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Extreme mass-ratio inspirals (EMRIs) are expected to have considerable eccentricity when emit-
ting gravitational waves (GWs) in the LISA band. Developing GW templates that remain phase
accurate over these long inspirals requires the use of second-order self-force theory and practical
second-order self-force calculations are now emerging for quasi-circular EMRIs. These calculations
rely on effective-source regularization techniques in the frequency domain that presently are special-
ized to circular orbits. Here we make a first step towards more generic second-order calculations by
extending the frequency domain effective-source approach to eccentric orbits. In order to overcome
the slow convergence of the Fourier sum over radial modes, we develop a new extended effective-
sources approach which builds upon the method of extended particular solutions. To demonstrate
our new computational technique we apply it a toy scalar-field problem which is conceptually similar
to the gravitational case.

I. INTRODUCTION

Direct observations of gravitational waves from binary
black hole mergers [1–5] and more recently binary neu-
tron star mergers [6–8] signified a turning point in astron-
omy. Gravitational waves are now an observable science
rather than interesting theoretical concepts.

The increasing maturity of space-based gravitational
wave detector designs has motivated much recent work
to calculate gravitational wave emission from extreme-
mass-ratio inspirals (EMRIs). There is also considerable
theoretical interest in the problem of motion of a point
mass in a background geometry in general relativity, in-
fluenced by its own self-force.

An EMRI system consists of a compact object of mass
µ ∼ 1− 100M⊙ (e.g., a neutron star or black hole) mov-
ing on a decaying orbit about, and ultimately into, a
massive black hole of mass M ∼ 105 − 107M⊙. During
their inspiral EMRIs evolve adiabatically due to the back-
reaction from the gravitational perturbation sourced by
the smaller body. Each EMRI emits tens to hundreds of
thousands of gravitational wave cycles in the millihertz
frequency range of the LISA mission [9, 10] as the smaller
body spends months to years orbiting in the strong-field
of the massive black hole. During this time, the associ-
ated waveform will encode detailed information of the
surrounding spacetime geometry. Detection of EMRI
waveforms will therefore enable high-precision measure-
ments of the central object’s mass and spin, test the Kerr
hypothesis, and allow tests of proposed alternate theories
of gravity [11].

The inherent problem with detecting and characteris-
ing EMRI waveforms is that the instantaneous signal-to-
noise-ratio (SNR) is very small for the vast majority of
signals [12]. Therefore if one is to extract EMRI signals
through matched filtering techniques we require accurate
theoretical waveform templates.

The natural treatment of the EMRI problem is through

the gravitational self-force (GSF) approach. Here the
smaller, compact body sources a perturbation to the
metric of the larger black hole. The perturbation is ex-
pressed a power series expansion in the small mass ratio,
ϵ := µ/M , such that, at leading order, the small body
moves along a geodesic of the background spacetime. At
subsequent sub-leading orders the back-reaction due to
the metric perturbation from the smaller body acceler-
ates the body away from geodesic motion in the back-
ground spacetime.
Since SF theory is based on a perturbative expansion

the accuracy of the result depends upon the order to
which the expansion is carried out. Producing waveform
models that accurately track to the waveform phase to
within a fraction of radian requires carrying out this ex-
pansion through ϵ2 [13]. These calculations also have to
be carried out over a large parameter space for generic
binaries that are both highly eccentric, and precessing
due to the spins on their component masses [14].
First-order calculations have reached this goal and the

first-order GSF can be calculated for an object on a
generic orbit around a spinning (Kerr) primary [15]. Re-
cently, corrections for generic orbits due to the spin of
secondary were also computed [16]. A range of works
have also calculated the associated inspirals around a
Schwarzschild black hole [17–20] or Kerr black hole [21–
24].
Calculations at second-order in the mass ratio are now

emerging for quantities such the binding energy [25],
the gravitational wave flux [26], and recently the wave-
form [27]. Despite being a perturbative expansion in the
mass ratio, the latter two have shown remarkable agree-
ment with numerical relativity simulations, even for near-
comparable mass binaries with ϵ = 1/10. This suggests
that GSF results can be used to model intermediate-
mass-ratio inspirals (IMRIs) [26]. This is notable in light
of the recent GW observations of binaries with ϵ ∼ 1/30
[28, 29]. So far all second-order calculations have focused
on the quasi-circular case. For EMRIs there is a strong
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motivation to push these calculations to eccentric orbits
[30] and this requires the development of new calcula-
tional techniques. The focus of this paper is to develop
such a computational approach to second-order perturba-
tions for a compact object moving on an eccentric orbit.

A. Regularization and the effective-source
approach

The point-particle model of EMRIs within SF-theory
leads to distributional sources and their associated sin-
gular fields. Consequently, an essential component of SF
computations is regularization of the retarded metric per-
turbation [31–34].

The first, and most commonly used technique for
first-order calculations, is mode-sum regularization. In-
troduced in [35], the technique is based on the obser-
vation that a spherical-harmonic decomposition of the
first-order metric perturbation yields individual multi-
pole modes that are finite on the worldline. Thus it is
possible to subtract the singular contribution to retarded
field on a mode-by-mode basis. This procedure then gives
the regular contribution to the field from which one can
compute the self-force which drives the inspiral. To date,
second-order calculations have been carried out in the
Lorenz gauge [25, 36] and here the mode-sum prescrip-
tion is not tractable since the individual multipole modes
of the retarded metric perturbation are logarithmically
divergent at the location of the particle [37]. There has
been some development in formulating a highly regular
gauge that would render the multipole modes of the re-
tarded field finite and allow a mode-sum procedure to be
implemented at second-order [38], but this has not yet
been used for practical calculations. In this work we shall
thus focus an alternative, effective-source treatment.

The effective-source method was pioneered in Refs. [39]
and [40]. It was designed for situations wherein the
modes of the retarded field would diverge at the world-
line, meaning it is crucial to second-order formalism as
well as 2+1D and 3+1D calculations. In this method one
splits the retarded field into its singular and regular con-
tributions and reformulates the field equations to solve
directly for the residual field using an (effective) regu-
lar source term. At first order, effective-source schemes
have been implemented in time domain (TD) [40–43] and
frequency domain (FD) calculations for quasi-circular or-
bits [44, 45]. Moreover, the approach is the workhorse of
current second-order calculations.

B. The challenge of eccentric orbits

Extending the second-order calculation to eccentric or-
bits presents numerous theoretical and computational
challenges. Second-order calculations are presently car-
ried out within a two-timescale framework [36] which al-
lows for a frequency domain approach where one works

with ordinary differential equations (ODEs) for the met-
ric perturbation. In the time-domain, the second-order
effective-source will be finitely differentiable at the parti-
cle’s worldline. In contrast to circular orbits, for a parti-
cle in an eccentric orbit, the derivatives of the effective-
source will be discontinuous functions of t at a fixed value
of r. Thus, one will have to reconstruct (into the time do-
main) a discontinuous function of r and t from its Fourier
components and this will be tormented by the well known
Gibbs phenomenon. The standard Fourier transform of
the source is therefore very slowly convergent and worse
yet, the resultant regular field and its derivatives may
not converge at all.

These Gibbs phenomenon issues affect self-force calcu-
lations at both first- and second-order and a variety of
techniques have been developed to over come the prob-
lem of slow convergence of the Fourier sum. For a dis-
tributional source the method of extended homogeneous
solutions (EHS) was developed [46]. In this approach the
frequency domain solutions that are valid on either side
of the particle’s libration region are analytically extended
through the source region. It is then found that the sum
over the extended solutions convergenes exponentially to
the correct time-domain solution. This approach relies
crucially on the spacetime away from the particle’s world-
line being a vacuum solution in the time domain. The
method was first developed and implemented for a sin-
gle mode of a scalar field, but was later extended to full
self-force calculations for scalar [47, 48] and gravitational
perturbations [15, 49–51].

In the second-order problem the effective-source is non-
zero in a finite region around the worldline, and further-
more the full second-order source has unbounded support
[36]. With no vacuum region around the particle, or in-
deed anywhere in the spacetime, the method of extended
homogeneous solutions cannot be applied. Fortunately,
Hopper and Evens developed the method of extended
particular solutions (EPS) to handle this case [52]. In
this approach a particular solution to the field equations
is sought and then the retarded solution is constructed by
comparison with the true solution outside the libration
region where the Fourier sum convergences rapidly.

In this paper we develop a version of this method which
applies to the effective-source problem where the parti-
cle’s worldline is an eccentric geodesic. We call this mod-
ified approach the method of extended effective-sources
(EES). In lieu of the full second-order source we will con-
sider a scalar self-force analogue to develop the method.
In our setup we consider a scalar point charge on an ec-
centric orbit of a non-rotating black hole. The effective-
source we will construct will have support within some
finite worldtube and be zero outside. Although we do not
consider a source with unbounded support, as appears in
second-order gravitational calculations, the same method
can be applicable for such sources.

The format of this paper is as follows. We begin in
Sec. II where we review eccentric geodesic motion around
a Schwarzschild black hole. In Sec. III we describe a per-
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turbation due to an orbiting scalar charge, outline the
frequency domain decomposition, and discussion regu-
larization approaches. In Sec. IV we discuss the con-
struction of the standard effective-source. In Sec. V we
give a worldtube method and use it to compute the reg-
ular field using the standard effective-source. We show
here that this results in a very slowly converging Fourier
sum for the regular field. In Sec. VI we give our ex-
tended effective-sources method that restores exponential
convergence to the Fourier sum. We outline our imple-
mentation of the method and present numerical results
in Sec. VII. We then give a few concluding remarks in
Sec. VIII. Additional details are provided in the appen-
dices.

Throughout this work we use geometrized units such
that G = c = 1 and adopt the metric signature (−+++).
When shall denote the central black hole’s mass as
M and use standard Schwarzschild coordinates xµ =
(t, r, θ, φ). Within these coordinates, the Schwarzschild
metric is given by gαβ = diag

(
−f, f−1, r2, r2 sin2 θ

)
,

where f(r) := 1− 2M/r.

II. BOUND ECCENTRIC ORBITS ON A
SCHWARZSCHILD BLACK HOLE

Let us consider a test particle of mass µ on a bound
timelike geodesic around a Schwarzschild black hole. We
shall denote the worldline of the body by xα = xαp (τ) =
[tp(τ), rp(τ), θp(τ), φp(τ)] and its associated tangent four
velocity by uα = dxαp /dτ ,where τ is the particle’s prop-
ertime. Here, and throughout this paper, we shall use
a subscript p to indicate evaluation of a quantity at the
worldline of the particle. The motion of the timelike test
body will obey the geodesic equation given by

µuβ∇β(u
α) = 0, (1)

where the covariant derivative, ∇β , is take with respect
to the Schwarzschild metric. Without loss of generality
we specify an equatorial orbit by taking θp(τ) = π/2.
The symmetries of the Schwarzschild metric lead to first
integrals: E = −ut and L = uφ that can used to write
Eq. (1) in first order form:

dtp
dτ

= ut =
E
fp
,

dφp
dτ

= uφ =
L
r2p
, (2)

(
drp
dτ

)2

= (ur)2 = E2 − U(rp;L), (3)

where U(r;L) is an effective radial potential given by

U(r;L) := f(r)

(
1 +

L2

r2

)
. (4)

Inspired by Newtonian mechanics, we choose an al-
ternative, more gemoetric, orbital parameterisation by
defining the semi-latus rectum p and the eccentricity e
as orbital parameters [53]. Defining the periapsis and

apapsis by rmin and rmax respectively we find these pa-
rameters are related to each other by

p :=
2rmaxrmin

M(rmax + rmin)
, e :=

rmax − rmin

rmax + rmin
, (5)

or inversely

rmax =
pM

1− e
, rmin =

pM

1 + e
. (6)

The specific energy and angular momentum are them-
selves related to p and e by

E2 =
(p− 2− 2e)(p− 2 + 2e)

p(p− 3− e2)
, L2 =

p2M2

p− 3− e2
.

(7)
Bound eccentric orbits satisfy the conditions E < 1 and
L > 2

√
3M , or alternatively for p ≥ ps and 0 ≤ e < 1,

where the separatrix between bound and plunging orbits
is given by ps = 6 + 2e [53].
For the purposes of later numerical integration, it is

useful to introduce the Darwin phase [54] via

rp(χ) =
pM

1 + e cosχ
. (8)

If one uses the phase angle, χ, as our orbital parameter
instead of the proper time, τ , this circumvents singular-
ities at the orbital turning points in the integrands we
shall encounter later [53]. The orbit of the test parti-
cle goes through one full radial libration for a change of
the parameter, ∆χ = 2π. The periapsis, rmin, occurs
at χ = 0 and the apapsis, rmax, corresponds to χ = π.
We shall assume, without any loss of generality, that at
the initial periapsis passage t = φ = 0. The relevant
differential equations in terms of χ are

dtp
dχ

=
p2M

(p− 2− 2e cosχ)(1 + e cosχ)2

√
(p− 2)2 − 4e2

p− 6− 2e cosχ
,

(9)

dφp
dχ

=

√
p

p− 6− 2e cosχ
, (10)

Equation (10) for the azimuthal motion admits the ana-
lytical solution

φp(χ) =

√
4p

p− 6− 2e
F

(
χ

2

∣∣∣∣−
4e

p− 6− 2e

)
, (11)

where F (w|m) =
∫ w
0
(1 −m2 sin2 x)−1/2dx is the incom-

plete elliptic integral of the first kind [55]. The other two
equations are usually integrated numerically to compute
the period of radial motion and the associated fundamen-
tal frequencies

Tr :=

∫ 2π

0

(
dtp
dχ

)
dχ, Ωr :=

2π

Tr
. (12)
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Here Tr represents one radial libration in coordinate time.
One can similarly define the fundamental azimuthal fre-
quency by averaging the angular frequency over one ra-
dial libration,

Ωφ :=
1

Tr

∫ Tr

0

(
dφp
dt

)
dt =

φp(2π)

Tr
. (13)

For a particle in a bound eccentric orbit around a
Schwarzschild black hole, the motion is not strictly peri-
odic owing to the fact the orbits are generally not closed.
Whilst the radial motion is periodic with fundamental
frequency Ωr, the azimuthal motion of the particle, φp(t),
is monotonically increasing. It is useful to note that az-
imuthal motion can be expressed as

φp(t) = Ωφt+∆φp(t), (14)

where the mean azimuthal advance is modulated by the
function, ∆φp(t), which is periodic with fundamental fre-
quency Ωr [53].

III. SCALAR FIELD SELF-FORCE

The challenges of computing the gravitational self-
force has motivated studies of the “toy model” scalar-
field self-force problem [47, 48, 56–61]. These stud-
ies capture much of the computational complexity of
gravitational self-force calculations whilst avoiding te-
dious bookkeeping of solving for the metric perturbation
[15, 49–51, 62, 63] or subtle gauge issues [64, 65]. In
this work we develop a new computational approach and
so once again return to the scalar-field problem to eluci-
date the method. We describe our scalar-field setup and
its decomposition into spherical harmonics below. We
then consider the Fourier domain decomposition, bound-
ary conditions, and regularization approaches.

A. Field equation and multipole decomposition

Consider a particle of mass µ carrying a scalar charge,
q, moving on an eccentric geodesic about a Schwarzschild
black hole as described in Sec. II. In this work, we ignore
the effects of the particle’s gravitational self-interaction
and focus on the scalar-field self-force (SSF) that arises
from the particle’s interaction with its own scalar field.
We develop a method to compute the SSF, and do not
compute how this back-reacts on the orbital motion.
Here, we prescribe that the particle’s scalar field, Φ,
obeys the a minimally coupled Klein-Gordon equation

□Φ := ∇α∇αΦ = −4πρ, (15)

where ρ is the particle’s scalar charge density. For a point
particle the scalar charge density can be modelled as

ρ(t, r, θ, φ) = q

∫
δ4[xµ − xµp (τ)]√−g dτ

=
q

r2pu
t
δ[r − rp(t)]δ[φ− φp(t)]δ[θ − π/2].

(16)

The t-component of the four-velocity, ut, is given in
Eq. (3).
The scalar wave-equation given in Eq. (15) is amenable

to a solution via seperation of variables,

Φ(t, r, θ, φ) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

ψℓm(t, r)

r
Yℓm(θ, φ), (17)

where Yℓm(θ, φ) = ĉℓmP
m
ℓ (cos θ)eimφ are the standard

spherical harmonics with the associated Legendre poly-

nomial Pmℓ and ĉℓm =
√

2ℓ+1
4π

(ℓ−m)!
(ℓ+m)! . The extra factor

of 1/r included here is added for later convenience. We
define the spherical harmonics to be normalized such that

∮
Yℓm(θ, φ)Y ∗

ℓ′m′(θ, φ)dΩ = δℓ
′

ℓ δ
m′

m , (18)

where dΩ = sin θdθdφ, δn2
n1

is the usual Kronecker delta,
and ∗ denotes complex conjugation. The charge density,
ρ, in Eq. (16) can be decomposed analogously as

ρ(t, r, θ, φ) =

∞∑

ℓ=0

ℓ∑

m=−ℓ
ρℓm(t, r)Yℓm(θ, φ). (19)

Using the orthonormality relation specified in Eq. (18)
we find the multipole modes, ρℓm(t, r), are given by

ρℓm(t, r) =

∮
ĉℓmP

m
ℓ (cos θ)dΩ,

=
q ĉℓmP

m
ℓ (0)

rp(t)2ut
δ[r − rp(t)]e

−imφp(t). (20)

Substituting the field decomposition given in Eq. (17)
into Eq. (15) and dividing through by f(r) we obtain

□ℓmψℓm(t, r) = −4πrρℓm(t, r), (21)

where our wave-operator, □ℓm, is defined to be

□ℓm :=
1

f(r)

(
−∂

2ψℓm
∂t2

+
∂2ψℓm
∂r2∗

)
− Vℓ(r)ψℓm. (22)

Here we have introduced the tortoise coordinate defined
via dr∗/dr = f(r)−1. Choosing a particular integration
constant, the tortoise coordinate is given by r∗ = r +
2M ln (r/2M − 1). The radial potential, Vℓ(r), is given
by

Vℓ(r) =
2M

r3
+
ℓ(ℓ+ 1)

r2
. (23)

One approach to solving the wave equation (21) is via
time evolution on a 1 + 1 dimensional grid [66, 67].
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B. Frequency domain decomposition

In this work we focus on the FD approach, where the
field ψℓm(t, r) and the charge density ρℓm(t, r) are further
decomposed into the Fourier frequency modes ψℓmn(r)
and Jℓmn(r) respectively. For a given multipole mode,
the frequency spectrum is formed of discrete overtones of
the two fundamental frequencies such that

ωmn := mΩφ + nΩr, m, n ∈ Z. (24)

The FT of the multipole modes of the field, ψℓm(t, r), is
therefore given by

ψℓmn(r) =
1

Tr

∫ Tr

0

ψℓm(t, r)eiωmntdt, (25)

where the inverse FT to reconstruct the TD solution re-
duces to a summation over n,

ψℓm(t, r) =

∞∑

n=−∞
ψℓmn(r)e

−iωmnt. (26)

Similarly, the multipole modes of the charge density also
admit a discrete Fourier decomposition of the form

ρℓm(t, r) = − 1

4πr

∞∑

n=−∞
Jℓmn(r)e

−iωmnt. (27)

We note that the multipole decomposition of the charge
density, ρℓm(t, r), given in Eq. (20), is proportional to
e−imφp(t) and so it is not a periodic function with fre-
quency Ωr. However, following Eq. (14), if we ex-
press this exponential factor as e−imΩφte−im∆φp(t) then
ρℓm(t, r) eimΩφt is periodic. Thus the source term and,
by extension, the field ψℓm(t, r) can be expressed as a
Fourier series when multiplied by this appropriate phase
factor. This is equivalent to being in a frame with an-
gular velocity Ωφ and to an asymptotic observer within
this frame the radial and azimuthal motion would appear
periodic [53].

Taking the Fourier transform of Eq. (20) we find the Fourier source term given by

Jℓmn(r) =
q ĉℓmP

m
ℓ (0)

Tr

∫ Tr

0

δ[r − rp(t)]

rp(t)2ut
ei[ωmnt−mφp(t)]dt. (28)

Our source, Jℓmn, is compact with support within the libration region rmin ≤ r ≤ rmax. The integration over the
delta function can be carried out by changing the integration variable from t to rp. This gives the result

Jℓmn(r) =
2q ĉℓmP

m
ℓ (0)

Trr|ur(r)|f(r)2
cos[ωmntp(r)−mφp(r)]×Θ[r − rmin]×Θ[rmax − r]. (29)

Here Θ is the standard Heaviside step function, ur is the r-component of the particle’s four velocity and the functions
tp(r) and φp(r) are obtained by formally inverting rp(χ) in the range 0 ≤ χ ≤ π. Using Eq. (26) and (21) we find the
field equation for ψℓmn(r) is given by

□ℓmnψℓmn(r) :=
d2ψℓmn
dr2

+
2M

f(r)r3

(
r
dψℓmn
dr

− ψℓmn(r)

)
+

1

f(r)

(
ω2
mn

f(r)
− ℓ(ℓ+ 1)

r2

)
ψℓmn(r) = Jℓmn(r), (30)

where we have re-written our differential operator in
terms of r instead of r∗ as later this will be our numerical
integration variable.

C. Radial boundary conditions

The physical solutions to Eq. (30) are uniquely deter-
mined once appropriate boundary conditions are spec-
ified at spatial infinity (r −→ ∞) and at the horizon
(r −→ 2M). Here we select the retarded solution which
corresponds to outgoing waves at null infinity and purely
ingoing waves at the event horizon. Formally, let ψ∞

ℓmn
and ψhℓmn be two homogeneous solutions to Eq. (30),
which are determined by their asymptotic boundary con-

ditions at spatial infinity and the horizon respectively
such that

ψ∞
ℓmn(r∗ −→ ∞) ∼ eiωmnr∗ ,

ψhℓmn(r∗ −→ −∞) ∼ e−iωmnr∗ . (31)

The construction of practical numerical boundary con-
ditions and the computation of the (non-radiative) static
modes are discussed in Appendix A of [44].

D. Regularization

One of the main challenges when computing the SF
is that the field of the particle diverges at the location
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of the particle. It is known though that a particular di-
vergent contribution to the field near the particle does
not contribute to the orbital evolution [32, 68]. Instead
the evolution of the inspiral is driven by a (self-)force
that can be computed from an appropriate regular con-
tribution to the particle’s field at the particle’s location.
Extracting this regular field requires applying a regular-
ization technique to either the retarded field or the field
equations themselves.

Follow on from the original formulation [32], Detweiler
and Whiting [69] recast the regularization scheme such
that self-force is computed from the regular field, ΦR,
with

F self
α (xp) = q∇αΦ

R(xp). (32)

The regular field is defined by

ΦR(xp) = lim
x→xp

[Φret(x)− ΦS(x)], (33)

where Φret is the usual retarded field and ΦS is an appro-
priately constructed singular field [68, 69] . Here the ar-
gument “x” represents a field point in the normal neigh-
bourhood of the particle’s worldline. The retarded and
singular fields obey the inhomogeneous field equation,
Eq. (15):

□Φret/S = −4πρ, (34)

whilst the regular field obeys the homogeneous version of
the same field equation,

□ΦR = 0. (35)

Using this split, one finds the self-force Eq. (32) can be
written as as

F self
α (xp) = q lim

x→xp

[∇α

(
Φret(x)− ΦS(x)

)
]

= lim
x→xp

[F ret
α (x)− FSα (x)], (36)

where we have defined

F ret/S
α (x) := q∇αΦ

ret/S(x). (37)

The singular field is not global defined and in practice it
is approximated by a puncture field, ΦP , which is com-
puted by taking a local expansion of the singular field
and truncating at a certain order [35, 70]. The puncture
field is defined such that

lim
x→xp

[ΦP(x)− ΦS(x)] = 0,

lim
x→xp

[∇αΦ
P(x)−∇αΦ

S(x)] = 0. (38)

Analogous to the regular field, a “residual” field is then
defined via

ΦR := Φret − ΦP ∼ ΦR. (39)

As such, the smoothness of the residual field on the world-
line is determined by the order of the approximation of
the puncture to the singular field. So long as the punc-
ture field approximates the singular field to high enough
order to make the residual field C1 differentiable on the
worldline, the self-force can be computed via

F self
α (xp) = lim

x→xp

µ∇αΦ
R(x). (40)

If we approach Eq. (40) from a computational stand-
point, however, we encounter significant difficulties. In
particular if we try to calculate the residual field via
Eq. (39) we have to subtract one diverging quantity from
another before taking the limit to the worldline of the
particle. Numerically, this would be extremely challeng-
ing. The mode-sum scheme and the effective-source ap-
proach are two ways of circumventing this issue.
If the field near the particle diverges as 1/(∆r), where

∆r := r−rp(t) is defined as the distance from the world-
line, then a decomposition of the perturbation into spher-
ical harmonic ℓm-modes will render each ℓm mode of the
field finite at the location of the particle. This means
the subtraction in Eq. (39) can be carried out mode-by-
mode in a procedure known as mode-sum regularization
[35, 71]. The scalar model considered in this work, and
first-order in the mass-ratio gravitational perturbations
in, e.g., Lorenz, radiation and Regge-Wheeler gauges, can
be regularised in this manner [56–58]. In general, gravi-
tational perturbations at second-order in the mass ratio
diverge more strongly around the particle and so the in-
dividual ℓm-modes of the perturbation diverge at the lo-
cation of the particle [37].1 We thus need an alternative
approach.
The effective-source method sides steps the issue of

the divergence in the retarded and puncture fields by
directly solving for the residual field. In terms of the
SSF model, one can rewrite the retarded field, Φret, in
terms of the residual field, ΦR, and the puncture field,
ΦP , using Eq. (39):

□ΦR = □
(
Φret − ΦP)

= −4πρ−□ΦP := Seff. (41)

The effective-source, Seff, defined here will not contain a
delta-function since, by construction, the δ-function term
within ρ will exactly cancel with a term that arises from
□ΦP and hence we are left with a non-distributional re-
mainder.
In computations using an effective-source, one must

restrict its support to the vicinity of the particle’s world-
line as the puncture field is not defined outside the par-
ticle’s normal neighbourhood. Practically, this can be

1 There is a special class of gauges where the divergence near the
particle is weak enough that a mode decomposition renders the
individual modes finite at the particle [38]. A significant amount
of new theoretical and computational infrastructure is needed
before this approach can be used in practice.
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done in two different ways: a window function [40] or via
a worldtube [39]. These two approaches were shown to be
equivalent in Ref. [44] so we focus on the latter which we
find easier to implement in practice. The latter method
involves constructing a worldtube such that one solves
for ΦR inside the worldtube and the physical perturba-
tion Φret outside. Jump conditions, determined by the
puncture field, are then supplied at the boundaries of the
worldtube.

We can apply the effective-source approach at the level
of ℓm-modes. Writing ψℓm = ψR

ℓm + ψP
ℓm and using

Eq. (21) we can write

□ℓmψ
R
ℓm = −4πrρℓm(t, r)−□ℓmψ

P
ℓm

:= Seff
ℓm(t, r) (42)

The explicit form of the puncture we use in this work is
given in Appendix A.

IV. CONSTRUCTION OF THE STANDARD
EFFECTIVE-SOURCE IN THE FREQUENCY

DOMAIN

We now wish to calculate the modes of the effective-
source in the frequency domain. One approach would be
to use Eqs. (42) and (25) to write

ψR
ℓmn(r) = ψℓmn(r)−

1

Tr

∫ Tr

0

ψP
ℓm(t, r)e−iωmnt (43)

:= ψℓmn(r)− ψP
ℓmn(r) (44)

Acting on this equation with the radial domain operator,
□ℓmn defined in Eq. (30) we get

□ℓmnψ
R(r) = Jℓmn(r)−□ℓmnψ

P
ℓmn(r) := Seff

ℓmn(r)
(45)

The challenge with this approach is that, although we
know ψP

lm(t, r) analytically [72], due to the eccentric or-
bital motion we do not analytically know its Fourier
transform. We could still numerically evaluate the
Fourier integral in Eq. (43) on a dense grid of radial
values and interpolate the result. This has to be done
to very high precision in order get an accurate result af-
ter applying the □ℓmn operator. Furthermore, the result
must then cancel the Fourier transform of the delta func-
tion, Jℓmn(r) and from Eq. (29) we see this diverges as
1/ur at the orbital turning points making numerical can-
cellation very challenging.

We find the above approach of computing the Fourier
transform of the puncture and then constructing the FD
effective-source to be unworkable. Instead, we can first
compute the time-domain effective-source, as in Eq. (42),
and then take the Fourier transform. That is, we define

Seff
ℓmn(r) =

1

Tr

∫ Tr

0

Seff
ℓm(t, r)e−iωmnt dt (46)
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FIG. 1. The standard FD approach to reconstructing the
TD effective-source and the derivative of the puncture field
with respect to r. The top panel shows Seff

ℓm and the bottom
shows ∂rψ

P
ℓm for the (ℓ,m) = (2, 2) mode at χ = π/2 for a

particle orbiting with p = 10M and e = 0.2. Partial sums are
computed with Eq. (47) and shown for different N , where N
is the maximum of the partial sum. For comparison purposes
we also display (black) the TD effective-source (top panel),
Seff
22 , and the derivative of the TD puncture field with respect

to r (bottom panel), ∂rψ
P
22, which we have obtained using the

TD puncture, ψP
ℓm. The Gibbs phenomenon is clear in both

cases.

where Seff
ℓm(t, r) is defined in Eq. (42). This has the dis-

tinct advantage that before carrying out the Fourier de-
composition (i) the operator □ℓm can be applied ana-
lytically during the construction of Seff

ℓm(t, r) and (ii) the
cancellation of the distributional term in the source can
thus be done analytically.

We still have to numerically evaluate the Fourier inte-
gral in Eq. (46) on a grid of radial values. This is still
challenging as the time-domain effective-source is piece-
wise continuous (C0) at the instantaneous particle loca-
tion rp(t). This lack of smoothness results in the well-
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S
eff ℓm
(N
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χ = π/2 (ℓ,m) = (2, 2)

N = 1

N = 5

N = 10

N = 15

N = 20

FIG. 2. The absolute error of the TD effective-source
computed using the standard method. Here the orbital pa-
rameters are p = 10M and e = 0.2 and we consider the
(l,m) = (2, 2) mode. We show the difference between the
TD effective-source and the result computed using the par-
tial sum in Eq. (47) at χ = π/2. For the standard approach
we see the convergence is algebraic as it is blighted by Gibbs
phenomenon — see Fig. 1.

known Gibbs phenomenon and the Fourier sum

Seff
ℓm(t, r) = lim

N→∞

N∑

n=−N
Seff
ℓmn(r)e

−iωmnt, (47)

converges very slowly as 1/N . This slow convergence
is shown with numerical results in Figs. 1 and 2. The
non-smoothness of the effective-source also hampers the
efficient calculation of Seff

ℓmn(r) as we cannot directly ap-

ply the efficient Fast Fourier Transform (FFT) algorithm.
One option is to directly numerically evaluate the inte-
gral in Eq. (46) for each frequency mode, though we find
this to be quite inefficient. Fortunately, we find an al-
ternative convolution method that allows the FFT to be
employed – see Sec. VIIA below for details.

V. CALCULATION OF THE RESIDUAL FIELD
USING A WORLDTUBE METHOD

We now present the standard calculation of the resid-
ual field using a worldtube method. As we shall see, the
convergence rate of the partial sum over Fourier modes
of the residual field is very slow when using the standard
effective-source approach.

A. Frequency domain worldtube method

Our goal is compute the residual field inside a world-
tube of finite size around the particle’s worldline. To
achieve this we need a scheme for working with a world-
tube in the frequency domain. A version of such a scheme
was outlined in Ref. [44] but here we present a simpler
form based on notes originally made by Barack [73].
The frequency domain field equation we want to solve

takes the form of Eq. (45) where the effective-source is
non-zero inside a worldtube with boundaries coinciding
with the edges of the libration region, rmin and rmax.
Outside of the worldtube we will solve □ℓmnψℓmn = 0.

Let ψ
∞/h
ℓmn be two independent homogeneous solutions sat-

isfying retarded boundary conditions in the respective
domains r −→ 2M and r −→ ∞.

We seek a solution of the following form,

ψR
ℓmn(r) =





ahℓmnψ
h
ℓmn(r), r ≤ rmin,

b∞ℓmnψ
∞
ℓmn(r) + bhℓmnψ

h
ℓmn(r) + ψinh

ℓmn(r), rmin < r < rmax,

a∞ℓmnψ
∞
ℓmn(r), r ≥ rmax.

(48)

where a
∞/h
ℓmn and b

∞/h
ℓmn are constants.

Here ψinh
ℓmn(r) is the particular inhomogeneous solution

found from the standard variations of parameters ap-
proach

ψinh
ℓmn(r) = C∞

ℓmn(r)ψ
∞
ℓmn(r) + Chℓmn(r)ψ

h
ℓmn(r) (49)

with

C∞
ℓmn(r) =

∫ r

rmin

ψhℓmn(r
′)Seff

ℓmn(r
′)

W [ψhℓmn(r
′), ψ∞

ℓmn(r
′)]
dr′ (50)

Chℓmn(r) =

∫ rmax

r

ψ∞
ℓmn(r

′)Seff
ℓmn(r

′)

W [ψhℓmn(r
′), ψ∞

ℓmn(r
′)]
dr′ (51)

whereW [ψ1, ψ2] := ψ1
dψ2

dr −ψ2
dψ1

dr is the Wronskian. The

unknown coefficients a±ℓmn and b±ℓmn are determined from
the conditions that ψℓmn = ψR

ℓmn + ψP
ℓmn and dψℓmn/dr

are continuous at the worldtube boundaries, r = rmin

and r = rmax. This gives

a∞ℓmn =
1

ψ∞
ℓmn(rmax)

{
ψ∞
ℓmn(rmax)[b

∞
ℓmn + C∞

ℓmn(rmax)]

+ bhℓmnψ
h
ℓmn(rmax) + ψP

ℓmn(rmax)
}
, (52)
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ahℓmn =
1

ψhℓmn(rmin)

{
b∞ℓmnψ

∞
ℓmn(rmin)

+ ψhℓmn(rmin)[b
h
ℓmn + Chℓmn(rmin)] + ψP

ℓmn(rmin)
}
.

(53)

Similarly, the coefficients b
h/∞
ℓmn are given by

b∞ =
W [ψP

ℓmn(r), ψ
h
ℓmn(r)]

W [ψhℓmn(r), ψ
∞
ℓmn(r)]

∣∣∣∣
r=rmin

,

bh =
W [ψP

ℓmn(r), ψ
∞
ℓmn(r)]

W [ψ∞
ℓmn(r), ψ

h
ℓmn(r)]

∣∣∣∣
r=rmax

.

(54)

B. The residual field computed from the standard
effective-source

Given an effective-source, the Fourier modes of the reg-
ular field can be calculated using the variation of param-
eters with a worldtube approach outlined above. The
ℓm-mode of the residual field are then constructed via

ψR
ℓm(t, r) = lim

N→∞

N∑

n=−N
ψR
ℓmn(r)e

−iωmnt (55)

The smoothness of the resulting regular field, ψR
ℓm(t, r),

at the location of the particle depends upon the order of
the puncture used to construct the effective-source. This
in turn effects the rate of convergence of the Fourier sum
in Eq. (55). In Appendix A we present the puncture
through O(∆r) where ∆r = r − rp(t). This puncture
gives a regular field that is C1 in the radial direction
at the location of the particle and is thus sufficient to
calculate the self-force. We find the partial sum when in-
cluding up to n = ±N terms in Eq. (55) converges very
slowly as 1/N . This rate of convergence can be improved
by using a high-order puncture, though the convergence
remains a power law. Using a puncture through O(∆r4)
the convergence improves to 1/N3 – see Fig. 3. The ex-
plicit form of the higher-order puncture can be found in
the supplmental material accompanying this work [74].

In principle higher-order punctures could be derived
to further accelerate the convergence of the Fourier sum.
Deriving higher-order punctures becomes increasingly
more challenging as the order in ∆r increases [70, 72]
and even with higher-order punctures the convergence
would still be algebraic. Instead we now seek a method
to restore exponential convergence to the Fourier sum in-
side the worldtube. Note in the worldtube method with
a source that is zero outside the libration region means
that the convergence outside the worldtube is exponen-
tial.

VI. CONSTRUCTION OF THE EXTENDED
EFFECTIVE-SOURCES

The slow convergence of the partial sum over Fourier
modes of the residual field in Eq. (55) is reminiscent of the

1 2 3 4 5 10 15 20 25 30

10−6

10−5

10−4

10−3

10−2

10−1

N

∣ ∣ ∣ψ
R
,E
H
S

ℓm
−
ψ
R ℓm
(N

)∣ ∣ ∣

ψR
ℓm - O(∆r) puncture

ψR
ℓm - O(∆r4) puncture

N−1 reference

N−3 reference

FIG. 3. The convergence of the residual field computed with
the standard method frequency domain approach for different
orders of the puncture for a particle with orbital parameters
p = 10M and e = 0.2 and for (ℓ,m) = (2, 2). We com-

pute the reference residual field, ψR,EHS
ℓm = ψEHS

ℓm −ψP
ℓm, using

the method of EHS. For the residual field computed with the
O(∆r) puncture (blue squares) we see that the series appears
to converges very slowly as ∼ N−1. If we increase the order
of the puncture to O(∆r4) then we see the rate of conver-
gence of the residual field (red triangles) increases to ∼ N−3.
The convergence is still algebraic and very slow in comparison
to the exponential convergence of, e.g., the method of EHS.
We note that the noisy behaviour observed when using the
O(∆r) puncture is reminiscent of the behaviour in the partial
Fourier sum of the retarded field for the monopole mode using
the standard Fourier approach – see Fig. 2 of Ref. [46].

slow convergence of the retarded field calculation when
using the standard delta function source [46]. In that case
the method of extended homogeneous solutions was de-
veloped in order to restore exponential convergence [46].
For a review of the EHS method, see Appendix B. That
approach relied crucially on the perturbation away from
the particle’s worldline being a solution to the vacuum
field equations. As such this approach cannot be ap-
plied with an effective-source as it is non-zero in a fi-
nite region around the wordline. Later, in the context
of gauge transformations, Ref. [52], devised the method
of extended particular solutions as a way restoring expo-
nential convergence when summing over inhomogeneous
frequency modes from an extended source. In this sec-
tion we present an equivalent approach that also incorpo-
rates the puncture scheme through a worldtube method.
We call our approach the method of extended effective-
sources (EES).
We begin by analytically extending the effective-source

either side of the particle’s location to form two smooth

functions across the libration region: Seff,+
ℓm (t, r) and

Seff,−
ℓm (t, r). For any t and r, the true effective-source

in the TD is given by

Seff
ℓm(t, r) = Seff,+

ℓm (t, r)Θ+(t, r) + Seff,−
ℓm (t, r)Θ−(t, r).

(56)
where the Heaviside functions are given by Θ±(t, r) =
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Θ[±(r − rp(t))]. The construction of the extended
effective-sources is illustrated in Fig. 4. We plot the an
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Seff
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FIG. 4. A plot illustrating the construction of extended
effective-source terms in the TD. Here we present Seff

ℓm(r),

Seff,+
ℓm (r) and Seff,−

ℓm (r), with (ℓ,m) = (2, 2), for a particle
at χ = π/2 with orbital parameters p = 10M and e = 0.2.
The position of the particle is indicated by rp(t). The func-

tion Seff,−
ℓm (r) is an extension of the effective-source from

rmin ≤ r < rp(t) to rmax whilst Seff,+
ℓm (r) is an extension of

the effective source from rp(t) < r ≤ rmax to rmin.

example of the Fourier modes of the effective-source and
the extended effective-sources in Fig. 5. In the FD these
extended sources transform as

Seff,±
ℓmn (r) =

1

Tr

∫ Tr

0

Seff,±
ℓm (t, r)eiωmntdt, (57)

and the respective series representations of these ex-
tended sources in the TD is then

Seff,±
ℓm (t, r) =

∞∑

n=−∞
Seff,±
ℓmn (r)e

−iωmnt. (58)

We will also need extended puncture fields which we de-
fined in an analogous way:

ψP
ℓm(t, r) = ψP,+

ℓm (t, r)Θ+(t, r)+ψP,−
ℓm (t, r)Θ−(t, r) (59)

The extended punctures can be be expanded as Fourier
series via

ψP,±
ℓm (t, r) =

∞∑

n=−∞
ψP,±
ℓmn(r)e

−iωmnt, (60)

where

ψP,±
ℓmn(r) =

1

Tr

∫ Tr

0

ψP,±
ℓm (t, r)eiωmnt dt. (61)
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FIG. 5. A plot of the Fourier modes of the effective-
source Seff

ℓmn(r), and the extended effective-sources, Seff,±
ℓmn (r)

for (ℓ,m, n) = (2, 2, 8). The effective-source is highly oscilla-
tory with the number of oscillations growing as |n| increases.
Note the extended effective-source Seff,+

ℓmn (r) coincides with the

effective-source at r = rmax(χ = π) and similarly for Seff,−
ℓmn (r)

at r = rmin(χ = 0).

It is useful to note that ψP,+
ℓmn(rmax) = ψP

ℓmn(rmax)

and ψP,−
ℓmn(rmin) = ψP

ℓmn(rmin). Since Seff,±
ℓm (t, r) and

ψP,±
ℓm (t, r) are smooth functions the Fourier sums in

Eqs. (58) and (60) converge exponentially – see Fig. 6.
Furthermore, the FFT algorithm can be employed to
evaluate the integrals in (57) and (61). We now pro-
ceed using a modified version of the worldtube method
presented in Sec. VA whereby we integrate over the ex-
tended effective-sources and ensure the resulting solution
smoothly attaches to the retarded solution at the world-
tube boundaries.

To calculate the residual field we begin by defining extended regular solutions ψR,±
ℓmn via

ψR,−
ℓmn(r) =

{
ahℓmnψ

h
ℓmn(r), r ≤ rmin

b∞,−
ℓmnψ

∞
ℓmn(r) + bh,−ℓmnψ

h
ℓmn(r) + ψinh,−

ℓmn (r), rmin < r < rmax.
(62)
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FIG. 6. The reconstruction of the TD effective-source using EES for a particle orbiting with p = 10 and e = 0.2. The left panel
shows Seff

ℓm for the (ℓ,m) = (2, 2) mode with χ = π/2. Partial sums are computed with Eq. (58) and shown for different N , where
N is the maximum term included in the partial sum. For comparison purposes we also display (black) the TD effective-source,
Seff
22 computed from Eq. (42). Exponentially fast converge is manifest with the extended effective-source (bottom pannel). The

Gibbs phenomenon that previously disrupted convergence — see Figs. 1 and 2 — is circumvented completely. We observe
similar results for, e.g., puncture field and its radial derivatives.

and

ψR,+
ℓmn(r) =

{
b∞,+
ℓmnψ

∞
ℓmn(r) + bh,+ℓmnψ

h
ℓmn(r) + ψinh,+

ℓmn (r), rmin < r < rmax,

a∞ℓmnψ
∞
ℓmn(r), r ≥ rmax.

(63)

where ahℓmn and a∞ℓmn are the constants computed by integrating over the true effective-source as given by Eq. (53).

The extended inhomogeneous solutions are computed
via the usual variation of parameter approach such that

ψinh,±
ℓmn (r) = C∞,±

ℓmn (r)ψ
∞
ℓmn(r) + Ch,±ℓmn(r)ψ

h
ℓmn(r) (64)

with

C∞,±
ℓmn (r) =

∫ r

rmin

ψhℓmn(r
′)Seff,±

ℓmn (r
′)

W [ψhℓmn(r
′), ψ∞

ℓmn(r
′)]
dr′ (65)

Ch,±ℓmn(r) =

∫ rmax

r

ψ∞
ℓmn(r

′)Seff,±
ℓmn (r

′)

W [ψhℓmn(r
′), ψ∞

ℓmn(r
′)]
dr′. (66)

We find the values of bh,±ℓmn and b∞,±
ℓmn by requiring that

ψ+
ℓmn := ψR,+

ℓmn + ψP,+
ℓmn = ψℓmn at r = rmax and ψ−

ℓmn :=

ψR,−
ℓmn + ψP,−

ℓmn = ψℓmn at r = rmin. This gives

b∞,+
ℓmn =

W [κ∞,+
ℓmn (r)ψ

∞
ℓmn(r)− ψP,+

ℓmn(r), ψ
h
ℓmn(r)]

W [ψ∞
ℓmn(r), ψ

h
ℓmn(r)]

∣∣∣∣∣
r=rmax

,

(67)

b∞,−
ℓmn =

W [κh,−ℓmn(r)ψ
h
ℓmn(r)− ψP,−

ℓmn(r), ψ
∞
ℓmn(r)]

W [ψhℓmn(r), ψ
∞
ℓmn(r)]

∣∣∣∣∣
r=rmin

,

(68)

where

κ∞,+
ℓmn (r) := a∞ℓmn − C∞,+

ℓmn (r), (69)

κh,−ℓmn(r) := ahℓmn − Ch,−ℓmn(r). (70)

and

bh,+ℓmn =
W [ψP,+

ℓmn(r), ψ
∞
ℓmn(r)]

W [ψ∞
ℓmn(r), ψ

h
ℓmn(r)]

∣∣∣∣∣
r=rmax

, (71)

bh,−ℓmn =
W [ψP,−

ℓmn(r), ψ
h
ℓmn(r)]

W [ψhℓmn(r), ψ
∞
ℓmn(r)]

∣∣∣∣∣
r=rmin

. (72)

The time domain residual solution is then given by

ψR
ℓm(t, r) = ψR,+

ℓm (t, r)Θ+(t, r) + ψR,−
ℓm (t, r)Θ−(t, r),

(73)

where

ψR,±
ℓm (t, r) =

∞∑

n=−∞
ψR,±
ℓmn(r)e

−iωmnt. (74)

The key result of our method is that Eq. (74) conver-
gences exponentially to the true residual field. We em-
pirically demonstrate this in the results section VIID be-
low.
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VII. IMPLEMENTATION AND NUMERICAL
RESULTS

In this section we describe our numerical scheme and
present some sample results.

A. Fourier expansion of the effective-source by
convolution

One challenge that arises with our method is the prac-
tical calculation of Fourier transform of the effective-
source, as defined in Eq. (46). For any given radius within
the libration region the effective-source is non-smooth
at the time the particle crosses that radius. Let us de-
fine this time to be tp(r) with 0 ≤ tp(r) ≤ Tr/2. This
non-smoothness hampers the efficient calculation of the
Fourier modes of the effective-source as the Fast Fourier
Transform (FFT) will converge very slowly.

An alternative approach that will allow us to employ
the FFT is to make use of the form of the effective-source
given in Eq. (56). We proceed by noting that the Fourier
transform of a product of functions is given by the con-
volution of the Fourier transforms of the individual func-
tions. The functions Seff,±

ℓm (r) are smooth and so the co-
efficients of their Fourier expansions, given by Eq. (58),
can be computed efficiently using the FFT algorithm.
The Fourier series of the Heaviside step function is given
analytically by:

Θ±(t, r) =
∞∑

n=−∞
b±n (r)e

−inΩrt (75)

where

b+0 (r) =
2tp(r)

Tr
, (76)

b−0 (r) = 1− 2tp(r)

Tr
, (77)

b±n (r) = ± 1

nπ
sin

(
2nπ tp(r)

Tr

)
(78)

We can now calculate the Fourier transform of Seff
ℓm using

its form in Eq. (56), via convolution

Seff
ℓmn(r) =

∞∑

n′=−∞

[
b+n′−n(r)S

eff,+
ℓmn (r) + b−n′−n(r)S

eff,−
ℓmn (r)

]

(79)

We find this approach allows us to efficiently calculate
Seff
ℓmn(r).

B. Interpolating the Fourier modes of the
effective-source using Chebyshev polynomials

The above technique allows us to efficiently compute
the Fourier transform of the modes of the effective-source

at a given radius. In order to compute the associated
residual field we need to integrate this source across the
radial libration region as in Eqs. (50) and Eqs. (65)-(66).
We achieve this using an efficient Chebyshev interpola-
tion scheme which we describe now.

One can express a smooth function g(x) in terms of
Chebyshev series,

g(x) =

N∑

k=1

c
(N , g)
k Tk(x), (80)

where N ∈ Z is the Chebyshev expansion order, c
(N )
k

are the (spectral) Chebyshev coefficients which implicitly
depend on the order N , and Tk(x) = cos[k arccos(x)]
are the Chebyshev polynomials of the first kind. The
Chebyshev polynomials form an orthonormal basis on the
interval x ∈ [−1, 1] such that

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = δnm. (81)

While it is not immediately obvious from their definition,
the Chebyshev functions Tk(x), are in fact simple poly-
nomials in x of degree k. As such, these polynomials have
k real and distinct zeros within the interval x ∈ [−1, 1]:

xk = cos

(
π(2k + 1)

2j + 2

)
, k = 0, 1, . . . , j. (82)

One can leverage this property to fix the Chebyshev co-

efficients c
(N )
k in order to obtain a global polynomial in-

terpolant for the function g(x). We introduce a discrete
grid that coinicide with the roots of the Chebyshev poly-
nomials and require at these points Eq. (80) is exactly
equal to the function g(x). There are several possible
choices one can make for such a grid, and thereby differ-
ent resultant expressions for the Chebyshev coefficients.
Here we choose a Chebyshev-Lobatto grid, whereby

xk = cos

(
πk

N − 1

)
, k = 0, 1, . . . ,N − 1. (83)

The reason for this choice is that our worldtube method
requires the FT of the puncture and, by virtue, the resul-
tant effective-source to be evaluated at the boundaries of
the worldtube. Hence, we require an accurate interpolant
at these extrema. In this case, the Chebyshev coefficients
are given by

c
(N , g)
k = (−1)k

2− δk,0 − δk,N−1

N − 1

×


1

2
[g(x0) + (−1)kg(xN−1)] +

N−2∑

j=1

g(xj)Tj(xk)


 .

(84)

Inserting Eq. (83) into Eq. (84), one finds

c
(N , g)
k = (−1)k

√
2− δk,0 − δk,N−1

N − 1
Gk, (85)
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where Gk are the real Fourier coefficients given by the
discrete cosine transform of type I (DCT-1),

Gk =

√
2

N − 1
×
(
1

2
[g(x0) + (−1)kg(xN−1)]

+

N−2∑

j=1

g(xj) cos

(
πk

N − 1
j

))
. (86)

This is not a surprising result as a Chebyshev series is
simply a Fourier cosine series under a change of vari-
able; but the implication allows one to use FFT meth-
ods in order to compute the nodes for the radial inter-
polants. Furthermore, as the extended effective-sources
are C∞-differentiable then we will expect the Chebyshev
coefficients to converge exponentially as opposed to alge-
braically as in interpolation with splines.

Thus far, we have described Chebyshev expansion for
a generic function defined on the interval x ∈ [−1, 1]. We
now, as an example, specialise to the case of the inter-
polation of the effective-source. The effective-sources are
defined only within the worldtube region that we pre-
scribe to be exactly the libration region of the particle,
i.e. r ∈ [rmin, rmax]. We map this radial interval onto
the domain of the Chebyshev polynomials via the affine
transformation,

x =
2r − (rmax + rmin)

rmax − rmin
. (87)

Inverting this relation yields the Chebyshev-Lobatto grid
in terms of the radial coordinate,

rk =
1

2
(rmin + rmax) +

1

2
(rmax − rmin)xk,

k = 0, 1, . . . , N − 1, (88)

allowing us to compute the relevant Chebyshev nodes of
our effective-source. We can then expand the effective-
source in Eq. (79) in terms of Chebyshev polynomials in
the form of Eq. (80),

Seff
ℓmn(r) =

N∑

k=1

c
(N ,Seff )
k Tk(x), (89)

where the Chebshev coefficients are given by Eq. (85)
with

Gk =

√
2

N − 1
×
(
1

2
[Seff
ℓmn(rmin) + (−1)kSeff

ℓmn(rmax)]

+

N−2∑

j=1

Seff
ℓmn(rj) cos

(
πk

N − 1
j

))
.

(90)

The same expressions are also applicable to the extended

effective-sources Seff,±
ℓmn (r).

There is one additional subtlety that must be consid-
ered when considering the interpolation of the convolved

source Seff
ℓmn(r). To achieve the desired spectral (expo-

nential) convergence of the interpolant the sampled func-
tion needs to be analytic throughout the domain. The

extended sources, Seff,±
ℓmn (r), are indeed C

∞-differentiable
and therefore one finds the exponential decay of the
Chebyshev coefficients. In the form written in Eq. (79),
however, Seff

ℓmn(r) is only finitely differentiable at rmin and
rmax. This is because we have introduced the function
tp(r), in Eqs. (76)-(78), which as we mentioned previ-
ously is non-smooth. If left in this form, the convergence
of the interpolation of Seff

ℓmn(r) would be merely alge-
braic. One can avoid this problem by changing variables
from r −→ rp(χ), which leads to tp(r) −→ tp(χ), which
is entirely smooth throughout the domain. Note that our
expressions in Sec. VI will remain in the same as previ-
ously, except with a change of variables from r −→ rp(χ).
As such the integrals in Eqs. (76)-(78) become

C∞,±
ℓmn (χ) =

∫ χ

0

ψhℓmn(rp(χ
′))S±

ℓmn(χ
′)

W [ψhℓmn(rp(χ
′)), ψ∞

ℓmn(rp(χ
′))]

drp
dχ′ dχ

′

(91)

Ch,±ℓmn(χ) =

∫ π

χ

ψ∞
ℓmn(rp(χ

′))S±
ℓmn(χ

′)

W [ψhℓmn(rp(χ
′)), ψ∞

ℓmn(rp(χ
′))]

drp
dχ′ dχ

′.

(92)

One can then transform the resultant functions back to
radial functions by a simple inversion of Eq. (8) to yield,

χ(r) = arccos

(
p− r

e r

)
. (93)

The number of grid points, N , we use in practice de-
pends on the function being interpolated. We find the
Fourier modes of the effective-source, Seff

ℓmn are very os-
cillatory — see Fig. 5 — and thus we need a high reso-
lution grid Chebyshev grid to reach a good accuracy in
the interpolation — see Fig. 7. On the other hand, the

extended functions, e.g., Seff,±
ℓmn do not have oscillations

— again see Fig. 5 — and so only low resolution grid is
needed.

C. Numerical Algorithm

The following steps describe how we compute the reg-
ular field in practice. Our code is implemented in Math-
ematica and often makes use of the Black Hole Pertur-
bation Toolkit (BHPToolkit) [75].

1. Pick a p and e and calculate the orbital frequencies
Ωr and Ωφ using in Eq. (12) and Eq. (13). In prac-
tice we compute these using the KerrGeodesics
package from the BHPToolkit. Then, for each lm-
mode complete the following steps.

2. Construct the extended effective-sources,

Seff,±
ℓm (t, r) defined by Eq. (56) and construct

the extended punctures ψP,±
ℓmn(r) defined by
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FIG. 7. The Chebyshev coefficients, ck, [see Eq. (89)] for
Seff
22n(r). As the effective-source becomes more oscillatory as

|n| grows we find the number, N , of Chebyshev nodes needed
to reach a given accuracy increases.

Eq. (59) As these are smooth functions, for a given
radius we can use the FFT to calculate all Fourier
harmonics with |n| < 50. We calculate this Fourier
transform at each radius of Chebyshev-Lobatto
grid given by Eq. (88). The number of points, N ,
in the radial grid depends on the particular mode
— see Fig. 7. For each ℓmn-mode we interpolate
the functions using the Chebyshev polynomials as
outlined in Sec. VIIB.

3. For each ℓmn-mode we now compute the standard
effective-source using the convolution formula given
in Eq. (79).

4. We use Mathematica’s NDSolve function to com-
pute the homogeneous solutions, ψhℓmn and ψ∞

ℓmn,
of the wave equation (30). The boundary condi-
tions at rout = 1000M and rin = (2+ 10−12)M are
computed as outlined in Appendix A of [44]. For
some low-frequency modes the location of the infin-
ity boundary is moved out to ensure convergence of
the asymptotic boundary condition series.

5. We compute the a∞ℓmn and ahℓmn weighting coeffi-
cients using Eqs. (53). In practice we evaluate the
integrals in Eq. (50) using Mathematica’s NDSolve.

6. We now compute the b∞,±
ℓmn and bh,±ℓmn weighting co-

efficients in Eqs. (54). Again, we evaluate the inte-
grals in Eq. (66) using Mathematica’s NDSolve.

7. The extended regular fields, ψR,±
ℓmn(r), are then

given by Eqs. (62) and (63). We can now obtain
the TD residual field, ψR

ℓm(t, r), from Eqs. (73) and
(74).

D. Numerical Results

The methods outlined above allow us calculate the
residual scalar field, ψR

ℓm, using an effective-source
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n
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χ = π/2 (ℓ,m, n) = (2, 2, 12)

ψR,+
ℓmn

ψR,−
ℓmn

ψR
ℓmn

FIG. 8. The FD residual field(s), ψR
ℓmn, for (ℓ,m, n) =

(2, 2, 12). We observe oscillations in the residual field com-
puted with the standard method which result from the be-
haviour of the source - see Fig. 5. However, no such os-
cillations can be seen in the extended regular fields, ψR,+

ℓmn

and ψR,−
ℓmn . Note how ψR,+

ℓmn and ψR,−
ℓmn coincide exactly with

ψR
ℓmn at rmax and rmin respectively, the boundaries where the

respective effective-sources have been extended from. This
is expected since, in formulating our method, we demanded
that ψ+

ℓmn := ψR,+
ℓmn + ψP,+

ℓmn = ψℓmn at r = rmax and

ψ−
ℓmn := ψR,−

ℓmn + ψP,−
ℓmn = ψℓmn at r = rmin.

method in the frequency domain. For reference values
to compare against we use the method of EHS [46] to
solve Eq. (21) to construct the time-domain retarded
field, ψℓm(t, r), for a given (l,m)-mode. We briefly review
the method of EHS in Appendix B. In using the method
we compute the homogeneous solutions to frequency do-
main wave field equation (30) using the Teukolsky pack-
age in the BHPToolkit. This makes the reference EHS
calculation of the retarded field completely independent
of our effective-source calculation. To construct the ref-
erence residual field in the time-domain we subtract the
time-domain puncture from the retarded solution, i.e.,

ψR,EHS
ℓm (t, r) = ψEHS

ℓm (t, r) − ψP
ℓm(t, r). In computing the

retarded field using the method of EHS we useNmax = 50
Fourier modes.

Before discussing the main results of the EES method
we note that some numerical results have been presented
in earliest sections. In Fig. 1 we showed the poor conver-
gence Fourier sum for the effective-source and the radial
derivative of the puncture. We then showed in Fig. 3
how using a higher-order puncture can accelerated the
convergence of the Fourier sums for the residual field but
the convergence remains algebraic. We gave an exam-
ple of the Fourier modes of the effective-source, Seff

ℓmn(r),

and the extended effective-sources, Seff,±
ℓmn (r), in Fig. 5. In

Fig. 6 we showed the rapid convergence of the extended
effective-sources is exponential whereas the convergence
of the standard effective-source is extremely slow. In
Fig. 7 we discuss the number of Chebyshev nodes needed
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FIG. 9. The convergence of the partial sum of the Fourier modes of the residual field using the standard method and our
new extended effective-sources approach. Here we present results for p = 10M and e = 0.2, (l,m) = (2, 2) mode and the field
is computed when χ = π/2. For each partial sum over the Fourier modes of the residual field we plot the absolute difference

compared to the result computed using the method of EHS, where ψR,EHS
ℓm (t, r) = ψEHS

ℓm (t, r) − ψP
ℓm(t, r). The (dark blue)

triangles show the result using the standard method expanded through O(∆r4) which converges algebraically as N−3. This
data is the same as presented in Fig. 3. Using our new extended effective-sources method, the partial sum over the extended
regular fields, ψR,±

lm , converges exponentially to the time-domain result.

to interpolate the highly oscillatory Seff
ℓmn and note that

more modes are needed for higher |n|.
Using the method of EES we can efficiently compute

the time-domain residual field by calculating extended

residual fields, ψR,±
ℓmn(r). We give an example of the

Fourier domain residual field computed using the stan-
dard method outlined in Sec. VA and the extended resid-
ual fields computed using the EES method in Fig. 8. The
standard residual field is found to be highly oscillatory
whereas the extended fields are slowly varying.

The time-domain TD residual field, ψR
ℓm(t, r), can then

be constructed using from Eqs. (73) and (74). Our main
result is that the Fourier sum in Eq. (74) now converges
exponentially to the correct value – see Fig. 9 where we
give an example for the (l,m) = (2, 2) mode for an orbit
with (p, e) = (10, 0.2). We find similar results for other
modes and orbital configurations.

As a further check our results we verify that our code
recovers the correct field outside of the worldtube region
for a range of orbital configurations and modes. In this
section we shall only present results for a particle with
the same orbital configuration as Fig. 9. In Fig. 10, we

compute the weighting coefficients, a
∞/h
ℓmn , appearing in

Eqs. (63) and (62) that scale the homogeneous outside
the worldtube to recover the retarded field. These co-
efficients are then compared to the equivalent weight-

ing coefficients, C
∞/h
ℓmn , that are computed through EHS

as described in Appendix B. One observes the weight-
ing coefficients have an exponentially decaying spectrum

centered around a peak harmonic until reaching some
Nyquist point around ∼ N/2, where N is the number
of Chebyshev nodes used to interpolate the standard
effective-source. This aliasing phenomenon can be ex-
plained by the nature of the convolved effective-source.
Specifically, if we recall Fig. 5, one observes that for in-
creasing |n|, the standard effective-source becomes more
oscillatory. Hence for source harmonics with high |n|, one
therefore requires more Chebyshev coefficients to ensure
the source’s oscillatory behaviour is not under-sampled.
This is seen in Fig. 7 as for higher |n|, there is an initial
accuracy floor is reached until the number of Chebyshev
nodes becomes sufficient to suitably capture the oscilla-
tory behaviour of the source. From a practical perspec-
tive, the Nyquist-like notches only begin once the weight-
ing coefficients are far below machine precision. In fact,
for the models considered in this work, these points of
inflection would only be observable thanks to Mathemat-
ica’s arbitrary precision arithmetic. If one was to extend
the implementation beyond this work, for a given preci-
sion, one could choose to halt the calculation at a given
|n| when this limit is reached, with the weighting coeffi-
cients presented here being a good measure.

For all of the models, we find exponential convergence
to an absolute error of at least ∼ 10−15. We find, as with
most FD methods including EHS, that increasing eccen-
tricity leads to a slower exponential decay of the partial
sum and hence for larger eccentricities approaching e = 1
that our method becomes less practical. Nonetheless, as
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FIG. 10. A comparison of the weighting coefficients, a
∞/h
ℓmn

and C
+/−
ℓmn , for a particle with orbital parameters p = 10M

and e = 0.2 with (ℓ,m) = (2, 2), computed with EHS and
EES respectively. The weighting coefficients for successive n-
modes falls off exponentially when computed away from the

peak harmonic. For higher |n|, the a
∞/h
ℓmn coefficients reach

Nyquist-like notches, beyond which the coefficients increase
in magnitude due to alaising of the convolved source term.

we show in Fig. 11, the EES method can still handle up
to eccentricities of e ≲ 0.7. In Fig. 1, we show the ex-
ponential convergence of the partial sum for models with
high eccentricities of e = 0.5 and e = 0.7. We give further
details of these comparisons in Appendix C.

Formally our frequency domain approach is valid for
all eccentricities. Practically the calculation becomes
increasingly more difficult as the number of n-modes
needed to reach a given precision diverges in the e −→ 1
limit. For e ≥ 1, which describes parabolic and hyper-
bolic orbits, the spectrum of radial harmonics becomes
continuous. The frequency domain approach can still
be used for these orbits but with additional techniques
needed – see [76, 77]. In more recent works, however,
many authors have had no issues reaching eccentricities
of e = 0.8 [50].

For our own calculation it is difficult to predetermine
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FIG. 11. The convergence of the partial sum of the Fourier
modes of the residual field calculated through EES for two
models with high eccentricities: e05p10.22 (top panel) and
e07p10.22 (bottom panel). We find the partial sums still con-
verge exponentially to the reference values computed through
EES, but find for increasing eccentricity the initial value of
the partial sum is more disparate when compared to the EHS
reference value and the decay rate slows. Therefore for higher
eccentricity one would require a higher number of n-modes to
achieve the same level of accuracy to that of Fig. 9.

the number of n-modes from certain set of parameters,
but we can say for larger eccentricity for a given semi-
latus rectum, the spectrum of the modes broadens around
the peak mode which occurs at low |n|. As one can see
from Fig. 15 and Fig. 11 in Appendix C, the spectrums
are not always centered around n = 0 and can be asym-
metric around the peak harmonic. We also observe simi-
lar behaviour to [47, 78], that the negative n-modes decay
more rapidly than positive n-modes, especially for orbits
with high eccentricites. See e07p10.22 in Fig. 15.

It is therefore difficult to come up with a precise scal-
ing requirement for n-modes in order to produce the pre-
requisite accuracy. In reality, other similar eccentric or-
bit codes, see [47, 78], set some numerical threshold and
truncate the n-mode calculation when the mode contri-
bution either side of n = 0 drops below this threshold.
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For example, in [78], the authors calculate energy and an-
gular momentum fluxes, which are related to the weight-

ing coefficients a
∞/h
ℓmn and C

∞/h
ℓmn . They find to reach a sim-

ilar prescribed accuracy with p = 8.75455, e = 0.764124,
and (ℓ,m) = (2, 2), they sum n-modes from nmin = 47 to
nmax = 822.
For p < 10M and a given eccentricity, as we reach

further into the strong-field the mode spectrum broad-
ens in a similar manner to increasing e for a given p,
as stated in the previous item. This broadening is es-
pecially apparent for “Zoom-Whirl” type orbits close to
the seperatrix [79], and as similarly observed in [47]. For
p > 10M , the Fourier spectrum will narrow but if we
increase p≫ 10M , far away from the strong field regime
then other we will encounter difficulties with other as-
pects of the calculation. The difficulties mainly lie in cal-
culating the homogeneous solutions but, as pointed out
in [61], this could be avoided by considering a novel hy-
perboloidal approach with compactification that utilises
spectral methods to solve our wave equation. This cir-
cumvents the difficulty in calculating homogeneous so-
lutions for large-p orbits and the associated issues with
variation of parameters. We would, however, need to
reformulate the method of extended effective sources to
work with this numerical approach.

VIII. CONCLUSION

In this paper we have formulated an effective-source
approach for eccentric orbits in the frequency domain.
The method allows one to overcome the Gibbs phe-
nomenon and associated slow convergence experienced
with naive frequency domain computations that use an
effective-source. As an example we show how the method
can be used to compute the residual scalar field for
a compact source moving on an eccentric orbit in a
Schwarzschild background. Our results were validated
against those obtained using an independent implemen-
tation of the method of extended homogeneous solu-
tions. Crucially, with our new method we find the Fourier
modes of the residual scalar field converge exponentially.

We find our method to be reasonably computational
efficient with the main bottleneck being the need to in-
terpolate the highly oscillatory standard effective-source.
It would be interesting to explore if the oscillatory nature
of the effective-source could be understood analytically
and thus removed to leave behind a more slowly varying
numerical residual to be interpolated.

The main motivation for the development of our ex-
tended effective-sources approach was for application to
second-order gravitational self-force calculations. Al-

though in this paper we only considered a source with
support in a finite region around the libration region our
method should extend to sources with unbounded sup-
port such as appear in the second-order field equations
[36]. With our new method there is now no remaining
obstacle to computing Lorenz-gauge second-order results
for eccentric orbits on a Schwarzschild background, al-
though in practice this will be a very significant under-
taking.
Looking further to the future, it will be important push

second-order GSF calculations to Kerr spacetime. This
will likely first be attempted for circular, equatorial orbits
in either the Lorenz gauge [80] or a emerging second-order
Teukolsky frameworks [81]. As the majority of EMRIs
are expected to be quite eccentric whilst emitting gravi-
tational waves in the LISA band it will be important to
apply the results of this paper to second-order pertur-
bations for a body on an eccentric orbit around a Kerr
black hole.
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Appendix A: Scalar-field puncture fields for
eccentric orbits in Schwarzschild spacetime

In this section, we give our explicit expression for the
scalar-field puncture field, ψP

ℓm(t, r), for the case of an ec-
centric orbit in Schwarzschild spacetime. This puncture
is decomposed into spherical harmonic ℓm-mode contains
all the necessary pieces of the Detweiler-Whiting singu-
lar field required to compute the regular scalar field and

the extended effective-sources Seff,±
ℓm (t, r). In the usual

Schwarzschild coordinates, xµ = (t, r, θ, φ), the puncture
can be found from the expressions in [72] (by setting the
four-acceleration terms at = ar = aφ = 0) and is given
through ∆r(t) by

2 This is shown in Table III of [78].
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ψP
ℓm(t, r) = 2r eim[c(t)−φp(t)]Dℓ

m,0

√
π

2ℓ+ 1

{
2K

π
√
rp(t)2 + L2

−∆r(t)

[
(2ℓ+ 1)E rp(t) sgn(∆r(t))

2(rp(t)− 2M) (rp(t)2 + L2)

− E
[
L rp(t)2

(
4M −

(
2− 3E2

)
rp(t)

)
+ L3(4M − 2rp(t))

]
− 2E2L rp(t)3K

πL rp(t)(rp(t)− 2M) (rp(t)2 + L2)
3/2

]}
, (A1)

where

c(t) := ∆r(t)
urL rp(t)

(rp(t)− 2M)(L2 + rp(t)2)
, (A2)

Dℓ
m,0 := Dℓ

m,0

(
π, π2 ,

π
2

)
is the Wigner-D matrix

and K :=
∫ π/2
0

(
1− w sin2 θ

)−1/2
dθ and E :=

∫ π/2
0

(
1− w sin2 θ

)1/2
dθ are the complete elliptic inte-

grals of the first and second kind, respectively, where
w = L2/(L2 + rp(t)

2).
For our calculations in Sec. 3 we also used a higher-

order puncture in ∆r which was original computed in
Ref. [72]. We thank Barry Wardell for providing us with
the full expression which is given explicitly in the supple-
mental material accompanying this work [74].

Appendix B: Extended Homogeneous Solutions

In this appendix we give a brief overview of the method
of extended homogeneous solutions to computing the re-
tarded field for a point particle moving on an eccentric
orbit [46]. Firstly, as the name suggests, we consider

an extension of the homogeneous solutions ψ
∞/h
ℓmn to the

entire domain, defined through

ψ̃±
ℓmn(r) := C±

ℓmnψ
∞/h
ℓmn (r), (B1)

where the coefficients C±
ℓmn are the same as those given in

Eq. (50) with Seff,±
ℓmn (r) replaced by Jℓmn(r) from Eq. (29).

One then defines two time-domain extended homoge-
neous solutions ψ̃+

ℓm and ψ̃−
ℓm by

ψ̃±
ℓm(t, r) :=

∞∑

n=−∞
ψ̃±
ℓmn(r)e

−iωmnt. (B2)

While these solutions exist within the entire domain, we
emphasise that ψ̃−

ℓm(t, r) and ψ̃+
ℓm(t, r) are not solutions

to the inhomogeneous n-mode equation given in Eq. (30)
in the sourced domain rmin ≤ r ≤ rmax and ordinarily
only coincide with ψinh

ℓmn in their respective domains r <
rmin and r > rmax. In [46], it was shown that the n-mode
sum given in Eq. (B2) converges exponentially fast in |n|
and uniformly in t and r throughout the entire domain.
Furthermore, as N −→ ∞ in the partial sums,

lim
r→rp(t)

ψ̃−
ℓm(t, r) = lim

r→rp(t)
ψ̃+
ℓm(t, r). (B3)

Ref. [46] argued that the EHS can be used to construct
the actual solution to the inhomogeneous wave-equation
given in Eq. (30) such that ψinhℓm (t, r) = ψEHS

ℓm (t, r) where

ψEHS
ℓm (t, r) := ψ̃+

ℓm(t, r)Θ[r − rp(t)]

+ ψ̃−
ℓm(t, r)Θ[rp(t)− r]. (B4)

Their argument is based on analytic continuation.
Ref. [46] also demonstrated this numerically for the ex-
ample of the scalar-field monopole. Similar results to
[46] are presented from our own calculations for the
(ℓ,m) = (2, 2) in Figs. 12 and 13. The EHS treat-
ment has been used extensively in calculations of the
first-order self-force in conjunction with the mode-sum
method [15, 49–51].

Appendix C: Further numerical results

Label e p (ℓ,m)

e02p10.22 0.2 10 (2, 2)

e02p10.20 0.2 10 (2, 0)

e02p10.33 0.2 10 (3, 3)

e02p10.44 0.2 10 (4, 4)

e02p10.55 0.2 10 (5, 5)

e03p12.22 0.3 12 (2, 2)

e05p10.22 0.5 10 (2, 2)

e06p10.22 0.6 10 (2, 2)

e07p10.22 0.7 10 (2, 2)

TABLE I. A table summarising the orbital parameters used
in the results in this appendix.

As a further check our results we verify that our code
recovers the correct field outside of the worldtube region.
We do this by computing the weighting coefficients of
the homogeneous solutions independently using EES and
EHS for a variety of orbital configurations, which are
listed in Table I. In Fig. 14, we see good agreement be-

tween the EES weighting coefficients, a
∞/h
ℓmn and the EHS

weighting coefficients, C
∞/h
ℓmn for different ℓm-mode with

e = 0.2 and p = 10. Furthermore, in Fig. 15, we present
further comparisons between the weighting coefficients
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FIG. 12. The reconstruction of the retarded (2, 2-mode (top
panel) and its derivative with respect to r (bottom panel) us-
ing EHS. The orbital parameters are the same as in Fig. 9,
p = 10M and e = 0.2, with rmin = 8.3M and rmax = 12.5M .
Partial sums are computed with Eq. (B2) and shown for dif-
ferent N , where Nmax is the maximum of the partial sum. For
comparison purposes we also display (black) the “full” (2, 2)-
mode solution, ψEHS

22 , which is the EHS solution forNmax = 30
and for our purposes, indistinguishable from the true solution.
Exponentially fast converge is manifest in both the retarded
field and its derivative with the Gibbs phenomenon that pre-
viously disrupted convergence circumvented completely with
EHS. This figure is inspired by Fig. 3 in [46]

for (ℓ,m) = (2, 2) mode with different eccentricities. Sim-
ilarly to Fig. 11, we find that for higher eccentricities the
exponential fall-off the weighting coefficients is slower but
this is inline with the coefficients calculated using EHS.
As a consequence, we see the Nyquist-like minima appear
deeper into the spectra of weighting coefficients. For ex-
ample, for e07p10.22, these minima do not occur at all
for |n| ≤ 40. We also see that that increasing eccentricity
decreases the absolute error between the EHS and EES
weighting coefficients and whilst this error is still at a
tolerable level, further work should investigate how this
discrepancy could be improved upon.

Finally, in Fig. 16, we present convergence of the ex-
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FIG. 13. A plot of the relative error of the TD reconstruc-
tion of the retarded field using the standard method and
EHS. For a particle orbiting with the same parameters as
Fig. 12, i.e. p = 10M and e = 0.2 with rmin = 8.3M and
rmax = 12.5M , we compute the retarded field, ψℓm, by sum-
ming over modes ranging from −Nmax ≤ N ≤ Nmax, where
Nmax = 30. We plot the log of the absolute error between
ψ22(N) and ψ22(Nmax) for a range of N < Nmax. For the
standard approach (top panel) we see that outside the libra-
tion we have exponential convergence. Inside the libration
region the convergence becomes algebraic. Whereas the EHS
method (bottom panel) obtains exponentially converging re-
sults throughout the entire domain. EHS also yields expo-
nentially convergent solutions for ∂rψℓm for all points outside
and inside the libration region.

tended residual fields, ψR,±
ℓm (r), for a rest of the orbital

configurations in Table I not yet shown in this paper.
For ease of comparison, we also again show the orbital
configuration, e02p10.22, but for the full range of N up
to Nmax = 50. We find exponential convergence of the
partial sum for all of the models listed in Table I and we
find the aliasing effect observed in Figs. 10 and 14 man-
ifests itself for high Nmax as notches where the residual
fields begin to diverge away from the reference value com-
puted with EHS. We have verified the self-convergence
of the EHS retarded field and therefore the residual field



20

ψR
ℓm(N) is exponential and thus what we are seeing here

is simply limitations of the calculation with the set nu-
merical parameters. As we said previously, this could be
utilised as a stopping point as the absolute error here is

far below machine precision or could be improved even
further by increasing the number of Chebyshev nodes
used in the interpolation of the effective-source.
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FIG. 14. A comparison of the weighting coefficients, a
∞/h
ℓmn and C

+/−
ℓmn , for different ℓm-modes listed in Table I computed with

EHS and EES respectively. The weighting coefficients for successive n-modes falls off exponentially when computed away from

the peak harmonic. For higher |n|, the a∞/h
ℓmn coefficients reach Nyquist-like notches, beyond which the coefficients increase in

magnitude due to alaising of the convolved source term. The minima scale as ∼ N/2, where N is the number of Chebyshev
nodes used to interpolate the effective-source.
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FIG. 15. A comparison of the weighting coefficients, a
∞/h
ℓmn and C

∞/h
ℓmn , for the (2, 2)-mode orbtial configurations with different

eccentricities listed in Table I computed with EHS and EES respectively. As in Fig. 14, the weighting coefficients for successive
n-modes falls off exponentially when computed away from the peak harmonic. We observe that for increasing eccentricity, the
decay-rate is slower.
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FIG. 16. Convergence of the residual fields, ψR,±
ℓm , computed with EES to a reference value computed with EHS for orbtial

configurations listed in Table I. We compute the residual field, ψR,±
ℓm , by summing over modes ranging from −Nmax ≤ N ≤ Nmax,

where Nmax = 50. In all of our cases we observe exponential convergence of the partial sum of the residual fields constructed
with EES to the reference value computed independantly with EHS. For large N , we begin to encounter the same aliasing effect
as observed in Fig. 10 and Fig. 14 for corresponding large |n|.
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