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Extreme mass-ratio inspirals (EMRIs) are expected to have considerable eccentricity when emitting
gravitational waves (GWs) in the LISA band. Developing GW templates that remain phase accurate over
these long inspirals requires the use of second-order self-force theory and practical second-order self-force
calculations are now emerging for quasicircular EMRIs. These calculations rely on effective-source
regularization techniques in the frequency domain that presently are specialized to circular orbits. Here we
make a first step toward more generic second-order calculations by extending the frequency domain
effective-source approach to eccentric orbits. In order to overcome the slow convergence of the Fourier sum
over radial modes, we develop a new extended effective-sources approach which builds upon the method
of extended particular solutions. To demonstrate our new computational technique we apply it a toy
scalar-field problem which is conceptually similar to the gravitational case.
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I. INTRODUCTION

Direct observations of gravitational waves from binary
black hole mergers [1–5] and more recently binary neutron
star mergers [6–8] signified a turning point in astronomy.
Gravitational waves are now an observable science rather
than interesting theoretical concepts.
The increasing maturity of space-based gravitational

wave detector designs has motivated much recent work
to calculate gravitational wave emission from extreme-
mass-ratio inspirals (EMRIs). There is also considerable
theoretical interest in the problem of motion of a point mass
in a background geometry in general relativity, influenced
by its own self-force.
An EMRI system consists of a compact object of mass

μ ∼ 1–100M⊙ (e.g., a neutron star or black hole) moving
on a decaying orbit about, and ultimately into, a massive
black hole of mass M ∼ 105–107M⊙. During their inspiral
EMRIs evolve adiabatically due to the backreaction from
the gravitational perturbation sourced by the smaller body.
Each EMRI emits tens to hundreds of thousands of
gravitational wave cycles in the millihertz frequency range
of the LISA mission [9,10] as the smaller body spends

months to years orbiting in the strong-field of the massive
black hole. During this time, the associated waveform will
encode detailed information of the surrounding spacetime
geometry. Detection of EMRI waveforms will therefore
enable high-precision measurements of the central object’s
mass and spin, test the Kerr hypothesis, and allow tests of
proposed alternate theories of gravity [11].
The inherent problem with detecting and characterizing

EMRI waveforms is that the instantaneous signal-to-noise-
ratio (SNR) is very small for the vast majority of signals [12].
Therefore if one is to extract EMRI signals through matched
filtering techniques we require accurate theoretical wave-
form templates.
The natural treatment of the EMRI problem is through

the gravitational self-force (GSF) approach. Here the
smaller, compact body sources a perturbation to the metric
of the larger black hole. The perturbation is expressed a
power series expansion in the small mass ratio, ϵ ≔ μ=M,
such that, at leading order, the small body moves along a
geodesic of the background spacetime. At subsequent sub-
leading orders the backreaction due to the metric pertur-
bation from the smaller body accelerates the body away
from geodesic motion in the background spacetime.
Since SF theory is based on a perturbative expansion the

accuracy of the result depends upon the order to which
the expansion is carried out. Producing waveform models
that accurately track to the waveform phase to within a
fraction of radian requires carrying out this expansion
through ϵ2 [13]. These calculations also have to be carried
out over a large parameter space for generic binaries that
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are both highly eccentric, and precessing due to the spins
on their component masses [14].
First-order calculations have reached this goal and the

first-order GSF can be calculated for an object on a generic
orbit around a spinning (Kerr) primary [15]. Recently,
corrections for generic orbits due to the spin of secondary
were also computed [16]. A range of works have also
calculated the associated inspirals around a Schwarzschild
black hole [17–20] or Kerr black hole [21–24].
Calculations at second-order in the mass ratio are now

emerging for quantities such the binding energy [25],
the gravitational wave flux [26], and recently the waveform
[27]. Despite being a perturbative expansion in the mass
ratio, the latter two have shown remarkable agreement with
numerical relativity simulations, even for near-comparable
mass binaries with ϵ ¼ 1=10. This suggests that GSF
results can be used to model intermediate-mass-ratio
inspirals (IMRIs) [26]. This is notable in light of the recent
GW observations of binaries with ϵ ∼ 1=30 [28,29]. So far
all second-order calculations have focused on the quasi-
circular case. For EMRIs there is a strong motivation to
push these calculations to eccentric orbits [30] and this
requires the development of new calculational techniques.
The focus of this paper is to develop such a computational
approach to second-order perturbations for a compact
object moving on an eccentric orbit.

A. Regularization and the effective-source approach

The point-particle model of EMRIs within SF-theory
leads to distributional sources and their associated singular
fields. Consequently, an essential component of SF
computations is regularization of the retarded metric
perturbation [31–34].
The first, and most commonly used technique for first-

order calculations, is mode-sum regularization. Introduced
in [35], the technique is based on the observation that a
spherical-harmonic decomposition of the first-order metric
perturbation yields individual multipole modes that are
finite on the worldline. Thus it is possible to subtract the
singular contribution to retarded field on a mode-by-mode
basis. This procedure then gives the regular contribution to
the field from which one can compute the self-force which
drives the inspiral. To date, second-order calculations have
been carried out in the Lorenz gauge [25,36] and here the
mode-sum prescription is not tractable since the individual
multipole modes of the retarded metric perturbation are
logarithmically divergent at the location of the particle [37].
There has been some development in formulating a highly
regular gauge that would render the multipole modes of the
retarded field finite and allow a mode-sum procedure to be
implemented at second-order [38], but this has not yet been
used for practical calculations. In this work we shall thus
focus an alternative, effective-source treatment.
The effective-source method was pioneered in

Refs. [39,40]. It was designed for situations wherein the

modes of the retarded field would diverge at the worldline,
meaning it is crucial to second-order formalism as well as
2þ 1D and 3þ 1D calculations. In this method one splits
the retarded field into its singular and regular contributions
and reformulates the field equations to solve directly for
the residual field using an (effective) regular source term.
At first order, effective-source schemes have been imple-
mented in time domain (TD) [40–43] and frequency
domain (FD) calculations for quasicircular orbits [44,45].
Moreover, the approach is the workhorse of current second-
order calculations.

B. The challenge of eccentric orbits

Extending the second-order calculation to eccentric
orbits presents numerous theoretical and computational
challenges. Second-order calculations are presently car-
ried out within a two-timescale framework [36] which
allows for a frequency domain approach where one works
with ordinary differential equations (ODEs) for the metric
perturbation. In the time-domain, the second-order effec-
tive source will be finitely differentiable at the particle’s
worldline. In contrast to circular orbits, for a particle in an
eccentric orbit, the derivatives of the effective source
will be discontinuous functions of t at a fixed value of r.
Thus, one will have to reconstruct (into the time domain)
a discontinuous function of r and t from its Fourier
components and this will be tormented by the well known
Gibbs phenomenon. The standard Fourier transform of the
source is therefore very slowly convergent and worse yet,
the resultant regular field and its derivatives may not
converge at all.
These Gibbs phenomenon issues affect self-force cal-

culations at both first- and second-order and a variety of
techniques have been developed to over come the problem
of slow convergence of the Fourier sum. For a distribu-
tional source the method of extended homogeneous
solutions (EHS) was developed [46]. In this approach
the frequency domain solutions that are valid on either side
of the particle’s libration region are analytically extended
through the source region. It is then found that the sum
over the extended solutions converges exponentially to the
correct time-domain solution. This approach relies cru-
cially on the spacetime away from the particle’s worldline
being a vacuum solution in the time domain. The method
was first developed and implemented for a single mode of
a scalar field, but was later extended to full self-force
calculations for scalar [47,48] and gravitational perturba-
tions [15,49–51].
In the second-order problem the effective source is

nonzero in a finite region around the worldline, and
furthermore the full second-order source has unbounded
support [36]. With no vacuum region around the particle, or
indeed anywhere in the spacetime, the method of extended
homogeneous solutions cannot be applied. Fortunately,
Hopper and Evens developed the method of extended
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particular solutions (EPS) to handle this case [52]. In this
approach a particular solution to the field equations is
sought and then the retarded solution is constructed by
comparison with the true solution outside the libration
region where the Fourier sum convergences rapidly.
In this paper we develop a version of this method which

applies to the effective-source problem where the particle’s
worldline is an eccentric geodesic. We call this modified
approach the method of extended effective sources (EES).
In lieu of the full second-order source we will consider a
scalar self-force analogue to develop the method. In our
setup we consider a scalar point charge on an eccentric orbit
of a nonrotating black hole. The effective source we will
construct will have support within some finite worldtube
and be zero outside. Although we do not consider a source
with unbounded support, as appears in second-order
gravitational calculations, the same method can be appli-
cable for such sources.
The format of this paper is as follows. We begin in Sec. II

where we review eccentric geodesic motion around a
Schwarzschild black hole. In Sec. III we describe a
perturbation due to an orbiting scalar charge, outline the
frequency domain decomposition, and discussion regulari-
zation approaches. In Sec. IV we discuss the construction
of the standard effective source. In Sec. V we give a
worldtube method and use it to compute the regular field
using the standard effective source. We show here that this
results in a very slowly converging Fourier sum for the
regular field. In Sec. VI we give our extended effective-
sources method that restores exponential convergence to
the Fourier sum. We outline our implementation of the
method and present numerical results in Sec. VII. We then
give a few concluding remarks in Sec. VIII. Additional
details are provided in the Appendices.
Throughout this work we use geometrized units such that

G ¼ c ¼ 1 and adopt the metric signature ð−þþþÞ.
When shall denote the central black hole’s mass as M
and use standard Schwarzschild coordinates xμ¼ðt;r;θ;φÞ.
Within these coordinates, the Schwarzschild metric is
given by gαβ ¼ diagð−f; f−1; r2; r2 sin2 θÞ, where fðrÞ ≔
1 − 2M=r.

II. BOUND ECCENTRIC ORBITS ON A
SCHWARZSCHILD BLACK HOLE

Let us consider a test particle of mass μ on a bound
timelike geodesic around a Schwarzschild black hole. We
shall denote the worldline of the body by xα ¼ xαpðτÞ ¼
½tpðτÞ; rpðτÞ; θpðτÞ;φpðτÞ� and its associated tangent four
velocity by uα ¼ dxαp=dτ, where τ is the particle’s proper-
time. Here, and throughout this paper, we shall use a
subscript p to indicate evaluation of a quantity at the
worldline of the particle. The motion of the timelike test
body will obey the geodesic equation given by

μuβ∇βðuαÞ ¼ 0; ð1Þ

where the covariant derivative, ∇β, is take with respect to
the Schwarzschild metric. Without loss of generality
we specify an equatorial orbit by taking θpðτÞ ¼ π=2.
The symmetries of the Schwarzschild metric lead to first
integrals: E ¼ −ut and L ¼ uφ that can used to write
Eq. (1) in first order form:

dtp
dτ

¼ ut ¼ E
fp

;
dφp

dτ
¼ uφ ¼ L

r2p
; ð2Þ

�
drp
dτ

�
2

¼ ðurÞ2 ¼ E2 −Uðrp;LÞ; ð3Þ

where Uðr;LÞ is an effective radial potential given by

Uðr;LÞ ≔ fðrÞ
�
1þ L2

r2

�
: ð4Þ

Inspired by Newtonian mechanics, we choose an alter-
native, more geometric, orbital parametrization by defining
the semilatus rectum p and the eccentricity e as orbital
parameters [53]. Defining the periapsis and apapsis by rmin
and rmax respectively we find these parameters are related
to each other by

p ≔
2rmaxrmin

Mðrmax þ rminÞ
; e ≔

rmax − rmin

rmax þ rmin
; ð5Þ

or inversely

rmax ¼
pM
1 − e

; rmin ¼
pM
1þ e

: ð6Þ

The specific energy and angular momentum are themselves
related to p and e by

E2 ¼ ðp − 2 − 2eÞðp − 2þ 2eÞ
pðp − 3 − e2Þ ; L2 ¼ p2M2

p − 3 − e2
:

ð7Þ

Bound eccentric orbits satisfy the conditions E < 1 and
L > 2

ffiffiffi
3

p
M, or alternatively for p ≥ ps and 0 ≤ e < 1,

where the separatrix between bound and plunging orbits is
given by ps ¼ 6þ 2e [53].
For the purposes of later numerical integration, it is

useful to introduce the Darwin phase [54] via

rpðχÞ ¼
pM

1þ e cos χ
: ð8Þ

If one uses the phase angle, χ, as our orbital parameter
instead of the proper time, τ, this circumvents singularities
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at the orbital turning points in the integrands we shall
encounter later [53]. The orbit of the test particle goes
through one full radial libration for a change of the
parameter, Δχ ¼ 2π. The periapsis, rmin, occurs at χ ¼ 0
and the apapsis, rmax, corresponds to χ ¼ π. We shall
assume, without any loss of generality, that at the initial
periapsis passage t ¼ φ ¼ 0. The relevant differential
equations in terms of χ are

dtp
dχ

¼ p2M
ðp − 2 − 2e cos χÞð1þ e cos χÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 2Þ2 − 4e2

p − 6 − 2e cos χ

s
;

ð9Þ

dφp

dχ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

p − 6 − 2e cos χ

r
; ð10Þ

Equation (10) for the azimuthal motion admits the ana-
lytical solution

φpðχÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p
p − 6 − 2e

s
F

�
χ

2

���� − 4e
p − 6 − 2e

�
; ð11Þ

where FðwjmÞ ¼ R
w
0 ð1 −m2 sin2 xÞ−1=2dx is the incom-

plete elliptic integral of the first kind [55]. The other two
equations are usually integrated numerically to compute the
period of radial motion and the associated fundamental
frequencies

Tr ≔
Z

2π

0

�
dtp
dχ

�
dχ; Ωr ≔

2π

Tr
: ð12Þ

Here Tr represents one radial libration in coordinate time.
One can similarly define the fundamental azimuthal
frequency by averaging the angular frequency over one
radial libration,

Ωφ ≔
1

Tr

Z
Tr

0

�
dφp

dt

�
dt ¼ φpð2πÞ

Tr
: ð13Þ

For a particle in a bound eccentric orbit around a
Schwarzschild black hole, the motion is not strictly
periodic owing to the fact the orbits are generally not
closed. While the radial motion is periodic with funda-
mental frequency Ωr, the azimuthal motion of the particle,
φpðtÞ, is monotonically increasing. It is useful to note that
azimuthal motion can be expressed as

φpðtÞ ¼ Ωφtþ ΔφpðtÞ; ð14Þ

where the mean azimuthal advance is modulated by the
function, ΔφpðtÞ, which is periodic with fundamental
frequency Ωr [53].

III. SCALAR FIELD SELF-FORCE

The challenges of computing the gravitational self-force
has motivated studies of the “toy model” scalar-field self-
force problem [47,48,56–61]. These studies capture much
of the computational complexity of gravitational self-force
calculations while avoiding tedious bookkeeping of solving
for the metric perturbation [15,49–51,62,63] or subtle gauge
issues [64,65]. In this work we develop a new computational
approach and so once again return to the scalar-field
problem to elucidate the method. We describe our scalar-
field setup and its decomposition into spherical harmonics
below. We then consider the Fourier domain decomposition,
boundary conditions, and regularization approaches.

A. Field equation and multipole decomposition

Consider a particle of mass μ carrying a scalar charge, q,
moving on an eccentric geodesic about a Schwarzschild
black hole as described in Sec. II. In this work, we ignore
the effects of the particle’s gravitational self-interaction
and focus on the scalar-field self-force (SSF) that arises
from the particle’s interaction with its own scalar field.
We develop a method to compute the SSF, and do not
compute how this back-reacts on the orbital motion. Here,
we prescribe that the particle’s scalar field, Φ, obeys the a
minimally coupled Klein-Gordon equation

□Φ ≔ ∇α∇αΦ ¼ −4πρ; ð15Þ

where ρ is the particle’s scalar charge density. For a point
particle the scalar charge density can be modeled as

ρðt; r; θ;φÞ ¼ q
Z

δ4½xμ − xμpðτÞ�ffiffiffiffiffiffi−gp dτ

¼ q
r2put

δ½r − rpðtÞ�δ½φ − φpðtÞ�δ½θ − π=2�:

ð16Þ

The t-component of the four-velocity, ut, is given in Eq. (3).
The scalar wave-equation given in Eq. (15) is amenable

to a solution via separation of variables,

Φðt; r; θ;φÞ ¼
X∞
l¼0

Xl
m¼−l

ψlmðt; rÞ
r

Ylmðθ;φÞ; ð17Þ

where Ylmðθ;φÞ ¼ ĉlmPm
l ðcos θÞeimφ are the standard

spherical harmonics with the associated Legendre poly-

nomial Pm
l and ĉlm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1
4π

ðl−mÞ!
ðlþmÞ!

q
. The extra factor of 1=r

included here is added for later convenience. We define the
spherical harmonics to be normalized such thatI

Ylmðθ;φÞY�
l0m0 ðθ;φÞdΩ ¼ δl

0
l δ

m0
m ; ð18Þ
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where dΩ ¼ sin θdθdφ, δn2n1 is the usual Kronecker delta,
and � denotes complex conjugation. The charge density, ρ,
in Eq. (16) can be decomposed analogously as

ρðt; r; θ;φÞ ¼
X∞
l¼0

Xl
m¼−l

ρlmðt; rÞYlmðθ;φÞ: ð19Þ

Using the orthonormality relation specified in Eq. (18) we
find the multipole modes, ρlmðt; rÞ, are given by

ρlmðt; rÞ ¼
I

ĉlmPm
l ðcos θÞdΩ;

¼ qĉlmPm
l ð0Þ

rpðtÞ2ut
δ½r − rpðtÞ�e−imφpðtÞ: ð20Þ

Substituting the field decomposition given in Eq. (17)
into Eq. (15) and dividing through by fðrÞ we obtain

□lmψlmðt; rÞ ¼ −4πrρlmðt; rÞ; ð21Þ

where our wave operator, □lm, is defined to be

□lm ≔
1

fðrÞ
�
−
∂
2ψlm

∂t2
þ ∂

2ψlm

∂r�2

�
− VlðrÞψlm: ð22Þ

Here we have introduced the tortoise coordinate defined
via dr�=dr ¼ fðrÞ−1. Choosing a particular integration
constant, the tortoise coordinate is given by r� ¼ rþ
2M ln ðr=2M − 1Þ. The radial potential, VlðrÞ, is given by

VlðrÞ ¼
2M
r3

þ lðlþ 1Þ
r2

: ð23Þ

One approach to solving the wave equation (21) is via time
evolution on a 1þ 1 dimensional grid [66,67].

B. Frequency domain decomposition

In this work we focus on the FD approach, where the
field ψlmðt; rÞ and the charge density ρlmðt; rÞ are further
decomposed into the Fourier frequency modes ψlmnðrÞ
and JlmnðrÞ respectively. For a given multipole mode, the
frequency spectrum is formed of discrete overtones of the
two fundamental frequencies such that

ωmn ≔ mΩφ þ nΩr; m; n∈Z: ð24Þ

The FT of the multipole modes of the field, ψlmðt; rÞ, is
therefore given by

ψlmnðrÞ ¼
1

Tr

Z
Tr

0

ψlmðt; rÞeiωmntdt; ð25Þ

where the inverse FT to reconstruct the TD solution reduces
to a summation over n,

ψlmðt; rÞ ¼
X∞
n¼−∞

ψlmnðrÞe−iωmnt: ð26Þ

Similarly, the multipole modes of the charge density also
admit a discrete Fourier decomposition of the form

ρlmðt; rÞ ¼ −
1

4πr

X∞
n¼−∞

JlmnðrÞe−iωmnt: ð27Þ

We note that the multipole decomposition of the charge
density, ρlmðt; rÞ, given in Eq. (20), is proportional to
e−imφpðtÞ and so it is not a periodic function with frequency
Ωr. However, following Eq. (14), if we express this expo-
nential factor as e−imΩφte−imΔφpðtÞ then ρlmðt; rÞeimΩφt is
periodic. Thus the source term and, by extension, the field
ψlmðt; rÞ can be expressed as a Fourier series when
multiplied by this appropriate phase factor. This is equiv-
alent to being in a framewith angular velocityΩφ and to an
asymptotic observer within this frame the radial and
azimuthal motion would appear periodic [53].
Taking the Fourier transform of Eq. (20) we find the

Fourier source term given by

JlmnðrÞ ¼
qĉlmPm

l ð0Þ
Tr

Z
Tr

0

δ½r − rpðtÞ�
rpðtÞ2ut

ei½ωmnt−mφpðtÞ�dt:

ð28Þ

Our source, Jlmn, is compact with support within the
libration region rmin ≤ r ≤ rmax. The integration over the
delta function can be carried out by changing the integra-
tion variable from t to rp. This gives the result

JlmnðrÞ ¼
2qĉlmPm

l ð0Þ
TrrjurðrÞjfðrÞ2

cos½ωmntpðrÞ −mφpðrÞ�

× Θ½r − rmin� × Θ½rmax − r�: ð29Þ

Here Θ is the standard Heaviside step function, ur is the
r-component of the particle’s four velocity and the func-
tions tpðrÞ and φpðrÞ are obtained by formally inverting
rpðχÞ in the range 0 ≤ χ ≤ π. Using Eq. (21) and (26) we
find the field equation for ψlmnðrÞ is given by

□lmnψlmnðrÞ ≔
d2ψlmn

dr2
þ 2M
fðrÞr3

�
r
dψlmn

dr
− ψlmnðrÞ

�

þ 1

fðrÞ
�
ω2
mn

fðrÞ −
lðlþ 1Þ

r2

�
ψlmnðrÞ

¼ JlmnðrÞ; ð30Þ

where we have rewritten our differential operator in terms
of r instead of r� as later this will be our numerical
integration variable.
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C. Radial boundary conditions

The physical solutions to Eq. (30) are uniquely deter-
mined once appropriate boundary conditions are specified
at spatial infinity (r → ∞) and at the horizon (r → 2M).
Here we select the retarded solution which corresponds to
outgoing waves at null infinity and purely ingoing waves
at the event horizon. Formally, let ψ∞

lmn and ψh
lmn be two

homogeneous solutions to Eq. (30), which are determined
by their asymptotic boundary conditions at spatial infinity
and the horizon respectively such that

ψ∞
lmnðr� → ∞Þ ∼ eiωmnr� ;

ψh
lmnðr� → −∞Þ ∼ e−iωmnr� : ð31Þ

The construction of practical numerical boundary con-
ditions and the computation of the (nonradiative) static
modes are discussed in Appendix A of [44].

D. Regularization

One of the main challenges when computing the SF is
that the field of the particle diverges at the location of the
particle. It is known though that a particular divergent
contribution to the field near the particle does not
contribute to the orbital evolution [32,68]. Instead the
evolution of the inspiral is driven by a (self-)force that
can be computed from an appropriate regular contribu-
tion to the particle’s field at the particle’s location.
Extracting this regular field requires applying a regu-
larization technique to either the retarded field or the
field equations themselves.
Follow on from the original formulation [32], Detweiler

and Whiting [69] recast the regularization scheme such that
self-force is computed from the regular field, ΦR, with

Fself
α ðxpÞ ¼ q∇αΦRðxpÞ: ð32Þ

The regular field is defined by

ΦRðxpÞ ¼ lim
x→xp

½ΦretðxÞ −ΦSðxÞ�; ð33Þ

where Φret is the usual retarded field and ΦS is an
appropriately constructed singular field [68,69]. Here the
argument “x” represents a field point in the normal
neighborhood of the particle’s worldline. The retarded
and singular fields obey the inhomogeneous field equation,
Eq. (15):

□Φret=S ¼ −4πρ; ð34Þ

while the regular field obeys the homogeneous version of
the same field equation,

□ΦR ¼ 0: ð35Þ

Using this split, one finds the self-force Eq. (32) can be
written as

Fself
α ðxpÞ ¼ q lim

x→xp
½∇αðΦretðxÞ −ΦSðxÞÞ�

¼ lim
x→xp

½Fret
α ðxÞ − FS

αðxÞ�; ð36Þ

where we have defined

Fret=S
α ðxÞ ≔ q∇αΦret=SðxÞ: ð37Þ

The singular field is not global defined and in practice it is
approximated by a puncture field, ΦP , which is computed
by taking a local expansion of the singular field and
truncating at a certain order [35,70]. The puncture field
is defined such that

lim
x→xp

½ΦPðxÞ −ΦSðxÞ� ¼ 0;

lim
x→xp

½∇αΦPðxÞ −∇αΦSðxÞ� ¼ 0: ð38Þ

Analogous to the regular field, a “residual” field is then
defined via

ΦR ≔ Φret −ΦP ∼ΦR: ð39Þ

As such, the smoothness of the residual field on the
worldline is determined by the order of the approximation
of the puncture to the singular field. So long as the puncture
field approximates the singular field to high enough order
to make the residual field C1 differentiable on the world-
line, the self-force can be computed via

Fself
α ðxpÞ ¼ lim

x→xp
μ∇αΦRðxÞ: ð40Þ

If we approach Eq. (40) from a computational stand-
point, however, we encounter significant difficulties. In
particular if we try to calculate the residual field via
Eq. (39) we have to subtract one diverging quantity from
another before taking the limit to the worldline of the
particle. Numerically, this would be extremely challenging.
The mode-sum scheme and the effective-source approach
are two ways of circumventing this issue.
If the field near the particle diverges as 1=ðΔrÞ, where

Δr ≔ r − rpðtÞ is defined as the distance from the world-
line, then a decomposition of the perturbation into spherical
harmonic lm-modes will render each lm mode of the field
finite at the location of the particle. This means the
subtraction in Eq. (39) can be carried out mode-by-mode
in a procedure known as mode-sum regularization [35,71].
The scalar model considered in this work, and first-order in
the mass-ratio gravitational perturbations in, e.g., Lorenz,
radiation and Regge-Wheeler gauges, can be regularized in
this manner [56–58]. In general, gravitational perturbations
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at second-order in the mass ratio diverge more strongly
around the particle and so the individual lm-modes of
the perturbation diverge at the location of the particle [37].1

We thus need an alternative approach.
The effective-source method sides steps the issue of

the divergence in the retarded and puncture fields by
directly solving for the residual field. In terms of the
SSF model, one can rewrite the retarded field, Φret, in
terms of the residual field, ΦR, and the puncture field, ΦP ,
using Eq. (39):

□ΦR ¼ □ðΦret −ΦPÞ
¼ −4πρ −□ΦP ≔ Seff : ð41Þ

The effective source, Seff , defined here will not contain a
delta-function since, by construction, the δ-function term
within ρ will exactly cancel with a term that arises from
□ΦP and hence we are left with a nondistributional
remainder.
In computations using an effective source, one must

restrict its support to the vicinity of the particle’s worldline
as the puncture field is not defined outside the particle’s
normal neighborhood. Practically, this can be done in
two different ways: a window function [40] or via a
worldtube [39]. These two approaches were shown to be
equivalent in Ref. [44] so we we focus on the latter which
we find easier to implement in practice. The latter method
involves constructing a worldtube such that one solves for
ΦR inside the worldtube and the physical perturbation Φret

outside. Jump conditions, determined by the puncture field,
are then supplied at the boundaries of the worldtube.
We can apply the effective-source approach at the level

of lm-modes. Writing ψlm ¼ ψR
lm þ ψP

lm and using
Eq. (21) we can write

□lmψ
R ¼ −4πrρlmðt; rÞ −□lmψ

P
lm

≔ Sefflmðt; rÞ ð42Þ

The explicit form of the puncture we use in this work is
given in Appendix A.

IV. CONSTRUCTION OF THE STANDARD
EFFECTIVE SOURCE IN THE

FREQUENCY DOMAIN

We now wish to calculate the modes of the effective
source in the frequency domain. One approach would be to
use Eqs. (25) and (42) to write

ψR
lmnðrÞ ¼ ψlmnðrÞ −

1

Tr

Z
Tr

0

ψP
lmðt; rÞe−iωmnt ð43Þ

≔ ψlmnðrÞ − ψP
lmnðrÞ ð44Þ

Acting on this equation with the radial domain operator,
□lmn defined in Eq. (30) we get

□lmnψ
RðrÞ ¼ JlmnðrÞ −□lmnψ

P
lmnðrÞ ≔ SefflmnðrÞ ð45Þ

The challenge with this approach is that, although we know
ψP
lmðt; rÞ analytically [72], due to the eccentric orbital

motion we do not analytically know its Fourier transform.
We could still numerically evaluate the Fourier integral in
Eq. (43) on a dense grid of radial values and interpolate the
result. This has to be done to very high precision in order
get an accurate result after applying the □lmn operator.
Furthermore, the result must then cancel the Fourier
transform of the delta function, JlmnðrÞ and from Eq. (29)
we see this diverges as 1=ur at the orbital turning points
making numerical cancellation very challenging.
We find the above approach of computing the Fourier

transform of the puncture and then constructing the FD
effective source to be unworkable. Instead, we can first
compute the time-domain effective source, as in Eq. (42),
and then take the Fourier transform. That is, we define

SefflmnðrÞ ¼
1

Tr

Z
Tr

0

Sefflmðt; rÞe−iωmntdt; ð46Þ

where Sefflmðt; rÞ is defined in Eq. (42). This has the distinct
advantage that before carrying out the Fourier decompo-
sition (i) the operator □lm can be applied analytically
during the construction of Sefflmðt; rÞ and (ii) the cancellation
of the distributional term in the source can thus be done
analytically.
We still have to numerically evaluate the Fourier

integral in Eq. (46) on a grid of radial values. This is still
challenging as the time-domain effective source is piece-
wise continuous (C0) at the instantaneous particle location
rpðtÞ. This lack of smoothness results in the well-known
Gibbs phenomenon and the Fourier sum

Sefflmðt; rÞ ¼ lim
N→∞

XN
n¼−N

SefflmnðrÞe−iωmnt; ð47Þ

converges very slowly as 1=N. This slow convergence is
shown with numerical results in Figs. 1 and 2. The
nonsmoothness of the effective source also hampers the
efficient calculation of SefflmnðrÞ as we cannot directly
apply the efficient fast Fourier transform (FFT) algorithm.
One option is to directly numerically evaluate the integral
in Eq. (46) for each frequency mode, though we find this to
be quite inefficient. Fortunately, we find an alternative
convolution method that allows the FFT to be employed—
see Sec. VII A below for details.

1There is a special class of gauges where the divergence near
the particle is weak enough that a mode decomposition renders
the individual modes finite at the particle [38]. A significant
amount of new theoretical and computational infrastructure is
needed before this approach can be used in practice.
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V. CALCULATION OF THE RESIDUAL FIELD
USING A WORLDTUBE METHOD

We now present the standard calculation of the residual
field using a worldtube method. As we shall see, the

convergence rate of the partial sum over Fourier modes of
the residual field is very slow when using the standard
effective-source approach.

A. Frequency domain worldtube method

Our goal is compute the residual field inside a
worldtube of finite size around the particle’s worldline.
To achieve this we need a scheme for working with a
worldtube in the frequency domain. A version of such
a scheme was outlined in Ref. [44] but here we present
a simpler form based on notes originally made by
Barack [73].
The frequency domain field equation we want to solve

takes the form of Eq. (45) where the effective source is
nonzero inside a worldtube with boundaries coinciding
with the edges of the libration region, rmin and rmax.
Outside of the worldtube we will solve □lmnψlmn ¼ 0.
Let ψ∞=h

lmn be two independent homogeneous solutions
satisfying retarded boundary conditions in the respective
domains r → 2M and r → ∞.

We seek a solution of the following form,

ψR
lmnðrÞ ¼

8>><
>>:

ahlmnψ
h
lmnðrÞ; r ≤ rmin;

b∞lmnψ
∞
lmnðrÞ þ bhlmnψ

h
lmnðrÞ þ ψ inh

lmnðrÞ; rmin < r < rmax;

a∞lmnψ
∞
lmnðrÞ; r ≥ rmax;

ð48Þ

where a∞=h
lmn and b∞=h

lmn are constants.

FIG. 1. The standard FD approach to reconstructing the TD
effective source and the derivative of the puncture field with
respect to r. The top panel shows Sefflm and the bottom shows
∂rψ

P
lm for the ðl; mÞ ¼ ð2; 2Þ mode at χ ¼ π=2 for a particle

orbiting with p ¼ 10M and e ¼ 0.2. Partial sums are computed
with Eq. (47) and shown for different N, where N is the
maximum of the partial sum. For comparison purposes we also
display (black) the TD effective source (top panel), Seff22 , and the
derivative of the TD puncture field with respect to r (bottom
panel), ∂rψ

P
22, which we have obtained using the TD puncture,

ψP
lm. The Gibbs phenomenon is clear in both cases.

FIG. 2. The absolute error of the TD effective source computed
using the standard method. Here the orbital parameters are p ¼
10M and e ¼ 0.2 and we consider the ðl; mÞ ¼ ð2; 2Þ mode. We
show the difference between the TD effective source and the
result computed using the partial sum in Eq. (47) at χ ¼ π=2. For
the standard approach we see the convergence is algebraic as it is
blighted by Gibbs phenomenon—see Fig. 1.
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Here ψ inh
lmnðrÞ is the particular inhomogeneous solution

found from the standard variations of parameters approach

ψ inh
lmnðrÞ ¼ C∞

lmnðrÞψ∞
lmnðrÞ þ Ch

lmnðrÞψh
lmnðrÞ ð49Þ

with

C∞
lmnðrÞ ¼

Z
r

rmin

ψh
lmnðr0ÞSefflmnðr0Þ

W½ψh
lmnðr0Þ;ψ∞

lmnðr0Þ�
dr0 ð50Þ

Ch
lmnðrÞ ¼

Z
rmax

r

ψ∞
lmnðr0ÞSefflmnðr0Þ

W½ψh
lmnðr0Þ;ψ∞

lmnðr0Þ�
dr0; ð51Þ

where r−¼ rmin;rþ¼ rmax and W½ψ1;ψ2�≔ψ1
dψ2

dr −ψ2
dψ1

dr
is the Wronskian. The unknown coefficients a�lmn and
b�lmn are determined from the conditions that ψlmn ¼
ψR
lmn þ ψP

lmn and dψlmn=dr are continuous at the world-
tube boundaries, r ¼ rmin and r ¼ rmax. This gives

a∞lmn ¼
1

ψ∞
lmnðrmaxÞ

fψ∞
lmnðrmaxÞ½b∞lmn þ C∞

lmnðrmaxÞ�

þ bhlmnψ
h
lmnðrmaxÞ þ ψP

lmnðrmaxÞg; ð52Þ

ahlmn ¼
1

ψh
lmnðrminÞ

fb∞lmnψ
∞
lmnðrminÞ

þ ψh
lmnðrminÞ½bhlmn þ Ch

lmnðrminÞ� þ ψP
lmnðrminÞg:

ð53Þ

Similarly, the coefficients bh=∞lmn are given by

b∞ ¼ W½ψP
lmnðrÞ;ψh

lmnðrÞ�
W½ψh

lmnðrÞ;ψ∞
lmnðrÞ�

����
r¼rmin

;

bh ¼ W½ψP
lmnðrÞ;ψ∞

lmnðrÞ�
W½ψ∞

lmnðrÞ;ψh
lmnðrÞ�

����
r¼rmax

: ð54Þ

B. The residual field computed from the standard
effective source

Given an effective source, the Fourier modes of the
regular field can be calculated using the variation of
parameters with a worldtube approach outlined above.
The lm-mode of the residual field are then constructed via

ψR
lmðt; rÞ ¼ lim

N→∞

XN
n¼−N

ψR
lmnðrÞe−iωmnt ð55Þ

The smoothness of the resulting regular field, ψR
lmðt; rÞ, at

the location of the particle depends upon the order of the
puncture used to construct the effective source. This in turn
effects the rate of convergence of the Fourier sum in
Eq. (55). In Appendix A we present the puncture through

OðΔrÞwhereΔr ¼ r − rpðtÞ. This puncture gives a regular
field that is C1 in the radial direction at the location of the
particle and is thus sufficient to calculate the self-force.
We find the partial sum when including up to n ¼ �N
terms in Eq. (55) converges very slowly as 1=N. This rate
of convergence can be improved by using a high-order
puncture, though the convergence remains a power law.
Using a puncture through OðΔr4Þ the convergence
improves to 1=N3—see Fig. 3. The explicit form of the
higher-order puncture can be found in the Supplemental
Material accompanying this work [74].
In principle higher-order punctures could be derived to

further accelerate the convergence of the Fourier sum.
Deriving higher-order punctures becomes increasingly
more challenging as the order in Δr increases [70,72]
and even with higher-order punctures the convergence
would still be algebraic. Instead we now seek a method
to restore exponential convergence to the Fourier sum
inside the worldtube. Note in the worldtube method with a
source that is zero outside the libration region means that
the convergence outside the worldtube is exponential.

VI. CONSTRUCTION OF THE EXTENDED
EFFECTIVE-SOURCES

The slow convergence of the partial sum over Fourier
modes of the residual field in Eq. (55) is reminiscent of the

FIG. 3. The convergence of the residual field computed with the
standard method frequency domain approach for different orders
of the puncture for a particle with orbital parameters p ¼ 10M
and e ¼ 0.2 and for ðl; mÞ ¼ ð2; 2Þ. We compute the reference
residual field, ψR;EHS

lm ¼ ψEHS
lm − ψP

lm, using the method of EHS.
For the residual field computed with the OðΔrÞ puncture (blue
squares) we see that the series appears to converges very slowly
as ∼N−1. If we increase the order of the puncture to OðΔr4Þ then
we see the rate of convergence of the residual field (red triangles)
increases to ∼N−3. The convergence is still algebraic and very
slow in comparison to the exponential convergence of, e.g., the
method of EHS. We note that the noisy behavior observed when
using the OðΔrÞ puncture is reminiscent of the behavior in the
partial Fourier sum of the retarded field for the monopole mode
using the standard Fourier approach—see Fig. 2 of Ref. [46].
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slow convergence of the retarded field calculation when
using the standard delta function source [46]. In that
case the method of extended homogeneous solutions was
developed in order to restore exponential convergence [46].
For a review of the EHS method, see Appendix B. That
approach relied crucially on the perturbation away from the
particle’s worldline being a solution to the vacuum field
equations. As such this approach cannot be applied with an
effective source as it is nonzero in a finite region around the
wordline. Later, in the context of gauge transformations,
Ref. [52], devised the method of extended particular
solutions as a way restoring exponential convergence when
summing over inhomogeneous frequency modes from an
extended source. In this section we present an equivalent
approach that also incorporates the puncture scheme
through a worldtube method. We call our approach the
method of extended effective sources (EES).
We begin by analytically extending the effective source

either side of the particle’s location to form two smooth
functions across the libration region: Seff;þlm ðt; rÞ and
Seff;−lm ðt; rÞ. For any t and r, the true effective source in
the TD is given by

Sefflmðt; rÞ ¼ Seff;þlm ðt; rÞΘþðt; rÞ þ Seff;−lm ðt; rÞΘ−ðt; rÞ;
ð56Þ

where the Heaviside functions are given by Θ�ðt; rÞ ¼
Θ½�ðr − rpðtÞÞ�. The construction of the extended effective
sources is illustrated in Fig. 4. We plot the an example of
the Fourier modes of the effective source and the extended
effective sources in Fig. 5. In the FD these extended sources
transform as

Seff;�lmn ðrÞ ¼
1

Tr

Z
Tr

0

Seff;�lm ðt; rÞeiωmntdt; ð57Þ

and the respective series representations of these extended
sources in the TD is then

Seff;�lm ðt; rÞ ¼
X∞
n¼−∞

Seff;�lmn ðrÞe−iωmnt: ð58Þ

We will also need extended puncture fields which we
defined in an analogous way:

ψP
lmðt; rÞ ¼ ψP;þ

lm ðt; rÞΘþðt; rÞ þ ψP;−
lm ðt; rÞΘ−ðt; rÞ ð59Þ

The extended punctures can be expanded as Fourier
series via

ψP;�
lm ðt; rÞ ¼

X∞
n¼−∞

ψP;�
lmnðrÞe−iωmnt; ð60Þ

where

ψP;�
lmnðrÞ ¼

1

Tr

Z
Tr

0

ψP;�
lm ðt; rÞeiωmntdt: ð61Þ

FIG. 4. A plot illustrating the construction of extended effective
source terms in the TD. Here we present SefflmðrÞ, Seff;þlm ðrÞ, and
Seff;−lm ðrÞ, with ðl; mÞ ¼ ð2; 2Þ, for a particle at χ ¼ π=2 with
orbital parameters p ¼ 10M and e ¼ 0.2. The position of the
particle is indicated by rpðtÞ. The function Seff;−lm ðrÞ is an
extension of the effective source from rmin ≤ r < rpðtÞ to rmax

while Seff;þlm ðrÞ is an extension of the effective source from
rpðtÞ < r ≤ rmax to rmin.

FIG. 5. A plot of the Fourier modes of the effective source
SefflmnðrÞ, and the extended effective sources, Seff;�lmn ðrÞ for
ðl; m; nÞ ¼ ð2; 2; 8Þ. The effective source is highly oscillatory
with the number of oscillations growing as jnj increases. Note
the extended effective source Seff;þlmn ðrÞ coincides with the
effective source at r ¼ rmaxðχ ¼ πÞ and similarly for Seff;−lmn ðrÞ
at r ¼ rminðχ ¼ 0Þ.
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It is useful to note that ψP;þ
lmnðrmaxÞ ¼ ψP

lmnðrmaxÞ and
ψP;−
lmnðrminÞ ¼ ψP

lmnðrminÞ. Since Seff;�lm ðt;rÞ and ψP;�
lm ðt; rÞ

are smooth functions the Fourier sums in Eqs. (58) and (60)
converge exponentially—see Fig. 6. Furthermore, the FFT
algorithm can be employed to evaluate the integrals in (57)
and (61). We now proceed using a modified version of

the worldtube method presented in Sec. VA whereby we
integrate over the extended effective sources and ensure the
resulting solution smoothly attaches to the retarded solution
at the worldtube boundaries.
To calculate the residual field we begin by defining

extended regular solutions ψR;�
lmn via

ψR;−
lmn ðrÞ ¼

(
ahlmnψ

h
lmnðrÞ; r ≤ rmin

b∞;−
lmn ψ

∞
lmnðrÞ þ bh;−lmnψ

h
lmnðrÞ þ ψ inh;−

lmn ðrÞ; rmin < r < rmax:
ð62Þ

and

ψR;þ
lmnðrÞ ¼

(
b∞;þ
lmn ψ

∞
lmnðrÞ þ bh;þlmnψ

h
lmnðrÞ þ ψ inh;þ

lmn ðrÞ; rmin < r < rmax;

a∞lmnψ
∞
lmnðrÞ; r ≥ rmax;

ð63Þ

where ahlmn and a∞lmn are the constants computed by
integrating over the true effective source as given
by Eq. (53).
The extended inhomogeneous solutions are computed

via the usual variation of parameter approach such that

ψ inh;�
lmn ðrÞ ¼ C∞;�

lmnðrÞψ∞
lmnðrÞ þ Ch;�

lmnðrÞψh
lmnðrÞ ð64Þ

with

C∞;�
lmnðrÞ ¼

Z
r

rmin

ψh
lmnðr0ÞSeff;�lmn ðr0Þ

W½ψh
lmnðr0Þ;ψ∞

lmnðr0Þ�
dr0 ð65Þ

Ch;�
lmnðrÞ ¼

Z
rmax

r

ψ∞
lmnðr0ÞSeff;�lmn ðr0Þ

W½ψh
lmnðr0Þ;ψ∞

lmnðr0Þ�
dr0: ð66Þ

We find the values of bh;�lmn and b∞;�
lmn by requiring that

ψþ
lmn ≔ ψR;þ

lmn þ ψP;þ
lmn ¼ ψlmn at r ¼ rmax and ψ−

lmn ≔
ψR;−
lmn þ ψP;−

lmn ¼ ψlmn at r ¼ rmin. This gives

b∞;þ
lmn ¼ W½κ∞;þ

lmnðrÞψ∞
lmnðrÞ − ψP;þ

lmnðrÞ;ψh
lmnðrÞ�

W½ψ∞
lmnðrÞ;ψh

lmnðrÞ�
����
r¼rmax

;

ð67Þ

FIG. 6. The reconstruction of the TD effective source using EES for a particle orbiting with p ¼ 10 and e ¼ 0.2. The left panel shows
Sefflm for the ðl; mÞ ¼ ð2; 2Þ mode with χ ¼ π=2. Partial sums are computed with Eq. (58) and shown for different N, where N is the
maximum term included in the partial sum. For comparison purposes we also display (black) the TD effective source, Seff22 computed
from Eq. (42). Exponentially fast converge is manifest with the extended effective source (bottom panel). The Gibbs phenomenon that
previously disrupted convergence—see Figs. 1 and 2—is circumvented completely. We observe similar results for, e.g., puncture field
and its radial derivatives.
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b∞;−
lmn ¼

W½κh;−lmnðrÞψh
lmnðrÞ − ψP;−

lmnðrÞ;ψ∞
lmnðrÞ�

W½ψh
lmnðrÞ;ψ∞

lmnðrÞ�
����
r¼rmin

;

ð68Þ

where

κ∞;þ
lmnðrÞ ≔ a∞lmn − C∞;þ

lmnðrÞ; ð69Þ

κh;−lmnðrÞ ≔ ahlmn − Ch;−
lmnðrÞ: ð70Þ

and

bh;þlmn ¼
W½ψP;þ

lmnðrÞ;ψ∞
lmnðrÞ�

W½ψ∞
lmnðrÞ;ψh

lmnðrÞ�
����
r¼rmax

; ð71Þ

bh;−lmn ¼
W½ψP;−

lmnðrÞ;ψh
lmnðrÞ�

W½ψh
lmnðrÞ;ψ∞

lmnðrÞ�
����
r¼rmin

: ð72Þ

The time domain residual solution is then given by

ψR
lmðt;rÞ¼ψR;þ

lm ðt;rÞΘþðt;rÞþψR;−
lm ðt;rÞΘ−ðt;rÞ; ð73Þ

where

ψR;�
lm ðt; rÞ ¼

X∞
n¼−∞

ψR;�
lmnðrÞe−iωmnt: ð74Þ

The key result of our method is that Eq. (74) convergences
exponentially to the true residual field. We empirically
demonstrate this in the results Sec. VII D below.

VII. IMPLEMENTATION AND
NUMERICAL RESULTS

In this section we describe our numerical scheme and
present some sample results.

A. Fourier expansion of the effective source
by convolution

One challenge that arises with our method is the practical
calculation of Fourier transform of the effective source,
as defined in Eq. (46). For any given radius within the
libration region the effective source is nonsmooth at the
time the particle crosses that radius. Let us define this time
to be tpðrÞ with 0 ≤ tpðrÞ ≤ Tr=2. This nonsmoothness
hampers the efficient calculation of the Fourier modes of
the effective source as the fast Fourier transform (FFT) will
converge very slowly.
An alternative approach that will allow us to employ the

FFT is to make use of the form of the effective source given
in Eq. (56). We proceed by noting that the Fourier trans-
form of a product of functions is given by the convolution
of the Fourier transforms of the individual functions.

The functions Seff;�lm ðrÞ are smooth and so the coefficients
of their Fourier expansions, given by Eq. (58), can
be computed efficiently using the FFT algorithm. The
Fourier series of the Heaviside step function is given
analytically by:

Θ�ðt; rÞ ¼
X∞
n¼−∞

b�n ðrÞe−inΩrt; ð75Þ

where

bþ0 ðrÞ ¼
2tpðrÞ
Tr

; ð76Þ

b−0 ðrÞ ¼ 1 −
2tpðrÞ
Tr

; ð77Þ

b�n ðrÞ ¼ � 1

nπ
sin

�
2nπtpðrÞ

Tr

�
ð78Þ

We can now calculate the Fourier transform of Sefflm using its
form in Eq. (56), via convolution

SefflmnðrÞ ¼
X∞

n0¼−∞

h
bþn0−nðrÞSeff;þlmn ðrÞ þ b−n0−nðrÞSeff;−lmn ðrÞ

i
ð79Þ

We find this approach allows us to efficiently calcu-
late SefflmnðrÞ.

B. Interpolating the Fourier modes of the effective
source using Chebyshev polynomials

The above technique allows us to efficiently compute the
Fourier transform of the modes of the effective source at a
given radius. In order to compute the associated residual
field we need to integrate this source across the radial
libration region as in Eqs. (50), (65), and (66). We achieve
this using an efficient Chebyshev interpolation scheme
which we describe now.
One can express a smooth function gðxÞ in terms of

Chebyshev series,

gðxÞ ¼
XN
k¼1

cðN ;gÞ
k TkðxÞ; ð80Þ

where N ∈Z is the Chebyshev expansion order, cðN Þ
k are

the (spectral) Chebyshev coefficients which implicitly
depend on the order N , and TkðxÞ ¼ cos½k arccosðxÞ�
are the Chebyshev polynomials of the first kind. The
Chebyshev polynomials form an orthonormal basis on
the interval x∈ ½−1; 1� such that
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Z
1

−1

TnðxÞTmðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p dx ¼ δnm: ð81Þ

While it is not immediately obvious from their definition,
the Chebyshev functions TkðxÞ, are in fact simple poly-
nomials in x of degree k. As such, these polynomials have k
real and distinct zeros within the interval x∈ ½−1; 1�:

xk ¼ cos

�
πð2kþ 1Þ
2jþ 2

�
; k ¼ 0; 1;…; j: ð82Þ

One can leverage this property to fix the Chebyshev

coefficients cðN Þ
k in order to obtain a global polynomial

interpolant for the function gðxÞ. We introduce a discrete
grid that coincide with the roots of the Chebyshev poly-
nomials and require at these points Eq. (80) is exactly equal
to the function gðxÞ. There are several possible choices one
can make for such a grid, and thereby different resultant
expressions for the Chebyshev coefficients. Here we
choose a Chebyshev-Lobatto grid, whereby

xk ¼ cos

�
πk

N − 1

�
; k ¼ 0; 1;…;N − 1: ð83Þ

The reason for this choice is that our worldtube method
requires the FT of the puncture and, by virtue, the resultant
effective source to be evaluated at the boundaries of the
worldtube. Hence, we require an accurate interpolant at
these extrema. In this case, the Chebyshev coefficients are
given by

cðN ;gÞ
k ¼ ð−1Þk 2− δk;0 − δk;N−1

N − 1

×

�
1

2
½gðx0Þ þ ð−1ÞkgðxN−1Þ� þ

XN−2

j¼1

gðxjÞTjðxkÞ
�
:

ð84Þ

Inserting Eq. (83) into Eq. (84), one finds

cðN ;gÞ
k ¼ ð−1Þk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − δk;0 − δk;N−1

N − 1

r
Gk; ð85Þ

where Gk are the real Fourier coefficients given by the
discrete cosine transform of type I (DCT-1),

Gk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

N − 1

r
×

�
1

2
½gðx0Þ þ ð−1ÞkgðxN−1Þ�

þ
XN−2

j¼1

gðxjÞ cos
�

πk
N − 1

j

��
: ð86Þ

This is not a surprising result as a Chebyshev series is
simply a Fourier cosine series under a change of variable;

but the implication allows one to use FFT methods in
order to compute the nodes for the radial interpolants.
Furthermore, as the extended effective sources are
C∞-differentiable then we will expect the Chebyshev
coefficients to converge exponentially as opposed to
algebraically as in interpolation with splines.
Thus far, we have described Chebyshev expansion for

a generic function defined on the interval x∈ ½−1; 1�.
We now, as an example, specialize to the case of the
interpolation of the effective source. The effective sources
are defined only within the worldtube region that we
prescribe to be exactly the libration region of the particle,
i.e., r∈ ½rmin; rmax�. We map this radial interval onto
the domain of the Chebyshev polynomials via the affine
transformation,

x ¼ 2r − ðrmax þ rminÞ
rmax − rmin

: ð87Þ

Inverting this relation yields the Chebyshev-Lobatto grid in
terms of the radial coordinate,

rk ¼
1

2
ðrmin þ rmaxÞ þ

1

2
ðrmax − rminÞxk;

k ¼ 0; 1;…;N − 1; ð88Þ

allowing us to compute the relevant Chebyshev nodes
of our effective source. We can then expand the effective
source in Eq. (79) in terms of Chebyshev polynomials in
the form of Eq. (80),

SefflmnðrÞ ¼
XN
k¼1

cðN ;SeffÞ
k TkðxÞ; ð89Þ

where the Chebshev coefficients are given by Eq. (85) with

Gk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

N − 1

r
×

�
1

2
½SefflmnðrminÞ þ ð−1ÞkSefflmnðrmaxÞ�

þ
XN−2

j¼1

SefflmnðrjÞ cos
�

πk
N − 1

j

��
: ð90Þ

The same expressions are also applicable to the extended
effective sources Seff;�lmn ðrÞ.
There is one additional subtlety that must be considered

when considering the interpolation of the convolved
source SefflmnðrÞ. To achieve the desired spectral (exponen-
tial) convergence of the interpolant the sampled function
needs to be analytic throughout the domain. The extended
sources, Seff;�lmn ðrÞ, are indeed C∞-differentiable and there-
fore one finds the exponential decay of the Chebyshev
coefficients. In the form written in Eq. (79), however,
SefflmnðrÞ is only finitely differentiable at rmin and rmax.
This is because we have introduced the function tpðrÞ,
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in Eqs. (76)–(78), which as we mentioned previously is
nonsmooth. If left in this form, the convergence of the
interpolation of SefflmnðrÞ would be merely algebraic. One
can avoid this problem by changing variables from
r → rpðχÞ, which leads to tpðrÞ → tpðχÞ, which is entirely
smooth throughout the domain. Note that our expressions
in Sec. VI will remain in the same as previously, except
with a change of variables from r → rpðχÞ. As such the
integrals in Eqs. (76)–(78) become

C∞;�
lmnðχÞ ¼

Z
χ

0

ψh
lmnðrpðχ0ÞÞS�lmnðχ0Þ

W½ψh
lmnðrpðχ0ÞÞ;ψ∞

lmnðrpðχ0ÞÞ�
drp
dχ0

dχ0

ð91Þ

Ch;�
lmnðχÞ ¼

Z
π

χ

ψ∞
lmnðrpðχ0ÞÞS�lmnðχ0Þ

W½ψh
lmnðrpðχ0ÞÞ;ψ∞

lmnðrpðχ0ÞÞ�
drp
dχ0

dχ0:

ð92Þ

One can then transform the resultant functions back to
radial functions by a simple inversion of Eq. (8) to yield,

χðrÞ ¼ arccos

�
p − r
er

�
: ð93Þ

The number of grid points, N , we use in practice
depends on the function being interpolated. We find the
Fourier modes of the effective source, Sefflmn are very
oscillatory—see Fig. 5—and thus we need a high reso-
lution grid Chebyshev grid to reach a good accuracy in the
interpolation—see Fig. 7. On the other hand, the extended
functions, e.g., Seff;�lmn do not have oscillations—again see
Fig. 5—and so only low resolution grid is needed.

C. Numerical algorithm

The following steps describe how we compute the
regular field in practice. Our code is implemented in
Mathematica and often makes use of the Black Hole
Perturbation Toolkit (BHPToolkit) [75].
(1) Pick a p and e and calculate the orbital frequencies

Ωr andΩφ using in Eqs. (12) and (13). In practice we
compute these using the KerrGeodesics pack-
age from the BHPToolkit. Then, for each lm-mode
complete the following steps.

(2) Construct the extended effective sources, Seff;�lm ðt; rÞ
defined by Eq. (56) and construct the extended
punctures ψP;�

lmnðrÞ defined by Eq. (59) As these
are smooth functions, for a given radius we can use
the FFT to calculate all Fourier harmonics with
jnj < 50. We calculate this Fourier transform at
each radius of Chebyshev-Lobatto grid given by
Eq. (88). The number of points,N , in the radial grid
depends on the particular mode—see Fig. 7.
For each lmn-mode we interpolate the functions
using the Chebyshev polynomials as outlined in
Sec. VII B.

(3) For each lmn-mode we now compute the standard
effective source using the convolution formula given
in Eq. (79).

(4) We use Mathematica’s NDSolve function to com-
pute the homogeneous solutions, ψh

lmn and ψ∞
lmn, of

the wave equation (30). The boundary conditions
at rout ¼ 1000M and rin ¼ ð2þ 10−12ÞM are com-
puted as outlined in Appendix A of [44]. For some
low-frequency modes the location of the infinity
boundary is moved out to ensure convergence of the
asymptotic boundary condition series.

(5) We compute the a∞lmn and a
h
lmn weighting coefficients

using Eq. (53). In practice we evaluate the integrals in
Eq. (50) using Mathematica’s NDSolve.

(6) We now compute the b∞;�
lmn and bh;�lmn weighting

coefficients in Eq. (54). Again, we evaluate the
integrals in Eq. (66) usingMathematica’s NDSolve.

(7) The extended regular fields, ψR;�
lmnðrÞ, are then given

by Eqs. (62) and (63). We can now obtain the TD
residual field, ψR

lmðt; rÞ, from Eqs. (73) and (74).

D. Numerical results

The methods outlined above allow us calculate the
residual scalar field, ψR

lm, using an effective-source method
in the frequency domain. For reference values to compare
against we use the method of EHS [46] to solve Eq. (21) to
construct the time-domain retarded field, ψlmðt; rÞ, for a
given ðl; mÞ-mode. We briefly review the method of EHS
in Appendix B. In using the method we compute the
homogeneous solutions to frequency domain wave field
equation (30) using the Teukolsky package in the
BHPToolkit. This makes the reference EHS calculation

FIG. 7. The Chebyshev coefficients, ck, [see Eq. (89)] for
Seff22nðrÞ. As the effective source becomes more oscillatory as jnj
grows we find the number, N , of Chebyshev nodes needed to
reach a given accuracy increases.
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of the retarded field completely independent of our
effective-source calculation. To construct the reference
residual field in the time-domain we subtract the time-
domain puncture from the retarded solution, i.e.,
ψR;EHS
lm ðt; rÞ ¼ ψEHS

lm ðt; rÞ − ψP
lmðt; rÞ. In computing the

retarded field using the method of EHS we use Nmax ¼
50 Fourier modes.
Before discussing the main results of the EES method we

note that some numerical results have been presented in
earliest sections. In Fig. 1 we showed the poor convergence
Fourier sum for the effective source and the radial deriva-
tive of the puncture. We then showed in Fig. 3 how using a
higher-order puncture can accelerated the convergence of
the Fourier sums for the residual field but the convergence
remains algebraic. We gave an example of the Fourier
modes of the effective source, SefflmnðrÞ, and the extended
effective sources, Seff;�lmn ðrÞ, in Fig. 5. In Fig. 6 we showed
the rapid convergence of the extended effective sources is
exponential whereas the convergence of the standard
effective source is extremely slow. In Fig. 7 we discuss
the number of Chebyshev nodes needed to interpolate the
highly oscillatory Sefflmn and note that more modes are
needed for higher jnj.
Using the method of EES we can efficiently compute the

time-domain residual field by calculating extended residual
fields, ψR;�

lmnðrÞ. We give an example of the Fourier domain
residual field computed using the standard method outlined
in Sec. VA and the extended residual fields computed using
the EES method in Fig. 8. The standard residual field is
found to be highly oscillatory whereas the extended fields
are slowly varying.
The time-domain TD residual field, ψR

lmðt; rÞ, can then
be constructed using from Eqs. (73) and (74). Our main
result is that the Fourier sum in Eq. (74) now converges
exponentially to the correct value—see Fig. 9 where we
give an example for the ðl; mÞ ¼ ð2; 2Þ mode for an orbit

FIG. 8. The FD residual field(s), ψR
lmn, for ðl; m; nÞ ¼

ð2; 2; 12Þ. We observe oscillations in the residual field computed
with the standard method which result from the behavior of the
source—see Fig. 5. However, no such oscillations can be seen in
the extended regular fields, ψR;þ

lmn and ψR;−
lmn. Note how ψR;þ

lmn and
ψR;−
lmn coincide exactly with ψR

lmn at rmax and rmin respectively,
the boundaries where the respective effective sources have been
extended from. This is expected since, in formulating our method,
we demanded that ψþ

lmn ≔ ψR;þ
lmn þ ψP;þ

lmn ¼ ψlmn at r ¼ rmax and
ψ−
lmn ≔ ψR;−

lmn þ ψP;−
lmn ¼ ψlmn at r ¼ rmin.

FIG. 9. The convergence of the partial sum of the Fourier modes of the residual field using the standard method and our new extended
effective-sources approach. Here we present results for p ¼ 10M and e ¼ 0.2, ðl; mÞ ¼ ð2; 2Þ mode and the field is computed when
χ ¼ π=2. For each partial sum over the Fourier modes of the residual field we plot the absolute difference compared to the result
computed using the method of EHS, where ψR;EHS

lm ðt; rÞ ¼ ψEHS
lm ðt; rÞ − ψP

lmðt; rÞ. The (dark blue) triangles show the result using the
standard method expanded through OðΔr4Þ which converges algebraically as N−3. This data is the same as presented in Fig. 3. Using
our new extended effective-sources method, the partial sum over the extended regular fields, ψR;�

lm , converges exponentially to the time-
domain result.
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with ðp; eÞ ¼ ð10; 0.2Þ. We find similar results for other
modes and orbital configurations.
As a further check our results we verify that our code

recovers the correct field outside of the worldtube region
for a range of orbital configurations and modes. In this
section we shall only present results for a particle with the
same orbital configuration as Fig. 9. In Fig. 10, we compute
the weighting coefficients, a∞=h

lmn , appearing in Eqs. (62)
and (63) that scale the homogeneous outside the worldtube
to recover the retarded field. These coefficients are then
compared to the equivalent weighting coefficients, C∞=h

lmn ,
that are computed through EHS as described in
Appendix B. One observes the weighting coefficients have
an exponentially decaying spectrum centered around a peak
harmonic until reaching some Nyquist point around ∼N =2,
where N is the number of Chebyshev nodes used to
interpolate the standard effective source. This aliasing

phenomenon can be explained by the nature of the
convolved effective source. Specifically, if we recall
Fig. 5, one observes that for increasing jnj, the standard
effective source becomes more oscillatory. Hence for
source harmonics with high jnj, one therefore requires
more Chebyshev coefficients to ensure the source’s
oscillatory behavior is not undersampled. This is seen
in Fig. 7 as for higher jnj, there is an initial accuracy floor
is reached until the number of Chebyshev nodes becomes
sufficient to suitably capture the oscillatory behavior of
the source. From a practical perspective, the Nyquist-like
notches only begin once the weighting coefficients are far
below machine precision. In fact, for the models consid-
ered in this work, these points of inflection would only be
observable thanks to Mathematica’s arbitrary precision
arithmetic. If one was to extend the implementation
beyond this work, for a given precision, one could choose
to halt the calculation at a given jnj when this limit is
reached, with the weighting coefficients presented here
being a good measure.
For all of the models, we find exponential convergence to

an absolute error of at least ∼10−15. We find, as with most
FD methods including EHS, that increasing eccentricity
leads to a slower exponential decay of the partial sum and
hence for larger eccentricities approaching e ¼ 1 that our
method becomes less practical. Nonetheless, as we show in
Fig. 11, the EES method can still handle up to eccentricities
of e≲ 0.7. In Fig. 1, we show the exponential convergence
of the partial sum for models with high eccentricities of
e ¼ 0.5 and e ¼ 0.7. We give further details of these
comparisons in Appendix C.
Formally our frequency domain approach is valid for

all eccentricities. Practically the calculation becomes
increasingly more difficult as the number of n-modes
needed to reach a given precision diverges in the e → 1
limit. For e ≥ 1, which describes parabolic and hyper-
bolic orbits, the spectrum of radial harmonics becomes
continuous. The frequency domain approach can still be
used for these orbits but with additional techniques
needed—see [76,77]. In more recent works, however,
many authors have had no issues reaching eccentricities
of e ¼ 0.8 [50].
For our own calculation it is difficult to predetermine the

number of n-modes from certain set of parameters, but
we can say for larger eccentricity for a given semilatus
rectum, the spectrum of the modes broadens around the
peak mode which occurs at low jnj. As one can see from
Figs. 11 and 15 in Appendix C, the spectrums are not
always centered around n ¼ 0 and can be asymmetric
around the peak harmonic. We also observe similar
behavior to [47,78], that the negative n-modes decay more
rapidly than positive n-modes, especially for orbits with
high eccentricities. See e07p10.22 in Fig. 15.
It is therefore difficult to come up with a precise

scaling requirement for n-modes in order to produce the

FIG. 10. A comparison of the weighting coefficients, a∞=h
lmn and

Cþ=−
lmn , for a particle with orbital parameters p ¼ 10M and e ¼ 0.2

with ðl; mÞ ¼ ð2; 2Þ, computed with EHS and EES respectively.
The weighting coefficients for successive n-modes falls off
exponentially when computed away from the peak harmonic.
For higher jnj, the a∞=h

lmn coefficients reach Nyquist-like notches,
beyond which the coefficients increase in magnitude due to
aliasing of the convolved source term.
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prerequisite accuracy. In reality, other similar eccentric
orbit codes, see [47,78], set some numerical threshold and
truncate the n-mode calculation when the mode contribu-
tion either side of n ¼ 0 drops below this threshold. For
example, in [78], the authors calculate energy and angular
momentum fluxes, which are related to the weighting
coefficients a∞=h

lmn and C∞=h
lmn . They find to reach a similar

prescribed accuracy with p ¼ 8.75455, e ¼ 0.764124, and
ðl; mÞ ¼ ð2; 2Þ, they sum n-modes from nmin ¼ 47
to nmax ¼ 82.2

For p < 10M and a given eccentricity, as we reach
further into the strong-field the mode spectrum broadens
in a similar manner to increasing e for a given p, as stated
in the previous item. This broadening is especially

apparent for “zoom-whirl” type orbits close to the
seperatrix [79], and as similarly observed in [47]. For
p > 10M, the Fourier spectrum will narrow but if we
increase p ≫ 10M, far away from the strong field regime
then other we will encounter difficulties with other
aspects of the calculation. The difficulties mainly lie in
calculating the homogeneous solutions but, as pointed out
in [61], this could be avoided by considering a novel
hyperboloidal approach with compactification that utilises
spectral methods to solve our wave equation. This circum-
vents the difficulty in calculating homogeneous solutions for
large-p orbits and the associated issues with variation of
parameters. We would, however, need to reformulate the
method of extended effective sources to work with this
numerical approach.

VIII. CONCLUSION

In this paper we have formulated an effective-source
approach for eccentric orbits in the frequency domain. The
method allows one to overcome the Gibbs phenomenon
and associated slow convergence experienced with naive
frequency domain computations that use an effective
source. As an example we show how the method can be
used to compute the residual scalar field for a compact
source moving on an eccentric orbit in a Schwarzschild
background. Our results were validated against those
obtained using an independent implementation of the
method of extended homogeneous solutions. Crucially,
with our new method we find the Fourier modes of the
residual scalar field converge exponentially.
We find our method to be reasonably computational

efficient with the main bottleneck being the need to
interpolate the highly oscillatory standard effective source.
It would be interesting to explore if the oscillatory nature
of the effective source could be understood analytically
and thus removed to leave behind a more slowly varying
numerical residual to be interpolated.
The main motivation for the development of our

extended effective-sources approach was for application
to second-order gravitational self-force calculations.
Although in this paper we only considered a source with
support in a finite region around the libration region our
method should extend to sources with unbounded support
such as appear in the second-order field equations [36].
With our new method there is now no remaining obstacle to
computing Lorenz-gauge second-order results for eccentric
orbits on a Schwarzschild background, although in practice
this will be a very significant undertaking.
Looking further to the future, it will be important push

second-order GSF calculations to Kerr spacetime. This will
likely first be attempted for circular, equatorial orbits in
either the Lorenz gauge [80] or a emerging second-order
Teukolsky frameworks [81]. As the majority of EMRIs are
expected to be quite eccentric while emitting gravitational
waves in the LISA band it will be important to apply the

FIG. 11. The convergence of the partial sum of the Fourier
modes of the residual field calculated through EES for two
models with high eccentricities: e05p10.22 (top panel) and
e07p10.22 (bottom panel). We find the partial sums still converge
exponentially to the reference values computed through EES, but
find for increasing eccentricity the initial value of the partial sum
is more disparate when compared to the EHS reference value and
the decay rate slows. Therefore for higher eccentricity one would
require a higher number of n-modes to achieve the same level of
accuracy to that of Fig. 9.

2This is shown in Table III of [78].
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results of this paper to second-order perturbations for a
body on an eccentric orbit around a Kerr black hole.
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APPENDIX A: SCALAR-FIELD PUNCTURE
FIELDS FOR ECCENTRIC ORBITS IN

SCHWARZSCHILD SPACETIME

In this section, we give our explicit expression for the
scalar-field puncture field, ψP

lmðt; rÞ, for the case of an
eccentric orbit in Schwarzschild spacetime. This puncture
is decomposed into spherical harmonic lm-mode contains
all the necessary pieces of the Detweiler-Whiting singular
field required to compute the regular scalar field and the
extended effective sources Seff;�lm ðt; rÞ. In the usual
Schwarzschild coordinates, xμ ¼ ðt; r; θ;φÞ, the puncture
can be found from the expressions in [72] (by setting the
four-acceleration terms at ¼ ar ¼ aφ ¼ 0) and is given
through ΔrðtÞ by

ψP
lmðt; rÞ ¼ 2reim½cðtÞ−φpðtÞ�Dl

m;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2lþ 1

r 8>><
>>:

2K

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rpðtÞ2 þ L2

q − ΔrðtÞ
� ð2lþ 1ÞErpðtÞsgnðΔrðtÞÞ
2ðrpðtÞ − 2MÞðrpðtÞ2 þ L2Þ

−
E½LrpðtÞ2ð4M − ð2 − 3E2ÞrpðtÞÞ þ L3ð4M − 2rpðtÞÞ� − 2E2LrpðtÞ3K

πLrpðtÞðrpðtÞ − 2MÞðrpðtÞ2 þ L2Þ3=2
�9>>=
>>;; ðA1Þ

where

cðtÞ ≔ ΔrðtÞ urLrpðtÞ
ðrpðtÞ − 2MÞðL2 þ rpðtÞ2Þ

; ðA2Þ

Dl
m;0 ≔ Dl

m;0ðπ; π2 ; π2Þ is the Wigner-D matrix and K ≔R π=2
0 ð1 − w sin2 θÞ−1=2dθ and E≔

R π=2
0 ð1−wsin2θÞ1=2dθ

are the complete elliptic integrals of the first and second
kind, respectively, where w ¼ L2=ðL2 þ rpðtÞ2Þ.
For our calculations in Sec. 3 we also used a higher-order

puncture in Δr which was original computed in Ref. [72].
We thank Barry Wardell for providing us with the full
expression which is given explicitly in the supplemental
material accompanying this work [74].

APPENDIX B: EXTENDED HOMOGENEOUS
SOLUTIONS

In this appendix we give a brief overview of the method
of extended homogeneous solutions to computing the
retarded field for a point particle moving on an eccentric
orbit [46]. First, as the name suggests, we consider an
extension of the homogeneous solutions ψ∞=h

lmn to the entire
domain, defined through

ψ̃�
lmnðrÞ ≔ C�

lmnψ
∞=h
lmnðrÞ; ðB1Þ

where the coefficients C�
lmn are the same as those given in

Eq. (50) with Seff;�lmn ðrÞ replaced by JlmnðrÞ from Eq. (29).
One then defines two time-domain extended homogeneous
solutions ψ̃þ

lm and ψ̃−
lm by

ψ̃�
lmðt; rÞ ≔

X∞
n¼−∞

ψ̃�
lmnðrÞe−iωmnt: ðB2Þ

While these solutions exist within the entire domain, we
emphasize that ψ̃−

lmðt; rÞ and ψ̃þ
lmðt; rÞ are not solutions to

the inhomogeneous n-mode equation given in Eq. (30)
in the sourced domain rmin ≤ r ≤ rmax and ordinarily only
coincide with ψ inh

lmn in their respective domains r < rmin

and r > rmax. In [46], it was shown that the n-mode sum
given in Eq. (B2) converges exponentially fast in jnj and
uniformly in t and r throughout the entire domain.
Furthermore, as N → ∞ in the partial sums,

lim
r→rpðtÞ

ψ̃−
lmðt; rÞ ¼ lim

r→rpðtÞ
ψ̃þ
lmðt; rÞ: ðB3Þ

Reference [46] argued that the EHS can be used to
construct the actual solution to the inhomogeneous
wave-equation given in Eq. (30) such that ψ inh

lmðt; rÞ ¼
ψEHS
lm ðt; rÞ where
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ψEHS
lm ðt; rÞ ≔ ψ̃þ

lmðt; rÞΘ½r − rpðtÞ�
þ ψ̃−

lmðt; rÞΘ½rpðtÞ − r�: ðB4Þ

Their argument is based on analytic continuation.
Reference [46] also demonstrated this numerically for
the example of the scalar-field monopole. Similar
results to [46] are presented from our own calculations
for the ðl; mÞ ¼ ð2; 2Þ in Figs. 12 and 13. The EHS
treatment has been used extensively in calculations of the
first-order self-force in conjunction with the mode-sum
method [15,49–51].

FIG. 13. A plot of the relative error of the TD reconstruction
of the retarded field using the standard method and EHS. For a
particle orbiting with the same parameters as Fig. 12, i.e., p ¼
10M and e ¼ 0.2 with rmin ¼ 8.3M and rmax ¼ 12.5M, we
compute the retarded field, ψlm, by summing over modes ranging
from −Nmax ≤ N ≤ Nmax, where Nmax ¼ 30. We plot the log of
the absolute error between ψ22ðNÞ and ψ22ðNmaxÞ for a range of
N < Nmax. For the standard approach (top panel) we see that
outside the libration we have exponential convergence. Inside the
libration region the convergence becomes algebraic. Whereas the
EHS method (bottom panel) obtains exponentially converging
results throughout the entire domain. EHS also yields exponen-
tially convergent solutions for ∂rψlm for all points outside and
inside the libration region.

FIG. 12. The reconstruction of the retarded (2,2-mode (top
panel) and its derivative with respect to r (bottom panel) using
EHS. The orbital parameters are the same as in Fig. 9, p ¼ 10M
and e ¼ 0.2, with rmin ¼ 8.3M and rmax ¼ 12.5M. Partial sums
are computed with Eq. (B2) and shown for different N, where
Nmax is the maximum of the partial sum. For comparison
purposes we also display (black) the “full” (2,2)-mode solution,
ψEHS
22 , which is the EHS solution for Nmax ¼ 30 and for our

purposes, indistinguishable from the true solution. Exponentially
fast converge is manifest in both the retarded field and its
derivative with the Gibbs phenomenon that previously disrupted
convergence circumvented completely with EHS. This figure is
inspired by Fig. 3 in [46].

TABLE I. A table summarizing the orbital parameters used in
the results in this appendix.

Label e p ðl; mÞ
e02p10.22 0.2 10 (2, 2)
e02p10.20 0.2 10 (2, 0)
e02p10.33 0.2 10 (3, 3)
e02p10.44 0.2 10 (4, 4)
e02p10.55 0.2 10 (5, 5)
e03p12.22 0.3 12 (2, 2)
e05p10.22 0.5 10 (2, 2)
e06p10.22 0.6 10 (2, 2)
e07p10.22 0.7 10 (2, 2)
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APPENDIX C: FURTHER NUMERICAL RESULTS

As a further check our results we verify that our code
recovers the correct field outside of the worldtube region.
We do this by computing the weighting coefficients of
the homogeneous solutions independently using EES and
EHS for a variety of orbital configurations, which are listed

in Table I. In Fig. 14, we see good agreement between the
EES weighting coefficients, a∞=h

lmn and the EHS weighting

coefficients, C∞=h
lmn for different lm-mode with e ¼ 0.2

and p ¼ 10. Furthermore, in Fig. 15, we present further
comparisons between the weighting coefficients for
ðl; mÞ ¼ ð2; 2Þ mode with different eccentricities.

FIG. 14. A comparison of the weighting coefficients, a∞=h
lmn and C

þ=−
lmn , for different lm-modes listed in Table I computed with EHS and

EES respectively. The weighting coefficients for successive n-modes falls off exponentially when computed away from the peak
harmonic. For higher jnj, the a∞=h

lmn coefficients reach Nyquist-like notches, beyond which the coefficients increase in magnitude due to
aliasing of the convolved source term. The minima scale as ∼N =2, whereN is the number of Chebyshev nodes used to interpolate the
effective source.
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Similarly to Fig. 11, we find that for higher eccentricities
the exponential fall-off the weighting coefficients is slower
but this is inline with the coefficients calculated using EHS.
As a consequence, we see the Nyquist-like minima appear
deeper into the spectra of weighting coefficients. For
example, for e07p10.22, these minima do not occur at
all for jnj ≤ 40. We also see that increasing eccentricity
decreases the absolute error between the EHS and EES

weighting coefficients and while this error is still at a
tolerable level, further work should investigate how this
discrepancy could be improved upon.
Finally, in Fig. 16, we present convergence of the

extended residual fields, ψR;�
lm ðrÞ, for a rest of the orbital

configurations in Table I not yet shown in this paper. For
ease of comparison, we also again show the orbital
configuration, e02p10.22, but for the full range of N up

FIG. 15. A comparison of the weighting coefficients, a∞=h
lmn and C∞=h

lmn , for the (2,2)-mode orbital configurations with different
eccentricities listed in Table I computed with EHS and EES, respectively. As in Fig. 14, the weighting coefficients for successive
n-modes falls off exponentially when computed away from the peak harmonic. We observe that for increasing eccentricity, the decay-
rate is slower.
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FIG. 16. Convergence of the residual fields, ψR;�
lm , computed with EES to a reference value computed with EHS for orbital

configurations listed in Table I. We compute the residual field, ψR;�
lm , by summing over modes ranging from −Nmax ≤ N ≤ Nmax, where

Nmax ¼ 50. In all of our cases we observe exponential convergence of the partial sum of the residual fields constructed with EES to
the reference value computed independently with EHS. For large N, we begin to encounter the same aliasing effect as observed in
Figs. 10 and 14 for corresponding large jnj.
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to Nmax ¼ 50. We find exponential convergence of the
partial sum for all of the models listed in Table I and we find
the aliasing effect observed in Figs. 10 and 14 manifests
itself for high Nmax as notches where the residual fields
begin to diverge away from the reference value computed
with EHS. We have verified the self-convergence of the
EHS retarded field and therefore the residual field ψR

lmðNÞ

is exponential and thus what we are seeing here is simply
limitations of the calculation with the set numerical
parameters. As we said previously, this could be utilized
as a stopping point as the absolute error here is far below
machine precision or could be improved even further by
increasing the number of Chebyshev nodes used in the
interpolation of the effective source.
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