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The detection of gravitational waves resulting from the coalescence of binary black holes by
the LIGO-Virgo-Kagra collaboration has inaugurated a new era in gravitational physics. These
gravitational waves provide a unique opportunity to test Einstein’s general relativity and its mod-
ifications in the regime of extreme gravity. A significant aspect of such tests involves the study
of the ringdown phase of gravitational waves from binary black-hole coalescence, which can be
decomposed into a superposition of various quasinormal modes. In general relativity, the spectra
of quasinormal modes depend on the mass, spin, and charge of the final black hole, but they can
also be influenced by additional properties of the black hole spacetime, as well as corrections to the
general theory of relativity. In this work, we focus on a specific modified theory known as dynamical
Chern-Simons gravity, and we employ the modified Teukolsky formalism developed in a previous
study to investigate perturbations of slowly rotating black holes admitted by the theory. Specifically,
we derive the master equations for the Ψ0 and Ψ4 Weyl scalar perturbations that characterize the
radiative part of gravitational perturbations, as well as the master equation for the scalar field
perturbations. We employ metric reconstruction techniques to obtain explicit expressions for all
relevant quantities. Finally, by leveraging the properties of spin-weighted spheroidal harmonics to
eliminate the angular dependence from the evolution equations, we derive two, radial, second-order,
ordinary differential equations for Ψ0 and Ψ4, respectively. These two equations are coupled to
another radial, second-order, ordinary differential equation for the scalar field perturbations. This
work is the first attempt to derive a master equation for black holes in dynamical Chern-Simons
gravity using curvature perturbations. The master equations we obtain can now be numerically
integrated to obtain the quasinormal mode spectrum of slowly rotating black holes in this theory,
making progress in the study of ringdown in dynamical Chern-Simons gravity.

I. INTRODUCTION

The discovery of gravitational waves (GWs) has pro-
vided a new avenue for scrutinizing the predictions and
phenomenology of Einstein’s theory of general relativity
(GR) in regimes characterized by non-linear and dynamic
gravitational effects [1, 2]. GWs offer the opportunity to
investigate the properties of astrophysical objects where
gravity is notably intense, such as black holes (BHs) and
neutron stars (NSs). In particular, GWs are often gener-
ated by the coalescence of binary BH systems, wherein
two BHs orbit each other, gradually inspiraling due to the
emission of GWs, and ultimately merging to produce a
final BH that emits GW radiation as it settles down. GWs
during this part of the coalescence, known as the ringdown
phase, comprise a superposition of numerous quasinormal
modes (QNMs), each with a complex eigenfrequency. By
analyzing GW observations, it may thus become possible
to efficiently explore the distinctive spectrum of QNMs
exhibited by BHs as they ring down [3, 4].

QNMs are the characteristic vibrational modes of BHs
that are excited when the BH is perturbed. The study
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of QNMs can provide important information about the
fundamental properties of BHs and their surrounding
spacetime. In particular, the QNM spectrum of astro-
physical (i.e., uncharged) BHs in GR is fully determined
by just two parameters: the mass and spin of the remnant
BH. One promising application of QNMs is to test modi-
fied gravity theories and alternative models of compact
objects [5]. The predictions of modified gravity theories
may deviate from GR’s and can manifest as modifications
of the QNM spectrum of BHs [6–12]. By observing the
QNM spectrum of merging BHs with GW detectors, it
may be possible to place constraints on these modifica-
tions to GR and its models given two or more detections of
QNM frequencies with a strong signal-to-noise ratio. Re-
cent GW detections of binary BH mergers have provided
some of the most precise tests of GR in the strong-field
regime [13]. With improvements in detector technology
and advancements in computational techniques, using
ringdown to test modified gravity theories seems possible
in the near future.

To study QNMs in GR, there are two well-established
approaches within BH perturbation theory. One approach,
proposed by Regge and Wheeler [14], perturbs the met-
ric directly and it has been successfully applied to non-
rotating and slowly rotating BHs in GR [14–17], as well
as in modified theories of gravity [6–12]. However, this
approach has not been successfully applied to BHs with
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a general spin. An alternative approach uses curvature
perturbations, and it was presented by Teukolsky [18] to
study rotating Kerr BHs in GR, including their QNM
spectrum and dynamical stability [19]. This framework
uses the Newman-Penrose (NP) formalism [20] and con-
siders curvature perturbations characterized by quantities
known as Weyl scalars. The success of the Teukolsky
formalism lies in its ability to provide a decoupled evo-
lution equation for each of the Ψ0 and Ψ4 Weyl scalars,
which describe transverse gravitational perturbations, and
physically represent ingoing and outgoing GWs, respec-
tively. Not only are these quantities decoupled from
other gravitational degrees of freedom, their evolution
equations are also separable into a radial and an angular
equation [4, 19, 21].

The Teukolsky formalism in GR requires the back-
ground geometry to be algebraically of type D under the
Petrov classification [22], as is the case for Schwarzschild
and Kerr spacetimes in GR. This Petrov type D prop-
erty implies that four of the five Weyl scalars vanish on
the background. However, when considering beyond-GR
(bGR) theories, the deviations introduced may lead to
BHs described by non-Petrov-type-D spacetimes. For
instance, rotating BHs in dynamical Chern-Simons (dCS)
gravity and Einstein-dilaton Gauss-Bonnet gravity are
algebraically general and classified as Petrov type I. As a
consequence, the Teukolsky formalism cannot be directly
applied to bGR BH spacetimes. Therefore, calculating
the QNM spectra of spinning BHs in bGR theories has
been an open problem for a long time and warrants new
approaches. One potential resolution to this problem
became available recently with the development of the
modified Teukolsky formalism [23–26]. This formalism, in
theory, enables studying perturbations of spinning BHs
in bGR theories and calculating the QNM spectra of such
non-Ricci-flat, matter vacuum Petrov type I BH space-
times. Yet, for tests with GW data, a key theoretical
challenge remains to calculate the QNM spectra of BHs in
modified theories, and then compare them with observa-
tions. This work aims at computing the QNM spectrum
of one type of BH spacetimes.

In this work, we restrict our attention to modifications
to GR where a scalar field is non-minimally coupled to
topological invariant quadratic terms in curvature. A sub-
set of this class of theories, known as dCS gravity [27, 28],
was proposed to explain the matter-antimatter asymme-
try of the universe. This is achieved by the introduction of
additional parity-violating gravitational interactions, chal-
lenging a fundamental pillar of GR. Due to the quadratic
nature of this theory, it is not strongly constrained using
weak field tests and evades binary pulsar tests [29] and
GW polarization tests [30]. However, early work using
the metric perturbation approach shows promise that
ringdown tests can be useful in constraining this modified
theory of gravity [9].

We focus on slowly rotating BHs in dCS gravity to
leading order in spin in this work. This calculation serves
as a validation of the newly developed formalism [23], as

the results herein can then be confirmed with the results
obtained using the metric perturbation approach [9, 31].
We first use the formalism prescribed in [23] to obtain
the modified Teukolsky equation for a slowly rotating BH
in dCS gravity. To leading order in spin, these BH back-
grounds are described by a non-Ricci-flat, matter vacuum
Petrov type D spacetime [23, 32]. Solving the Bianchi
identities, we obtain the modified Teukolsky equation first
in the null NP basis. We then rewrite this equation in
the coordinate basis by defining a tetrad (similar to the
Kinnersly tetrad in GR). Finally, we make use of the prop-
erties of spin-weighted spheroidal harmonics to eliminate
the angular dependence and obtain a radial second-order
differential equation. Due to the non-minimal coupling
between the scalar field and the curvature, the perturbed
master equations of the scalar field and the Weyl scalars
(Ψ0 or Ψ4) are coupled in dCS gravity. Moreover, some of
these quantities also require metric reconstruction within
GR [33–37], making the problem more challenging, yet
still solvable, as we demonstrate here. Having obtained
the master equations in this work, we will use the eigen-
value perturbation method [24, 38, 39] in future work to
calculate the QNM spectrum and compare it with the
results using metric perturbations in dCS gravity [9, 31].

The remainder of this paper is organized as follows. We
first present in brief the action and the field equations
of dCS gravity in Sec. II along with the slowly rotating
BH solutions in this theory. In Sec. III, we present an
overview of the modified Teukolsky formalism in [23], de-
fine a three-parameter expansion under the slow-rotation
approximation, and calculate the NP quantities on the
dCS BH background. In Sec. IV, we provide a concise
review of the metric reconstruction procedures in GR. In
Secs. V, VI, and VII, we calculate the source terms of the
scalar field equation and the modified Teukolsky equation
of Ψ0 and Ψ4 in the null NP basis, the results of which
are summarized in Sec. VIII. In Sec. IX, we project the
equations into the coordinate basis and extract their ra-
dial parts using the properties of spin-weighted spheroidal
harmonics. Finally, in Sec. X, we summarize our work and
discuss some future avenues. Henceforth, we adopt the
following conventions unless stated otherwise: we work in
4-dimensions with metric signature (−,+,+,+) as in [40].
For all NP quantities except the metric signature, we use
the notation adapted by Chandrasekhar in [41].

II. BHS IN DCS GRAVITY

In this section, we will present the details of the theory
and the background BH spacetime used in this work.

A. dCS gravity

In this subsection, we briefly review the dCS gravity
following the discussion and the convention in [42]. A
more detailed review of dCS gravity can be found in
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[27, 28]. The action of dCS gravity is

S =

∫
d4x

√
−g
{
κgR+

α

4
ϑRνµρσ

∗Rµνρσ

− 1

2
[∇µϑ∇µϑ+ 2V (ϑ)] + Lmatter

}
,

(1)
where κg = 1

16πG , ∗Rµνρσ is the dual of the Riemann
tensor,

∗Rµνρσ =
1

2
ϵρσαβRµν

αβ , (2)

and ϑ is the pseudoscalar field coupled to the Pontryagin
density P := Rνµρσ

∗Rµνρσ via the dCS coupling constant
α. The quantity V (ϑ) is a potential for ϑ, which we set
to zero for the reasons explained in [43–45], along with
any matter contribution Lmatter (since we will work with
matter vacuum BH spacetimes) for the remainder of this
work. From Eq. (1), we find that [ϑ] = 1 and [α] = L2

in geometric units. Using these coupling constants, we
can define a dimensionless parameter ζ characterizing the
strength of the dCS correction to GR, where ζ is defined
in [42] to be

ζ ≡ α2

κgM4
, (3)

with M the typical mass of the system. When the system
under consideration contains a single black hole, then
M is its mass. When considering a binary system, then
different corrections to the solutions of the field equations
will scale with different (dimension-4) combinations of the
two masses.

Varying the action in Eq. (1) with respect to the metric
and the scalar fields, respectively, we obtain,

Rµν = − α

κg
Cµν +

1

2κg
T̄ϑ
µν , (4)

□ϑ = − α

4
Rνµρσ

∗Rµνρσ , (5)

where □ = ∇µ∇µ is the D’Alembertian operator, and

Cµν ≡ (∇σϑ) ϵ
σδα(µ∇αR

ν)δ + (∇σ∇δϑ)
∗
Rδ(µν)σ , (6)

T̄ϑ
µν ≡ (∇µϑ) (∇νϑ) . (7)

We have here adopted the trace-reversed form of the field
equations, using the fact that the C-tensor is traceless, as
it will render future calculations simpler.
The dCS action presented above is an effective theory

that includes only linear in α and quadratic in curvature
corrections to the Einstein-Hilbert action, thus ignoring
higher order terms in α and in curvature. Therefore,
the resulting field equations are also similarly effective,
and their solutions ought to be truncated at leading or-
der in α and considered only for systems (and regimes
of spacetime) with small curvatures. Various previous
work [42, 46] have studied the regime of validity of this
effective action and its curvature cutoff. In essence, the

effective theory remains valid provided (α2/κg)P
2 ≪ 1,

where recall that P has been defined as the Pontryagin
density. When this is the case, the higher order in α
and in curvature terms neglected in the action above can
continue to be ignored. The systems studied in this pa-
per involve the exterior spacetime of remnant BHs with
masses in the range 3M⊙ < M < 107M⊙. For such sys-
tems, the theory remains effective, and ζ ≪ 1 provided√
α≪ 107km, which will be assumed henceforth; the best

current constraints on α come from NICER and advanced
LIGO observations, and they require that α ≤ 8.5km at
90% confidence [47]. In this range of α and for these
BH masses, the quadratic curvature corrections to the
Einstein Hilbert action will remain perturbative, and the
higher-order in α and curvature terms will remain con-
trolled relative to the quadratic term included in the dCS
action.

B. Slowly rotating BHs in dCS gravity

Solutions to BHs in dCS gravity have been found both
numerically [48] and analytically [42, 49–51]. For this
work, we consider the analytical solution found in [49,
50], which were obtained by perturbatively solving the
field equations (4) and (5) to linear order in both the
dimensionless spin parameter χ, where χ ≡ a/M (with the
dimensional spin parameter a = S/M , where S is the spin
angular moment, and M is the BH mass), and the dCS
expansion parameter ζ, defined in Eq. (3). This analytical
solution casts the line element of a slowly rotating BH in
dCS gravity as

ds2 = ds2Kerr + ds2dCS , (8)

where, following the convention in [41], the line element for
the Kerr metric in Boyer-Lindquist coordinates (t, r, θ, ϕ)
is given by

ds2Kerr = gKerr
αβ dxαdxβ

=−
(
1− 2Mr

ρ̃2

)
dt2 − 4Mar sin2 θ

ρ̃2
dtdϕ+

ρ̃2

∆
dr2

+ ρ̃2dθ2 +

(
r2 + a2 +

2Ma2r sin2 θ

ρ̃2

)
sin2 θdϕ2 ,

(9)
with ρ̃2 ≡ r2 + a2 cos2 θ and ∆ ≡ r2 − 2Mr + a2. To
leading order in χ and ζ, the dCS modification to the
Kerr line element is given by

ds2dCS = −ζχG̃(r)
2

sin2 θdtdϕ , (10)

where

G̃(r) = −5M5

4r4

(
1 +

12M

7r
+

27M2

10r2

)
. (11)

The above dCS correction to the line element is of
O(ζ1, χ1, ϵ0), and thus, we can use the tri-variate notation
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that we will introduce in Sec. III C to write

h
(1,1,0)
tϕ = − G̃(r)

2
sin2 θ . (12)

The dCS metric of a slowly-rotating BH is then identical
to the Kerr metric, except for the (t, ϕ) component, which
acquires the correction presented above. Similarly, the
background scalar field at O(ζ1, χ1, ϵ0) is given by

ϑ(1,1,0) =
5M2

32
√
πr2

(
1 +

2M

r
+

18M2

5r2

)
cos θ , (13)

where we have absorbed a factor of ζ1/2 into the expansion
of ϑ as explained in more detail in [23].

III. BH PERTURBATIONS IN TEUKOLSKY
FORMALISM

In this section, we review the modified Teukolsky for-
malism developed in [23]. In this paper, we extend the two-
parameter expansion scheme in [23] to a three-parameter
expansion discussed in Sec. III C to incorporate the slow-
rotation approximation, following [9, 31].

A. Modified Teukolsky Equation

As discussed previously in Sec. I, for studying perturba-
tions of non-rotating BHs, we obtain the perturbed field
equations and decompose these into master equations by
making use of the metric perturbations [14–16, 52]. These
metric perturbations are separated into two sectors, de-
pending on their behavior under a parity transformation.
For each parity, all the metric degrees of freedom are
then packed into one master function: the Regge-Wheeler
function for odd parity [14] and the Zerilli-Moncrief func-
tion for even parity [15, 16]. The master equations gov-
erning these master functions are decoupled from other
dynamical degrees of freedom of the metric fields and are
separable into radial and angular equations.
However, for rotating BHs in GR, due to the lack of

spherical symmetry, to obtain the decoupled and separable
perturbed field equations, one has to use the Teukolsky
equations [18, 19, 53], where the fundamental variables to
solve for are the Weyl scalars Ψ0,4 characterizing curvature
perturbations. In this case, the master equations of Ψ0,4

are decoupled from other NP quantities and are separable
into purely radial and purely angular equations. For
a quick review of the NP formalism and the Teukolsky
formalism in GR, one can refer to the original papers [18,
19, 53, 54], the book [41], or more recent papers that work
in the Teukolsky formalism [23, 37].

In modified gravity, most calculations for rotating BHs
have so far been done using metric perturbations and
the slow-rotation expansion, e.g., [9, 31] in dCS gravity,
[10, 11] in EdGB theory, and [12, 55] in higher-derivative
gravity. However, these approaches cannot deal with BHs

with arbitrary spin, which motivated the development of
the modified Teukolsky formalism in [23, 24]. Following
the formalism in [23, 24], one can find separable and
decoupled equations for Ψ0,4 of BHs with arbitrary spin
in a wide class of modified gravity theories, such as in
dCS gravity, which can be treated as an EFT extension
of GR. In this paper, we will use the modified Teukolsky
equations of Ψ0,4 in [23]. For an alternative approach
following [56] by projecting the Einstein equations to the
Teukolsky equations, one can refer to [24].

In [23], the authors introduced a two-parameter expan-
sion, in terms of ζ and ϵ where

1. ζ is the parameter characterizing the strength of
modifications to GR. In the case of dCS gravity, ζ
is given by Eq. (3).

2. ϵ is the parameter characterizing the strength of
gravitational perturbations, which also appears in
GR.

In this way, one can expand all the NP quantities as

Ψi = Ψ
(0)
i + ϵΨ

(1)
i

= Ψ
(0,0)
i + ζΨ

(1,0)
i + ϵΨ

(0,1)
i + ζϵΨ

(1,1)
i (14)

and the extra non-metric fields, such as the pseudoscalar
field ϑ in dCS gravity, as

ϑ = ϑ(0) + ϵϑ(1) = ζϑ(1,0) + ζϵϑ(1,1) , (15)

where we have reserved the single superscript notation for
only an expansion in ϵ. When using the double-superscript
notation, however, the first superscript will also refer to
contributions proportional to ζ to a given power. In
contrast, the second superscript will refer to terms pro-
portional to ϵ to a given power.

Using the expansion in Eqs. (14) and (15), the authors
in [23] found that for a rotating BH described by a mat-
ter vacuum, non-Ricci-flat, Petrov type I spacetime that
perturbatively deviates from a Petrov type D spacetime
in GR, the gravitational wave perturbation Ψ0 satisfies

H
(0,0)
0 Ψ

(1,1)
0 = S(1,1)

geo + S(1,1) , (16)

where H
(0,0)
0 is the Teukolsky operator for Ψ0 in GR [18],

and the source terms are divided into a “geometric piece”,

S(1,1)
geo = S(1,1)

0,D + S(1,1)
0,non-D + S(1,1)

1,non-D , (17)

with

S(1,1)
0,D = −H(1,0)

0 Ψ
(0,1)
0 , (18a)

S(1,1)
0,non-D = −H(0,1)

0 Ψ
(1,0)
0 , (18b)

S(1,1)
1,non-D = H

(0,1)
1 Ψ

(1,0)
1 , (18c)

and a “Ricci piece”,

S(1,1) = E(0,0)
2 S

(1,1)
2 + E(0,1)

2 S
(1,0)
2 − E(0,0)

1 S
(1,1)
1

− E(0,1)
1 S

(1,0)
1 ,

(19)
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with S1,2 given by

S1 ≡ δ[−2,−2,1,0]Φ00 −D[−2,0,0,−2]Φ01

+ 2σΦ10 − 2κΦ11 − κ̄Φ02 ,
(20a)

S2 ≡ δ[0,−2,2,0]Φ01 −D[−2,2,0,−1]Φ02

− λ̄Φ00 + 2σΦ11 − 2κΦ12 .
(20b)

The operators H0,1, E0,1 are defined as

H0 = E2F2 − E1F1 − 3Ψ2 , H1 = E2J2 − E1J1 ,

E1 = E1 −
1

Ψ2
δΨ2 , E2 = E2 −

1

Ψ2
DΨ2 ,

(21)

where Ψ2 is a NP scalar, and we have also defined

F1 ≡ δ̄[−4,0,1,0] , F2 ≡ ∆[1,0,−4,0] ,

J1 ≡ D[−2,0,−4,0] , J2 ≡ δ[0,−2,0,−4] ,

E1 ≡ δ[−1,−3,1,−1] , E2 ≡ D[−3,1,−1,−1] .

(22)

The operators that appear in the above definitions are
defined for convenience to be

D[a,b,c,d] = D + aε+ bε̄+ cρ+ dρ̄ , (23a)

∆[a,b,c,d] = ∆+ aµ+ bµ̄+ cγ + dγ̄ , (23b)

δ[a,b,c,d] = δ + aᾱ+ bβ + cπ̄ + dτ , (23c)

δ̄[a,b,c,d] = δ̄ + aα+ bβ̄ + cπ + dτ̄ , (23d)

where (D,∆, δ, δ̄) are the usual NP differential operators
(constructed by contracting the tetrad with partial deriva-
tives), while (ε, ρ, µ, γ, α, β, π, τ) are spin coefficients, with
the overhead bar denoting complex conjugation, and
(a, b, c, d) are certain constants. For a complete derivation
of the equations above and the definition of Weyl scalars,
spin coefficients, directional derivatives, and Ricci NP
scalars, one can refer to [20, 23].

For this work, we are only interested in studying slowly
rotating BHs in dCS gravity up to O(χ). Such BHs
are described by vacuum non-Ricci-flat Petrov type D
spacetimes [32]. The modified Teukolsky equations for
these BHs hold the same form as given in Eq. (16) with

the source terms S(1,1)
0,non-D

and S(1,1)
1,non-D

in Eqs. (18b)–(18c)
vanishing.

The equation of Ψ
(0,1)
4 can be obtained from Eq. (16)

by the Geroch-Held-Penrose (GHP) transformation [57]
and is given in [23]:

H
(0,0)
4 Ψ

(1,1)
4 = T (1,1)

geo + T (1,1) , (24)

where H
(0,0)
4 is the Teukolsky operator in GR for Ψ4, and

the “geometric piece” of the source terms is defined as

T (1,1)
geo = T (1,1)

4,D + T (1,1)
4,non-D

+ T (1,1)
3,non-D

, (25)

with

T (1,1)
4,D = −H(1,0)

4 Ψ
(0,1)
4 , (26a)

T (1,1)
4,non-D = −H(0,1)

4 Ψ
(1,0)
4 , (26b)

T (1,1)
3,non-D = H

(0,1)
3 Ψ

(1,0)
3 , (26c)

whereas the “Ricci piece” is defined as

T (1,1) = E(0,0)
4 S

(1,1)
4 + E(0,1)

4 S
(1,0)
4 − E(0,0)

3 S
(1,1)
3

− E(0,1)
3 S

(1,0)
3 ,

(27)

with

S3 ≡ −∆[0,2,2,0]Φ21 + δ̄[2,2,0,−1]Φ22

+ 2νΦ11 + ν̄Φ20 − 2λΦ12 ,
(28a)

S4 ≡ −∆[0,1,2,−2]Φ20 + δ̄[2,0,0,−2]Φ21

+ 2νΦ10 − 2λΦ11 + σ̄Φ22 .
(28b)

The operators H3,4 and E3,4 are defined as

H4 = E4F4 − E3F3 − 3Ψ2 , H3 = E4J4 − E3J3 ,

E3 = E3 −
1

Ψ2
δ̄Ψ2 , E4 = E4 −

1

Ψ2
∆Ψ2 ,

(29)

with

F3 ≡ δ[0,4,0,−1] , F4 ≡ D[4,0,−1,0] ,

J3 ≡ ∆[4,0,2,0] , J4 ≡ δ̄[2,0,4,0] ,

E3 ≡ δ̄[3,1,1,−1] , E4 ≡ ∆[1,1,3,−1] .

(30)

Although the formalism above works for BHs with ar-
bitrary spin in dCS gravity, we choose to use the slow-
rotation expansion in this paper, so we can check the
consistency of our results with prior work using metric
perturbations [9, 31] in our next paper [58]. We imple-
ment a slow-rotation expansion of the above equations in
Sec. III C.

B. Structure of the source terms

Here, we further discuss the structure of the source
terms in Eq. (16) presented in [23]. In particular, we will
focus on the source terms that are non-vanishing for a
non-Ricci-flat, Petrov type D BH in dCS gravity, given in
Eqs. (18a) and (19). The source term in Eq. (18a) only

depends on the perturbed Weyl scalar Ψ
(0,1)
0 in GR and

the dCS corrections to the stationary NP quantities at
O(ζ1, ϵ0). One can solve the Teukolsky equation in GR

[18, 19] to calculate Ψ
(0,1)
0 directly. The NP quantities

at O(ζ1, ϵ0) can be computed from the dCS metric in
Eq. (10), as shown in more detail in Sec. IIID.
Due to the non-minimal coupling between the scalar

field and the metric, the source term S(1,1) in Eq. (19)
depends on both the scalar field perturbations and the
metric perturbations. To compute S(1,1), we first need to
calculate the NP Ricci scalars Φij using the stress tensor
or the Ricci tensor, i.e.,

Φ00 = −1

2
R11 = −1

2
Rµν l

µlν , (31)
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where lµ is one of the NP tetrad basis vectors. Since the
background and perturbed scalar field in GR vanish, we
have that ϑ(0,0) = ϑ(0,1) = 0. Therefore, the NP Ricci

scalars Φ
(1,1)
ij can be expressed as a function of the scalar

field perturbation ϑ(1,1) and the metric perturbation h(0,1)

as

Φ
(1,1)
ij = O(ϑ(1,0)h(0,1)) +O(ϑ(1,1)g(0,0)) , (32)

where g(0,0) and h(0,1) are shorthand for terms that de-
pend on the metric tensor of the GR background and
of the metric perturbation due to GWs reconstructed
in GR, respectively. From Eqs. (19), (20), and (32), we
notice that S(1,1) couples the GWs in GR and the scalar
field ϑ, so we need to solve the equations of motions of
these non-gravitational fields to find their contributions
to the stress tensor and S(1,1). Morevover, from Eqs. (21)–

(23), we see that S(1,1) in Eq. (19) depends on Ψ
(0,1)
2 , the

directional derivatives at O(ζ0, ϵ1), and the perturbed
spin coefficients at O(ζ0, ϵ1), which need to be retrieved

from the reconstructed metric perturbation h
(0,1)
µν for GR

GWs. One can either follow the metric reconstruction
approach in [33–36, 59–63], the so-called Chrzanowski-
Cohen-Kegeles (CCK) procedures, which involves defining
an intermediate quantity called the Hertz potential, or
the approach in [37, 41], which solves the remaining NP
equation directly. In this paper, we choose to follow the
more widely used CCK procedures and apply them to
compute the source term S(1,1).

C. Slow-rotation expansion

When considering a slow-rotation expansion, in addi-
tion to the quantities given in Eqs. (14) and (15), one
needs to consider an additional expansion in the dimen-
sionless spin parameter χ = a/M . As an extension of
Eqs. (14) and (15), all the NP quantities now admit a
three-parameter expansion in ζ, ϵ, and χ, where

Ψ =
∑
l,m,n

ζlχmϵnΨ(l,m,n) , (33)

as well as the pseudoscalar field,

ϑ =
∑
l,m,n

ζlχmϵnϑ(l,m,n) . (34)

In what follows, it will sometimes be convenient to hide the
χ expansion in more compact notation, such as ψ(1,1) =
ψ(1,0,1)+χψ(1,1,1). When only a two-parameter expansion
is denoted, the χ expansion will be assumed.

In this paper, we will focus only on linear perturbations
in ϵ, along with the small-coupling approximation and
the slow-rotation approximation, i.e., up to linear order
terms in ζ and χ, respectively. Therefore, our Eqs. (33)

and (34) can be expanded as

Ψ = Ψ(0,0,0) + χ
(
Ψ(0,1,0) + ζΨ(1,1,0)

)
+ ϵ
(
Ψ(0,0,1) + χΨ(0,1,1)

)
+ ζϵ

(
Ψ(1,0,1) + χΨ(1,1,1)

)
,

(35a)

ϑ = ζ
(
χϑ(1,1,0) + ϵϑ(1,0,1) + χϵϑ(1,1,1)

)
. (35b)

Equation (35a) groups the corrections to Ψ(0,0,0) into
three sets organized by parenthesis. The first set of terms
are stationary corrections to the Schwarzschild metric
due to the slow-rotation approximation in GR, Ψ(0,1,0),
and in dCS gravity, Ψ(1,1,0). The term Ψ(0,1,0) can be
retrieved from the slow-rotation expansion of the Kerr
metric in Eq. (9), and Ψ(1,1,0) can be evaluated with the
O(ζ1, χ1, ϵ0) correction to the metric in Eq. (10) found
by [49]. Since the Pontryagin density vanishes for any
spherically symmetric spacetime, and the Schwarzschild
metric is the unique stationary spherically symmetric
solution to the Einstein equations, there is no correction
to the metric at O(ζ1, χ0, ϵ0) [42]. Thus, we have dropped
the term Ψ(1,0,0) in Eq. (35a). For the same reason,
ϑ(1,0,0) = 0.
The second set of terms are the GW perturbations to

the Kerr metric in GR up to O(ζ0, χ1, ϵ1). These terms
include perturbed Weyl scalars, NP spin coefficients, and
directional derivatives, all of which need to be evaluated
in GR but include spin perturbations. To evaluate this
type of terms, we need metric reconstruction of GW
perturbations at O(ζ0, ϵ1), the procedures of which are
discussed in detail in Sec. IV.
The third set of terms are the one we want to solve

for, which are corrections to GW perturbations in dCS
gravity. The term Ψ(1,0,1) corresponds to gravitational
perturbations sourced by non-rotating BHs in dCS gravity.
Since ϑ(1,0,0) = 0, Ψ(1,0,1) is purely sourced by the leading
contribution to the dynamical pseudoscalar field ϑ(1,0,1),
so only S(1,0,1) contributes to Eq. (16), and no metric
reconstruction is needed. The term Ψ(1,1,1) corresponds
to leading-order corrections to gravitational perturbations
of slowly rotating BHs in dCS gravity. Unlike the non-
rotating case, since both the metric and ϑ are corrected at

O(ζ1, χ1, ϵ0), Ψ
(1,1,1)
0,4 can either be driven by dynamical

GW perturbations in GR or dynamical ϑ.
For the first type of correction, the driving terms can

come from S(1,1)
geo in the form of terms proportional to

the product h(1,0)h(0,1). As discussed in Sec. IIIA and
[23], this kind of terms is due to the correction to the
background geometry, so they are independent of bGR
theories. Up to O(ζ1, χ1, ϵ1), the background spacetime

is still Petrov type D [42], so S(1,1,1)
0,non-D = S(1,1,1)

1,non-D = 0 in

Eq. (17), and one does not need metric construction to
evaluate these terms [23]. In Sec. VIA, we will compute
S(1,1)

geo in detail. Besides S(1,1)
geo , there is also contribu-

tion from S(1,1) in the form of terms proportional to the
product ϑ(1,0)h(0,1) due to the effective stress tensor. In
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this case, metric reconstruction is needed, and we will
compute S(1,1) in Sec. VIB.

For the second type of correction, the driving terms
only come from S(1,1). Since both ϑ(1,0,1) and ϑ(1,1,1)

are nonzero, the metric field in these terms needs to be
evaluated on the Kerr background, expanded to O(χ). To
find ϑ(1,1), one needs to solve Eq. (5) at O(ζ1, ϵ1), i.e.,

□(0,0)ϑ(1,1) = −π− 1
2M2 [R∗R]

(0,1) −□(0,1)ϑ(1,0) . (36)

In Sec. V, we will compute the source terms of Eq. (36).
In Sec. VIB, we will compute the source terms driven by
ϑ(1,1) but leave ϑ(1,1) unevaluated. In our follow-up work
[58], we will solve both the modified Teukolsky equation
and the scalar field equation jointly to find the QNM
shifts. Since metric reconstruction at O(ζ0, ϵ1) is required
for both the modified Teukolsky equation and the scalar
field equation, we present a review of the procedures in
Sec. IV.

D. NP quantities on background

In this subsection, we will present the background
tetrad for a non-Ricci-flat, Petrov type D, slowly rotating,
dCS gravity BH spacetime. To obtain the null tetrad
for the metric given by the line element in Eq. (8), one
can follow the general procedures prescribed in [23] or
the standard procedures for finding the Kinnersley tetrad
in GR given in [41]. In [64], such a tetrad was found by
following the second approach. Nonetheless, for complete-
ness, let us re-derive the tetrad following the prescription
in [41, 64]. Our result is consistent with the one in [64],

but with additional tetrad rotations to set Ψ
(1,0)
0,1,3,4 = 0.

To begin, we first find the null geodesics in the equato-
rial plane for a dCS BH to be

dt

dτ
=

[
r2 + a2 − aG(r)

2

]
E

∆̃(r)
,

dr

dτ
=±

√
∆(r)∆̃(r)

(
1− aG(r)

r2

)
E

∆̃(r)
,

dθ

dτ
= 0 ,

dϕ

dτ
=

(
a+

G(r)

2

)
E

∆̃(r)
,

(37)

where E = −∂L /∂t is a constant of motion, L is the

Lagrangian for Kerr in [41], ∆̃(r) = ∆(r) + 2aMG(r)/r+

G(r)2/4, and G(r) = ζχG̃(r). Following the procedures
outlined in [41], we align the tetrad basis vectors lµ and nµ

along the outgoing and ingoing null geodesics respectively

at the equilateral plane with E = 1 such that

lµ =
1

∆̃(r)

(
r2 + a2 − aG(r)

2
,

√
∆(r)∆̃(r)

(
1− aG(r)

r2

)
,

0 , a+
G(r)

2

)
,

(38)

nµ = N

(
r2 + a2 − aG(r)

2
, −

√
∆(r)∆̃(r)

(
1− aG(r)

r2

)
,

0, a+
G(r)

2

)
,

(39)

where N is the normalization factor introduced to impose
lµnµ = −1. Since lµ and nµ are along null geodesics,
lµlµ = nµnµ = 0 is satisfied automatically. Expanding
Eqs. (38) and (39) up to O(ζ1, χ1, ϵ0), we find

lµ =

(
r

r − rs
, 1 , 0 ,

χM

r(r − rs)
+

ζχG̃(r)

2r(r − rs)

)
, (40)

nµ = Ñ(r)

(
r

r − rs
, −1 , 0 ,

χM

r(r − rs)
+

ζχG̃(r)

2r(r − rs)

)
,

(41)

where rs is the Schwarzschild radius given by rs = 2M ,
and Ñ(r) = (r − rs)/2r. When ζ = 0, lµ and nµ reduce
to the Kinnersley tetrad of Kerr BHs expanded to O(χ1).
The tetrad basis vectors lµ and nµ in Eqs. (40) and (41)
are the same as the principal null directions in Eq. (31)
of [64].

To obtain the remaining components of the null tetrad,
notice that the correction to the Kerr metric due to dCS
gravity enters at O(ζ1, χ1, ϵ0) only in the tϕ-component.
Therefore, it can be expected that the corrections to the
Kinnersley tetrad are only along the ∂t and ∂ϕ direc-
tions, which is seen to be true for lµ and nµ. Thus, at
O(ζ1, χ1, ϵ0), the corrections to the remaining null tetrad
components, mµ and m̄µ, take the form

mµ(1,1,0) = (mt(r, θ), 0, 0, mϕ(r, θ)) , (42)

where m̄µ can be obtained by taking the complex conju-
gation of Eq. (42). Imposing the remaining orthogonality
conditions to O(ζ1, χ1, ϵ0), we find mt(r, θ) = mϕ(r, θ) =
0. Therefore,

mµ =
1√
2r

(
iχM sin θ, 0, 1− iχM cos θ

r
,

i

(
1− iχM cos θ

r

)
csc θ

)
.

(43)

Notice that mµ (and therefore m̄µ) holds the same form
as the Kinnersley tetrad of Kerr BH expanded to O(χ).
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Using Eqs. (40), (41), and (43), to O(ζ1, χ1, ϵ0), we obtain

Ψ0 = Ψ4 = 0 , Ψ1 = −3
√
2iζχA1(r)

32r9
sin θ ,

Ψ2 = −M
r3

− 3iχ

r4

(
M2 − ζA2(r)

8r5

)
cos θ ,

Ψ3 = −3
√
2iζχA3(r)

64r10
sin θ ,

(44)

where Ai(r) are listed in Appendix A.

Such a calculation contradicts the claim that BHs in
dCS gravity are Petrov type D spacetimes to O(χ). We
see that the seeming contradiction arises due to the non-
vanishing Ψ1 and Ψ3 on the background. However, we

can perform tetrad rotations to eliminate Ψ
(1,1,0)
1 and

Ψ
(1,1,0)
3 , as described in detail in Appendix A. This can

be achieved by a type II rotation [i.e., Eq. (A1b)] with

b(1,1,0) = −
√
2iA1(r) sin θ/(32Mr6) and a type I rotation

[i.e., Eq. (A1a)] with a(1,1,0) =
√
2iA3(r) sin θ/(64Mr7),

respectively. Following this, we finally obtain

Ψi = 0 ∀ i ∈ {0, 1, 3, 4} ,

Ψ2 = −M
r3

− 3iχ

r4

(
M2 − ζA2(r)

8r5

)
cos θ . (45)

The explicit expression for the rotated tetrad is listed in
Eq. (A4). Different from [64], we will call the tetrad in
Eq. (A4) the “principal tetrad.” Notice that, in [32], a
Kinnersley-like tetrad for the dCS metric expanded up

to O(ζ1, χ2, ϵ0) was also found. To impose that Ψ
(1,0)
0,4

vanish atO(χ2), when the background spacetime is Petrov
type I, Ref. [32] added terms at O(ζ1/2, χ1, ϵ0) to the
tetrad. In this paper, however, we only want to impose

Ψ
(1,0,0)
0,1,3,4 = Ψ

(1,1,0)
0,1,3,4 = 0, and prefer to keep the expansion

scheme in Eq. (14), so the tetrad in Eq. (A4) is more
suitable for our purposes.

We have also listed all the spin coefficients up to
O(ζ1, χ1, ϵ0) in the principal tetrad in Appendix A.
For any vacuum Petrov type D spacetimes in GR, the
Goldberg-Sachs theorem requires that in the tetrad where
κ = σ = λ = ν = 0, the Weyl scalars Ψ0,1,3,4 = 0 and vice

versa. However, in dCS gravity, since the effective stress
tensor is nonzero, the background spacetime is non-Ricci-

flat. Thus, Ψ
(1,0)
0,1,3,4 do not necessarily vanish in the tetrad

where κ(1,0) = σ(1,0) = λ(1,0) = ν(1,0) = 0 and vice versa.
For the tetrad in Eqs. (40), (41), and (43), we found that

κ(1,0) = σ(1,0) = λ(1,0) = ν(1,0) = 0 while Ψ
(1,0)
1,3 ≠ 0 up

to O(ζ1, χ1, ϵ0). This tetrad is along the principal null
directions found in [64]. Nonetheless, the master equation

Eq. (16) is more simplified when Ψ
(1,0)
0,1,3,4 = 0, so we will

use the principal tetrad in Eq. (A4) for the remaining
calculations even if the spin coefficients mentioned above
do not vanish along the principal tetrad.

IV. METRIC RECONSTRUCTION

This section reviews how to reconstruct the perturbed
metric and the corresponding NP quantities from solutions
to the Teukolsky equation for Kerr BHs in GR. There are
two approaches to metric reconstruction in general: the
first approach involves systematically solving the Bianchi
identities, Ricci identities, and commutation relations [37,
41], whereas the second approach, or the CCK procedures,
utilizes an intermediate Hertz potential to reconstruct the
metric [33–36, 59–63]. In this work, the second approach
is employed to perform metric reconstruction.

A. Metric perturbations

In this subsection, we present the reconstructed metric

perturbation h
(0,1)
µν for GR GWs. For convenience, in this

section, we will drop the superscript (0, 1) of h
(0,1)
µν and

always assume that hµν is at O(ζ0, ϵ1). The CCK proce-
dures can be carried out in two different gauge choices:

Ingoing radiation gauge (IRG): hαβl
β = 0 , h = 0 ,

(46)

Outgoing radiation gauge (ORG): hαβn
β = 0 , h = 0 ,

(47)

where h is the trace of hαβ with respect to the background
metric. The reconstructed metric hαβ in the IRG and
ORG are given in Eqs. (48) and (49), respectively [35, 36],

(hαβ)IRG =
[
lαlβ

(
δ̄[1,3,0,−1]δ̄[0,4,0,3] − λD[0,4,0,3]

)
+ m̄αm̄β

(
D[−1,3,0,−1]D[0,4,0,3]

)
−l(αm̄β)

(
D[1,3,1,−1]δ̄[0,4,0,3]

)
+ δ̄[−1,3,−1,−1]D[0,4,0,3]

]
Ψ̄H + c.c. , (48)

(hαβ)ORG =− ρ−4
[
nαnβ

(
δ[−3,−1,5,0]δ[−4,0,1,0]

)
+mαmβ

(
∆[0,5,1,−3]∆[0,1,0,−4]

)
+n(αmβ)

(
δ[−3,1,5,1]∆[0,1,0,−4]

)
+∆[−1,5,−1,−3]δ[−4,0,1,0]

]
ΨH + c.c. , (49)

where the notation for the derivatives is given by Eq. (23),
and Ψ̄H is the complex conjugate of the Hertz potential.

We have also dropped the superscript (0, 1) of the Hertz
potential for simplicity. Notice, since we use an opposite
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signature from [35, 36], our Eqs. (48) and (49) have an
opposite sign from the results in [35, 36].

B. Hertz potential

The Hertz potential ΨH that appears in Eq. (48) in
the IRG and Eq. (49) in the ORG satisfies the Teukolsky

equation for ρ−4Ψ
(0,1)
4 and Ψ

(0,1)
0 , respectively [33, 34, 59,

62, 65]. For convenience, let us drop the superscript (0, 1)

of Ψ
(1,1)
0,4 and always assume that Ψ0,4 are at O(ζ0, ϵ1) in

this subsection. Using the perturbed metric in Eq. (48),
the relation between the Hertz potential ΨH and Ψ0,4 can
be found by directly evaluating the Riemann tensor or
by using the Ricci identities. In the IRG, the perturbed
Weyl scalars can then be expressed in terms of the Hertz
potential using

Ψ0 = −1

2
D4Ψ̄H , (50a)

Ψ4 = −1

8
ρ4
[
L†4Ψ̄H − 12M∂tΨH

]
, (50b)

and in the ORG,

Ψ4 = − 1

32
ρ4∆2D†4∆2Ψ̄H , (51a)

Ψ0 = −1

8

[
L4Ψ̄H + 12M∂tΨH

]
, (51b)

where ρ = −1/(1− ia cos θ) and

D = lµ∂µ =
r2 + a2

∆
∂t + ∂r +

a

∆
∂ϕ ,

D† = −r
2 + a2

∆
∂t + ∂r −

a

∆
∂ϕ ,

L†
s = ia sin θ∂t − [∂θ − s cot θ − i csc θ∂ϕ] ,

L†4 = L†
1L

†
0L

†
−1L

†
−2 .

(52)

Note that the D operator was introduced before in
Eq. (23), but here we provide its expression using the
Kinnersely tetrad. We point out that these are the same
operators that appear in the Teukolsky-Starobinsky iden-
tity [19, 41]. Notice, Eqs. (50) and (51) follow [35], which
corrected a factor of one-half in earlier papers [33, 34, 59].
Similar to the perturbations of Ψ0 and Ψ4, the Hertz

potential can be defined in the coordinate basis (t, r, θ, ϕ)
as

IRG : Ψ̄H = 2R̂ℓm(r) 2Yℓm(θ, ϕ)e−iωt , (53a)

ORG : Ψ̄H = −2R̂ℓm(r)−2Yℓm(θ, ϕ)e−iωt , (53b)

where ±2Yℓm(θ, ϕ) = ±2Sℓm(θ)eimϕ are spin-weighted
spheroidal harmonics of spin weight ±2 solving the an-
gular Teukolsky equation in GR. ±2R̂ℓm(r) are radial
functions that can be expressed in terms of the radial

Teukolsky functions 2R
(0,1)
ℓm (r) and −2R

(0,1)
ℓm (r) of Ψ

(0,1)
0

and ρ−4Ψ
(0,1)
0 , respectively, by inverting Eqs. (50a) and

(51a) using the Teukolsky-Starobinsky identity [61],

2R̂ℓm(r) = − 2

C
∆2(D†

mω)
4
[
∆2

2R
(0,1)
ℓm (r)

]
, (54a)

−2R̂ℓm(r) = −32

C
(Dmω)

4
−2R

(0,1)
ℓm (r) . (54b)

Here, the operators Dmω and D†
mω are mode decomposi-

tion of D and D†, respectively [61],

Dmω = ∂r + i
am− (r2 + a2)ω

∆
,

D†
mω = ∂r − i

am− (r2 + a2)ω

∆
.

(55)

C is the mode-dependent Teukolsky-Starobinsky constant
[19, 61, 66, 67]

C = λ2 (λ+ 2)
2 − 8ω2λ

[
α̃2 (5λ+ 6)− 12a2

]
+ 144ω4α̃4 + 144ω2M2 , (56)

where α̃ = a2 − am/ω and λ = sAℓm + s+ |s| with sAℓm

being the Teukolsky’s angular separation constant [18].
For a Schwarzschild BH, sAℓm = (ℓ− s)(ℓ+ s+ 1). Fur-
thermore, one can notice from Eq. (50) that any (ℓ,m, ω)

mode of Ψ
(0,1)
0 in the IRG generates a mixture of (ℓ,m, ω)

and (ℓ,−m,−ω̄) modes of Ψ
(0,1)
4 . Thus, it is more conve-

nient to use the ORG when solving the modified Teukolsky

equation of Ψ
(1,1)
4 . For a similar reason, when solving the

modified Teukolsky equation of Ψ
(1,1)
0 , we will use the

IRG.
Substituting the differential operators D†

mω and Dmω

in Eq. (55) into the expression for the radial part of the
Hertz potential in Eq. (54), we have

sR̂ℓm(r) =sf
ℓm
1 (r, ω,M)sR

(0,1)
ℓm (r)

+ sf
ℓm
2 (r, ω,M)sR

′(0,1)
ℓm (r) , (57a)

sR̂
′
ℓm(r) =sf

ℓm
3 (r, ω,M)sR

(0,1)
ℓm (r)

+ sf
ℓm
4 (r, ω,M)sR

′(0,1)
ℓm (r) , (57b)

where we have made use of the radial Teukolsky equa-
tion to reduce all second- and higher-order derivatives

of sR
(0,1)
ℓm (r). In Eq. (57), the prime denotes the first

derivative with respect to the radial coordinate r. The
functions fi are spin weight s and mode dependent. These
functions are lengthy and non-illuminating, so they have
been presented in a separate Mathematica notebook [68].

C. Spin-weighted spheroidal harmonics

Spin-weighted spheroidal harmonics that appear in
Eq. (53) are solutions to the angular Teukolsky equa-
tion in GR [18, 19]. In general, these are eigenfunctions
of an equation of the form [69]

1

sin θ

d

dθ

(
sin θ

dz

dθ

)
−
(
m2 + s2 + 2ms cos θ

sin2 θ
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−γ2 cos2 θ + 2sγ cos θ − sA
γ
ℓm

)
z = 0 , (58)

where s represents the spin weight, sA
γ
ℓm is the eigenvalue

of the equation, which has been numerically calculated in
the literature [19]. Comparing Eq. (58) with the angular
Teukolsky equation in GR [18], we see that γ = χMω.
In the slow-rotation expansion, spin-weighted spheroidal
harmonics sYγ

ℓm can be expanded as [19, 69]

sYγ
ℓm = sYℓm + γ

(
sb

m
ℓ,ℓ+1 sYℓ+1m + sb

m
ℓ,ℓ−1 sYℓ−1m

)
+O(γ2) , (59)

where sYℓm are spin-weighted spherical harmonics with
spin weight s. The factors sb

m
ℓ,ℓ±1 in Eq. (59) hold the

form [69]

sb
m
ℓ,ℓ+1 = −

s
√
[(ℓ+ 1)2 −m2] [(ℓ+ 1)2 − s2]

(ℓ+ 1)2
√
(2ℓ+ 1)(2ℓ+ 3)

, (60a)

sb
m
ℓ,ℓ−1 =

s
√
(ℓ2 −m2) (ℓ2 − s2)

ℓ2
√
(2ℓ− 1)(2ℓ+ 1)

. (60b)

To evaluate spin-weighted spherical harmonics, one can
use

sYℓm(θ, ϕ) = (−1)ℓ+m−s

√
(ℓ+m)!(ℓ−m)!(2ℓ+ 1)

4π(ℓ+ s)!(ℓ− s)!
sin2ℓ

(
θ

2

)
eimϕ ×

ℓ−s∑
q=0

(−1)q
(
ℓ− s
q

)(
ℓ+ s

q + s−m

)
cot2q+s−m

(
θ

2

)
.

(61)

In the special case that s = 0, the spin-weighted spherical
harmonics become the standard spherical harmonics, i.e.,

0Yℓm = Yℓm . (62)

Spin-weighted spherical harmonics and spin-weighted
spheroidal harmonics also obey the following orthogo-
nality relations,∫

S2

dS sYγ
ℓm sȲγ

ℓ′m′ = δℓℓ′δmm′ , (63)∫
S2

dS sYℓm sȲℓ′m′ = δℓℓ′δmm′ , (64)

where dS is the solid angle element, and the integration
is over the entire 2-sphere. At certain places, we might
drop the superscript γ of sYγ

ℓm denoting its eigenvalue for
simplicity.
A spin-weighted spherical harmonic sYℓm with spin

weight s can also be raised to s+1Yℓm of spin weight s+1
via the raising operator ð or lowered to s−1Yℓm of spin
weight s via the lowering operator ð̄. The operators ð
and ð̄ are defined to be [70]

ð sF = − (∂θ − i csc θ∂ϕ − s cot θ) sF , (65a)

ð̄ sF = − (∂θ + i csc θ∂ϕ + s cot θ) sF , (65b)

where sF is some function of spin weight s, such that

ð sYℓm = [(l − s)(l + s+ 1)]1/2 s+1Yℓm , (66a)

ð̄ sYℓm = −[(l + s)(l − s+ 1)]1/2 s−1Yℓm . (66b)

One can further rewrite the directional derivatives δ(0,0,0)

and δ̄(0,0,0) on the Schwarzschild background in terms of

ð and ð̄, respectively, i.e.,

δ(0,0,0)sF = − 1√
2r

(
ð̄− s cot θ

)
sF , (67a)

δ̄(0,0,0)sF = − 1√
2r

(
ð̄+ s cot θ

)
sF . (67b)

By expanding δ(0,0) and δ̄(0,0) in terms of δ(0,0,0) and
δ̄(0,0,0) in the slow-rotation limit, one can also replace
δ(0,0) and δ̄(0,0) with ð and ð̄. In Secs. V–VII, we will
use Eq. (67) to simplify the terms with δ(0,0) and δ̄(0,0)

acting on spin-weighted spherical harmonics.

D. Perturbed NP quantities

As we are working within the NP basis, in addition to
the perturbed metric given by Eq. (48), we also require
the reconstruction of the perturbed NP quantities, such as
the perturbed tetrad, Weyl scalars, and spin coefficients.
We adopt the methodology outlined in [37, 65] to perform
this reconstruction. The first step involves expressing
the perturbed tetrad in terms of the background tetrad.
This is accomplished by expanding the perturbed tetrad
in terms of the background tetrad, and then utilizing
the transformation properties of the tetrad to obtain the
perturbed tetrad components in terms of the background
tetrad components such that

eµ(0,1)a = Aa
b(0,1)e

µ(0,0)
b , (68)

where eµa represents a null tetrad such that

eµa = {lµ, nµ,mµ, m̄µ} , (69)
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and Aa
b are coefficients that map the background tetrad

to the perturbed tetrad.
As shown in [37, 65], one can always perform tetrad

rotations to set six real parameters of the Aa
b(0,1) coef-

ficients to zero. Then, expanding hµν in terms of e
a(0,1)
µ

and e
a(0,0)
µ and using the linearized completeness relation,

we find

h(0,1)µν = − 2
[
l
(0,1)
(µ n

(0,0)
ν) + l

(0,0)
(µ n

(0,1)
ν)

−m(0,1)
(µ m̄

(0,0)
ν) −m

(0,0)
(µ m̄

(0,1)
ν)

]
.

(70)

Comparing Eq. (70) to Eq. (68), we find [37, 65],

lµ(0,1) =
1

2
h
(0,1)
ll nµ ,

nµ(0,1) =
1

2
h(0,1)nn lµ + h

(0,1)
ln nµ ,

mµ(0,1) = h(0,1)nm lµ + h
(0,1)
lm nµ − 1

2
h
(0,1)
mm̄ mµ − 1

2
h(0,1)mm m̄µ ,

(71)

where we have dropped the superscripts of e
µ(0,0)
a for

simplicity. Since we have adopted the sign convention
in [41], our signature is opposite to that used in [37,
65]. Therefore, the perturbed tetrad in Eq. (71) has
an opposite sign from the results of [37, 65], as seen in
Eq. (70). Equation (71) works for both the IRG and ORG.

In the IRG or ORG, we can further set h
(0,1)
la = h

(0,1)
mm̄ = 0

or h
(0,1)
na = h

(0,1)
mm̄ = 0 in Eq. (B4), respectively, where a is

any index in the NP basis.
For the spin coefficients, one can linearize the commu-

tation relation following [41],

[eµa , e
µ
b ] = (γcba − γcab) e

µ
c = Cab

ceµc , (72)

where γabc is the Ricci rotation coefficients. Using the
relation between spin coefficients and Ricci rotation coef-
ficients in Eq. (B1), one can write Cab

c in terms of spin
coefficients, as listed in Eq. (B2) [20, 41]. From Eq. (B2),
one can also solve for spin coefficients in terms of Cab

c,
and the results are in Eq. (B3). Expanding Eq. (72) using
Eq. (68), one finds

Cab
c(0,1) = ∂aAb

c(0,1) − ∂bAa
c(0,1)

−
(
Aa

d(0,1)Cbd
c −Ab

d(0,1)Cad
c +Ad

c(0,1)Cab
d
)
,

(73)
where the superscripts of Cab

c(0,0) are dropped for con-
venience. The coefficients Aa

b(0,1) can be retrieved from
Eq. (71). The GR structure constants Cab

c(0,0) are di-
rectly given by Eq. (B2) and the spin coefficients in GR.
With all the quantities in Eq. (73), one can then use
Eq. (73) and (B3) to evaluate the spin coefficients at
O(ζ0, ϵ1). We have listed our result in Eq. (B4), which
works for both the ORG and IRG. Our result is consistent
with [37] up to the overall minus sign due to different
signatures, which corrects some errors in [65].
To reconstruct Weyl scalars, one can either directly

linearize the Riemann tensor and project it onto the NP

basis to find Weyl scalars or use the Ricci identities in
Eq. (B5). For both approaches, we use the perturbed
tetrad in Eq. (71), and we check that the results are
consistent. We also compare our results in the IRG to the
equations in [35], which corrected a factor of 1/2 missed in
[59] and are listed in Eq. (B6). After expressing everything

in terms of the Hertz potential, our results of Ψ
(0,1)
0,1,2,4 in

the IRG agree perfectly with Eq. (B6) but not for Ψ
(0,1)
3 .

Since Ψ
(0,1)
3 is not invariant either under tetrad rotations

or coordinate transformations at O(ζ0, ϵ1), this difference
indicates that we might have a O(ζ0, ϵ1) difference in the
choices of coordinate or tetrad.
For coordinate- and tetrad-invariant quantities Ψ

(0,1)
0,4 ,

our results are consistent with [35, 59]. In addition, since

Ψ
(0,1)
2 is invariant under tetrad rotations but not coor-

dinate transformations at O(ζ0, ϵ1) [i.e., Eqs. (B9) and
(B11)], we are in the same coordinate as [35, 59], con-
sistent with that we all use the IRG. Thus, the differ-

ence in Ψ
(0,1)
3 is only due to tetrad choices at O(ζ0, ϵ1),

where we explicitly follow the convention in [37, 65], but
Refs. [35, 59] were not explicit about their tetrad choices
at O(ζ0, ϵ1). More specifically, we find that the tetrad in

Eq. (71) after setting h
(0,1)
la = h

(0,1)
mm̄ = 0 differs from the

tetrad in [35, 59] by a type I rotation. In Schwarzschild,

this difference in Ψ
(0,1)
3 can be compactly written as

Ψ
(0,1)
3 = Ψ

(0,1)
3,CCK

+
3

2
Ψ2h

(0,1)
nm̄ , (74)

where Ψ
(0,1)
3,CCK

is the result in [35, 59]. The results of

other Weyl scalars at O(ζ0, ϵ1) in Schwarzschild are listed
in Eq. (B7). For Kerr, we do not have such a simple

correction to Ψ
(0,1)
3 , so we will just use the Ricci identity

in Eq. (B5d). Similarly, in the ORG, no previous literature

provided results of all the Weyl scalars in terms of Ψ
(0,1)
H

directly, so we also use the Ricci identity to evaluate them.
When deriving the modified Teukolsky equations, we

made the gauge choice that Ψ
(0,1)
1,3 = 0, but this is not

the case for the tetrad in Eq. (71), as one can see in
Eqs. (B5)–(B7). Thus, to be consistent with the gauge
we chose for the modified Teukolsky equations, we need to
perform additional type I and type II rotations to remove

Ψ
(0,1)
1,3 . From Eq. (B9), we find the rotation parameters

to be

a(0,1) = − Ψ̄
(0,1)
3

3Ψ2
, b(0,1) = −Ψ

(0,1)
1

3Ψ2
. (75)

Since Ψ
(0,1)
0,2,4 = 0 are invariant under tetrad rotations at

O(ζ0, ϵ1), one can continue using Eqs. (B5)-(B7) by just

setting Ψ
(0,1)
1,3 = 0. For spin coefficients, their values

after the rotation are listed in Eq. (B10) following [41].
With these reconstructed quantities, we are now ready
to evaluate the source terms in the equation of ϑ(1,1) in
Eq. (36).
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V. THE EVOLUTION EQUATION FOR ϑ(1,1) IN
THE IRG

In this section, we project the equation governing ϑ(1,1)

[Eq. (36)] onto the NP basis using the IRG. For conve-
nience, we define the right-hand side of Eq. (36) as

S(1,1)
ϑ ≡ −π− 1

2M2 [R∗R]
(0,1) −□(0,1)ϑ(1,0) (76)

so that the evolution equation for ϑ(1,1) becomes

□(0,0)ϑ(1,1) = S(1,1)
ϑ . (77)

This equation is first expressed in terms of the NP quan-
tities, following which we evaluate its left-hand side us-
ing the background NP quantities in Sec. IIID and Ap-
pendix A and its right-hand side using the reconstructed
NP quantities at O(ζ0, ϵ1) in Sec. IV and Appendix B.
The same methodology demonstrated in this section is
applied to computing the modified Teukolsky equation
in Sec. VI. Figure 1 presents a schematic illustration of
the steps involved in calculating a completely separated
radial evolution equation for the scalar field perturbation
in the IRG.

A. Projection onto the NP basis

In this subsection, we project Eq. (36) onto the NP
basis. This projection involves the projection of two fun-
damental quantities: the D’Alembertian operator □ and
the Pontryagin density R∗R onto the NP basis. In partic-
ular, our goal is to express these quantities in terms of NP
quantities, particularly the below-mentioned quantities in
the NP basis, namely

∗Rabcd =
1

2
ϵcd

efRabef

∇b∇aϑ = ∇b (ϑ,a) = ϑ,ab − γdabϑ,d .
(78)

Here, ηab is the metric in the NP basis. The notation
f,a denotes the directional derivative of f defined by the
tetrad basis eµa . The quantities γabc are Ricci rotation
coefficients, which can be expressed in terms of spin co-
efficients using Eq. (C1) [20]. The tensor Rabcd can be
expressed in terms of Weyl scalars using Eq. (C3) [20].
Therefore, the Pontryagin density and the □ operator can
be expressed in the NP basis as

R∗R = 8i(3Ψ2
2 − 4Ψ1Ψ3 +Ψ0Ψ4 − c.c.) , (79a)

□ = −
[
{D,∆} − {δ, δ̄}+ (µ+ µ̄− γ − γ̄)D

+(ϵ+ ϵ̄− ρ− ρ̄)∆+ (α− β̄ − π + τ̄)δ

+(ᾱ− β − π̄ + τ)δ̄
]
.

(79b)

The factor of i in Eq. (79a) arises from the normalization
of the Levi-Civita tensor ϵabcd in the NP basis. In the
literature, such as in [71], the covariant Levi-Civita tensor

is typically defined as ϵµν···γ =
√
|g|ϵ̃µν···γ , where ϵ̃µν···γ

denotes the Levi-Civita symbol. However, this definition
encounters issues when attempting to convert a Levi-
Civita tensor from Boyer-Lindquist coordinates to the
NP basis, due to the determinant of the Jacobian relating
these two bases often being complex. Thus, to convert
the tensor density ϵ̃µν···γ to a tensor, we instead need to
define

ϵµν···γ =
√
−g ϵ̃µν···γ , (80)

which has the same normalization factor as the Einstein-
Hilbert action. The absolute value in the usual definition
is to impose that the Levi-Civita tensor is a real tensor in
the Lorentzian signature, but the minus sign of

√
−g will

do the same trick. Since η = 1, we find the normalization
factor to be i rather than 1 from Eq. (80). This is also
consistent with that

ϵlnmm̄ =
1

2
(ϵlnmm̄ − ϵlnmm̄) , (81)

which shows that ϵlnmm̄ is an imaginary number. We
have now expressed all the terms in Eq. (36) in the NP
basis.

B. Left-hand side of Eq. (36)

In this subsection, we compute the operator □(0,0) act-
ing on ϑ(1,1) to obtain the homogeneous component of
Eq. (36). The operator □(0,0) can be evaluated directly
using the Kerr metric presented in Eq. (9). Alternatively,
one can use Eq. (79b) and the NP quantities of Kerr,
expanded up to O(χ), as given by Eqs. (A4)–(A6), and
then setting ζ to zero. We therefore find

□(0,0) = − 1

r2
H

(0,0)
ϑ , (82)

where H
(0,0)
ϑ is the Teukolsky operator for particles with

spin weight s = 0 in [18],

H
(0,0)
ϑ = − r(r − rs)∂

2
r − 2(r −M)∂r −

ω2r3 − 4mχωM2

r − rs

− ∂2θ − cot θ∂θ +m2 csc2 θ ,
(83)

where we have only kept the terms up to O(χ) and sepa-
rated ϑ(1,1) as

ϑ(1,1) = Θℓm(r)0Yℓm(θ)e−iωt , (84)

or in the slow-rotation expansion

ϑ(1,1) = Θℓm(r)
[
0Yℓm(θ, ϕ) + χMω

(
0b

m
ℓ,ℓ+1 0Yℓ+1m

+ 0b
m
ℓ,ℓ−1 0Yℓ−1m

)
+O(χ2)

]
e−iωt .

(85)
Thus, in the absence of sources, Θℓm(r) satisfies

[
r(r − rs)∂

2
r +2(r −M)∂r +

ω2r3 − 4χmM2ω

r − rs
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Scalar field equation for ϑ(1,1) in the IRG

Left-hand side of Eq. (36) Right-hand side of Eq. (36)

In coordinate basis

Equation (83)

Separated radial equation

Equation (86)

Source term S(1,1)
ϑ rewritten as Eq. (91)

In coordinate basis
using the Hertz potential Eq. (92)

Expression for (R∗R)(0,1) and □(0,0,1)ϑ(1,1,0) in
{t, r, θ, ϕ} coordinates in Eq. (93) and Eq. (95)

Using the recipe in Sec. IXA

Source terms as functions of the radial coordinate
in the IRG, V R

ℓm(r) and V 2
ℓm(r), are given by Eqs. (133) and (134)

The radial evolution equation of the scalar field perturbation ϑ(1,1)

for slowly rotating BHs in dCS gravity in the IRG is given by Eq. (138)

FIG. 1. A schematic flowchart prescribing the steps involved in obtaining a separated radial evolution equation for the scalar
field perturbation ϑ(1,1) for slowly rotating BHs in dCS gravity. This flowchart summarizes the details of the calculations
described in Sec. V and Sec. IXB. Initial and final outcomes are represented by rectangular boxes, while intermediate results are
symbolized by encapsulating bubbles. The directional arrows are meant to seamlessly guide the reader through the logical flow
of the calculations.

−0Aℓm] Θℓm(r) = 0 , (86)

where 0Aℓm is the Teukolsky’s separation constant for
s = 0 [18]. We therefore see that the left-hand side of
Eq. (36) is separable in the radial and angular coordinates.
Further, in Sec. IX, we show that the complete expression
in Eq. (36) can be separated into radial and angular parts
using spin-weighted spheroidal harmonics of spin weight
zero.

C. S(1,1)
ϑ in terms of h(1,1) and ϑ(1,1)

To systematically calculate S(1,1)
ϑ in Eq. (76), we can

partition it into three parts based on the terms that neces-
sitate metric reconstruction, namely those at O(ζ0, ϵ1):

1. Weyl scalars at O(ζ0, ϵ1): These terms are solely
determined by the Pontryagin density (R∗R)(0,1).
For slowly rotating BHs in dCS gravity, these
Weyl scalars in Eq. (76) receive contributions from

both h
(0,0,1)
µν and h

(0,1,1)
µν . We expand Eq. (79a) up

to O(ζ0, ϵ1). Since in Petrov type D spacetimes

Ψ
(0,0)
0,1,3,4 = 0, the only terms that survive are propor-

tional to Ψ2, such that

(R∗R)(0,1) = 48i
(
Ψ

(0,0)
2 Ψ

(0,1)
2 − Ψ̄

(0,0)
2 Ψ̄

(0,1)
2

)
, (87)

where Ψ
(0,0)
2 is given by Eq. (45) by setting ζ = 0,

and Ψ
(0,1)
2 is given by Eq. (B6c) using the metric

reconstruction procedures.

2. Spin coefficients at O(ζ0, ϵ1): This dependence
arises from □(0,1)ϑ(1,0). Since we are only inter-
ested in the terms up to O(ζ1, χ1, ϵ1) in this work,
and ϑ(1,0,0) = 0 as explained in Sec. III C, the met-
ric fields in □(0,1)ϑ(1,0) only have the contribution

from h
(0,0,1)
µν . Thus, we only need metric reconstruc-

tion at O(ζ0, χ0, ϵ1) for these terms. The first two
terms in Eq. (79b) will not contribute directly, al-
though one can find additional spin coefficients by
using the commutation relations to combine the
anti-commutators. For the rest of the terms, we
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find at O(ζ0, ϵ1),

[(
µ(0,1) + µ̄(0,1) − γ(0,1) − γ̄(0,1)

)
D

+
(
ϵ(0,1) + ϵ̄(0,1) − ρ(0,1) − ρ̄(0,1)

)
∆

+
(
α(0,1) − β̄(0,1) − π(0,1) + τ̄ (0,1)

)
δ

+
(
ᾱ(0,1) − β(0,1) − π̄(0,1) + τ (0,1)

)
δ̄
]
ϑ(1,0) ,

(88)

where the spin coefficients at O(ζ0, ϵ1) are given by
Eqs. (B4) and (B10) using metric reconstruction
procedures.

3. Tetrad/directional derivatives are at O(ζ0, ϵ1). Sim-
ilar to the second situation, these types of terms also
arise from □(0,1)ϑ(1,0) and vanish at O(ζ1, χ0, ϵ1).
Thus, we must only reconstruct the NP quantities
at O(ζ0, χ0, ϵ1). Using the Schwarzschild properties
of all the spin coefficients in Eq. (C10), we find

[
D(0,1)∆+D∆(0,1) +∆(0,1)D +∆D(0,1)

−δ(0,1)δ̄ − δδ̄(0,1) − δ̄(0,1)δ − δ̄δ(0,1)

−2(γ − µ)D(0,1) − 2ρ∆(0,1) + 2α
(
δ(0,1) + δ̄(0,1)

)]
ϑ(1,0) ,

(89)
where the tetrad at O(ζ0, ϵ1) is given by Eqs. (71)
and (B8). Notice, the terms at O(ζ0, ϵ1) in Eqs. (88)
and (89) are all at O(ζ0, χ0, ϵ1) as ϑ(1,0) is non-
vanishing only at O(ζ1, χ1, ϵ0), but we choose to
hide the expansion in χ for simplicity.

A similar classification will be used when we compute
the source terms in the modified Teukolsky equation for

Ψ
(1,1)
0 and Ψ

(1,1)
4 .

One can further combine the second and the third type
of source terms and express them as functionals of the

metric components in the NP basis (e.g., h
(0,1)
nn , h

(0,1)
nm ,

h
(0,1)
mm in the IRG) and the rotation coefficients (e.g., a(0,1)

and b(0,1)) such that the separation of variables can be

more easily carried out in Sec. IX. In this case, we find

□(0,0,1)ϑ(1,0,0) = −□(0,1,1)ϑ(1,0,0) = 0 ,

□(0,0,1)ϑ(1,1,0)

=
{
h(0,0,1)nn D2 − h(0,0,1)nm {D, δ̄}+ h(0,0,1)mm δ̄2

+
[
(D − 2ρ)h(0,0,1)nn − (δ̄ − 2α)h(0,0,1)nm

]
D

−
[
(D − 2ρ)h(0,0,1)nm − (δ̄ − 2α)h(0,0,1)mm

]
δ̄ + c.c.

}
ϑ(1,1,0) .

(90)
Finally, we have

S(1,0,1)
ϑ = −π− 1

2M2(R∗R)(0,0,1) ,

S(1,1,1)
ϑ = −π− 1

2M2(R∗R)(0,1,1) −□(0,0,1)ϑ(1,1,0) ,
(91)

where (R∗R)(0,0,1) and (R∗R)(0,1,1) are given by Eq. (87),
and □(0,0,1)ϑ(1,1,0) is given by Eq. (90).

D. S(1,1)
ϑ in the coordinate basis

We now rewrite S(1,1)
ϑ [Eqs. (76) and (91)] in the coor-

dinate basis (t, r, θ, ϕ) using the perturbed NP quantities
found in Sec. IV and Appendix A. From Eqs. (76) and

(91), we notice that S(1,1)
ϑ contains two pieces: the term

proportional to (R∗R)(0,1) and the term proportional to
□(0,1)ϑ(1,0).

For the first piece, according to Eq. (87), we essentially

need to evaluate Ψ
(0,1)
2 up to O(χ). The value of Ψ

(0,1)
2 in

terms of the Hertz potential Ψ
(0,1)
H is given by Eq. (B6c),

and Ψ
(0,1)
H has the expansion in Eq. (53). Since we use the

slow-rotation approximation in this work, we can further
decompose spin-weighted spheroidal harmonics in terms
of spin-weighted spherical harmonics using Eqs. (59) and
(60) such that Eq. (53) becomes

Ψ̄H = 2R̂ℓm(r)
[
2Yℓm(θ, ϕ) + χMω

(
2b

m
ℓ,ℓ+1 2Yℓ+1m

+ 2b
m
ℓ,ℓ−1 2Yℓ−1m

)
+O(χ2)

]
e−iωt ,

(92)

Now, one can insert into Eqs. (B6c) and (87) the decom-
position in Eq. (92) and the background NP quantities
at O(ζ0, ϵ0) in Eqs. (A4)–(A6) after setting ζ = 0. After
using Eqs. (67a) and (67b) to simplify the terms with
δ(0,0) and δ̄(0,0) acting on sYℓm(θ, ϕ), we find

(R∗R)(0,1) = e−iωt
[(
gℓm1 (r, ω,M)2R̂ℓm(r) + gℓm2 (r, ω,M) 2R̂

′
ℓm(r)

)
0Yℓm(θ, ϕ)

+χ
(
gℓm3 (r, ω,M) 2R̂ℓm(r) + gℓm4 (r, ω,M) 2R̂

′
ℓm(r)

)
sin θ 1Yℓm(θ, ϕ)

+χ
(
gℓm5 (r, ω,M) 2R̂ℓm(r) + gℓm6 (r, ω,M) 2R̂

′
ℓm(r)

)
cos θ 0Yℓm(θ, ϕ)

+χ 2b
m
ℓ,ℓ+1

(
gℓm7 (r, ω,M) 2R̂ℓm(r) + gℓm8 (r, ω,M) 2R̂

′
ℓm(r)

)
0Yℓ+1m(θ, ϕ)

+χ 2b
m
ℓ,ℓ−1

(
gℓm9 (r, ω,M) 2R̂ℓm(r) + gℓm10 (r, ω,M) 2R̂

′
ℓm(r)

)
0Yℓ−1m(θ, ϕ)

]
+ c.c. , (93)
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where f ′(r) denotes the derivative of f with respect to the

r coordinate for any function f(r). Here, 2R̂ℓm(r) is the
radial function of the Hertz potential for slowly rotating
Kerr BHs in GR, which can be computed from the radial

function of Ψ
(0,1)
0 using Eq. (54a). One can, in principle,

expand 2R̂ℓm(r) further in χ and drop additional terms
above O(χ) in Eq. (93). For simplicity, we choose not to
do this additional expansion here but implement it when
computing QNMs in [58], where we need to explicitly

evaluate the radial functions of Ψ
(0,1)
0,4 . We have also used

the radial Teukolsky equation to reduce any n-th radial
derivative of 2R̂ℓm(r) with n ≥ 1 to 2R̂ℓm and 2R̂

′
ℓm(r).

The explicit forms of gℓmi (r, ω,M) are long and therefore
presented through a separate Mathematica notebook as
Supplementary Material [68].
For the second piece, according to Eq. (91), there is

only a contribution from □(0,0,1)ϑ(1,1,0) since the scalar
field at O(ζ1, χ0, ϵ0) vanishes in dCS gravity. Thus, we
only need the reconstructed metric at (ζ0, χ0, ϵ1). Using
Eqs. (92), (A6), and (48), we find

h(0,0,1)nn =
1

2r2

(
Λℓ 2R̂ℓm(r) 0Yℓm(θ, ϕ)e−iωt + c.c.

)
, (94a)

h(0,0,1)nm =

√
ℓ2 + ℓ− 2

2

1

r2(r − rs)

{
[4M − r(2 + iωr)] 2R̂ℓm(r) + r(r − rs) 2R̂

′
ℓm(r)

}
1Yℓm(θ, ϕ)e−iωt , (94b)

h(0,0,1)mm =
1

r(r − rs)2

{[
(r − rs)(ℓ

2 + ℓ− 2 + 7iωr)− ωr(ir + 2ωr2)
]
2R̂ℓm(r)

+2(r − rs)
(
M − iωr2

)
2R̂

′
ℓm(r)

}
2Yℓm(θ, ϕ)e−iωt . (94c)

Now, we can evaluate all the directional derivatives and spin coefficients at O(ζ0, χ0, ϵ1) using Eqs. (B4), (B8), and
(B10). In the end, using Eq. (90), we find

□(0,0,1)ϑ(1,1,0) = e−iωt
[(
hℓm1 (r, ω,M) 2R̂ℓm(r) + hℓm2 (r, ω,M) 2R̂

′
ℓm(r)

)
sin θ 1Yℓm(θ, ϕ)

+hℓm3 (r, ω,M) (2ϑ′R(r) + rϑ′′R(r)) 2R̂ℓm(r) cos θ 0Yℓm(θ, ϕ)
]
+ c.c. , (95)

where ϑR(r) is the radial part of the background scalar
field in Eq. (13). In Eq. (95), the reconstructed metric
only has contribution at O(χ0), so the radial function

2R̂ℓm(r) is evaluated on the Schwarzschild background.

Since we choose not to expand R̂(r) in χ here, we do not

distinguish 2R̂ℓm(r) evaluated on the Schwarzschild or
slowly rotating Kerr background. Combining Eqs. (93)
and (95), we have the source terms in the equation of
ϑ(1,1) up to O(χ). The master equation of ϑ(1,1) in the
IRG in the coordinate {t, r, θ, ϕ} is presented in Eq. (125)
of Sec. VIII.

In Sec. IX, we will show that Eq. (76) up to O(χ) can
be separated into a radial and an angular equation. In
the following section, we apply the same procedures to
evaluate the source terms in the modified Teukolsky equa-

tion of Ψ
(1,1)
0 in terms of the reconstructed NP quantities

and project the equation into the coordinate basis.

VI. THE MODIFIED TEUKOLSKY EQUATION

OF Ψ
(1,1)
0 IN THE IRG

In this section, we evaluate the modified Teukolsky

equation of Ψ
(1,1)
0 in Eq. (16) following the similar pro-

cedures in Sec. V. We first evaluate the left-hand side of
Eq. (16) and the source term S(1,1)

geo due to the correction
to the background geometry using the background NP
quantities in Sec. III D and Appendix A. We then project
the source term S(1,1) onto the NP basis and compute
its coordinate-based value using the reconstructed NP
quantities in the IRG given in Sec. IV and Appendix B.
Figure 2 presents a schematic illustration of the steps
involved in calculating a completely separated radial evo-

lution equation for the Ψ
(1,1)
0 Weyl scalar perturbation in

the IRG.

A. Right-hand side of Eq. (16) and S(1,1)
geo

Since slowly rotating BHs in dCS gravity are Petrov
type D up to O(ζ1, χ1, ϵ0), we only need to compute

the Teukolsky operator H
(0,0)
0 in GR and its stationary

correction H
(1,0)
0 in Eq. (18a). Thus, we do not need

metric reconstruction in this subsection.
Using the Weyl scalars and spin coefficients found in

Sec. IIID and Eq. (21), we find that

H
(0,0,0)
0 =

1

2r2
H

(0,0,0)
0,TK , (96a)
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Perturbed gravitational field equation for Ψ
(1,1)
0 in the IRG

Left-hand side of Eq. (16) Right-hand side of Eq. (16)

In coordinate basis

Equation (96)

Separated radial
equation

Left-hand side of Eq. (146)

Source term S(1,1)Source term S(1,1)
geo

In coordinate basis
using the Hertz

potential Eq. (92)

terms proportional
to Θℓm(r)

S(1,1)
A & S̃(1,1)

A

terms proportional
to 2R̂ℓm(r)

S(1,1)
B & S̃(1,1)

B

terms given
in Eqs. (142)

terms given
in Eqs. (144)

Using the recipe in
Sec. IXA

terms given
in Eq. (140)

The radial evolution equation of the Weyl scalar perturbation Ψ
(1,1)
0 for slowly rotating BHs

in dCS gravity in the IRG is given by Eq. (146)

FIG. 2. A schematic flowchart prescribing the steps involved in obtaining a separated radial evolution equation for the

gravitational field perturbation described by the Ψ
(1,1)
0 Weyl scalar in the IRG for slowly rotating BHs in dCS gravity. This

flowchart summarizes the details of the calculations described in detail in Sec. VI and Sec. IXC. Initial and final outcomes are
represented by rectangular boxes, while intermediate results are symbolized by encapsulating bubbles. The directional arrows
are meant to seamlessly guide the reader through the logical flow of the calculations.

H
(0,1,0)
0 =

1

2r2
H

(0,1,0)
0,TK , (96b)

where H
(0,0,0)
0,TK and H

(0,1,0)
0,TK are O(χ0) and O(χ1) terms of

the Teukolsky operator H0,TK for Ψ0 [Eq. (4.7) in [18]],

H
(0,0,0)
0,TK = −r(r − rs)∂

2
r − 6(r −M)∂r −

C(r)

r − rs

− ∂2θ − cot θ∂θ +
(
4 +m2 + 4m cos θ

)
csc2 θ − 6 ,

(97a)

H
(0,1,0)
0,TK = −4M

[
m(i(r −M)−Mωr)

r(r − rs)
− ω cos θ

]
,

(97b)

C(r) = 4iωr(r − 3M) + ω2r3 , (97c)

where we have decomposed the Weyl scalar Ψ
(1)
0 at O(ϵ)

as

Ψ
(1)
0 =

[
2R

(0,1)
ℓm (r) + ζ 2R

(1,1)
ℓm (r) +O(ζ2)

]
2Sℓm(θ)e−iωt+imϕ .

(98)

The Teukolsky equation corresponding to Eqs. (97a) and

(97b) is separable with 2R
(0,1)
ℓm (r) satisfying

[
r(r − rs)∂

2
r + 6(r −M)∂r +

C(r)

r − rs

+
4mχM(i(r −M)−Mωr)

r(r − rs)
− 2Aℓm

]
2R

(0,1)
ℓm (r) = 0 .

(99)

Since there is no correction to the background geometry
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at O(ζ1, χ0, ϵ0), H
(1,0,0)
0 = 0. For H

(1,1,0)
0 , we find

H
(1,1,0)
0 =

imM4

448r9(r − rs)

(
C1(r) + 4iωr2C2(r)

)
− iM4

16r9
cos θ

(
C3(r)−

iωr2C4(r)

2

)
+
iM4

32r8

[
(r − rs)C4(r) cos θ∂r −

C5(r)

2r
sin θ∂θ

]
,

(100)
where all Ci(r) are listed in Appendix A. The source term
S(1,1)

geo is then given by

S(1,0,1)
geo = 0 , S(1,1,1)

geo = H
(1,1,0)
0 Ψ

(0,0,1)
0 . (101)

S(1,1,1)
geo can be evaluated in terms of the coordinates using

Eqs. (98) and (100).

B. Source term S(1,1)

In this subsection, we evaluate the source term S(1,1)

from the effective stress tensor or the source term of the
trace-reversed Einstein equation in Eq. (4). The first step
is to project the Ricci tensor Rµν onto the NP basis such
that we can express the NP Ricci scalars Φij , where

Φij ∼ Rab ∼ Rµνea
µeb

ν , (102)

in terms of NP quantities (Weyl scalars, spin coefficients,
and tetrad) and the scalar field ϑ. The precise relation
between Φij and Rab is given in Eq. (C6). Using Eq. (4),
we find

Rµν = −
(

1

κg

) 1
2

M2

[
(∇σϑ) ϵσδα(µ∇αRν)

δ

+
(
∇σ∇δϑ

)∗
Rδ(µν)σ

]
+

1

2κgζ
(∇µϑ) (∇νϑ) ,

(103)

where we have inserted an additional ζ−
1
2 to the term

linear in ϑ and an additional ζ−1 to the term quadratic in
ϑ to compensate the factor of ζ

1
2 we have absorbed into

the expansion of ϑ in Eq. (15). Since ϑ enters at least
at O(ζ), all the metric fields at the right-hand side of
Eq. (103) are at O(ζ0), which can be expressed in terms
of NP quantities in GR.

Rab = ηcdRcadb ,

∇cRab = Rab,c − γdacRdb − γdbcRad .
(104)

Since we are interested in gravitational perturbations

of vacuum spacetime, R
(0,0)
µν = R

(0,1)
µν = 0, and all the

metric fields in Eq. (103) enter at O(ζ0), the first term in
Eq. (103) vanishes. Evaluating the rest of the terms, we
find the seven independent components of Rab in terms
of Weyl scalars, spin coefficients, directional derivatives,
and the scalar field ϑ in Eq. (C4).

We can now evaluate the source terms in the modified
Teukolsky equations. Inspecting the source term S(1,1) in
Eq. (19), we can divide it into two parts based on whether
S1,2 are dynamical,

S(1,1) = S(1,1)
I + S(1,1)

II ,

S(1,1)
I = E(0,1)

2 S
(1,0)
2 − E(0,1)

1 S
(1,0)
1 ,

S(1,1)
II = E(0,0)

2 S
(1,1)
2 − E(0,0)

1 S
(1,1)
1 ,

(105)

For S(1,1)
I , one can directly evaluate S

(1,0)
1,2 in terms of

the stationary scalar field ϑ(1,0) and the metric in GR
using Eqs. (20), (C4), and (C6). Then we only need to

reconstruct the operators E(0,1)
1,2 using our results in Sec. IV

and Appendix B. The results of S
(1,0)
1,2 are provided in

Appendix C.

For S(1,1)
II , the only pieces involving metric reconstruc-

tion are S
(1,1)
1,2 . For S

(1,1)
1,2 , we can further divide them

into two parts based on whether Φij are dynamical,

S
(1,1)
1,A = δ

(0,1)
[−2,−2,1,0]Φ

(1,0)
00 −D

(0,1)
[−2,0,0,−2]Φ

(1,0)
01

+ 2σ(0,1)Φ
(1,0)
10 − 2κ(0,1)Φ

(1,0)
11 − κ̄(0,1)Φ

(1,0)
02 ,

S
(1,1)
2,A = δ

(0,1)
[0,−2,2,0]Φ

(1,0)
01 −D

(0,1)
[−2,2,0,−1]Φ

(1,0)
02

− λ̄(0,1)Φ
(1,0)
00 + 2σ(0,1)Φ

(1,0)
11 − 2κ(0,1)Φ

(1,0)
12 ,

S
(1,1)
1,B = δ

(0,0)
[−2,−2,1,0]Φ

(1,1)
00 −D

(0,0)
[−2,0,0,−2]Φ

(1,1)
01 ,

S
(1,1)
2,B = δ

(0,0)
[0,−2,2,0]Φ

(1,1)
01 −D

(0,0)
[−2,2,0,−1]Φ

(1,1)
02 ,

(106)
where we used that κ(0,0) = σ(0,0) = λ(0,0) = 0. Based
on this classification, we can then additionally separate

S(1,1)
II into two parts

S(1,1)
II = S(1,1)

IIA + S(1,1)
IIB ,

S(1,1)
IIA = E(0,0)

2 S
(1,1)
2,A − E(0,0)

1 S
(1,1)
1,A ,

S(1,1)
IIB = E(0,0)

2 S
(1,1)
2,B − E(0,0)

1 S
(1,1)
1,B .

(107)

For S(1,1)
IIA , similar to S(1,1)

I , we only need to evaluate Φ
(1,0)
ij

using the background metric and the stationary scalar field
ϑ(1,0). The only quantities need metric reconstruction

are these additional O(ζ0, ϵ1) operators acting on Φ
(1,0)
ij ,

where Φ
(1,0)
ij are listed in Appendix C.

The most complicated piece of S(1,1) is S(1,1)
IIA , which

needs metric reconstruction for Φ
(1,1)
ij . Fortunately, from

Eq. (106), we notice that we only need to evaluate Φ
(1,1)
00 ,

Φ
(1,1)
01 , and Φ

(1,1)
02 . To organize our calculations, we can

divide Φ
(1,1)
ij into four parts based on which kind of terms

need metric reconstruction, similar to what we have done
in Sec. V. Inspecting Eq. (C4), we notice that all the
terms are some coupling of a Weyl scalar, a scalar field,
a spin coefficient, and directional derivatives, which is
due to the structure of Rµν in Eq. (103). In this case, we
make the following classification:
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1. Weyl scalars are at O(ζ0, ϵ1). In this case, the scalar
field ϑ is at O(ζ1, ϵ0). As discussed in Sec. III C,
the leading contribution to ϑ(1,0) is at O(ζ1, χ1, ϵ0)
since non-rotating BHs in dCS gravity are still
Schwarzschild. Then since we are interested in
O(ζ1, χ1, ϵ1) corrections, all the spin coefficients
and directional derivatives are at O(ζ0, χ0, ϵ0), the
order of the Schwarzschild background.

2. Spin coefficients are at O(ζ0, ϵ1). Similar to the
first situation, the scalar field ϑ is at O(ζ1, χ1, ϵ0),
so all the Weyl scalars and directional derivatives
are at O(ζ0, χ0, ϵ0), which are evaluated on the
Schwarzschild background in GR.

3. Tetrad/directional derivatives are at O(ζ0, ϵ1). Sim-
ilar to the first two cases, since ϑ is at O(ζ1, χ1, ϵ0),
so all the Weyl scalars and spin coefficients can be
evaluated on the Schwarzschild background.

4. The scalar field ϑ is at O(ζ1, ϵ1), which has con-
tributions from both O(ζ1, χ0, ϵ1) and O(ζ1, χ1, ϵ1)
terms. Then, all the NP quantities generally need to
be evaluated on the Kerr background expanded in
the slow-rotation expansion to O(χ1). Since ϑ(1,1)

also requires us to solve the scalar field equation in
Eqs. (36), we choose not to compute ϑ(1,1) in this
work but only list the source terms in terms of it.

We will solve the scalar field equation together with
the modified Teukolsky equation in our follow-up
work [58].

At O(ζ1, χ1, ϵ1), using the classification above, we can
set many terms to 0 since they are evaluated on the
Schwarzschild background (i.e., when ϑ is stationary).

Similar to Sec. V, the results of Φ
(1,1)
00 , Φ

(1,1)
01 , and Φ

(1,1)
02

up to O(ζ1, χ1, ϵ1) are expressed in terms of the perturbed
Weyl scalars, metric perturbations, and dynamical ϑ in
Appendix C. Due to the complication of S(1,1), we will not
present the results here but provide its coordinate-based
values directly in the next subsection.

C. S(1,1) in the coordinate basis

In this subsection, we evaluate the coordinate-based val-
ues of S(1,1) using the decomposition of ϑ(1,1) in Eq. (85)

and the Hertz potential Ψ
(1,1)
H in Eq. (92). Following

Sec. IIIA, we separate S(1,1) into two parts: the terms
coupled to the dynamical scalar field ϑ(1,1) and the terms
coupled to the background scalar field ϑ(1,0).

For the first part, we find its coordinate-based value to
be

S(1,1)
A = e−iωt

[(
pℓm1 (r, ω,M)Θℓm(r) + pℓm2 (r, ω,M)Θ′

ℓm(r) + pℓm3 (r, ω,M)Θ′′
ℓm(r)

)
2Yℓm(θ, ϕ)

+χ
(
pℓm4 (r, ω,M)Θℓm(r) + pℓm5 (r, ω,M)Θ′

ℓm(r) + pℓm6 (r, ω,M)Θ′′
ℓm(r)

)
sin θ 1Yℓm(θ, ϕ)

+χ
(
pℓm7 (r, ω,M)Θℓm(r) + pℓm8 (r, ω,M)Θ′

ℓm(r) + pℓm9 (r, ω,M)Θ′′
ℓm(r)

)
cos θ 2Yℓm(θ, ϕ)

+χ 0b
m
ℓ,ℓ+1

(
pℓm10 (r, ω,M)Θℓm(r) + pℓm11 (r, ω,M)Θ′

ℓm(r) + pℓm12 (r, ω,M)Θ′′
ℓm(r)

)
2Yℓ+1m(θ, ϕ)

+χ 0b
m
ℓ,ℓ−1

(
pℓm13 (r, ω,M)Θℓm(r) + pℓm14 (r, ω,M)Θ′

ℓm(r) + pℓm15 (r, ω,M)Θ′′
ℓm(r)

)
2Yℓ−1m(θ, ϕ)

]
, (108a)

S̃(1,1)
A = eiωt

[
−
(
p̄ℓm1 (r, ω,M)Θ̄ℓm(r) + p̄ℓm2 (r, ω,M)Θ̄′

ℓm(r) + p̄ℓm3 (r, ω,M)Θ̄′′
ℓm(r)

)
−2Ȳℓm(θ, ϕ)

−χ
(
p̄ℓm4 (r, ω,M)Θ̄ℓm(r) + p̄ℓm5 (r, ω,M)Θ̄′

ℓm(r) + p̄ℓm6 (r, ω,M)Θ̄′′
ℓm(r)

)
sin θ −1Ȳℓm(θ, ϕ)

+χ
(
p̄ℓm7 (r, ω,M)Θ̄ℓm(r) + p̄ℓm8 (r, ω,M)Θ̄′

ℓm(r) + p̄ℓm9 (r, ω,M)Θ̄′′
ℓm(r)

)
cos θ −2Ȳℓm(θ, ϕ)

−χ 0b
m
ℓ,ℓ+1

(
p̄ℓm10 (r, ω,M)Θ̄ℓm(r) + p̄ℓm11 (r, ω,M)Θ̄′

ℓm(r) + p̄ℓm12 (r, ω,M)Θ̄′′
ℓm(r)

)
−2Ȳℓ+1m(θ, ϕ)

−χ 0b
m
ℓ,ℓ+1

(
p̄ℓm13 (r, ω,M)Θ̄ℓm(r) + p̄ℓm14 (r, ω,M)Θ̄′

ℓm(r) + p̄ℓm15 (r, ω,M)Θ̄′′
ℓm(r)

)
−2Ȳℓ−1m(θ, ϕ)

]
. (108b)

In Sec. IXC, after getting the radial part of the equation
of ϑ(1,1), we will further express Θ′′

R(r) in terms of Θℓm(r),
Θ′

ℓm(r), 2R̂ℓm(r), and 2R̂
′
ℓm(r).

Similarly, we find the second part to take the form

S(1,1)
B = χe−iωt

[(
qℓm1 (r, ω,M) 2R̂ℓm(r) + qℓm2 (r, ω,M) 2R̂

′
ℓm(r)

)
sin θ 1Yℓm(θ, ϕ)

+
(
qℓm3 (r, ω,M) 2R̂ℓm(r) + qℓm4 (r, ω,M) 2R̂

′
ℓm(r)

)
cos θ 2Yℓm(θ, ϕ)

+
(
qℓm5 (r, ω,M) 2R̂ℓm(r) + qℓm6 (r, ω,M) 2R̂

′
ℓm(r)

)
sin θ 3Yℓm(θ, ϕ)

]
, (109a)
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S̃(1,1)
B = χeiωt

[(
q̃ℓm1 (r, ω,M) 2

¯̂
Rℓm(r) + q̃ℓm2 (r, ω,M) 2

¯̂
R′

ℓm(r)
)
sin θ −1Ȳℓm(θ, ϕ)

+q̃ℓm3 (r, ω,M) 2
¯̂
Rℓm(r) cos θ −2Ȳℓm(θ, ϕ)

]
, (109b)

where 2R̂ℓm(r) is the radial function of the Hertz potential

given by Eq. (54a), and 2
¯̂
Rℓm(r) is the complex conju-

gate of 2R̂ℓm(r). The radial functions qℓmi (r, ω,M) and
q̃ℓmi (r, ω,M) are presented in a Mathematica notebook
as Supplementary Material [68]. Note that we have used
the radial Teukolsky equation to eliminate any beyond-
first-order derivatives of the Hertz potential to obtain
a simplified expression in Eqs. (109a) and (109b). The

master equation of Ψ
(1,1)
0 in the IRG in the coordinate

{t, r, θ, ϕ} is presented in Eq. (125) of Sec. VIII.

VII. THE EVOLUTION EQUATION FOR ϑ(1,1)

AND THE MODIFIED TEUKOLSKY EQUATION

FOR Ψ
(1,1)
4 IN THE ORG

In this section, we evaluate the equations governing
the evolution of the perturbed scalar field ϑ(1,1) and the

perturbed Weyl scalar Ψ
(1,1)
4 . Although one can in prin-

ciple evaluate the evolution equation of Ψ
(1,1)
4 in the IRG,

as briefly discussed in Sec. IVB, the evaluation is more
convenient in the ORG. We follow a set of steps similar

to those in the IRG for ϑ(1,1) in Sec. V and for Ψ
(1,1)
0 in

Sec. VI. Below, we present the master equations of ϑ(1,1)

and Ψ
(1,1)
4 in the ORG.

A. The equation of ϑ(1,1)

The scalar field perturbations are governed by Eq. (36).
We now represent the right-hand side of Eq. (36) as

T (1,1)
ϑ ≡ −π− 1

2M2 [R∗R]
(0,1) −□(0,1)ϑ(1,0) . (110)

Projecting the Pontryagin density onto the NP basis leads
to the same set of equations as described in Sec. VA since
our choice of gauge does not affect the quantities shown
in Eqs. (79).

The master equation for the scalar field perturbations
in the ORG are same as that shown in the IRG

H
(0,0)
ϑ ϑ(1,1) = T (1,1)

ϑ , (111)

with H
(0,0)
ϑ and ϑ(1,1) both given in Eqs. (83) and (84)

respectively, whereas T (1,1)
ϑ is given in Eq.(110). The left-

hand side of Eq. (111) in the ORG remains unchanged
from the IRG since the operator acting on the scalar field
perturbations is evaluated on the background. On the
other hand, since the source term in Eq. (111) depends on
perturbed quantities, the value of these quantities is gauge
dependent. In the ORG, the Pontryagin density given in
Eq. (87) holds the following form in the coordinate basis

(R∗R)(0,1) = e−iωt
[(
gℓm1 (r, ω,M)−2R̂ℓm(r) + gℓm2 (r, ω,M)−2R̂

′
ℓm(r)

)
0Yℓm(θ, ϕ)

+χ
(
gℓm3 (r, ω,M)−2R̂ℓm(r) + gℓm4 (r, ω,M)−2R̂

′
ℓm(r)

)
sin θ −1Yℓm(θ, ϕ)

+χ
(
gℓm5 (r, ω,M)−2R̂ℓm(r) + gℓm6 (r, ω,M)−2R̂

′
ℓm(r)

)
cos θ 0Yℓm(θ, ϕ)

+χ−2b
m
ℓ,ℓ+1

(
gℓm7 (r, ω,M)−2R̂ℓm(r) + gℓm8 (r, ω,M)−2R̂

′
ℓm(r)

)
0Yℓ+1m(θ, ϕ)

+χ−2b
m
ℓ,ℓ−1

(
gℓm9 (r, ω,M)−2R̂ℓm(r) + gℓm10 (r, ω,M)−2R̂

′
ℓm(r)

)
0Yℓ−1m(θ, ϕ)

]
+ c.c. , (112)

where functions gi(r, ω,M) are presented in a separate Mathematica notebook as Supplementary Material [68], and

−2R̂
′
ℓm(r) is the radial function of the Hertz potential for a slowly rotating Kerr BHs in GR computed from the radial

function of the Ψ
(0,1)
4 using Eq. (54b).

To evaluate the remaining part of the source term T (1,1)
ϑ , we use the perturbed spin coefficients given in Eq. (B3)

and metric perturbations given in Eq. (49). We obtain

□(0,0,1)ϑ(1,1,0) = e−iωt
[(
h
ℓm
1 (r, ω,M)−2R̂ℓm(r) + hℓm2 (r, ω,M)−2R̂

′
ℓm(r)

)
sin θ −1Yℓm(θ, ϕ)

+hℓm3 (r, ω,M) (2ϑ′R(r) + rϑ′′R(r))−2R̂ℓm(r) cos θ 0Yℓm(θ, ϕ)
]
+ c.c. , (113)

where the functions hi(r) are presented in a separate Mathematica notebook as Supplementary Material [68],



20

and ϑR(r) is the radial part of the background scalar field
given in Eq. (13). Similar to the case evaluated in the

IRG in Sec. V, the radial function −2R̂ℓm(r) is evaluated
on the Schwarzschild background. Combining Eqs. (113)

and (112) gives us the complete source term T (1,1)
ϑ . The

master equation of ϑ(1,1) in the ORG in the coordinate
{t, r, θ, ϕ} is presented in Eq. (125) of Sec. VIII.

B. The equation of Ψ
(1,1)
4

In this subsection, we present the modified Teukolsky

equation for the Weyl scalar perturbation Ψ
(1,1)
4 given in

Eq. (24) in the coordinate basis. Following steps similar to
Sec. VI, we separate the source terms into two categories:
T (1,1)

geo and T (1,1) whose forms in the NP basis have been
given in Eqs. (25)–(27).

1. Homogeneous part and T (1,1)
geo

Similar to Sec. VIA, by using the Weyl scalars and
spin coefficients in Sec. III D and Appendix A along with
Eq. (29), we find

H(0,0,0)
4 =

1

2r6
H

(0,0,0)
4,TK , (114a)

H(0,1,0)
4 =

1

2r6
H

(0,1,0)
4,TK , (114b)

where we define(
H

(0,0,0)
4 + χH

(0,1,0)
4

)
Ψ

(1)
4 ≡

(
H(0,0,0)

4 + χH(0,1,0)
4

)
ψ
(1)
4

(115)

by extracting a factor of ρ4 from the Weyl scalar Ψ
(1)
4

following [18], i.e.,

Ψ
(1)
4 ≡ ρ4ψ

(1)
4 = ρ4

[
−2R

(0,1)
ℓm (r) + ζ −2R

(1,1)
ℓm (r) +O(ζ2)

]
−2Sℓm(θ)e−iωt+imϕ .

(116)

The operators H
(0,0,0)
4,TK and H

(0,1,0)
4,TK are O(χ0) and O(χ1)

terms of the Teukolsky operator H4,TK for ψ4 [Eq. (4.7)
in [18]], respectively,

H
(0,0,0)
4,TK = −r(r − rs)∂

2
r + 2(r −M)∂r −

D(r)

r − rs

− ∂2θ − cot θ∂θ + (−2 cot θ +m csc θ)
2 − 2 ,

(117a)

H
(0,1,0)
4,TK = 4M

[
m(i(r −M) +Mωr)

r(r − rs)
− ω cos θ

]
,

(117b)

D(r) = −4iωr(r − 3M) + ω2r3 .

The Teukolsky equation corresponding to Eqs. (117a) and

(117b) is separable with −2R
(0,1)
ℓm (r) satisfying[

r(r − rs)∂
2
r − 2(r −M)∂r +

D(r)

r − rs

−4mχM(i(r −M) +Mωr)

r(r − rs)
− −2Aℓm

]
−2R

(0,1)
ℓm (r) = 0 .

(118)
For the same reason in Sec. VIA, we do not need metric

reconstruction to compute T (1,1)
geo since the background

spacetime is still Petrov type D. The source terms T (1,1)
geo

hold the form

T (1,0,1)
geo = 0 , T (1,1,1)

geo = H
(1,1,0)
4 Ψ

(0,0,1)
4 = H(1,1,0)

4 ψ
(0,0,1)
4

(119)
with

H(1,1,0)
4 =

−imM4

448r13(r − rs)

(
D1(r)− 4iωr2D2(r)

)
+

iM4

16r13
cos θ

(
D3(r)−

iωr2D4(r)

2

)
+

iM4

32r12

[
(r − rs)D4(r) cos θ∂r −

D5(r)

2r
sin θ∂θ

]
,

(120)

where we have absorbed the factor of ρ4 into H(1,1,0)
4 , and

the functions Di(r) are presented in Appendix A.

2. T (1,1)

Using the expression for the metric perturbation in the
ORG given in Eq. (49), one can evaluate the perturbed
spin coefficients and perturbed Weyl scalars at O(ζ0, ϵ1).
These can then be used to evaluate the following source
terms, which can be divided into two parts based on
whether S3,4 are dynamical.

T (1,1) = T (1,1)
I + T (1,1)

II ,

T (1,1)
I = E(0,1)

4 S
(1,0)
4 − E(0,1)

3 S
(1,0)
3 ,

T (1,1)
II = E(0,0)

4 S
(1,1)
4 − E(0,0)

3 S
(1,1)
3 . (121)

Analogous to Sec. VI, T (1,1)
I consists of terms dependent

on the stationary scalar field, the background, and the
perturbed metric in GR.

Similarly, we can further divide T (1,1)
II into two cate-

gories based on whether terms are proportional to Φ
(1,0)
ij or

Φ
(1,1)
ij , which we denote as T (1,1)

IIA and T (1,1)
IIB respectively.

T (1,1)
II = T (1,1)

IIA + T (1,1)
IIB ,

T (1,1)
IIA = E(0,0)

4 S
(1,1)
4,A − E(0,0)

3 S
(1,1)
3,A ,

T (1,1)
IIB = E(0,0)

4 S
(1,1)
4,B − E(0,0)

3 S
(1,1)
3,B .

(122)
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Here S
(1,1)
3,B and S

(1,1)
4,B have terms proportional to Φ

(1,1)
ij ,

whereas S
(1,1)
3,A and S

(1,1)
4,A have terms proportional to

Φ
(1,0)
ij .

Expressing these source terms in the coordinate basis,
the terms proportional to the scalar field perturbation
are given by

T (1,1)
A = e−iωt

[(
pℓm1 (r, ω,M)Θℓm(r) + pℓm2 (r, ω,M)Θ′

ℓm(r) + pℓm3 (r, ω,M)Θ′′
ℓm(r)

)
−2Yℓm(θ, ϕ)

+χ
(
pℓm4 (r, ω,M)Θℓm(r) + pℓm5 (r, ω,M)Θ′

ℓm(r) + pℓm6 (r, ω,M)Θ′′
ℓm(r)

)
sin θ −1Yℓm(θ, ϕ)

+χ
(
pℓm7 (r, ω,M)Θℓm(r) + pℓm8 (r, ω,M)Θ′

ℓm(r) + pℓm9 (r, ω,M)Θ′′
ℓm(r)

)
cos θ −2Yℓm(θ, ϕ)

+χ 0b
m
ℓ,ℓ+1

(
pℓm10 (r, ω,M)Θℓm(r) + pℓm11 (r, ω,M)Θ′

ℓm(r) + pℓm12 (r, ω,M)Θ′′
ℓm(r)

)
−2Yℓ+1m(θ, ϕ)

+χ 0b
m
ℓ,ℓ−1

(
pℓm13 (r, ω,M)Θℓm(r) + pℓm14 (r, ω,M)Θ′

ℓm(r) + pℓm15 (r, ω,M)Θ′′
ℓm(r)

)
−2Yℓ−1m(θ, ϕ)

]
, (123a)

T̃ (1,1)
A = eiωt

[
−
(
p̄ℓm1 (r, ω,M)Θ̄ℓm(r) + p̄ℓm2 (r, ω,M)Θ̄′

ℓm(r) + p̄ℓm3 (r, ω,M)Θ̄′′
ℓm(r)

)
2Ȳℓm(θ, ϕ)

−χ
(
p̄ℓm4 (r, ω,M)Θ̄ℓm(r) + p̄ℓm5 (r, ω,M)Θ̄′

ℓm(r) + p̄ℓm6 (r, ω,M)Θ̄′′
ℓm(r)

)
sin θ 1Ȳℓm(θ, ϕ)

+χ
(
p̄ℓm7 (r, ω,M)Θ̄ℓm(r) + p̄ℓm8 (r, ω,M)Θ̄′

ℓm(r) + p̄ℓm9 (r, ω,M)Θ̄′′
ℓm(r)

)
cos θ 2Ȳℓm(θ, ϕ)

−χ 0b
m
ℓ,ℓ+1

(
p̄ℓm10 (r, ω,M)Θ̄ℓm(r) + p̄ℓm11 (r, ω,M)Θ̄′

ℓm(r) + p̄ℓm12 (r, ω,M)Θ̄′′
ℓm(r)

)
2Ȳℓ+1m(θ, ϕ)

−χ 0b
m
ℓ,ℓ−1

(
p̄ℓm13 (r, ω,M)Θ̄ℓm(r) + p̄ℓm14 (r, ω,M)Θ̄′

ℓm(r) + p̄ℓm15 (r, ω,M)Θ̄′′
ℓm(r)

)
2Ȳℓ−1m(θ, ϕ)

]
. (123b)

The source terms proportional to the background scalar field can be expressed in the coordinate basis as

T (1,1)
B = χe−iωt

[(
qℓm1 (r, ω,M)−2R̂ℓm(r) + qℓm2 (r, ω,M)−2R̂

′
ℓm(r)

)
sin θ −1Yℓm(θ, ϕ)

+
(
qℓm3 (r, ω,M)−2R̂ℓm(r) + qℓm4 (r, ω,M)−2R̂

′
ℓm(r)

)
cos θ −2Yℓm(θ, ϕ)

+
(
qℓm5 (r, ω,M)−2R̂ℓm(r) + qℓm6 (r, ω,M)−2R̂

′
ℓm(r)

)
sin θ −3Yℓm(θ, ϕ)

]
, (124a)

T̃ (1,1)
B = χeiωt

[(
q̃
ℓm
1 (r, ω,M)−2

¯̂
Rℓm(r) + q̃ℓm2 (r, ω,M)−2

¯̂
R′

ℓm(r)
)
sin θ 1Ȳℓm(θ, ϕ)

+q̃ℓm3 (r, ω,M)−2
¯̂
Rℓm(r) cos θ 2Ȳℓm(θ, ϕ)

]
, (124b)

where −2R̂
′
ℓm(r) is the radial function of the Hertz poten-

tial given by Eq. (54b). The functions qℓmi (r, ω,M) and

q̃
ℓm
i (r, ω,M) (not to be confused with q̄ℓmi (r, ω,M)) are
functions presented in a Mathematica notebook as Sup-

plementary Material [68]. The master equation of Ψ
(1,1)
4

in the ORG in the coordinate {t, r, θ, ϕ} is presented in
Eq. (125) of Sec. VIII.

VIII. EXECUTIVE SUMMARY OF ALL
MASTER EQUATIONS

This section presents an executive summary of the main
results of this paper, whose derivation was presented in

Secs. V, VI and VII. Through Secs. V, VI and VII, we
used the tetrad defined in Sec. IIID to rewrite Eqs. (16)
and (36) using the IRG and Eqs. (24) and (36) using
the ORG. In this section, we summarize these results
and condense them into a single master equation for
convenience. In later sections, we will present and apply a
procedure to decouple the master equations for the scalar
field perturbation ϑ(1,1) and the Weyl scalar perturbations

Ψ
(1,1)
0,4 (or Ψ

(1,1)
4 ) into a set of coupled radial ordinary

differential equations in the IRG (or ORG).

With this in mind, the master equations for ϑ(1,1)

[Eq. (36)], Ψ
(1,1)
0 [Eq. (16)], and Ψ

(1,1)
4 [Eq. (24)] can

all be expressed as

Hψ =
r3

r − 2M

∂2ψ

∂t2
− 4χM2

2M − r

∂2ψ

∂t∂ϕ
− csc2 θ

∂2ψ

∂ϕ2
− r(r − 2M)

∂2ψ

∂r2
− 2(s+ 1)(r −M)

∂ψ

∂r
− 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ s

[
χM

(
1

2M − r
− 1

r

)
− 2i cot θ csc θ

]
∂ψ

∂ϕ
+ 2s

[
r(3M − r)

2M − r
+ iχM cos θ

]
∂ψ

∂t
+
(
s2 cot2 θ − s

)
ψ = ξ(r)S ,

(125)
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where H represents the Teukolsky operator for a spin s
field in GR given in [18]. Recall that χ is the dimensionless
spin parameter, and M is the BH mass. In Table I, we
present the field quantities ψ which satisfy this equation
and the source terms, ξ(r) and S on the right-hand side
of Eq. (125), dependent on the gauge and the spin weight
s of these fields. Observe that, clearly, the differential
operator H in Eq. (125) acting on the field quantity ψ is
exactly the same as the one derived by Teukolsky in [18]
in GR for Kerr BH perturbations [c.f. Eq. (4.7) therein],
expanded to leading order in spin. In addition, from
Table I and the source terms in Eqs. (101), (108), (109),
(119), (123), and (124), we notice that the (l,m) and

(l,m) modes of Ψ
(1,1)
0,4 need to be solved jointly, as we will

discuss in more detail in Sec. IX.

IX. SEPARATION OF VARIABLES AND
EXTRACTION OF THE RADIAL MASTER

EQUATION

In this section, we extract the radial parts of the master
equations for ϑ(1,1) [Eq. (36)] (both in the IRG and ORG),

for Ψ
(1,1)
0 [Eq. (16)], and for Ψ

(1,1)
4 [Eq. (24)]. Let us

first present our procedures for eliminating the angular
dependence in these equations and then apply them to
specific cases.

A. Eiminating the angular dependence

To eliminate the angular dependence of these mas-
ter equations, we utilize the properties of spin-weighted
spheroidal harmonics in Sec. IVC and go through the
following procedures:

1. From Secs. V–VII, we first observe that the mas-

ter equations of ϑ(1,1) and Ψ
(1,1)
0,4 after decomposi-

tion into spin-weighted spheroidal harmonics [i.e.,
Eqs. (84), (98), and (116)] all take the form

sHℓm [sψℓm(r)sSℓm(θ)] e−iωℓmt+imϕ =
∑
k

sP
k
ℓm(r)sf

k
ℓm(θ)e−iωℓmt+imϕ + sQ

k
ℓm(r)sf̄

k
ℓm(θ)eiω̄ℓmt−imϕ , (126a)

sHℓ−m [sψℓ−m(r)sSℓ−m(θ)] e−iωℓ−mt−imϕ =
∑
k

sP
k
ℓ−m(r)sf

k
ℓ−m(θ)e−iωℓ−mt−imϕ + sQ

k
ℓ−m(r)sf̄

k
ℓ−m(θ)eiω̄ℓ−mt+imϕ ,

(126b)

where sHℓm is the (ℓ,m) mode of the Teukolsky

operator in GR for particles of spin 0 [i.e., H
(0,0)
ϑ

in Eq. (83)], spin 2 [i.e., H
(0,0)
0 in Eqs. (96) and

(97)], and spin −2 [i.e., H(0,0)
4 in Eqs. (114) and

(117)]. The radial function sψℓm(r) is the radial

part of ϑ(1,1) [i.e., Θℓm(r)], Ψ
(1,1)
0 [i.e., 2R

(1,1)
ℓm (r)],

or ρ−4Ψ
(1,1)
4 [i.e., −2R

(1,1)
ℓm (r)] to be solved for. The

angular function sSℓm(θ) is the θ-dependent part of
spin-weighted spheroidal harmonics sY(θ, ϕ). The
radial functions sP

k
ℓm(r), sQ

k
ℓm(r) and angular func-

tions sf
k
ℓm(θ) can be extracted from the source terms

found in Secs. V–VII. In the equation for ϑ(1,1), we
can observe from Eqs. (93), (95), (112), and (113)
that 0P

k
ℓm(r) = 0Q̄

k
ℓm(r) since the scalar field is real,

while there is no such a constraint for Ψ
(1,1)
0,4 since

they are complex in general.

2. Equation (126) assumes that a single (ℓ,m) mode
[Eq. (126a)] or a single (ℓ,−m) mode [Eq. (126b)]
can solve the modified Teukolsky equation. However,
this is in general not true since the source term in
Eq. (126a) is a mixture of modes proportional to
e−iωℓmt and eiω̄ℓmt, and similarly for Eq. (126b).
On the other hand, in GR, one has the well-known
symmetry [21]

ω
(0)
ℓm = −ω̄(0)

ℓ−m , (127)

so both Eqs. (126a) and (126b) contain source terms
proportional to e−iωℓmt and e−iωℓ−mt. Thus, one
has to consider Eqs. (126a) and (126b) jointly or
solve the linear combination , i.e.,

Ψ
(0,1)
ℓm = sR

(0,1)
ℓm (r)sSℓm(θ)e−iωℓmt+imϕ + ηℓm sR

(0,1)
ℓ−m(r)sSℓ−m(θ)eiωℓmt−imϕ , (128a)

Ψ
(1,1)
ℓm = sψℓm(r)sSℓm(θ)e−iωℓmt+imϕ + ηℓm sψℓ−m(r)sSℓ−m(θ)eiωℓmt−imϕ , (128b)
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ψ ξ(r)
Ingoing radiation gauge Outgoing radiation gauge

s
(spin weight)

S
(equations)

s
(spin weight)

S
(equations)

ϑ(1,1) −r2 0
−π− 1

2M2(R∗R)(0,1) − χ□(0,0,1)ϑ(1,1,0)

0
−π− 1

2M2(R∗R)(0,1) − χ□(0,0,1)ϑ(1,1,0)

Eqs. (93) & (95) Eqs. (112) & (113)

Ψ
(1,1)
0 2r2 +2

S(1,1)
geo + S(1,1)

A + S̃(1,1)
A + S(1,1)

B (r) + S̃(1,1)
B − −

Eqs. (101), (108), & (109)

ρ−4Ψ
(1,1)
4 2r6 − − −2

T (1,1)
geo + T (1,1)

A + T̃ (1,1)
A + T (1,1)

B (r) + T̃ (1,1)
B

Eqs. (119), (123), & (124)

TABLE I. In this table, we present the quantities Ψ, the spin weight s and the source terms S that appear in Eq. (125).

where we have absorbed an overall factor into the
normalization of sR

(0,1)
ℓm (r) and sψℓm(r). Further-

more, we have also taken ω
(0)
ℓm = −ω̄(0)

ℓ−m not just in
GR but also in dCS gravity due to the structure of
Eq (126). As discussed and shown in more detail in
[72], one can solve for both the complex constant

ηℓm and the QNM frequencies ωℓm using the eigen-
value perturbation method method in [24, 38, 39].
The combination (ηℓm, ωℓm) have two independent
solutions [24, 25, 72], resulting in the breaking of
isospectrality. In this case, by plugging the ansatz
in Eq. (128) into the scalar field equation or the
modified Teukolsky equations, using Eq. (126), and
matching the phase of the terms, we find

sHℓm [sψℓm(r)sSℓm(θ)] =
∑
k

sP
k
ℓm(r)sf

k
ℓm(θ) + η̄ℓm sQ

k
ℓ−m(r)sf̄

k
ℓ−m(θ) , (129a)

sHℓ−m [sψℓ−m(r)sSℓ−m(θ)] =
∑
k

sP
k
ℓ−m(r)sf

k
ℓ−m(θ) +

1

ηℓm
sQ

k
ℓm(r)sf̄

k
ℓm(θ) , (129b)

where we have divided a factor of ηℓm in Eq. (129b),
and sψℓ±m(r) are radial solutions tied to (ηℓm, ωℓm).
Similar procedures for generic modified gravity the-
ories can be found in [72].

3. For the evolution equation for ϑ(1,1), we observe
that 0f

k
ℓm(θ) consists of the following terms

• 0Yℓm(θ, ϕ) and 0Yℓ±1m(θ, ϕ),

• cos θ 0Yℓm(θ, ϕ), and

• sin θ ±1Yℓm(θ, ϕ).

For the master equation for Ψ
(1,1)
0,4 , ±2f

k
ℓm(θ) con-

tains

• ±2Yℓm(θ, ϕ) and ±2Yℓ±1m(θ, ϕ),

• cos θ ±2Yℓm(θ, ϕ),

• sin θ ±1Yℓm(θ, ϕ) and sin θ±3Yℓm(θ, ϕ).

Notice that sf
k
ℓm(θ) are angular functions in the

modified Teukolsky equation for the particle of spin
weight s and mode (ℓ,m). The subscript s and
subscripts (ℓ,m) do not indicate the mode number
of the angular function itself. For example, 0f

k
ℓm(θ)

contains terms proportional to sin θ ±1Yℓm(θ, ϕ).

4. As shown in Sec. VB, the homogeneous part of
Eq. (36) for ϑ(1,1) is separable in r and θ if one
decomposes ϑ(1,1) into 0Yℓm(θ, ϕ). Thus, to extract
the radial part of Eq. (36), we multiply Eq. (76) by

0Ȳℓm(θ, ϕ) and integrate it over the 2-sphere, uti-
lizing the orthogonality properties of spin-weighted
spheroidal harmonics in Eq. (63).

5. Similarly, as shown in Sec. VIA, the homogeneous

part of the modified Teukolsky equation for Ψ
(1,1)
0

and ρ−4Ψ
(1,1)
4 (i.e., H

(0,0)
0 and H(0,0)

4 ) are separable

in r and θ if one decomposes Ψ
(1,1)
0 and ρ−4Ψ

(1,1)
4

into 2Yℓm(θ, ϕ) and −2Yℓm(θ, ϕ), respectively. Thus,
to extract the radial part of Eq. (16) and its GHP
transformation, we multiply S(1,1) and T (1,1) by

2Ȳℓm(θ, ϕ) and −2Ȳℓm(θ, ϕ), respectively, and inte-
grate them over the 2-sphere.

6. Since we use the slow-rotation approximation in
this work, when computing the integrals involving

sYℓm(θ, ϕ), one can further expand sYℓm(θ, ϕ) in
terms of sYℓm(θ, ϕ) using Eq. (59). Thus, there
are only spin-weighted spherical harmonics in these
integrals.

7. After the angular integration, the angular functions
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sfℓm(θ)eimϕ in Step 3 become coefficients of the
form

Λℓ1ℓ2m
s1s2 ≡

∫
S2

dS s1Yℓ1m s2 Ȳℓ2m , (130a)

Λℓ1ℓ2m
s1s2c ≡

∫
S2

dS cos θ s1Yℓ1m s2 Ȳℓ2m , (130b)

Λℓ1ℓ2m
s1s2s ≡

∫
S2

dS sin θ s1Yℓ1m s2 Ȳℓ2m , (130c)

and the sf̄ℓ−m(θ)eimϕ angular functions become
coefficients of the form

Λ†ℓ1ℓ2−m
s1s2 ≡

∫
S2

dS s1 Ȳℓ1m s2 Ȳℓ2−m , (131a)

Λ†ℓ1ℓ2−m
s1s2c ≡

∫
S2

dS cos θ s1 Ȳℓ1m s2 Ȳℓ2−m , (131b)

Λ†ℓ1ℓ2−m
s1s2s ≡

∫
S2

dS sin θ s1 Ȳℓ1m s2 Ȳℓ2−m . (131c)

Since spin-weighted spherical harmonics are not or-
thogonal across different spins over the 2-sphere,
one has to calculate these coefficients in general di-
rectly. Besides evaluating the integrals in Eqs. (130)
and (131) for different (s1, ℓ1,m) and (s2, ℓ2,m) ev-
ery time, there are also other approaches. One
approach is to use the series-sum representation of

sYℓm(θ, ϕ) in Eq. (61), as discussed in Appendix D
with the results stored in a Mathematica notebook
in [68]. Now, the master equations of ϑ(1,1) and

Ψ
(1,1)
0,4 become completely radial, i.e.,

sH̃ℓm [sψℓm(r)]− sAℓm =
∑
k

sf
k
ℓm sP

k
ℓm(r) + η̄ℓm s̄f

k
ℓ−m sQ

k
ℓ−m(r) , (132a)

sH̃ℓ−m [sψℓ−m(r)]− sAℓ−m =
∑
k

sf
k
ℓ−m P k

ℓ−m(r) +
1

ηℓm
s̄f
k
ℓm sQ

k
ℓm(r) , (132b)

where sH̃ℓm is the radial Teukolsky operator for
a spin s field in GR, and sAℓm is the separation
constant in the Teukolsky equation for a spin s field
in GR, both of which can be found in [18]. The

coefficient sf
k
ℓm comes from the integral of sSℓm(θ)

and sf
k
ℓm(θ) over the 2-sphere, and similarly for its

complex conjugate s̄f
k
ℓm. sf

k
ℓm and s̄f

k
ℓm will be given

by Eqs. (130) and (131), respectively.

B. Radial part of the equation of ϑ(1,1)

In this subsection, we present the radial part of Eq. (36)
in both the IRG and ORG found by following the proce-
dures in Sec. IXA. In the IRG, we find the radial parts
of terms proportional to e−iωt in Eqs. (93) and (95), re-
spectively, to be

V R
ℓm(r) =

(
gℓm1 (r, ω,M) 2R̂ℓm(r) + gℓm2 (r, ω,M) 2R̂

′
ℓm(r)

)
+ χ

(
gℓm3 (r, ω,M) 2R̂ℓm(r) + gℓm4 (r, ω,M) 2R̂

′
ℓm(r)

)
Λℓℓm
10s ,

(133)

V □
ℓm(r) = χ

(
hℓm1 (r, ω,M) 2R̂ℓm(r) + hℓm2 (r, ω,M) 2R̂

′
ℓm(r)

)
Λℓℓm
10s , (134)

where the terms proportional to bmℓ,ℓ±1 or cos θ 0Yℓm(θ, ϕ) in Eq. (93) are at O(χ2) after the angular integration. In
the ORG, we find

UR
ℓm(r) =

(
gℓm1 (r, ω,M)−2R̂ℓm(r) + gℓm2 (r, ω,M)−2R̂

′
ℓm(r)

)
+ χ

(
gℓm3 (r, ω,M)−2R̂ℓm(r) + gℓm4 (r, ω,M)−2R̂

′
ℓm(r)

)
Λℓℓm
−10s ,

(135)

U□
ℓm(r) = χ

(
h
ℓm
1 (r, ω,M)−2R̂ℓm(r) + hℓm2 (r, ω,M)−2R̂

′
ℓm(r)

)
Λℓℓm
−10s , (136)

where sR̂ℓm(r) is the radial part of the Hertz poten-
tial given in Eq. (53), Λℓℓm

10s and Λℓℓm
−10s are given by

Eq. (130), and the prime denotes a derivative with

respect to the radial coordinate r. The functions{
gℓmi (r, ω,M), hℓmj (r, ω,M), gℓmi (r, ω,M), hℓmj (r, ω,M)

}
,

where i ∈ [1, 4] and j ∈ [1, 2], are the same functions
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in Eqs. (93), (95), (112) and (113) and presented in a
separate Mathematica notebook [68].

Using Eq. (57), we can replace the radial Hertz po-

tential sR̂ℓm(r) and its derivative in Eqs. (133)–(136)

with sR
(0,1)
ℓm (r) and sR

′(0,1)
ℓm (r). Notice that the form

of the equations remains similar with sR̂ℓm(r) now re-

placed by sR
(0,1)
ℓm (r) and the prefactors now new functions

of {r, ω,M}. For instance, in the first parenthesis of

Eq. (133), one finds that the prefactor of 2R
(0,1)
ℓm (r) is

gℓm1 (r, ω,M)2f
ℓm
1 (r, ω,M) + gℓm2 (r, ω,M)2f

ℓm
3 (r, ω,M) .

(137)
Each of the functions that would appear in V R

ℓm(r), V □
ℓm(r),

UR
ℓm(r), and U□

ℓm(r) are separately presented in the sup-
plementary Mathematica notebook due to their lengthy
nature [68].
Combining Eq. (86) with Eqs. (133) and (134) [or

Eqs. (135) and (136)], we now have a completely radial
equation that describes the evolution of the scalar field
perturbations,

IRG:
[
r(r − rs)∂

2
r +2(r −M)∂r +

ω2r3 − 4χmM2ω

r − rs
− 0Aℓm

]
Θℓm(r)

= −π− 1
2M2r2

(
V R
ℓm(r) + η̄ℓmV

†R
ℓ−m(r)

)
− r2

(
V □
ℓm(r) + η̄ℓmV

†□
ℓ−m(r)

)
, (138)

ORG:
[
r(r − rs)∂

2
r +2(r −M)∂r +

ω2r3 − 4χmM2ω

r − rs
− 0Aℓm

]
Θℓm(r)

= −π− 1
2M2r2

(
UR
ℓm(r) + η̄ℓmU

†R
ℓ−m(r)

)
− r2

(
U□
ℓm(r) + η̄ℓmU

†□
ℓ−m(r)

)
. (139)

Recall that rs is the Schwarzschild radius, M is the
mass of the BH, χ is the dimensionless spin param-
eter such that χ = a/M with a being the spin,

0Aℓm is the separation constant for a spin-0 field [18],
and

{
V R
ℓm(r), V □

ℓm(r), UR
ℓm(r), U□

ℓm(r)
}
are radial functions

given in Eqs. (133)–(136). The constant η̄ℓm is the rel-
ative coefficient between the (ℓ,m) and (ℓ,−m) modes

of Ψ
(1,1)
0,4 in Eq. (128), of which only certain values can

solve Eqs. (129) and (132) consistently. To obtain this
coefficient, one has to solve Eq. (146) for the (ℓ,m) and

(ℓ,−m) modes of Ψ
(1,1)
0 [or Eq. (150) for Ψ

(1,1)
4 in the

ORG] jointly. In [72], it was shown that one can turn
Eq. (146) [or Eq. (150)] into an eigenvalue problem, follow-
ing [24, 38, 39], such that the solutions of η̄ℓm correspond
to the eigenvectors of the system, and the QNM frequen-
cies ωℓm are eigenvalues.

In the above equation, V †R
ℓ−m refers to taking

the complex conjugate of all the radial functions
in V R

ℓ−m but replacing {Λℓ1ℓ2m
s1s2 ,Λℓ1ℓ2m

s1s2c ,Λ
ℓ1ℓ2m
s1s2s } with

{Λ†ℓ1ℓ2m
s1s2 ,Λ†ℓ1ℓ2m

s1s2c ,Λ†ℓ1ℓ2m
s1s2s }, and similarly for V †□

ℓ−m,

U†R
ℓ−m, and U†□

ℓ−m. Equations (138) and (139) can now
be solved for to obtain the scalar-led QNM frequencies.
Notice that there is a coupling between the scalar field
perturbations and the gravitational perturbations in GR,
which appear in the form of the Hertz potential radial
function ±2R̂ℓm(r) in the IRG or ORG, respectively.

C. Radial part of the equation of Ψ
(1,1)
0

In this subsection, we present the radial part of the

modified Teukolsky equation for Ψ
(1,1)
0 . Just like in the

case of the ϑ field, the left-hand side of the modified
Teukolsky equation Eq. (16) is the same as the Teukolsky
equation in GR and is separable under the decomposition
in Eq. (98), with its radial part given by Eqs. (96) and
(97). To extract the radial part of the right-hand side, we
follow the recipe provided in Sec. IXA to eliminate all
angular dependence.

First, integrating H
(1,0)
0 Ψ

(0,1)
0 , where H

(1,0)
0 is given by

Eq. (100), with 2Ȳℓm(θ, ϕ), we find the radial part Sgeo

ℓm(r)

of S(1,1)
geo to be

Sgeo

ℓm(r) =
iχmM4

448r9(r − rs)

(
C1(r) + 4iωr2C2(r)

)
2R

(0,1)
ℓm (r)

− iχM4

16r9

[
C3(r)− C4(r)

(
iωr2

2
+
r(r − rs)

2
∂r

)]
2R

(0,1)
ℓm (r)Λℓℓm

22c

− iχM4

128r9
C5(r) 2R

(0,1)
ℓm (r)

(√
(ℓ+ 2)(ℓ− 1)Λℓℓm

12s −
√

(ℓ+ 3)(ℓ− 2)Λℓℓm
32s

)
,

(140)

where we have used Eqs. (65) and (66) to replace ∂θ (2Yℓm(θ, ϕ)) with 1Yℓm(θ, ϕ) and 3Yℓm(θ, ϕ). In
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Eq. (140), recall once more that rs is the Schwarzschild ra-
dius, M is the mass of the BH, χ is the dimensionless spin
parameter, Λℓℓm

22c and Λℓℓm
32s are given by Eqs. (130), and

the functions Ci with i ∈ [1, 5] are presented in Eqs. (A8).

Next, due to the structure of Eq. (129), multiplying
Eq. (108a) by 2Ȳℓm(θ, ϕ) and Eq. (108b) by 2Ȳℓ−m(θ, ϕ)
and integrating over the 2-sphere, we find

SA
ℓm(r) =

(
pℓm1 (r, ω,M)Θℓm(r) + pℓm2 (r, ω,M)Θ′

ℓm(r) + pℓm3 (r, ω,M)Θ′′
ℓm(r)

)
+ χ

(
pℓm4 (r, ω,M)Θℓm(r) + pℓm5 (r, ω,M)Θ′

ℓm(r) + pℓm6 (r, ω,M)Θ′′
ℓm(r)

)
Λℓℓm
12s

+ χ
(
pℓm7 (r, ω,M)Θℓm(r) + pℓm8 (r, ω,M)Θ′

ℓm(r) + pℓm9 (r, ω,M)Θ′′
ℓm(r)

)
Λℓℓm
22c , (141a)

S̃A
ℓm(r) = −

(
p̄ℓm1 (r, ω,M)Θ̄ℓm(r) + p̄ℓm2 (r, ω,M)Θ̄′

ℓm(r) + p̄ℓm3 (r, ω,M)Θ̄′′
ℓm(r)

)
(−1)m

− χ
(
p̄ℓm4 (r, ω,M)Θ̄ℓm(r) + p̄ℓm5 (r, ω,M)Θ̄′

ℓm(r) + p̄ℓm6 (r, ω,M)Θ̄′′
ℓm(r)

)
Λ†ℓℓ−m
−12s

+ χ
(
p̄ℓm7 (r, ω,M)Θ̄ℓm(r) + p̄ℓm8 (r, ω,M)Θ̄′

ℓm(r) + p̄ℓm9 (r, ω,M)Θ̄′′
ℓm(r)

)
Λ†ℓℓ−m
−22c . (141b)

Here, SA
ℓm(r) and S̃A

ℓm(r) denote the radial part of the

(ℓ,m) mode of S(1,1)
A (r) and S̃(1,1)

A (r), respectively. No-

tice that both SA
ℓm(r) and S̃A

ℓ−m(r) contribute to the
(ℓ,m) mode of the radial modified Teukolsky equation
in Eq. (129a). The coefficient (−1)m in Eq. (141b)

comes from that Λ†ℓℓm
−s s = (−1)m+s since −sȲℓ−m(θ, ϕ) =

(−1)m+s
sYℓm(θ, ϕ). The terms proportional to 0b

m
ℓ,ℓ±1 in

Eqs. (108a) and (108b) are at O(χ2) after the angular in-
tegration. We can further use Eq. (138) to rewrite Θ′′

ℓm(r)

in term of Θℓm(r), Θ′
ℓm(r), 2R̂ℓm(r), and 2R̂

′
ℓm(r) such

that

SA
ℓm(r) =

(
kℓm1 (r, ω,M)Θℓm(r) + kℓm2 (r, ω,M)Θ′

ℓm(r) + kℓm3 (r, ω,M) 2R̂ℓm(r) + kℓm4 (r, ω,M) 2R̂
′
ℓm(r)

)
+ χ

(
kℓm5 (r, ω,M)Θℓm(r) + kℓm6 (r, ω,M)Θ′

ℓm(r) + kℓm7 (r, ω,M) 2R̂ℓm(r) + kℓm8 (r, ω,M) 2R̂
′
ℓm(r)

)
Λℓℓm
12s

+ χ
(
kℓm9 (r, ω,M)Θℓm(r) + kℓm10 (r, ω,M)Θ′

ℓm(r) + kℓm11 (r, ω,M) 2R̂ℓm(r) + kℓm12 (r, ω,M) 2R̂
′
ℓm(r)

)
Λℓℓm
22c ,

(142a)

S̃A
ℓm(r) = −

(
k̄ℓm1 (r, ω,M)Θ̄ℓm(r) + k̄ℓm2 (r, ω,M)Θ̄′

ℓm(r) + k̄ℓm3 (r, ω,M) 2
¯̂
Rℓm(r) + k̄ℓm4 (r, ω,M) 2

¯̂
R′

ℓm(r)
)
(−1)m

− χ
(
k̄ℓm5 (r, ω,M)Θ̄ℓm(r) + k̄ℓm6 (r, ω,M)Θ̄′

ℓm(r) + k̄ℓm7 (r, ω,M) 2
¯̂
Rℓm(r) + k̄ℓm8 (r, ω,M) 2

¯̂
R′

ℓm(r)
)
Λ†ℓℓ−m
−12s

+ χ
(
k̄ℓm9 (r, ω,M)Θ̄ℓm(r) + k̄ℓm10 (r, ω,M)Θ̄′

ℓm(r) + k̄ℓm11 (r, ω,M) 2
¯̂
Rℓm(r) + k̄ℓm12 (r, ω,M) 2

¯̂
R′

ℓm(r)
)
Λ†ℓℓ−m
−22c ,

(142b)

where some of the radial functions kℓmi (r, ω,M) are

kℓm1 (r, ω,M) = − 1

r7(r − 2M)2
6i
√
π
√
ℓ(ℓ+ 1)

√
ℓ2 + ℓ− 2M3 [2Mr(−2Aℓm +mχ(rω − 2i)− irω − 4)

+ r2
(
2Aℓm − 2r2ω2 + 2irω + 2

)
+M2(8 + 2mχ(2rω + 3i))

]
, (143a)

kℓm2 (r, ω,M) =
12
√
π
√
ℓ(ℓ+ 1)

√
ℓ2 + ℓ− 2M3[M(mχ− 3i) + r(−rω + 2i)]

r6(r − 2M)
, (143b)

while the remaining functions kℓmi (r, ω,M) for i ∈ [3, 12]
are provided in [68]. Recall that k̄ℓmi (r, ω,M) are the

complex conjugates of kℓmi (r, ω,M).
Similarly, projecting Eqs. (109a) and (109b) into the

radial direction, we find
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SB
ℓm(r) = χ

[(
qℓm1 (r, ω,M) 2R̂ℓm(r) + qℓm2 (r, ω,M) 2R̂

′
ℓm(r)

)
Λℓℓm
12s

+
(
qℓm3 (r, ω,M) 2R̂ℓm(r) + qℓm4 (r, ω,M) 2R̂

′
ℓm(r)

)
Λℓℓm
22c

+
(
qℓm5 (r, ω,M) 2R̂ℓm(r) + qℓm6 (r, ω,M) 2R̂

′
ℓm(r)

)
Λℓℓm
32s

]
, (144a)

S̃B
ℓm(r) = χ

[(
q̃ℓm1 (r, ω,M)

¯̂
Rℓm(r) + q̃ℓm2 (r, ω,M) 2

¯̂
R′

ℓm(r)
)
Λ†ℓℓ−m
−12s

+q̃ℓm3 (r, ω,M) 2
¯̂
Rℓm(r)Λ†ℓℓ−m

−22c

]
. (144b)

The functions sR̂ℓm(r) and s
¯̂
Rℓm(r) are the radial parts

of the Hertz potential [i.e., Eqs. (53)] and its complex con-
jugate, respectively. Prime denotes a derivative with
respect to the radial coordinate r. The coefficients

{
Λℓℓm
12s ,Λ

ℓℓm
22c ,Λ

ℓℓm
32s

}
and

{
Λ†ℓℓ−m
−12s ,Λ†ℓℓ−m

−22c

}
are given by

Eqs. (130) and (131), respectively. Due to the compli-
cated functional form of qℓmi (r, ω,M) with i ∈ [1, 6], we
have presented them in a separate Mathematica note-
book [68]. The radial functions q̃ℓmi (r, ω,M) are given
by

q̃ℓm1 (r, ω,M) =
15iℓ(ℓ+ 1)

√
ℓ2 + ℓ− 2M4

(
18M2 + 5Mr + r2

)
(6M + r(−3 + irω))

4r12(r − 2M)
, (145a)

q̃ℓm2 (r, ω,M) =
15iℓ(ℓ+ 1)

√
ℓ2 + ℓ− 2M4

(
18M2 + 5Mr + r2

)
4r11

, (145b)

q̃ℓm3 (r, ω,M) =−
15i(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)M4

(
54M2 + 10Mr + r2

)
16r12

. (145c)

Combining Eqs. (16), (96), (97), (140), (142), and (144), the modified master equation for the radial part of the

Ψ
(1,1)
0 Weyl scalar is[

r(r − rs)∂
2
r + 6(r −M)∂r +

C(r)

r − rs
+

4mχM(i(r −M)−Mωr)

r(r − rs)
− 2Aℓm

]
2R

(1,1)
ℓm (r)

= −2r2
[
Sgeo

ℓm(r) +
(
SA
ℓm(r) + η̄ℓmS̃A

ℓ−m(r)
)
+
(
SB
ℓm(r) + η̄ℓmS̃B

ℓ−m(r)
)]

,

(146)

where C(r) is given by Eq. (97c), Sgeo

ℓm(r) is given in

Eq. (140), SA
ℓm(r) and S̃A

ℓ−m(r) are given by Eqs. (142),

whereas SB
ℓm(r) and S̃B

ℓ−m(r) are given by Eqs. (144).
Notice that one needs to solve the (ℓ,m) and (ℓ,−m)
modes of Eq. (16) jointly, from which one can then obtain
the coefficient η̄ℓm between these two modes defined in
Eq. (128) and the QNM frequnecy ωℓm

1, as we will work
out in [58] following the procedures in [72].

Using Eq. (57), the radial part 2R̂ℓm(r) of the Hertz

1 The coefficient η̄ℓ−m and the QNM frequency ωℓ−m are redundant
with η̄ℓm and ωℓm, respectively, since we solve the (ℓ,m) and
(ℓ,−m) modes jointly. More specifically, from Eq. (129) and a
more detailed discussion in [72], one can find that η̄ℓ−m = 1/(η̄ℓm)
when η̄ℓm ̸= 0 and ωℓ−m = −ω̄ℓm.

potential ΨH in Eqs. (142) and (144) can be further ex-
pressed as functions of the radial Teukolsky function

2R
(0,1)
ℓm (r) for the perturbed Ψ0 in GR [18], as discussed

in Sec. IXB. All necessary functions have been provided
in a supplementary Mathematica notebook due to their
lengthy nature [68]. One can readily use existing wave-
function ansatz in the literature to evaluate the radial
Teukolsky function [21, 73].

Notice that the modified Teukolsky equation for the

Weyl scalar perturbation Ψ
(1,1)
0 exhibits coupling to the

scalar field perturbation at O(ζ1, ϵ1), but no such coupling
is seen for the scalar field perturbation at the same order,
unlike the case involving metric perturbations [9].
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D. Radial part of the equations of Ψ
(1,1)
4

In this subsection, we present the radial part of the
modified Teukolsky equation for the Weyl scalar pertur-

bation Ψ
(1,1)
4 for a slowly rotating BH in dCS gravity.

Similar to the case studied in above Sec. IXC, the left-

hand side of the modified Teukolsky equation for Ψ
(1,1)
4

in Eq. (24) holds the same form as the left-hand side of

the Teukolsky equation for Ψ
(0,1)
4 [18]. First, multiply

H
(1,0)
4 Ψ

(0,1)
4 = H(1,0)

4 ψ
(0,1)
4 by −2Ȳℓm(θ, ϕ), with H(1,0)

4

given in Eq. (120), and integrate over the 2-sphere

T geo

ℓm (r) =
−iχmM4

448r13(r − rs)

(
D1(r)− 4iωr2D2(r)

)
−2R

(0,1)
ℓm (r)

+
iχM4

16r13

[
D3(r)−D4(r)

(
iωr2

2
− r(r − rs)

2
∂r

)]
−2R

(0,1)
ℓm (r)Λℓℓm

−2−2c

+
iχM4

128r13
D5(r)−2R

(0,1)
ℓm (r)

(√
(ℓ+ 2)(ℓ− 1)Λℓℓm

−1−2s −
√

(ℓ+ 3)(ℓ− 2)Λℓℓm
−3−2s

)
, (147)

where −2R
(0,1)
ℓm (r) is the radial function of ρ−4Ψ

(0,1)
4 presented in Eq. (116),

{
Λℓℓm
−1−2s,Λ

ℓℓm
−3−2s,Λ

ℓℓm
−2−2c

}
are given in

Eqs. (130), and Di(r) for i ∈ [1, 5] are presented in Eqs. (A9).
Next, we multiply Eq. (123a) by −2Ȳℓm(θ, ϕ) and Eq. (123b) by −2Ȳℓ−m(θ, ϕ) and integrate over the 2-sphere. We

also make use of Eq. (139) to decompose the Θ′′
ℓm(r) dependence in terms of Θℓm(r), Θ′

ℓm(r), −2R̂ℓm(r), and −2R̂
′
ℓm(r)

such that

T A
ℓm =

(
k
ℓm
1 (r, ω,M)Θℓm(r) + kℓm2 (r, ω,M)Θ′

ℓm(r) + kℓm3 (r, ω,M)−2R̂ℓm(r) + kℓm4 (r, ω,M)−2R̂
′
ℓm(r)

)
+χ
(
k
ℓm
5 (r, ω,M)Θℓm(r) + kℓm6 (r, ω,M)Θ′

ℓm(r) + kℓm7 (r, ω,M)−2R̂ℓm(r) + kℓm8 (r, ω,M)−2R̂
′
ℓm(r)

)
Λℓℓm
−1−2s

+ χ
(
k
ℓm
9 (r, ω,M)Θℓm(r) + kℓm10 (r, ω,M)Θ′

ℓm(r) + kℓm11 (r, ω,M)−2R̂ℓm(r) + kℓm12 (r, ω,M)−2R̂
′
ℓm(r)

)
Λℓℓm
−2−2c ,

(148a)

T̃ A
ℓm = −

(
k̄
ℓm
1 (r, ω,M)Θ̄ℓm(r) + k̄

ℓm
2 (r, ω,M)Θ̄′

ℓm(r) + k̄
ℓm
3 (r, ω,M)−2

¯̂
Rℓm(r) + k̄

ℓm
4 (r, ω,M)−2

¯̂
R′

ℓm(r)
)
(−1)m

−χ
(
k̄
ℓm
5 (r, ω,M)Θ̄ℓm(r) + k̄

ℓm
6 (r, ω,M)Θ̄′

ℓm(r) + k̄
ℓm
7 (r, ω,M)−2

¯̂
Rℓm(r) + k̄

ℓm
8 (r, ω,M)−2

¯̂
R′

ℓm(r)
)
Λ†ℓℓ−m
1−2s

+ χ
(
k̄
ℓm
9 (r, ω,M)Θ̄ℓm(r) + k̄

ℓm
10 (r, ω,M)Θ̄′

ℓm(r) + k̄
ℓm
11 (r, ω,M)−2

¯̂
Rℓm(r) + k̄

ℓm
12 (r, ω,M)−2

¯̂
R′

ℓm(r)
)
Λ†ℓℓ−m
2−2c ,

(148b)

where we recall that Θℓm(r) is the radial part of the scalar field perturbation, −2R̂ℓm(r) is the radial part of the Hertz
potential in the ORG, prime denotes a derivative with respect to the radial coordinate r, and an overhead bar denotes
complex conjugation. The constants Λ and Λ† are given by Eqs. (130) and Eqs. (131), respectively, with the relevant

subscripts and superscripts. The functions kℓmi (r, ω,M) and k̄
ℓm
i (r, ω,M) are given in a Mathematica notebook as

supplementary material [68]. Similarly, the source terms in Eq. (124) can be decomposed into a radial equation as

T B
ℓm = χ

[(
qℓm1 (r, ω,M)−2R̂ℓm(r) + qℓm2 (r, ω,M)−2R̂

′
ℓm(r)

)
Λℓℓm
−1−2s

+
(
qℓm3 (r, ω,M)−2R̂ℓm(r) + qℓm4 (r, ω,M)−2R̂

′
ℓm(r)

)
Λℓℓm
−2−2c

+
(
qℓm5 (r, ω,M)−2R̂ℓm(r) + qℓm6 (r, ω,M)−2R̂

′
ℓm(r)

)
Λℓℓm
−3−2s

]
, (149a)

T̃ B
ℓm = χ

[(
q
†ℓm
1 (r, ω,M)−2

¯̂
Rℓm(r) + q†ℓm2 (r, ω,M)−2

¯̂
R′

ℓm(r)
)
Λ†ℓℓ−m
1−2s

+q†ℓm3 (r, ω,M)−2
¯̂
Rℓm(r)Λ†ℓℓ−m

2−2c

]
. (149b)

Using Eq. (57), the radial function −2R̂ℓm(r) of the Hertz potential ΨH in Eqs. (148) and (149) can be expressed

in terms of the radial Teukolsky function −2R
(0,1)
ℓm of ρ−4Ψ

(0,1)
4 in GR, as described in Sec. IXB. All necessary

functions have been provided in a supplementary Mathematica notebook [68]. Combining Eqs. (24), (114), (117), and
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(147)–(149), we find[
r(r − rs)∂

2
r − 2(r −M)∂r +

D(r)

r − rs
− 4mχM(i(r −M) +Mωr)

r(r − rs)
− −2Aℓm

]
−2R

(1,1)
ℓm (r)

= −2r6
[
T geo

ℓm (r) +
(
T A
ℓm(r) + η̄ℓmT̃ A

ℓ−m(r)
)
+
(
T B
ℓm(r) + η̄ℓmT̃ B

ℓ−m(r)
)]

.

(150)

As before, one has to solve the (ℓ,m) and (ℓ,−m) modes of
Eq. (150) jointly to obtain the coefficient η̄ℓm in Eq. (128)
and the QNM frequency ωℓm. This analysis shows that
the modified Teukolsky equations for the Weyl scalar

perturbations Ψ
(1,1)
0,4 and the scalar field perturbation

ϑ(1,1) can be separated into a radial and angular piece.
The radial piece can then be integrated numerically to
obtain the QNM frequencies.

X. DISCUSSION

In this paper, we have employed the modified Teukol-
sky formalism in [23] to investigate the perturbations of
slowly rotating BHs in dCS gravity at leading order in
spin, where the BH spacetime is non-Ricci-flat, but re-
mains of Petrov type D. To incorporate the slow-rotation
approximation, we first extended the two-parameter ex-
pansion in [23] to a three-parameter expansion. Following
[41, 64], we then re-derived the null geodesics on the
equatorial plane, from which we found the NP tetrad for
slowly rotating BHs in dCS gravity up to O(χ). The
resulting tetrad is the Kinnersly tetrad expanded to O(χ),
with an additional adjustment accounting for the dCS
correction. This tetrad is the same as the one in [64].
Since BHs in dCS gravity are non-Ricci-flat, this direct
extension of the Kinnersly tetrad leads to some nonzero
background Weyl scalars Ψ1 and Ψ3, so we performed
additional tetrad rotations to remove them and computed
all the background NP quantities in this rotated tetrad.

The source terms of the modified Teukolsky equation for
Ψ0,4 arise from two distinct contributions. Some of them
originate from the homogeneous component of certain
Bianchi and Ricci identities, so they only rely on the
corrections to the background geometry. For Petrov type
D spacetimes, these stationary corrections only couple to
the perturbations of Ψ0,4, so we evaluated them using the
NP quantities in the dCS background and the solutions
to the Teukolsky equation in GR. The other source terms
stem from the stress tensor associated with corrections to
the Einstein-Hilbert action. In dCS gravity, these source
terms couple the scalar field with the metric in GR. Thus,
to completely evaluate them, we need to solve for the
dynamical scalar field. In this case, we first evaluated the
scalar field equation and used the same methodology to
guide our calculations for Ψ0,4.

Since the scalar field is driven by dynamical metric per-
turbations in GR, one needs to first reconstruct the metric
associated with curvature perturbations in GR. In this

work, we chose to follow the CCK procedures developed
in [33–36, 59–63], where the perturbed metric is obtained
from the Hertz potential, though other procedures in
[37, 41] may also apply. Using the reconstructed metric in
[33–36, 59–63], we then computed all the perturbed NP
quantities in GR following the approach in [37, 65]. Since
we also chose the gauge that the perturbations of Ψ1,3

vanish in both GR and dCS gravity [23], we performed
additional tetrad rotations to transform all the perturbed
NP quantities into this gauge. In the end, projecting the
scalar field equation onto the NP basis, we used the re-
constructed NP quantities to express all the source terms
as differential operators acting on the Hertz potential.
The Hertz potential can be obtained from the pertur-

bations of Ψ0,4 in GR, which are solutions to the Teukol-
sky equations in GR. Decomposing the Hertz potential
into spin-weighted spheroidal harmonics, we presented
the source terms of the scalar field equation in Boyer-
Lindquist coordinates explicitly. The radial function of
the Hertz potential was then determined from the radial
function of the perturbed Ψ0,4 in GR following [61].

In the IRG, the above steps led to three coupled, partial
differential equations for the (ℓ,m) and (ℓ,−m) modes of

the Weyl scalar perturbation in dCS Ψ
(1,1)
0 and the (ℓ,m)

mode of the scalar field perturbation ϑ(1,1) [the (ℓ,m)
and (ℓ,−m) modes of ϑ(1,1) are redundant since ϑ(1,1) is
real], that we refer to as master equations. Similarly, in
the ORG, we obtained three coupled, partial differential
equations for the (ℓ,m) and (ℓ,−m) modes of the Weyl

scalar perturbation in dCS Ψ
(1,1)
4 and the (ℓ,m) mode

of ϑ(1,1). More explicitly, the master equation of Ψ
(1,1)
0

(or Ψ
(1,1)
4 ) consists of the GR Teukolsky operator for a

spin 2 (or spin −2) field acting on Ψ
(1,1)
0 (or Ψ

(1,1)
4 ), as

well as a source term that depends on ϑ(1,1) and the Weyl

scalar perturbation in GR Ψ
(0,1)
0 (or Ψ

(0,1)
4 ). Similarly,

the master equation of ϑ(1,1) consists of the GR Teukolsky
operator for a scalar field acting on ϑ(1,1) and a source

term that depends on Ψ
(0,1)
0 (or Ψ

(0,1)
4 ).

To separate these master equations into radial and an-
gular ordinary differential equations, we exploited the
orthogonality properties of spin-weighted spheroidal har-
monics and performed a harmonic decomposition to elim-
inate all angular dependence of the source terms. The
homogeneous part of the scalar field equation naturally
separates, so we obtain a purely radial differential equa-
tion [i.e., Eq. (138) in the IRG and Eq. (139) in the ORG].
Similar procedures were then implemented for the modi-
fied Teukolsky equations of Ψ0,4. The source terms of the
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modified Teukolsky equations were expressed in terms of
the Hertz potential and the dynamical scalar field. We
then projected the source terms into the radial direc-
tion by integrating them over spin-weighted spheroidal
harmonics. The homogeneous part of these equations sep-
arates in the same way as the Teukolsky equations in GR,
so we also obtained two radial differential equations for
Ψ0 [i.e., Eq. (146)] and Ψ4 [i.e., Eq. (150)], respectively.

Through these procedures, we obtained three
coupled, ordinary (radial) differential equa-

tions for
{
2R

(1,1)
ℓm (r), 2R

(1,1)
ℓ−m(r), Θ

(1,1)
ℓm (r)

}
(or{

−2R
(1,1)
ℓm (r), −2R

(1,1)
ℓ−m(r), Θ

(1,1)
ℓm (r)

}
in the ORG),

where the first two are radials functions of Ψ
(1,1)
0 (or

ρ−4Ψ
(1,1)
4 ), and the last one is the radial function of

ϑ(1,1). All of these equations have the same structure.
The left-hand side is the radial Teukolsky operator for

particles of spin 2 (Ψ
(1,1)
0 ), spin −2 (Ψ

(1,1)
4 ), or spin

0 (ϑ(1,1)). For the radial master equation of Ψ
(1,1)
0

(or Ψ
(1,1)
4 ), the right-hand side contains source terms

that depend on
{
Θ

(1,1)
ℓm (r), 2R

(0,1)
ℓm (r), 2R

(0,1)
ℓ−m(r)

}
(or{

Θ
(1,1)
ℓm (r), −2R

(0,1)
ℓm (r), −2R

(0,1)
ℓ−m(r)

}
), where the last two

are radial functions of Ψ
(0,1)
0 (or ρ−4Ψ

(0,1)
4 ). For the radial

master equation of ϑ(1,1), the right-hand side contains

source terms that depend on
{
2R

(0,1)
ℓm (r), 2R

(0,1)
ℓ−m(r)

}
(or

{
−2R

(0,1)
ℓm (r), −2R

(0,1)
ℓ−m(r)

}
). The coupled system

therefore forms a (Sturm-Liouville) eigenvalue problem
that should be amenable to standard procedures to find
the eigenvectors and eigenvalues, i.e., the QNM and
scalar frequencies.

The primary objective of this study was to apply the
modified Teukolsky formalism in [23] to investigate per-
turbations of BHs in some specific modified theories of
gravity. To illustrate this, we considered the case of slowly
rotating BHs to leading order in spin within the framework
of dCS gravity. Although the slow rotation approximation
may not provide highly accurate results for more realistic
BHs (with spins χ ∼ 0.6), it is a simplified problem for
testing the newly developed formalism. Incorporating ad-
ditional degrees of freedom associated with dCS gravity,
coupled with the intricacies introduced by the metric re-
construction procedures, renders this calculation complex.
Yet, in this work, we successfully demonstrated that the
modified Teukolsky equation in [23] does not only decou-
ple Weyl scalars Ψ0,4 from other NP quantities but also
admits a separation into radial and angular parts, a key
advantage of the Teukolsky equation in GR, especially for
rapidly rotating BHs. Although this paper focused on the
first order in the slow rotation expansion, the separation
of the modified Teukolsky equation should hold for any
spin since the orthogonality properties of spin-weighted
spheroidal harmonics we have used to separate the equa-
tion apply for a general spin. Thus, this calculation is an
ideal initial step toward determining the QNM spectra

for BHs with general spin in modified gravity.

This work creates a new path to directly calculate the
corrections to the QNM frequencies for slowly rotating
perturbed BHs in dCS gravity. Having obtained the
master equations for the perturbed Weyl scalars Ψ0,4 and
the perturbed scalar field, we can now integrate these
equations using numerical integration schemes, such as the
eigenvalue perturbation method in [24, 38, 39] to find the
QNM spectra. Moreover, the QNM spectra obtained using
the modified Teukolsky formalism can then be compared
to the results from the metric perturbation approach [6,
7, 9, 31, 74] and numerical relativity [75–78]. Notice that,
in higher-derivative gravity, Refs. [25, 26] have followed
our formalism to compute the QNMs in the slow-rotation
expansion of BHs in that theory, and they obtained results
valid for χ ≲ 0.7. Nonetheless, the dCS case we have
focused on is more complicated due to the coupling to
the scalar field equation. As discussed above, we have
also presented in detail the angular dependence of the
master equations of the perturbed Ψ0,4 and ϑ and showed
explicitly that they are separable, while Refs. [25, 26] only
briefly discussed using the orthogonality of spin-weighted
spheroidal harmonics to extract the radial equations.

An additional aspect worth exploring is the phe-
nomenon of isospectrality breaking in the QNM spectra.
In GR, odd and even parity modes oscillate and decay
at the same rate. However, certain modified theories of
gravity have been shown to exhibit a breaking of isospec-
trality, e.g., dCS gravity [6, 7, 9, 31, 74], EdGB gravity
[8, 10, 79], and higher-derivative gravity [55]. The inves-
tigation of isospectrality breaking has, so far, primarily
focused on metric perturbations, as the Zerilli-Moncrief
and Regge-Wheeler equations naturally separate metric
perturbations into even- and odd-parity sectors [14, 15].
However, for BHs with arbitrary spin, there are no known
extensions of the Zerilli-Moncrief and the Regge-Wheeler
equations, so we need to use the modified Teukolsky equa-
tion to study isospectrality breaking. In another study
[72] involving all the authors, the definite-parity modes of
curvature perturbations in modified gravity were found,
and the features in these bGR theories that result in
isospectrality breaking were revealed and demonstrated
in several simple cases. Nonetheless, a direct mapping
from the Zerilli-Moncrief and Regge-Wheeler functions to
the modified Teukolsy equations of these definite-parity
modes still remains unknown. The implementation of the
modified Teukolsky equation in a concrete bGR theory
has opened up possibilities for addressing these questions
and more.

Building upon the insights gained from the present
study, further investigations can be pursued involving
more complex systems within various gravitational theo-
ries. As part of our collaborative effort, we are currently
engaged in extending this calculation to derive the master
equations and QNM spectra for BHs with arbitrary spin
in dCS gravity, where the BH spacetime is Petrov type I.
In addition, we are also actively involved in computing the
master equations for rotating Petrov type I BHs within
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the framework of EdGB gravity. For the first time, we
can explore the QNM spectra for BHs with general spin
in a wide range of gravitational theories and spacetime
geometries, which can then be compared with real obser-
vation data to scrutinize these possible deviations from
GR.
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Appendix A: Principal tetrad, spin coefficients, and
some auxiliary functions

In Sec. IIID, we performed tetrad rotations to set

Ψ
(1,0)
1,3 = 0. As discussed in [41], these tetrad rotations

preserving the orthogonality conditions of the NP tetrad
can be divided into three types,

I : l → l , m→ m+ al , m̄→ m̄+ āl ,

n→ n+ ām+ am̄+ aāl .
(A1a)

II : n→ n , m→ m+ bn , m̄→ m̄+ b̄n ,

l → l + b̄m+ bm̄+ bb̄n .
(A1b)

III : l → A−1l , n→ An , m→ eiφm,

m̄→ e−iφm̄ ,
(A1c)

where a and b are complex functions while A and φ are
real functions. The transformations of Weyl scalars and
spin coefficients under the tetrad rotations in Eq. (A1)
can be found in [41]. The tetrad rotations above are
precise, but when these rotation parameters are small,
for example at O(ζ1, ϵ0), the rotations of the tetrad at
O(ζ1, ϵ0) simplify into

l(1,0) → l(1,0) + b̄(1,0)m+ b(1,0)m̄− δA(1,0)l ,

n(1,0) → n(1,0) + ā(1,0)m+ a(1,0)m̄+ δA(1,0)n ,

m(1,0) → m(1,0) + a(1,0)l + b(1,0)n+ iφ(1,0)m,

(A2)

where we defined δA = A−1 and combined the three types
of tetrad rotations. Then, the Weyl scalars at O(ζ1, ϵ0)
transform as

Ψ
(1,0)
0,2,4 → 0 ,

Ψ
(1,0)
1 → Ψ

(1,0)
1 + 3b(1,0)Ψ2 ,

Ψ
(1,0)
3 → Ψ

(1,0)
3 + 3ā(1,0)Ψ2 ,

(A3)

where we used that the background at O(ζ0, ϵ0) is Petrov

type D, so Ψ
(0,0)
0,1,3,4 = 0. Since the spin coefficients at

O(ζ1, ϵ0) after the rotations can be easily computed from
the rotated tetrad, e.g., Eq. (A4) in this work, we do not
provide their general transformations under the tetrad
rotations here.

Using the tetrad rotations in Eq. (A1) and the results

in Eq. (A3), we set Ψ
(1,0)
1,3 = 0 and found the principal

tetrad to be

lµ =

(
r

r − rs
, 1, 0,

χM

r(r − rs)
+

ζχG̃(r)

2r(r − rs)

− ζχA1(r)

16Mr7

)
,

(A4a)

nµ = Ñ(r)

(
r

r − rs
, −1, 0,

χM

r(r − rs)
+

ζχG̃(r)

2r(r − rs)

+
ζχA3(r)

16Mr7(r − rs)

)
,

(A4b)

mµ =
1√
2r

(
iχM

(
1 + ζ

A3(r)−A1(r)(r − rs)

32M2r5(r − rs)

)
sin θ ,

iζχ

(
A3(r) +A1(r)(r − rs)

32Mr6

)
sin θ ,

1− iχM cos θ

r
, i

(
1− iχM cos θ

r

)
csc θ

)
,

(A4c)

where

A1(r) = 306M7 + 140M6r + 55M5r2 , (A5a)

A2(r) = 18M7 + 10M6r + 5M5r2 , (A5b)

A3(r) = 612M8 − 26M7r − 30M6r2 − 55M5r3 . (A5c)

In the principal tetrad Eq. (A4), the spin coefficients
at background are

σ = λ = 0 ,

κ = −
(

1

Ñ(r)

)2

ν = −5iζχB1(r)

16
√
2r7

sin θ ,

ρ =
1

Ñ(r)
µ = −1

r
− iMχ

r2

(
1− ζB2(r)

16r5

)
cos θ ,

τ = − π = − iMχ√
2r2

(
1 +

ζB3(r)

32r6

)
sin θ ,

ε =
iMζχB2(r)

32r7
cos θ ,

γ = µ+
r −M

2r2
,

α =
iMχ√
2r2

(
1 +

ζB4(r)

16r6

)
sin θ − β̄
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= − 1

2
√
2r

[
cot θ − iMχ

r

((
3 +

ζB4(r)

16r6

)
sin θ

− csc θ

)]
, (A6)

with

B1(r) = 306M6 + 112M5r + 33M4r2 , (A7a)

B2(r) = 306M5 + 140M4r + 55M3r2 , (A7b)

B3(r) = 4680M6 − 302M5r − 240M4r2

− 275M3r3 ,
(A7c)

B4(r) = 810M6 + 54M5r − 5M4r2 − 55M3r3 . (A7d)

Using the above NP quantities at O(ζ1, ϵ0), we com-
puted the correction to the Teukolsky operators in
Sec. VIA. In Eq. (100), these radial functions are de-

fined to be

C1(r) = 57960M4 − 39316M3r − 694M2r2

− 1050Mr3 + 2345r4 ,
(A8a)

C2(r) = 189M3 + 120M2r + 70Mr2 , (A8b)

C3(r) = 1602M3 − 1056M2r − 515Mr2

− 255r3 ,
(A8c)

C4(r) = 954M2 + 440Mr + 175r2 , (A8d)

C5(r) = 4680M3 − 518M2r − 360Mr2 − 335r3 . (A8e)

The radial functions in Eq. (120) are given by

Di(r) = Ci(r) i ̸= 3 , (A9a)

D3(r) = 306M3 + 28M2r − 15Mr2 − 95r3 . (A9b)

Appendix B: Reconstructed NP quantities

In this appendix, we provide the explicit expressions of these reconstructed NP quantities in Sec. IV. As discussed in
Sec. IV, one can write these structure constants Cab

c in terms of spin coefficients using Eq. (72) and the definition of
spin coefficients in terms of Ricci rotation coefficients

κ = γ131 , π = −γ241 , ε =
1

2
(γ121 − γ341) , ρ = γ134 , λ = −γ244 , α =

1

2
(γ124 − γ344) ,

σ = γ133 , µ = −γ243 , β =
1

2
(γ123 − γ343) , τ = γ132 , ν = −γ242 , γ =

1

2
(γ122 − γ342) . (B1)

It was found in [41] that

C12
1 = −(γ + γ̄) , C12

2 = −(ε+ ε̄) , C12
3 = τ̄ + π , C13

1 = −ᾱ− β + π̄ , C13
2 = −κ , C13

3 = ρ̄+ ε− ε̄ , C13
4 = σ ,

C23
1 = ν̄ , C23

2 = −τ + ᾱ+ β , C23
3 = −µ+ γ − γ̄ , C23

4 = −λ̄ , C34
1 = µ− µ̄ , C34

2 = ρ− ρ̄ , C34
3 = β̄ − α ,

(B2)
and the other components can be found by using complex conjugation and that Cab

c is antisymmetric in its first two
indices. Solving the above equation, one can also express spin coefficients in terms of Cab

c,

κ = C31
2 , σ = −C31

4 , λ = C42
3 , ν = −C42

1 ,

ρ = −1

2

(
C31

3 + C41
4 + C43

2
)
, µ =

1

2

(
C32

3 + C42
4 − C43

1
)
,

π = −1

2

(
C41

1 + C42
2 + C21

3
)
, τ =

1

2

(
C31

1 + C32
2 − C21

4
)
,

ε =
1

4

(
C41

4 − C31
3 + 2C21

2 + ρ− ρ̄
)
, γ =

1

4

(
C42

4 − C32
3 + 2C21

1 + µ− µ̄
)
,

α =
1

4

(
C41

1 − C42
2 + 2C43

3 + τ̄ − π
)
, β =

1

4

(
C31

1 − C32
2 + 2C43

4 + τ − π̄
)
.

(B3)

Then following the procedures in Sec. IV, one finds the spin coefficients at O(ζ0, ϵ1) to be

κ(0,1) =
1

2
δ[−2,−2,1,1]h

(0,1)
ll −D[−2,0,0,−1]h

(0,1)
lm , (B4a)

σ(0,1) = − 1

2
D[−2,2,1,−1]h

(0,1)
mm + (π̄ + τ)h

(0,1)
lm , (B4b)

λ(0,1) = (π + τ̄)h
(0,1)
nm̄ +

1

2
∆[−1,1,2,−2]h

(0,1)
m̄m̄ , (B4c)

ν(0,1) = − 1

2
δ̄[2,2,−1,−1]h

(0,1)
nn +∆[0,1,2,0]h

(0,1)
nm̄ , (B4d)
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ϵ(0,1) =
1

4

[
∆[−1,1,0,−2]h

(0,1)
ll − 2D[0,0, 12 ,−

1
2 ]
h
(0,1)
ln − δ̄[−2,0,−3,−2]h

(0,1)
lm + δ[−2,0,1,2]h

(0,1)
lm̄ − (ρ− ρ̄)h

(0,1)
mm̄

]
, (B4e)

ρ(0,1) =
1

2

[
− µh

(0,1)
ll − (ρ− ρ̄)h

(0,1)
ln − δ̄[−2,0,−1,0]h

(0,1)
lm + δ[−2,0,1,2]h

(0,1)
lm̄ −D[0,0,1,−1]h

(0,1)
mm̄

]
, (B4f)

µ(0,1) =
1

2

[
− ρh(0,1)nn − δ̄[0,2,−2,−1]h

(0,1)
nm + δ[0,2,0,1]h

(0,1)
nm̄ + (µ+ µ̄)h

(0,1)
ln +∆[−1,1,0,0]h

(0,1)
mm̄

]
, (B4g)

γ(0,1) =
1

4

[
−D[0,2,1,−1]h

(0,1)
nn − δ̄[0,2,−2,−1]h

(0,1)
nm + δ[0,2,2,3]h

(0,1)
nm̄ − (µ− µ̄− 4γ)h

(0,1)
ln − (µ− µ̄)h

(0,1)
mm̄

]
, (B4h)

α(0,1) =
1

4

[
−D[−2,0,−1,−2]h

(0,1)
nm̄ + δ[−2,0,1,1]h

(0,1)
m̄m̄ − δ̄[0,0,−1,−1]h

(0,1)
ln +∆[−2,1,4,−2]h

(0,1)
lm̄ − δ̄[2,0,−1,−1]h

(0,1)
mm̄

]
, (B4i)

β(0,1) =
1

4

[
−D[−4,2,2,−1]h

(0,1)
nm − δ̄[0,2,−1,−1]h

(0,1)
mm − δ[0,0,−1,−1]h

(0,1)
ln +∆[1,2,2,0]h

(0,1)
lm + δ[0,−2,1,1]h

(0,1)
mm̄

]
, (B4j)

π(0,1) =
1

2

[
D[2,0,−1,0]h

(0,1)
nm̄ + τh

(0,1)
m̄m̄ − δ[0,0,−1,−1]h

(0,1)
ln +∆[0,1,0,−2]h

(0,1)
lm̄ + τ̄h

(0,1)
mm̄

]
, (B4k)

τ (0,1) =
1

2

[
−D[0,2,0,−1]h

(0,1)
nm + πh(0,1)mm + δ[0,0,1,1]h

(0,1)
ln −∆[1,0,−2,0]h

(0,1)
lm + π̄h

(0,1)
mm̄

]
. (B4l)

For Weyl scalars at O(ζ0, ϵ1), one can use Ricci identities to retrieve them from spin coefficients. The equations
below work for both vacuum and non-vacuum spacetimes since we have linearly combined Ricci identities to remove
NP Ricci scalars Φab following [37, 65].

Ψ0 = D[−3,1,−1,−1]σ − δ[−1,−3,1,−1]κ , (B5a)

Ψ1 = D[0,1,0,−1]β − δ[−1,0,1,0]ε− (α+ π)σ + (γ + µ)κ , (B5b)

Ψ2 =
1

3

[
δ̄[−2,1,−1,−1]β − δ[−1,0,1,1]α+D[1,1,1,−1]γ −∆[−1,1,−1,−1]ε+ δ̄[−1,1,−1,−1]τ −∆[−1,1,−1,−1]ρ+ 2(νκ− λσ)

]
,

(B5c)

Ψ3 = δ̄[0,1,0,−1]γ −∆[0,1,0,−1]α+ (ε+ ρ)ν − (β + τ)λ , (B5d)

Ψ4 = δ̄[3,1,1,−1]ν −∆[1,1,3,−1]λ . (B5e)

The equations above are precise, so one needs to linearize them when extracting the Weyl scalars at O(ζ0, ϵ1) using
the perturbed tetrad and spin coefficients at O(ζ0, ϵ1).
In Refs. [35, 59], they also computed the perturbed Weyl scalars in the IRG and expressed them in terms of the

Hertz potential,

Ψ
(0,1)
0 = −1

2
D[−3,1,0,−1]D[−2,2,0,−1]h

(0,1)
mm , (B6a)

Ψ
(0,1)
1 = −1

8

[
2D[−1,1,1,−1]D[0,2,1,−1]h

(0,1)
nm +D[−1,1,1,−1]δ[−2,2,−2,−1]h

(0,1)
mm + δ̄[−3,1,−3,−1]D[−2,2,0,−1]h

(0,1)
mm

]
, (B6b)

Ψ
(0,1)
2 = − 1

12

[
D[1,1,2,−1]D[2,2,2,−1]h

(0,1)
nn,1 + 2

(
D[1,1,2,−1]δ̄[0,2,−1,−1] +δ̄[−1,1,−2,−1]D[0,2,1,−1]

)
h(0,1)nm

+ δ̄[−1,1,−2,−1]δ̄[−2,2,−2,−1]h
(0,1)
mm

]
,

(B6c)

Ψ
(0,1)
3 = −1

8

[ (
D[3,1,3,−1]δ̄[2,2,0,−1] +δ̄[1,1,−1,−1]D[2,2,,2,−1]

)
h
(0,1)
nn,1 + δ̄[1,1,−1,−1]δ̄[0,2,−1,−1]h

(0,1)
nm

]
, (B6d)

Ψ
(0,1)
4 = −1

2

[
δ̄[3,1,0,−1]δ̄[2,2,0,−1]h

(0,1)
nn,1 + 3Ψ2

(
τ δ̄[4,0,0,0] − ρ∆[0,0,4,0] −µD[4,0,0,0] + πδ[0,4,0,0] + 2Ψ2

)
Ψ̄H

]
, (B6e)

where h
(0,1)
nn,1 is the piece of h

(0,1)
nn proportional to Ψ̄H in Eq. (48), i.e., h

(0,1)

nn,1 = δ̄[1,3,0,−1]δ̄[0,4,0,3]Ψ̄H. As we discussed in
Sec. IV, our results using either the Ricci identities or direct computation from the linearized Riemann tensor agree for

Ψ
(0,1)
0,1,2,4 but not for Ψ

(0,1)
3 due to different choices of the perturbed tetrad. Thus, we can use Eq. (B6) for Ψ

(0,1)
0,1,2,4 and

Eq. (B5d) for Ψ
(0,1)
3 .

For Schwarzschild, the equations above simplify into

Ψ
(0,1)
0 = −1

2
D4Ψ̄H , (B7a)

Ψ
(0,1)
1 = −1

2
D3(δ̄ − 4α)Ψ̄H , (B7b)
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Ψ
(0,1)
2 = −1

2
D2(δ̄ − 2α)(δ̄ − 4α)Ψ̄H , (B7c)

Ψ
(0,1)
3 = −1

2
Dδ̄(δ̄ − 2α)(δ̄ − 4α)Ψ̄H +

3

2
Ψ2hnm̄ , (B7d)

Ψ
(0,1)
4 = −1

2
(δ̄ + 2α)δ̄(δ̄ − 2α)(δ̄ − 4α)Ψ̄H +

3

2
Ψ2 [µD + ρ(∆+ 4γ)− 2Ψ2] ΨH , (B7e)

where we have added the correction term 3
2Ψ2h

(0,1)
nm̄ to Ψ

(0,1)
3 .

To use a consistent gauge with the one in Sec. IIIA, we need to rotate the tetrad to remove Ψ
(0,1)
1,3 . Under type I

and II tetrad rotations at O(ζ0, ϵ1), the tetrad becomes

l(0,1) → l(0,1) + b̄(0,1)m+ b(0,1)m̄− δA(0,1)l , n(0,1) → n(0,1) + ā(0,1)m+ a(0,1)m̄+ δA(0,1)n ,

m(0,1) → m(0,1) + a(0,1)l + b(0,1)n+ iφ(0,1)m,
(B8)

and the Weyl scalars transform as

Ψ
(0,1)
0,2,4 → 0 , Ψ

(0,1)
1 → Ψ

(0,1)
1 + 3b(0,1)Ψ2 , Ψ

(0,1)
3 → Ψ

(0,1)
3 + 3ā(0,1)Ψ2 . (B9)

The rotation coefficients a(0,1) and b(0,1) are given by Eq. (75). For spin coefficients, due to the complication of the
reconstructed tetrad, instead of computing the spin coefficients from the rotated tetrad directly, we chose to use the
transformation of spin coefficients under tetrad rotations in [41]. In this case, the spin coefficients transform as

κ(0,1) → κ(0,1) + b(0,1)ρ−Db(0,1) , σ(0,1) → σ(0,1) + b(0,1)(2β + τ)− δb(0,1) ,

λ(0,1) → λ(0,1) + ā(0,1)(2α+ π) + δ̄ā , ν(0,1) → ν(0,1) + ā(0,1)(µ+ 2γ) +∆ā(0,1) ,

ε(0,1) → ε(0,1) + b̄(0,1)β + b(0,1)(α+ π) , ρ(0,1) → ρ(0,1) + b̄(0,1)τ + 2b(0,1)α− δ̄b(0,1) ,

µ(0,1) → µ(0,1) + a(0,1)π + 2ā(0,1)β + δā(0,1) , γ(0,1) → γ(0,1) + a(0,1)α+ ā(0,1)(β + τ) ,

α(0,1) → α(0,1) + ā(0,1)ρ+ b̄(0,1)γ , β(0,1) → β(0,1) + b(0,1)(µ+ γ) ,

π(0,1) → π(0,1) + b̄(0,1)µ+Dā(0,1) , τ (0,1) → τ (0,1) + a(0,1)ρ+ 2b(0,1)γ −∆b(0,1) .

(B10)

Furthermore, besides the tetrad rotations, when one performs coordinate transformations xµ → xµ + ξµ at O(ζ0, ϵ1),
one finds

Ψ(0,1) → Ψ(0,1) + ξµ(0,1)∂µΨ
(0,0) + ξµ(0,1)∂µΨ

(0,0) . (B11)

for the scalar-type NP quantities such as Weyl scalars and spin coefficients [65].

Appendix C: Expression of Φij

In Sec. VIB, we want to rewrite the Ricci tensor in Eqs. (103) and (104) in terms of Weyl scalars, spin coefficients,
and directional derivatives. Since γabc is antisymmetric in the first two indices, it has 24 independent components.
These 24 components can be further reduced to 14 components using complex conjugation, which can then be expressed
in terms of spin coefficients using the definition in Eq. (B1),

γ121 = ε+ ε̄ , γ122 = γ + γ̄ , γ123 = ᾱ+ β , γ131 = κ , γ132 = τ , γ133 = σ , γ134 = ρ ,

γ231 = −π̄ , γ232 = −ν̄ , γ233 = −λ̄ , γ234 = −µ̄ , γ341 = ε̄− ε , γ342 = γ̄ − γ , γ343 = ᾱ− β ,
(C1)

For Riemann tensor or Weyl tensor, it is antisymmetric within its first pair and second pair of indices and symmetric
under the exchange of the first and the second pair of indices, so the total number of independent components reduce
to 21 using these symmetries. Besides these symmetries, Ca[bcd] = 0 and Cabcd is traceless in the vacuum, which further
give us the following relations in [41],

C1314 = C1323 = C1424 = C2324 = 0 ,

C1334 = −C1213 , C2334 = C1223 , C3434 = C1212 , C1342 =
1

2
(C1212 − C1234) ,

(C2)



35

which reduce the number of independent components of Cabcd to 10. These 10 independent components can be
represented by 5 Weyl scalars and their conjugates. With complex conjugation, we can find all the components of the
Weyl tensor using the symmetries above and the components below,

C1212 = Ψ2 + Ψ̄2 , C1213 = Ψ1 , C1223 = −Ψ̄3 , C1234 = Ψ̄2 −Ψ2 , C1313 = Ψ0 , C2323 = Ψ̄4 . (C3)

With Eqs. (103) and (104) and (C1)–(C3), we find Eq. (103) in the NP basis to be

R11 = iR1

{
(Dϑ)

[
λΨ0 − λ̄Ψ̄0 − (α+ β̄ + π)Ψ1 + (ᾱ+ β + π̄)Ψ̄1 + (ε+ ε̄)(Ψ2 − Ψ̄2)

]
− (∆ϑ)

[
σ̄Ψ0 − σΨ̄0 − κ̄Ψ1 + κΨ̄1

]
+ (δϑ)

[
(ᾱ− β)Ψ̄0 + σ̄Ψ1 + (ε− ε̄− ρ̄)Ψ̄1 − κ̄(Ψ2 − Ψ̄2)

]
− (δ̄ϑ)

[
(α− β̄)Ψ0 − (ε− ε̄+ ρ)Ψ1 + σΨ̄1 + κ(Ψ2 − Ψ̄2)

]
− 1

2
Ψ0{δ̄, δ̄}ϑ+

1

2
Ψ̄0{δ, δ}ϑ+Ψ1{D, δ̄}ϑ− Ψ̄1{D, δ}ϑ− (Ψ2 − Ψ̄2)

1

2
{D,D}ϑ

}
+R2(Dϑ)(Dϑ) ,

(C4a)

R12 =
i

2
R1

{
(Dϑ)

[
νΨ1 − ν̄Ψ̄1 − (γ + γ̄ + µ+ µ̄)(Ψ2 − Ψ̄2) + (ᾱ+ β + π̄)Ψ3 −

(
α+ β̄ + π

)
Ψ̄3

]
− (∆ϑ)

[
(α+ β̄ + τ̄)Ψ1 − (ᾱ+ β + τ)Ψ̄1 − (ε+ ε̄+ ρ+ ρ̄)(Ψ2 − Ψ̄2) + κΨ3 − κ̄Ψ̄3

]
+ (δϑ)

[
λΨ1 − (γ − γ̄ + µ)Ψ̄1 − (α− β̄ + π − τ̄)(Ψ2 − Ψ̄2) + (ε− ε̄− ρ̄)Ψ3 + σ̄Ψ̄3

]
− (δ̄ϑ)

[
(γ − γ̄ − µ̄)Ψ1 + λ̄Ψ̄1 + (ᾱ− β + π̄ − τ)(Ψ2 − Ψ̄2) + σΨ3 − (ε− ε̄+ ρ)Ψ̄3

]
−Ψ1{∆, δ̄}ϑ+ Ψ̄1{∆, δ}ϑ+ (Ψ2 − Ψ̄2)

[
{D,∆}+ {δ, δ̄}

]
ϑ−Ψ3{D, δ}ϑ+ Ψ̄3{D, δ̄}ϑ

}
+R2(Dϑ)(∆ϑ) ,

(C4b)

R13 =
i

2
R1

{
(Dϑ)

[
νΨ0 − (γ + γ̄ + µ+ µ̄)Ψ1 − 2λ̄Ψ̄1 + (ᾱ+ β + π̄)(Ψ2 + 2Ψ̄2)− 2(ε+ ε̄)Ψ̄3

]
− (∆ϑ)

[
(α+ β̄ + τ̄)Ψ0 − (ε+ ε̄+ ρ+ ρ̄)Ψ1 − 2σΨ̄1 + κ(Ψ2 + 2Ψ̄2)

]
+ (δϑ)

[
λΨ0 − (α− β̄ + π − τ̄)Ψ1 + 2(ᾱ− β)Ψ̄1 + (ε− ε̄− ρ̄)(Ψ2 + 2Ψ̄2) + 2κ̄Ψ̄3

]
− (δ̄ϑ)

[
(γ − γ̄ − µ̄)Ψ0 + (ᾱ− β + π̄ − τ)Ψ1 + σ(Ψ2 + 2Ψ̄2)− 2κΨ̄3

]
−Ψ0{∆, δ̄}ϑ+Ψ1

[
{D,∆}+ {δ, δ̄}

]
ϑ+ Ψ̄1{δ, δ}ϑ− (Ψ2 + 2Ψ̄2){D, δ}ϑ+ Ψ̄3{D,D}ϑ

}
+R2(Dϑ)(δϑ) ,

(C4c)

R22 = iR1

{
− (Dϑ)

[
ν̄Ψ3 − νΨ̄3 − λ̄Ψ4 + λΨ̄4

]
− (∆ϑ)

[
(γ + γ̄)(Ψ2 − Ψ̄2)− (ᾱ+ β + τ)Ψ3

+ (α+ β̄ + τ̄)Ψ̄3 + σΨ4 − σ̄Ψ̄4

]
+ (δϑ)

[
ν(Ψ2 − Ψ̄2)− (γ − γ̄ + µ)Ψ3 + λΨ̄3 + (ᾱ− β)Ψ4

]
+ (δ̄ϑ)

[
ν̄(Ψ2 − Ψ̄2)− λ̄Ψ3 − (γ − γ̄ − µ̄)Ψ̄3 + (α− β̄)Ψ̄4

]
− 1

2
(Ψ2 − Ψ̄2){∆,∆}ϑ+Ψ3{∆, δ}ϑ− Ψ̄3{∆, δ̄}ϑ− 1

2
Ψ4{δ, δ}ϑ+

1

2
Ψ̄4{δ̄, δ̄}ϑ

}
+R2(∆ϑ)(∆ϑ) ,

(C4d)
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R23 =
i

2
R1

{
− (Dϑ)

[
ν̄(2Ψ2 + Ψ̄2)− 2λ̄Ψ3 − (γ + γ̄ + µ+ µ̄)Ψ̄3 + (α+ β̄ + π)Ψ̄4

]
− (∆ϑ)

[
2(γ + γ̄)Ψ1 − (ᾱ+ β + τ)(2Ψ2 + Ψ̄2) + 2σΨ3 + (ε+ ε̄+ ρ+ ρ̄)Ψ̄3 − κ̄Ψ̄4

]
+ (δϑ)

[
2νΨ1 − (γ − γ̄ + µ)(2Ψ2 + Ψ̄2)− 2(ᾱ− β)Ψ3 + (α− β̄ + π − τ̄)Ψ̄3 + σ̄Ψ̄4

]
+ (δ̄ϑ)

[
2ν̄Ψ1 − λ̄(2Ψ2 + Ψ̄2) + (ᾱ− β + π̄ − τ)Ψ̄3 + (ε− ε̄+ ρ)Ψ̄4

]
−Ψ1{∆,∆}ϑ+ (2Ψ2 + Ψ̄2){∆, δ}ϑ−Ψ3{δ, δ}ϑ− Ψ̄3

[
{D,∆}+ {δ, δ̄}

]
ϑ+ Ψ̄4{D, δ̄}ϑ

}
+R2(∆ϑ)(δϑ) ,

(C4e)

R33 = iR1

{
− (Dϑ)

[
ν̄Ψ1 − λ̄(Ψ2 − Ψ̄2)− (ᾱ+ β + π̄)Ψ̄3 + (ε+ ε̄)Ψ̄4

]
− (∆ϑ)

[
(γ + γ̄)Ψ0 − (ᾱ+ β + τ)Ψ1 + σ(Ψ2 − Ψ̄2) + κΨ̄3

]
+ (δϑ)

[
νΨ0 − (γ − γ̄ + µ)Ψ1 − (ᾱ− β)(Ψ2 − Ψ̄2) + (ε− ε̄− ρ̄) + κ̄Ψ̄4

]
+ (δ̄ϑ)

[
ν̄Ψ0 − λ̄Ψ1 − σΨ̄3 + κΨ̄4

]
− 1

2
Ψ0{∆,∆}ϑ+Ψ1{∆, δ}ϑ− 1

2
(Ψ2 − Ψ̄2){δ, δ}ϑ− Ψ̄3{D, δ}ϑ+

1

2
Ψ̄4{D,D}ϑ

}
+R2(δϑ)(δϑ) ,

(C4f)

R34 =
i

2
R1

{
(Dϑ)

[
νΨ1 − ν̄Ψ̄1 − (γ + γ̄ + µ+ µ̄)(Ψ2 − Ψ̄2) + (ᾱ+ β + π̄)Ψ3 − (α+ β̄ + π)Ψ̄3

]
− (∆ϑ)

[
(α+ β̄ + τ̄)Ψ1 − (ᾱ+ β + τ)Ψ̄1 − (ε+ ε̄+ ρ+ ρ̄)(Ψ2 − Ψ̄2) + κΨ3 − κ̄Ψ̄3

]
+ (δϑ)

[
λΨ1 − (γ − γ̄ + µ)Ψ̄1 − (α− β̄ + π − τ̄)(Ψ2 − Ψ̄2) + (ε− ε̄− ρ̄)Ψ3 + σ̄Ψ̄3

]
− (δ̄ϑ)

[
(γ − γ̄ − µ̄)Ψ1 + λ̄Ψ̄1 + (ᾱ− β + π̄ − τ)(Ψ2 − Ψ̄2) + σΨ3 − (ε− ε̄+ ρ)Ψ̄3

]
−Ψ1{∆, δ̄}ϑ+ Ψ̄1{∆, δ}ϑ+ (Ψ2 − Ψ̄2)

[
{D,∆}+ {δ, δ̄}

]
ϑ−Ψ3{D, δ}ϑ+ Ψ̄3{D, δ̄}ϑ

}
+R2(δϑ)(δ̄ϑ) ,

(C4g)

where

R1 ≡ −
(

1

κg

) 1
2

M2 , R2 ≡ 1

2κgζ
. (C5)

and the remaining components of Rab can be found by exchanging the indices or complex conjugation.

The Ricci NP scalars Φij are related to the Ricci tensor via

Φ00 =
1

2
R11 , Φ01 =

1

2
R13 , Φ02 =

1

2
R33 , Φ10 =

1

2
R14 , Φ11 =

1

4
(R12 +R34) ,

Φ12 =
1

2
R23 , Φ20 =

1

2
R44 , Φ21 =

1

2
R24 , Φ22 =

1

2
R22 , Λ = R/24 .

(C6)

Using the projection of the Ricci tensor onto the NP basis in Eq. (C4), the stationary scalar field in Eq. (13), and the
NP quantities in Schwarzschild [setting ζ = χ = 0 in Eqs. (A4) and (A6)], we find the O(ζ1, χ1, ϵ0) contributions to
Φij

Φ
(1,1,0)
00 = Φ

(1,1,0)
02 = Φ

(1,1,0)
11 = Φ

(1,1,0)
20 = Φ

(1,1,0)
22 = 0 , (C7a)

Φ
(1,1,0)
01 = Φ̄

(1,1,0)
10 = −

15iM5
(
18M2 + 8Mr + 3r2

)
sin θ

16
√
2r9

, (C7b)

Φ
(1,1,0)
12 = Φ̄

(1,1,0)
21 = −

15iM5 (r − 2M)
(
18M2 + 8Mr + 3r2

)
sin θ

32
√
2r10

, (C7c)
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which are used in Sec. VI to evaluate S
(1,1,1)
IA and S

(1,1,1)
IIA . From Eq. (C7), one can also find S

(1,0)
1,2 to be

S
(1,1,0)
1 = −45iM5(42M2 + 16Mr + 5r2) sin θ

16
√
2r10

, S
(1,1,0)
2 = 0 . (C8)

As discussed in Sec. VI, to compute SIIB , one needs to evaluate Φ
(1,1)
00 , Φ

(1,1)
01 , and Φ

(1,1)
00 . When ϑ is stationary, since

ϑ(1,0,0) = 0, Φ
(1,0,1)
ij = 0, and we have only contributions from Φ

(1,1,1)
ij at O(ζ1, χ1, ϵ1). Based on our classifications in

in Sec. VI, we find the first type of contributions to be

Φ
(1,1,1)
00,A = − iR1

2

[
Ψ

(0,0,1)
0

(
δ̄2 + 2αδ̄

)
ϑ(1,1,0) − Ψ̄

(0,0,1)
0

(
δ2 + 2αδ

)
ϑ(1,1,0) + (Ψ

(0,0,1)
2 − Ψ̄

(0,0,1)
2 )D2ϑ(1,1,0)

]
, (C9a)

Φ
(1,1,1)
01,A = − iR1

4

[
Ψ

(0,0,1)
0

(
{∆, δ̄} − µδ̄

)
ϑ(1,1,0) + (Ψ

(0,0,1)
2 + 2Ψ̄

(0,0,1)
2 ) ({D, δ}+ ρδ)ϑ(1,1,0)

]
, (C9b)

Φ
(1,1,1)
02,A = − iR1

2

[
Ψ

(0,0,1)
0 (∆2 + 2γ∆)ϑ(1,1,0) + (Ψ

(0,0,1)
2 − Ψ̄

(0,0,1)
2 )(δ2 + 2αδ)ϑ(1,1,0) − Ψ̄

(0,0,1)
4 D2ϑ(1,1,0)

]
, (C9c)

where we used that in Schwarzschild,

ᾱ(0,0,0) = α(0,0,0) = −β(0,0,0) , ρ̄(0,0,0) = ρ(0,0,0) , µ̄(0,0,0) = µ(0,0,0) , γ̄(0,0,0) = γ(0,0,0) , (C10)

and other spin coefficients at O(ζ0, χ0, ϵ0) vanish with the gauge choice Ψ
(0,1)
1 = Ψ

(0,1)
3 = 0. For simplicity, we have

also dropped the superscripts of all the terms at O(ζ0, ϵ0). For the second type of contributions, we have

Φ
(1,1,1)
00,B = 0 , (C11a)

Φ
(1,1,1)
01,B =

3iR1

8

{
2
[
(D + ρ)a(0,0,1) + 2(γ + µ)b(0,0,1)

]
Dϑ(1,1,0) + 2(D − ρ)b(0,0,1)∆ϑ(1,1,0)

+2
[
2αb(0,0,1) + (δ − 4α)b̄(0,0,1)

]
δϑ(1,1,0) +

[
2(δ + 2α)b(0,0,1) +Dh(0,0,1)mm

]
δ̄ϑ(1,1,0)

}
,

(C11b)

Φ
(1,1,1)
02,B = 0 , (C11c)

where we used that in Schwarzschild,

Ψ
(0,0,0)
0,1,3,4 = 0 , Ψ̄

(0,0,0)
2 = Ψ

(0,0,0)
2 . (C12)

The parameters a(0,0,1) and b(0,0,1) are rotation parameters given by Eq. (75). For the third type of contributions, we
find

Φ
(1,1,1)
00,C = 0 , (C13a)

Φ
(1,1,1)
01,C = − 3iR1Ψ2

8

{
2
[
(D + ρ)h(0,0,1)nm + (D + ρ)a(0,0,1)

]
Dϑ(1,1,0) + 2(D + ρ)b(0,0,1)∆ϑ(1,1,0)

+2δb̄(0,0,1)δϑ(1,1,0) −
[
(D + ρ)h(0,0,1)mm − 2δb(0,0,1)

]
δ̄ϑ(1,1,0)

+4
(
h(0,0,1)nm + a(0,0,1)

)
D2ϑ(1,1,0) + 4b̄(0,0,1)δ2ϑ(1,1,0)

+2b(0,0,1)
(
{D,∆}+ {δ, δ̄}

)
ϑ(1,1,0) − h(0,0,1)mm {D, δ̄}ϑ(1,1,0)

}
,

(C13b)

Φ
(1,1,1)
02,C = 0 , (C13c)

where we used Eqs. (C10) and (C12).
For the last type of contributions, since ϑ(1,1) can have both contributions from ϑ(1,0,1) and ϑ(1,1,1), the background

metric we need is generally up to O(ζ0, χ1, ϵ0). This is also true for the operators converting Φij to S. For this
reason, we will not expand the expression below explicitly in χ but do the expansion at the end when plugging in the
coordinate-based values of the NP quantities. Then, at O(ζ1, ϵ1), we find

Φ
(1,1)
00,D = R2Dϑ

(1,0)Dϑ(1,1) − iR1

2
(Ψ2 − Ψ̄2)D

2ϑ(1,1) , (C14a)

Φ
(1,1)
01,D =

1

4

[
2R2(δϑ

(1,0)D +Dϑ(1,0)δ)ϑ(1,1) + iR1(ᾱ+ β + π̄)(Ψ2 + 2Ψ̄2)Dϑ
(1,1) − iR1(Ψ2 + 2Ψ̄2)({D, δ}+ ρ̄δ)ϑ(1,1)

]
,

(C14b)
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Φ
(1,1)
02,D =

1

2

[
2R2δϑ

(1,0) + iR1(β − ᾱ)(Ψ2 − Ψ̄2)
]
δϑ(1,1) −R1(Ψ2 − Ψ̄2)δ

2ϑ(1,1) . (C14c)

Notice, since we do not do an expansion in χ above, Eq. (C14) works for fully rotating BHs in dCS gravity. In addition,

due to the expansion convention we used, where we have absorbed an additional ζ
1
2 into the expansion of ϑ, there

are terms taking the form ∼ R2ϑ
(1,0)ϑ(1,1) at O(ζ1, ϵ1). These terms come from the usual pseudoscalar action with

minimal coupling. In our expansion convention, we have inserted ζ−1 before these terms [i.e., Eqs. (103) and (C5)],
so their contribution is still at O(ζ1, ϵ1). In the equations above, we have also dropped the superscript for terms at
O(ζ0, ϵ0) for simplicity.

Appendix D: An approach to compute projection coefficients in Eqs. (130) and (131)

In this section, we present an approach to compute the projection coefficients in Eqs. (130) and (131) using the
series representation of spin-weighted spherical harmonics sYℓm(θ, ϕ) in Eq. (61). From Eq. (61), we can see that the
integrals in Eqs. (130) and (131) become a series sum over q1 and q2 of

Q(a, b, c, d) ≡
∫
dθ sina

(
θ

2

)
cotb

(
θ

2

)
sin1+c θ cosd θ , (D1)

a = 2(ℓ1 + ℓ2) ,

b = 2(q1 + q2) + s1 + s2 −m1 −m2 ,

c, d ∈ {0, 1} ,

multiplied by the remaining constants dependent on (s1, ℓ1,m1) and (s2, ℓ2,m2) in Eq. (61). The integral in Eq. (D1)
can be evaluated analytically in terms of Gamma functions, i.e.,

Q(a, b, 0, 0) =
2Γ
(
1 + a−b

2

)
Γ
(
1 + b

2

)
Γ
(
2 + a

2

) , (D2a)

Q(a, b, 0, 1) =
(2b− a)Γ

(
1 + a−b

2

)
Γ
(
1 + b

2

)
Γ
(
3 + a

2

) , (D2b)

Q(a, b, 1, 0) =
4Γ
(
3+a−b

2

)
Γ
(
3+b
2

)
Γ
(
3 + a

2

) , (D2c)

so we can express the coefficients in Eqs. (130) and (131) as a series sum of Gamma functions, which are much faster
to evaluate than direct integration for large ℓ1,2. More specifically, we get

Λℓ1ℓ2m
s1s2 (α, β) =

1

2

√
(ℓ1 +m)!(ℓ1 −m)!(2ℓ1 + 1)

(ℓ1 + s1)!(ℓ1 − s1)!

√
(ℓ2 +m)!(ℓ2 −m)!(2ℓ2 + 1)

(ℓ2 + s2)!(ℓ2 − s2)!

×
ℓ−s∑
q=0

[(
ℓ1 − s1
q1

)(
ℓ1 + s1

q1 + s1 −m

)(
ℓ2 − s2
q2

)(
ℓ2 + s2

q2 + s2 −m

)
(−1)(ℓ1+ℓ2−s1−s2+q1+q2)Q(2ℓ1 + 2ℓ2, 2q1 + 2q2 + s1 + s2 − 2m,α, β)

]
,

(D3a)

Λ†ℓ1ℓ2m
s1s2 (α, β) =

1

2

√
(ℓ1 +m)!(ℓ1 −m)!(2ℓ1 + 1)

(ℓ1 + s1)!(ℓ1 − s1)!

√
(ℓ2 −m)!(ℓ2 +m)!(2ℓ2 + 1)

(ℓ2 + s2)!(ℓ2 − s2)!

×
ℓ−s∑
q=0

[(
ℓ1 − s1
q1

)(
ℓ1 + s1

q1 + s1 −m

)(
ℓ2 − s2
q2

)(
ℓ2 + s2

q2 + s2 +m

)
(−1)(ℓ1+ℓ2−s1−s2+q1+q2)Q(2ℓ1 + 2ℓ2, 2q1 + 2q2 + s1 + s2, α, β)

]
,

(D3b)

where

Λℓ1ℓ2m
s1s2 (0, 0) = Λℓ1ℓ2m

s1s2 , Λℓ1ℓ2m
s1s2 (0, 1) = Λℓ1ℓ2m

s1s2c , Λℓ1ℓ2m
s1s2 (1, 0) = Λℓ1ℓ2m

s1s2s , (D4a)
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Λ†ℓ1ℓ2m
s1s2 (0, 0) = Λ†ℓ1ℓ2m

s1s2 , Λ†ℓ1ℓ2m
s1s2 (0, 1) = Λ†ℓ1ℓ2m

s1s2c , Λ†ℓ1ℓ2m
s1s2 (1, 0) = Λ†ℓ1ℓ2m

s1s2s . (D4b)

We have provided this series-sum representation of the coefficients in Eqs. (130) and (131) in a Mathematica notebook
as Supplementary Material [68].
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