed to learn the
posterior with the necessary accuracy to analyse O(1000)
events. We leave this for future work, as well as more
complex mass and redshift distributions.

Finally, the method proposed can test population mod-
els with source frame mass distributions that are difficult
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FIG. 6. Results from model high (blue) compared to a conventional hierarchical Bayesian analysis (HBA) (green). Both
analyses use the dingo samples as input data. The posterior analyzes 600 GW events. The one and two sigma intervals are
indicated as two-dimensional contours and dashed lines mark the true values of A. The model and the conventional analysis
show a discrepancy. However, the model is generally closer to the injected values than the HBA method that relies on dingo PE

samples.

to parametrize analytically since it relies on simulation-
based inference, with (in principle) no explicit likelihood
needed. For instance, one could include stellar evolution
codes, circumventing the choice of a analytic distribution
describing the source frame mass distribution.
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Appendix A: Coupling flows

We provide details of the deep NN in this appendix. The
flow transformation of Sec.[[IC] g, is given by a sequence
of coupling transforms [82] that are each parametrized by
monotonic rational quadratic splines [104]. As a reminder,
g applies a coordinate transformation on Z € R,

One can write the sequence of coupling transforms as

8 = B(npioer) © Bnpioek—1) © - 082 O 81y s (Al)
where nyock is the number of blocks. Each of the functions
g(i) depends on the data, a set of NN parameters and the
latent variable Z. The g; all share the same functional
form (but have different model parameters). First, one

applies a random (but different for each coupling trans-
form, fixed during training) permutation of Z. Then the
first & components of the reshuffled variable Z are left
unchanged. The remaining parameters undergo an invert-
ible (spline) transformation s; that is parametrized by
the NN parameters ©;. One can write the transformation
component-wise as [82]

Z; if1<j<k,

where O(;) are the NN parameters of the ith coupling
transformation. A fully-connected residual network gov-
erns the spline function. Each transformation is invertible,
and its inverse and Jacobian is simple to compute. Fig.
shows schematically the transformation of one such ele-
mentary cells that make up the flow. In our case, the
transformation s : RP? — RP7J corresponds to a mono-
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FIG. 8. Schematic overview of an elementary cell of the cou-
pling transform on the example of a four-dimensional flow.
The compressed data that is summarized by the second embed-
ding network serves as the input data for the spline through a
residual neural network.

toniﬂ, quadratic, rational spline function [I04] (see Fig. 1
of [I04] for an example of a one-dimensional spline func-
tion). The parameters of this function are governed by a
NN. Note that s depends on all variables Z and can hence
incorporate correlations between different parameters.

Appendix B: Loss identity

In this appendix, we show that the loss function pro-
posed in Eq. equals the expectation value of the KL
divergence between the true posterior and the model.
We proceed in two steps: we demonstrate that the four
expectation values can be rewritten in terms of two ex-
pectation values. These two expectation values can then
be exchanged (from Bayes’ theorem), yielding the desired
result.

Let us consider the following expectation value of the
function f(w, 2)

L = Epw)Ep(afu) Ep(yie) Epcely) f(w, 2) . (B1)
This can be written from definition as a fourfold integra-
tion

L= [ dwdsdydzpu) plafe) plyle) o) fw,2).
(B2)

17

Making the additional assumption that y and w are con-
ditionally independent given z, i.e.,

p(ylz, w) = p(y|z),

(B3)
and similarly that z and (z,w) are conditionally indepen-
dent given y, so that p(zly) = p(z|y, x,w), and applying
the law of conditional probability p(s|t)p(t) = p(s,t), the
above expression can be rewritten as

p(y, wlz) = p(ylz)p(w|x) &

L= /dwdmdydzp(w@,y,z) flw,2). (B4)

Since the function f is independent of the random vari-
ables x,y, we can perform the integration

L= /dw dz p(w) p(z|w) f(w, 2) (B5)

After applying Bayes’ theorem and changing the order of
the integration, we obtain

(B6)
The identity claimed in Section of equations
and can be obtained for w = A, v = 0k, y = Dk,
z =0k, f = —loglq(Alfx)] and p(w|z) is the target dis-
tribution, namely the population posterior given a set
of GW events p(A|[{Dx}rex). The conditional indepen-
dence conditions reduce to assuming p(Ax, A, Ok | D) =
p(0x | Dk )p(A, 0 | D ), which holds because the distribu-
tion of posterior samples depends only on the observed
data, and p(Dg, A0k ) = p(Dk |0k )p(AlfK), which holds
because the observed data depends only on the parameters
of the sources in the data.

Appendix C: Population details

In the results section we analyze 13 different popu-
lations, each of which has a different underlying set of
hyperparameters. Table [VI]lists the value of all parame-
ters for each population.
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