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We study a variational class of generalised Ramsey protocols that include two one-axis twisting
(OAT) operations, one performed before the phase imprint and the other after. In this framework,
we optimise the axes of the signal imprint, the OAT interactions, and the direction of the final
projective measurement. We distinguish between protocols that exhibit symmetric or antisymmet-
ric dependencies of the spin projection signal on the measured phase. Our results show that the
quantum Fisher information, which sets the limits on the sensitivity achievable with a given uni-
axially twisted input state, can be saturated within our class of variational protocols for almost all
initial twist strengths. By incorporating numerous protocols previously documented in the liter-
ature, our approach creates a unified framework for Ramsey echo protocols with OAT states and
measurements.

I. INTRODUCTION

Quantum metrology employs quantum strategies, as
e.g. entanglement and squeezing, to enhance the preci-
sion of measurements beyond classical bounds [1] and has
a wide range of applications, e.g. in gravitational wave
detection, quantum phase estimation, quantum magne-
tometer, quantum spectroscopy and atomic clock syn-
chronization [2]. Here we consider Ramsey interferom-
etry as the most common method in quantum metrol-
ogy with a variety of applications such as atom interfer-
ometers and optical atomic clocks. These in turn pave
the way for the search for new physics, such as experi-
ments on Lorentz violation [3], the search for dark mat-
ter [4] and for variation of the fundamental constants [5],
geodesy [6] and tests of general relativity [7].

The precision in phase estimation achievable in a Ram-
sey protocol is restricted by quantum projection noise,
i.e. unavoidable quantum fluctuations in a measure-
ment. The standard Ramsey protocol using classical
states is limited by the standard quantum limit (SQL).
Nevertheless, it is possible to overcome this limitation
up to the Heisenberg limit (HL) by using entangled or
spin squeezed states, as pointed out by Wineland et al..
One promising method creating spin squeezed states is
one-axis twisting (OAT) [9] which can be realized ex-
perimentally through collisions in Bose-Einstein conden-
sates [10, 11], via cavity feedback squeezing of cold atoms
[12, 13] or by implementing Mølmer-Sørensen gates on
trapped ions [14]. Besides the simple squeezing protocols
which already allow to reduce the phase estimation er-
ror by a factor of O(N1/3) [9], there have been several
previous investigations on so-called echo protocols, where
OAT [15–24] or other squeezing methods [25, 26] applied
before and after the phase imprint help improving the
sensitivity of the Ramsey protocol even further.

In previous work [21] we considered a variational class
of echo protocols which was defined such as to allow for
an analytical optimization of geometric control parame-
ters corresponding to rotation axes and angles. Within

this variational class, many of the protocols known in
the literature, as well as some new protocols, could be
identified as local maxima of the achievable sensitiv-
ity. This allowed a systematization of echo protocols,
which, however, remained partial due to certain con-
straints of the variational class adopted in [21]. This
concerns, on the one hand, restrictions on geometric con-
trol, which excludes, for example, some of the protocols
of [18, 20]. On the other hand, the variational class
was constrained to protocols whose signal S(ϕ) is anti-
symmetric with respect to the inversion of the metrologi-
cal phase, i.e. S(−ϕ) = −S(ϕ). This constraint excluded
e.g. the schemes of [15, 22] generating a symmetric sig-
nals S(−ϕ) = S(ϕ).

Building on the protocols considered in [21], in this
paper we aim at a much more general systematization of
echo protocols, which is broader in terms of both their
geometric degrees of freedom and the (anti)symmetry of
the signal. To this purpose, we define an enlarged vari-
ational class, still based on one OAT operation each be-
fore and after signal imprint, covering all protocols stud-
ied in [15–24]. This generality comes at the cost of a
largely numerical optimization over the variational class
considered here. Our main findings are: (i) In this gen-
eralized class of Ramsey protocols, the quantum Fisher
information (QFI), which bounds the maximum possible
sensitivity, can be saturated for almost all initial twist-
ing strengths µ ∈ [0, π]. Here, OAT operations are de-
scribed by unitaries Tz(µ) = exp

(
−iµS2

z/2
)
with collec-

tive spin operator Sz. Saturation of the QFI is achieved
by means of suitably one-axis twisted projective spin
measurements. (ii) Protocols with anti-symmetric sig-
nal saturate the QFI for all twisting strengths, except in
a neighborhood around µ ≃ π. (iii) For an initial OAT
around µ ≃ π, generating GHZ-like states, the QFI is
saturated by schemes with symmetric signals, with the
protocols of [15] included as a special case.

Here, we deliberately restrict our investigations to rel-
atively simple protocols with only two squeezing opera-
tions, corresponding to the schemes demonstrated exper-
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FIG. 1: Generalized Ramsey protocols with OTA operations Tz(µ) = exp
(
−iµS2

z/2
)
. Rotations R about an axis n

by an angle ϕ are denoted by Rn(θ). (a) Standard Ramsey protocol without OAT. (b) Variational class of Ramsey
echo protocols with arbitrary rotations R1,2,3 and OAT strengths µ1 and µ2. (c) The same variational class, re-
parameterized in terms of the axis n of signal imprint, axis k of second OAT, and direction m of spin projection
measurement. Here R1,2,3 do not require rotations around the z-axis.

imentally in [16, 24, 27]. This is complementary to the in-
vestigations in [28–30], which consider variational classes
comprising a larger number of OAT operations before and
after signal imprint. However, [28, 29] investigate a re-
duced set of geometrical control parameters as compared
to the protocols studied here. Optimization is performed
here with respect to the signal-to-noise ratio achieved lo-
cally at ϕ = 0, but we do discuss the dynamic range
of these optimized protocols via a figure of merit intro-
duced in [29, 31] as the effective measurement variance.
The problem of Bayesian phase estimation for a given
prior [32] has been studied for echo-protocols in [29, 30].

The article is organized as follows: In Sec. II we in-
troduce our general framework and describe the way in
which we have generalized the Ramsey protocol. Build-
ing on that, in Sec. III we present the local figure of merit
we use for our optimization and discuss the resulting opti-
mal protocols, including a comparison with the QFI. This
reveals that the QFI can be saturated by a generalized
Ramsey protocol from our variational class for almost
all initial twisting strengths. To assess the experimen-
tal practicability of the optimal protocols encountered,
we examine the effects of several noise sources and im-
perfections on their stability in Sec. IV. In this context,
we elaborate the effect of particle number fluctuations in
Sec. IVA, the dynamic range of the optimal protocols in
Sec. IVB, and the influence of dephasing during the OAT
process in Sec. IVC. Finally, Sec. V contains a summary
and an outlook on future perspectives.

II. VARIATIONAL CLASS OF
INTERFEROMETER PROTOCOLS

The variational class of protocols considered here is
based on conventional Ramsey interferometry, sketched
in Fig. 1a. In this context, the dynamics of the system
can be understood as the dynamics of a (pseudo) spin S
with [Si, Sj ] = iϵijkSk, where i, j, k ∈ {x, y, z} and ℏ = 1.
This could be an ensemble of N two-level atoms, where

Si = 1
2

∑N
α=1 σ

(α)
i and σx,y,z denote the Pauli matrices

as well as the index j corresponds to the j-th atom, but
also an atomic interferometer with the modes of motion

a and b, where Sz = a†a − b†b, or the like. We denote
rotations Rn(θ) = e−iθSn of the total spin vector about
arbitrary directions n = nxx + nyy + nzz with |n| = 1
and angles θ, where Sn = n · S.
Before introducing the generalized Ramsey protocols

which we have studied in this paper, we reconsider con-
ventional Ramsey interferometry, outlined in Fig. 1a.
This proceeds in three steps, namely state prepara-

tion (i), in which the state |ψin⟩ = Ry

(
π
2

)
|↓⟩⊗N

=⊗N
j=1

|↓⟩j+|↑⟩j√
2

is prepared by applying a π
2 -pulse on the

initial state |↓⟩⊗N
, corresponding to an ensemble with all

atoms in the ground state |↓⟩, signal imprint (ii), where
the relative phase ϕ is imprinted on the state during the
free evolution time, and measurement (iii), which consists
of a second π

2 -pulse and a measurement of Sz, giving an
average signal of

⟨Sout
z (ϕ)⟩ = ⟨ψout(ϕ)|Sz |ψout(ϕ)⟩ ,

where |ψout(ϕ)⟩ = Rx

(
π
2

)
Rz(ϕ) |ψin⟩ is the final state

of this interferometric sequence. The challenge is to es-
timate the phase ϕ imprinted in the unitary dynamics
described by Rz(ϕ). Around the working point ϕ = 0,
the quantum projection (QPN) of the measurement is

(∆Sout
z (ϕ))2 = ⟨ψout(ϕ)|S2

z |ψout(ϕ)⟩ − ⟨Sout
z (ϕ)⟩.

The phase estimation error can be classified by the mean
squared error

ϵM(ϕ) =
∑
m

[
ϕ̂(m)− ϕ

]2
p(m|ϕ), (1)

where ϕ̂(m) is the phase estimate corresponding to the
measurement outcome m, ϕ the actual phase and p(m|ϕ)
the conditional probability for the measurement outcome
m given the phase ϕ [29]. Evaluating ϵM(ϕ) locally at
the working point ϕ = 0, using a linear phase estimator

ϕ̂(m) = m
∂ϕ⟨Sz⟩|ϕ=0

, results in (cf. Appendix C)

(∆ϕ)2 =
(∆Sz)

2

|∂ϕ⟨Sz⟩|2

∣∣∣∣
ϕ=0

, (2)
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n m k µ1 µ2 signal symmetry theor./expt.

Kitagawa and Ueda [9] S2 S2 / [0, π] 0 undetermined T

Leibfried et al. [15] -x or y -x z π π symmetric E

Davis et al. [17] y y z [0, π] −µ1 anti-symmetric T

Fröwis et al. [18] y-z-plane S2 y-z-plane [0, π] [−π, π] undetermined T

Macr̀ı et al. [19] y z z [0, π] [0, π] anti-symmetric T

Nolan et al. [20] y-z-plane x y-z-plane [0, π] [−π, π] symmetric T

Schulte et al. [21] S2 S2 z [0, π] [−π, π] anti-symmetric T

Li et al. [22] y x z [0, π] −µ1 symmetric T

Volkoff and Martin [23] y y z [−π, 0] [−π, π] anti-symmetric T

Colombo et al. [24] y y z [0, 0.6] −µ1 anti-symmetric E

TABLE I: Echo protocols reported in the literature as characterized by their geometry (axis n of signal imprint,
axis k of second OAT, direction m of spin projection, cf. Fig. 1c) and range of twisting strengths µ1 and µ2. Here,
the notation S2 indicates that the direction of the corresponding vector is not constraint in any way. This means it is
a general 3-dimensional normalized vector, i.e. a vector in the S2 sphere. The final two columns categorize the signal
symmetry and indicate whether the work is theoretical or experimental.

which can also be obtained from Gaussian error propa-
gation of the QPN.

While the conventional Ramsey protocol, using only
uncorrelated atoms, is limited by the standard quan-
tum limit (∆ϕ)2SQL = 1/N , extensions to entangled ini-

tial states can further reduce (∆ϕ)2 with the Heisenberg
limit (∆ϕ)2HL = 1/N2 as the fundamental lower bound.
This reduction is commonly expressed in terms of the
Wineland squeezing parameter [8]

ξ2 = N(∆ϕ)2, (3)

which takes ξ = 1 for conventional Ramsey interferome-
try.

A common method to reduce the quantum projec-
tion noise (QPN) of the standard Ramsey protocol is to
perform one-axis-twisting (OAT) operations Tz(µ) dur-
ing the Ramsey protocol. Here, we introduce a varia-
tional class of generalized Ramsey protocols, as shown
in Fig. 1b. As conventional Ramsey interferometry, the
variational class of interferometer protocols considered
here starts with (i) state preparation, consisting of rota-

tion Ry(π/2) of the initial state |↓⟩⊗N
into the equato-

rial plane, a OAT interaction Tz(µ1) with strength µ1,
squeezing the coherent spin state (CSS) pointing in x-
direction, and a rotation R1 of the z-vector into an ar-
bitrary direction n. This is followed by (ii) the phase
imprint described by a rotation Rz(ϕ). Finally, in (iii)
a OAT measurement is performed with another rotation
R2 turning the z-vector into a direction k, followed by
a second OAT interaction Tz(µ2) with strength µ2 and a
third rotation R3 turning the z-vector in a direction m.
Finally, the protocol is concluded by a measurement of
Sz.

Choosing R2 = R†
1R̃2 and R3 = R̃†

2R̃3, this cor-
responds effectively to the interferometer sequence in
Fig. 1c, which provides a more compact formal treat-

ment, where first the state |ψin⟩ = Tz(µ1)Ry(π/2) |↓⟩⊗N

is prepared in (i) through a π
2 -pulse operated on the ini-

signal n m k

anti-symmetric y-z-plane y-z-plane x or y-z-plane

symmetric y-z-plane x x or y-z-plane

zero x y-z-plane x or y-z-plane

constant x x x

no insight x x y-z-plane

TABLE II: Shapes of signal for given geometrical con-
straints on n, m and k, cf. Fig. 1c.

tial state |↓⟩⊗N
followed by an OAT interaction Tz(µ1)

with strength µ1. The signal imprint (ii) is effectively
represented by a rotation Rn(ϕ) around the axis n. Af-
ter that follows the measurement phase (iii) with a sec-
ond OAT interaction Tk(µ2) with strength µ2 creating
the output state, given by

|ψout(ϕ)⟩ = Tk(µ2)Rn(ϕ) Tz(µ1) |ψin⟩ ,

and a measurement of Sm on this state, resulting in
an average signal of ⟨Sm(ϕ)⟩ with variance (∆Sm)2(ϕ).
Consequently, this variational class of protocols depends
on two twisting strengths µ1 and µ2 and three directions
n, k andm. It generalizes the standard Ramsey protocol
in Fig. 1a, and reduces to a variety of protocols discussed
in the literature [9, 15, 17–23] when certain restrictions
are made concerning geometry or twisting strengths, cf.
Table I.
While the protocols investigated by [17, 19, 21, 23, 24]

in general have an anti-symmetric signal curve ⟨Sm(ϕ)⟩,
the signal curves of the protocols discussed by [15, 20, 22]
are symmetric. We refer to protocols as being anti-
symmetric or symmetric if ⟨Sm(ϕ)⟩ = −⟨Sm(−ϕ)⟩ or
⟨Sm(ϕ)⟩ = ⟨Sm(−ϕ)⟩ is satisfied for all phases ϕ, re-
spectively. Our variational class of protocols additionally
encompasses protocols without a definite signal symme-
try or even with a constant signal curve. Such protocols
do not produce a useful error signal, and have to be ex-
cluded from the variational class by imposing suitable
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FIG. 2: Performance of the fully optimized anti-symmetric (a,b) and symmetric (c,d) echo protocols for N = 32
atoms. (a,c) Phase sensitivity as quantified by the inverse measurement error ∆ϕ−1 for given OAT strengths µ1 and
µ2, optimized with respect to n, m and k. Dashed red lines define notable anti-symmetric protocols (A1-A5) and
symmetric protocols S1 − S4. (b,d) Optimal sensitivity for protocols A1-A5 and S1-S4 referenced to the quantum
Fisher information for a given initial OAT strength µ1. Markers denote protocols of maximum sensitivity whose signal
shape is shown in Fig. 3.

conditions. For this reason, we restrict the optimization
of our variational class to protocols with symmetric or
anti-symmetric signal ⟨Sm(ϕ)⟩. Following [29], we find
that anti-symmetry or symmetry in the signal ⟨Sm(ϕ)⟩
can be ensured by restricting n, m and k to certain di-
rections as summarized in Tab. II (see also Appendix B).
Only for protocols with n = m = x and k in the y-z-
plane we gain no analytical insight on the symmetries of
the underlying signals. In this case, we have to filter for
anti-symmetric or symmetric protocols respectively by
numerically minimizing the cosine or sine Fourier coeffi-
cients of the underlying signal curve. We note that these
considerations provide sufficient (not necessary) condi-
tions for symmetry or anti-symmetry of the signal.

III. OPTIMAL PROTOCOLS

A. Figures of merit

In order to optimize the variational class of proto-
cols with anti-symmetric or symmetric signals that have
been identified, we need to suitably adapt the figure of
merit based on the phase measurement error of the anti-
symmetric standard Ramsey protocol in Eq. (2). For

anti-symmetric Ramsey protocols this is straight for-
wardly achieved for a working point ϕ = 0 by

∆ϕ(µ1, µ2,n,m,k) =
∆Sm

|∂ϕ⟨Sm⟩|

∣∣∣∣
ϕ=0

. (4)

Since we want to reduce ∆ϕ as far as possible, we maxi-
mize the inverse of the phase deviation ∆ϕ, the sensitivity

(∆ϕ)−1
opt(µ1, µ2) = max

n,m,k

1

∆ϕ(µ1, µ2,n,m,k)
, (5)

with respect to the directions n, m, and k. Analogous
to [21], we performed the optimization over n,m via a
singular value decomposition (cf. Appendix A), while we
executed the optimization of k using differential evolu-
tion (DE), a numerical routine for global optimization of
constrained parameters.
For symmetric Ramsey protocols the signal ⟨Sm(ϕ)⟩

has an extremum at ϕ = 0, such that the slope van-
ishes there. Therefore, the phase variance at ϕ = 0,
as defined in Eq. (4), is no longer a meaningful mea-
sure to characterize the quality of symmetric protocols.
Instead, symmetric protocols are operated with a two-
point-sampling method [15]. This means that, in contrast
to the one-point-sampling used for anti-symmetric pro-
tocols, for symmetric protocols the system is no longer
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FIG. 3: Signal shapes ⟨Sm(ϕ)⟩ for protocols (a) A1−A5 and (b) S1−S4 at the points of maximal sensitivity marked
in Fig. 2b,d.

probed at only one phase value ϕ = 0, but at two points
with additional phase shift ±φ. The combined error sig-
nal after these two measurement cycles is then used to
estimate the imprinted phase ϕ. We therefore optimize
the phase deviation at ϕ = φ ̸= 0, i.e.

∆ϕ(µ1, µ2,n,m,k) =
∆Sm

|∂ϕ⟨Sm⟩|

∣∣∣∣
ϕ=φ

, (6)

whereby the operating point φ, as proposed by [15], is op-
timally chosen as the inflection point of the signal curve
⟨Sm(ϕ)⟩, since the slope |∂ϕ⟨Sm⟩| becomes maximum
there.

B. Optimal anti-symmetric protocols

First, we optimize the sensitivity (∆ϕ)−1 for the anti-
symmetric protocols. In doing so, we optimize the axes
n, m and k for given squeezing strengths µ1 and µ2 and
N = 32 particles such that (∆ϕ)−1 becomes maximal.
The results of this optimization are shown in Fig. 2a as
a contour plot in the µ1-µ2-plane. In this landscape,
we observe a large number of local maxima, a selection
of which we refer to as protocols (A1-A5), as defined
in Fig. 2a. Some of these local maxima (A1-A3) corre-
spond to previously studied echo protocols known from
the literature. The protocols with only initial twisting
(A1), i.e. µ2 = 0, correspond to the squeezing proto-
cols discussed in [8], while region A2 denotes protocols
with low initial squeezing and small unsqueezing, and
comprise the echo protocols introduced in [17]. In ad-
dition, the µ1 = −2µ2 protocols (A3), denoting an ini-
tial twisting and a final double untwisting, comprise the
anti-symmetric OUT protocols studied in [21]. Besides
this, line A4 denotes so-called pseudo-echo protocols [20],
which do not need squeezing inversion, and the protocols
along line A5 have an arbitrary initial twisting and an
untwisting of strength µ2 = ±π, corresponding to a pro-
jective measurement of maximally twisted Dicke states.

To better assess the magnitude of improvement in
these regions, we show in Fig. 2b the resulting sensitiv-
ities, when optimizing over µ2, n, m and k for given
values of initial twisting µ1. We also compare to the
quantum Fisher information, which bounds the sensitiv-
ity achievable with the state Rn(ϕ) Tz(µ1) |ψin⟩, opti-
mized over all possible rotation directions n, due to the
quantum Cramér-Rao bound [1, 33]. We find that the
sensitivity along line A5 saturates the QFI for all initial
squeezing strengths µ1 from zero initial twisting to the
end of the plateau of the QFI until it slowly decreases
for µ1 approaching π. However, already the sensitivity
of the protocols with small initial and final squeezing
strength µ1 and µ2 (A2) is strongly increased compared
to the simple squeezing protocols (A1). The sensitivity
of region A2 saturates the QFI for every small initial
squeezing strength µ1 until it almost reaches the plateau
value of the QFI, but starts to decrease shortly before
this point. Overall, for small µ1, the protocols based on
twisting inversion perform significantly better than those
restricted to µ2 > 0. The other curves (A3, A4) approach
the plateau of the QFI only for certain larger values of
initial twisting µ1.

C. Optimal symmetric protocols

Analogous to the analysis of the anti-symmetric pro-
tocols, we first optimize n, m, and k for given µ1 and
µ2 and N = 32 particles and consider the resulting µ1-µ2

landscape (see Fig. 2c). Here we obtain fewer local sensi-
tivity maxima compared to the anti-symmetric case, but
again select different regions (S1-S4) with comparatively
high sensitivity values that contain previously studied
echo protocols. As for the anti-symmetric case, the pro-
tocols with only initial squeezing (S1), i.e. µ2 = 0, corre-
spond to the squeezing protocols discussed by [8], while
now region S2 denotes the protocols with small initial
squeezing and over-squeezing. In addition, the protocols
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marked in Fig. 2b,d in comparison to Heisenberg limit (black line). For this analysis, a Gaussian phase distribution
with prior variance δϕ was assumed.

with µ1 = −µ2 (S3) corresponding to an initial twist and
a final untwisting include the GESP-o protocols studied
by [22], and the protocols in the S4 region include the
symmetric GHZ protocols considered by [15, 16].

Again, we compare the maximum sensitivity values
when optimizing over µ2, n, m and k for given values
of µ1 with the quantum Fisher information (QFI) of the
state Rn(ϕ) Tz(µ1) |ψin⟩ (see Fig. 2d). In contrast to the
anti-symmetric protocols, we find only little improvement
in sensitivity for the symmetric protocols with small ini-
tial and final squeezing strengths µ1 and µ2 (S2) com-
pared to the simple squeezing protocols (S1). Here, the
protocols with small µ1 based on twisting inversion and
those constrained to µ2 > 0 perform almost equally well.
Line S3 saturates the QFI only for one particular initial
squeezing strength µ1, almost the same as for line A3,
in the middle of its plateau. However, as µ1 increases,
the sensitivity of line S3 remains close to the QFI until
it diminishes at the end of the plateau. Region S4 rep-
resents a neighborhood of the GHZ protocols discussed
by [15, 16], all of which saturate the QFI for µ1 near π
and eventually reach saturation of the Heisenberg limit
for µ1 = π.

IV. NOISE AND IMPERFECTIONS

The above optimizations only consider an ideal case
and disregard any noise. In this section, we will con-
sider three important types of imperfections or limita-
tions, namely particle number fluctuations, finite dy-
namic range and dephasing during twisting operations.

A. Particle number fluctuations

In some platforms, e.g. neutral atom traps, the num-
ber of particles may not be precisely controlled and be

subject to particle fluctuations or loss. For this reason, it
is essential to consider how the optimal µ1-µ2-landscapes
differ for even and odd particle numbers N . In general,
we can find optimal axes n, m, and k for each point of
the µ1-µ2-landscape, such that the landscapes for even
and odd numbers of particles appear very similar. How-
ever, the optimal axes for even and odd particle numbers
are truly different at many points of the landscape. Only
a few of the identified optimal protocols of Fig. 2 are sta-
ble under particle number fluctuation, i.e. have identical
optimal axes n, m and k for even and odd particle num-
ber. This applies for the OUT protocols (A3) [21], the
protocols in the last maximum of line A4, the protocols
of region A2 and S2 with small initial squeezing strength
µ1 and the GESP-o protocols (S3) [22]. In many cases,
one of the optimal directions n, m and k for N = 32
has to be rotated about π

2 to reach the optimal sensi-
tivity value of N = 33, but in general the change of
optimal axes from even to odd particle number varies for
each point of the landscape. There is no general system-
atic for the variation of n, m and k from even to odd
particle number observable. Our analysis concludes that
most optimal protocols identified, with the above men-
tioned exceptions, are limited to experiments with stable
particle numbers, such as in ion traps.

B. Dynamic Range

Besides the phase measurement error ∆ϕ, the fringe
width of the resulting signal curve ⟨Sm(ϕ)⟩ plays an im-
portant role for the applicability of the protocols in the
experiment. In optical atomic clocks, for example, a
small fringe width increases the probability of the oc-
currence of fringe hops, which then in turn limit the sta-
bility of the clock [34]. In Fig. 3a and 3b, we show the
shape of the average signal ⟨Sm(ϕ)⟩ with optimized µ1,
µ2, n, m and k corresponding to the maxima in sensitiv-
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ity marked in Fig. 2b and 2d for the anti-symmetric (A1-
A5) and symmetric (S1-S4) protocols. This reveals that
the central fringe can become quite narrow for both anti-
symmetric and symmetric protocols using large twisting
strengths, which limits the dynamical range of the inter-
ferometer.

To quantify the trade-off between enhancement in sen-
sitivity and reduction of the dynamical range, we use the
effective measurement variance (∆ϕM )2 defined by [29]

1

(∆ϕM )2
=

1

ϵB(ϕ)
− I.

Here, the Bayesian mean squared error for a given prior
phase distribution P(ϕ) is

ϵB(ϕ) =

∫ ∞

−∞
dϕ ϵM(ϕ)P(ϕ),

where ϵM(ϕ) was defined in Eq. (1) and I is the Fisher
information of the prior distribution. The effective mea-
surement variance satisfies (∆ϕM )2 ≥ 1

FQ
, similar to

the quantum Cramér-Rao bound, where FQ denotes the
Fisher information averaged over the prior distribution
[29]. ∆ϕM therefore quantifies the true phase estima-
tion error of a single measurement tracing out the prior
knowledge. In Figure 4, we show the effective measure-
ment variance in dependence of the prior width δϕ of a
Gaussian laser phase distribution, i.e. the sensitivity of
measurement protocols for increasing dynamical range.
This shows that for a small prior phase variance δϕ, the
protocols A2-A5 and S2-S4 lead to high improvements in
sensitivity compared to the squeezing protocols A1/S1.
With increasing prior phase variance δϕ, the advantage
of the protocols A2-A5 and S2-S4 over the squeezing
protocols decreases until the sensitivity of the squeezing
protocols prevails due to their smaller dynamical range.

C. Dephasing during twisting

Another significant source of noise is the dephasing
that occurs during the twisting. Therefore, we consider
how the sensitivity changes as dephasing increases for
each of the local maxima in sensitivity corresponding to
the regions A1-A5 and S1-S4. We compare the achieved
sensitivity to the QFI of a dephased input state with the
same initial twisting strength µ1, cf. Fig. 5. Dephasing
during the twisting process is described by the master
equation

∂

∂t
ρ = −i[H, ρ] + γ

[
LρL† − 1

2
L†Lρ− 1

2
ρL†L

]
,

where H = χS2
a with µ

2 = χt is the OAT Hamiltonian
and L = Sa. The dephasing strength is defined as di-
mensionless parameter σ = γ

|χ| . Here, a = z for the first

and a = k for the second OAT operation.

First, we observe that with increasing dephasing, the
µ1 value of the corresponding sensitivity maximum as
well as the optimal axes n, m and k undergo small
changes. Thus, we optimize µ1 and the axes n, m and
k in a small range around the original value and direc-
tion at σ = 0, respectively. Our analysis reveals that the
sensitivity maximum of A3 at µ1 ≈ π/2 is very unstable
under dephasing. Therefore, in Fig. 5a we show the sen-
sitivity of the second maximum of A3, which is marked
with a triangle in Fig. 2b. However, due to the similar
signal shape and dynamic range as the maximum of A4,
we have not included these protocols in Fig. 3, 4. More-
over, we find that the sensitivity at the maxima of A2,
A4 and S3 is relatively stable under dephasing, while
the sensitivity at the maxima of A5 and S4 decreases
very rapidly with increasing dephasing. At a dephasing
strength of σ ≈ 1, the sensitivity of all maxima, except
the maximum of A2, falls below the sensitivity of the
simple squeezing protocols A1, S1. Surprisingly, we find
that the sensitivity of the maximum of A2 surpasses that
of A1 for all dephasing strengths considered up to σ = 2.
This shows that experiments with strong dephasing dur-
ing the twisting process can benefit from using protocols
with small twisting and untwisting, respectively.
However, in comparison to the QFI of a dephased in-

put state, we find that the sensitivities of regions A3-A5
and S3-S4 quickly diverge from the QFI with increasing
dephasing, while the sensitivities of the simple squeezing
protocols A1, S1 exhibit a constant offset to the corre-
sponding QFI. Therefore, dephasing during the second
OAT process results in high losses compared to the pos-
sible achievable sensitivity with the corresponding de-
phased input state.

V. SUMMARY AND OUTLOOK

In conclusion, we have provided a comprehensive sys-
tematization of one-axis twisting echo protocols, building
upon the results of our earlier work [21]. We accounted
for and optimized a larger set of geometrical control pa-
rameters, also considering protocols with symmetric sig-
nals. Although this approach limited us to primarily nu-
merical optimization, we identified a larger number of
local sensitivity maxima compared to [21]. A significant
finding is that the class of entangled measurements con-
sidered in this study enables the saturation of the QFI
for nearly all initial squeezing strengths µ1. This was not
achievable in the protocols discussed in [21], emphasizing
the importance of optimizing the direction, k, of the sec-
ond twisting. Most of the QFI is saturated by protocols
with anti-symmetric signals, except near µ1 = π, where
only protocols with symmetric signals can saturate the
QFI.
Furthermore, we analyzed the impact of various noise

sources, including particle number fluctuations, prior
phase noise, and dephasing noise during the twisting
process, on the sensitivity of these optimal protocols.
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FIG. 5: Sensitivity with increasing dephasing strength σ of protocols (a) A1−A5 and (b) S1− S4 at the points of
maximal sensitivity marked in Fig. 2b,d in comparison to the QFI of a dephased input state with equal initial twisting
strength µ1 (inset).

We discovered that the sensitivity for the majority of
the identified protocols is not stable under particle num-
ber fluctuations; hence, these protocols are most suit-
able for experiments where the particle number, N , is
well-controlled. For experiments with substantial par-
ticle number fluctuations, only the OUT protocols dis-
cussed in [21] (A3), protocols at the maximum of region
A4, and protocols with minor twisting and untwisting
(A2) are appropriate. Regarding dephasing noise during
the twisting operation, we demonstrated that protocols
in the maxima of regions A2, A3, A4, and S3 are espe-
cially stable. Interestingly, even with significant dephas-
ing noise, the sensitivity of the optimal A2 region pro-
tocols can surpass that of the simple squeezing protocols
(A1, S1). Our examination of the trade-off between sensi-
tivity gain and dynamic range loss revealed that the pro-
tocols at the maximum of regions A2 and A4, along with
the optimal protocols of region S3, exhibit the greatest
resilience to prior phase noise. However, with extensive
prior phase noise, only the simple squeezing protocols
(A1, S1) maintain non-vanishing sensitivity. An opti-
mization using Bayesian phase estimation in the varia-
tional class of echo-protocols discussed here, along with
its application in optical atomic clocks, will be addressed
in subsequent work.
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via a singular value decomposition (SVD) of the matrix MQ−1/2 = UΣV ∗. Hereby, the maximum singular value
corresponds to the maximum value (∆ϕ)−1

max = σmax and the optimal axes n and m are given by

n = Re{uT
max} and m = Re{Q1/2vmax}.

Due to the increased complexity of ⟨Sm⟩ and (∆Sm)2, we cannot evaluate the matrices M and Q analytically via
the characteristic function XA = ⟨θ, φ| eγS−eβSzeαS+ |θ, φ⟩ [35], as Schulte et al. [21] did, but had to evaluate them
numerically by identifying Sx, Sy and Sz with (N + 1) × (N + 1)-matrices and the states |m⟩, m = −N/2, ..., N/2,
with (N + 1)-dimensional vectors.

Appendix B: Symmetry requirements

Inspired by the work of Kaubruegger et al. [29], we introduce the unitary operator U = Px = e−iπSx . Since ⟨Sm⃗⟩(ϕ)
is given by

⟨Sm⃗⟩(ϕ) = ⟨N/2|x T †
e⃗z
(µ1)R†

n⃗(ϕ) T
†
k⃗
(µ2)Sm⃗ Tk⃗(µ2)Rn⃗(ϕ) Te⃗z (µ1) |N/2⟩x,

we can obtain a sufficient condition for symmetry / anti-symmetry around the working point ⟨Sm⃗⟩(ϕ = 0) by looking
for geometrical restrictions on n, m and k so that

U Rn⃗(ϕ)U† = Rn⃗(−ϕ), U Sm⃗ U† = ±Sm⃗,

U Te⃗z (µ1)U† = Te⃗z (µ1), U Tk⃗(µ2)U† = Tk⃗(µ2)

is fulfilled. Because |N/2⟩x is an eigenstate in the Sx-basis, we find

Px |N/2⟩x = e−iπSx |N/2⟩x = e−i πN
2 |N/2⟩x.

With σxσxσx = σx, σxσyσx = iσzσx = −σy and σxσzσx = −iσyσx = −σz we obtain

Px Sx P†
x =

N∏
j,k=1

e−i π
2 σ(j)

x Sx e
i π

2 σ(k)
x =

N∏
j,k=1

(
1

2

N∑
l=1

σ(j)
x σ(l)

x σ(k)
x

)
=

1

2

N∑
l=1

σ(l)
x = Sx,

Px Sy,z P†
x =

N∏
j,k=1

e−i π
2 σ(j)

x Sy,z e
i π

2 σ(k)
x =

N∏
j,k=1

(
1

2

N∑
l=1

σ(j)
x σ(l)

y,zσ
(k)
x

)
= −1

2

N∑
l=1

σ(l)
y,z = −Sy,z

and from that it directly follows that

Px S
2
x P†

x = Px Sx P†
x Px Sx P†

x = Sx · Sx = S2
x

Px S
2
y,z P†

x = Px Sy,z P†
x Px Sy,z P†

x = (−Sy,z) · (−Sy,z) = S2
y,z.

Thus, we derive

Px Sm⃗ P†
x = mxSx −mySy −mzSz.

So if we restrict Sm to the x-direction (mx = 1, my = mz = 0), we obtain

Px Sm⃗ P†
x = mxSx = Sm⃗,

as well as we find

Px Sm⃗ P†
x = −mySy −mzSz = −Sm⃗

when restricting Sm to the y-z-plane (mx = 0, my = cos(β), mz = sin(β)). With this we can follow

Px Rn⃗(ϕ)P†
x =

∞∑
j=1

(−iϕ)j

j!
Px S

j
n⃗ P

†
x =

∞∑
j=1

(−iϕ)j

j!

(
Px Sn⃗ P†

x

)j
=

∞∑
j=1

(−iϕ)j

j!
(nxSx − nySy − nzSz)

j
.
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Hence, restricting n to the x-direction gives us

Px Rn⃗(ϕ)P†
x =

∞∑
j=1

(−iϕ)j

j!
(nxSx)

j =

∞∑
j=1

(−iϕ)j

j!
Sj
n⃗ = Rn⃗(ϕ)

while a restriction of n to the y-z-plane leads to

Px Rn⃗(ϕ)P†
x =

∞∑
j=1

(−iϕ)j

j!
(−nySy − nzSz)

j =

∞∑
j=1

(−iϕ)j

j!
(−Sn⃗)

j = Rn⃗(−ϕ).

For the direction of the second OAT, we find that

Px Tk⃗(µ2)P†
x =

∞∑
j=1

(−i (µ2/2))
j

j!
Px ((kxSx + kySy + kzSz)

2)j P†
x =

∞∑
j=1

(−i (µ2/2))
j

j!
((kxSx − kySy − kzSz)

2)j .

So for both cases, that k is restricted to the x-direction and k lies in the y-z-plane, we obtain

Px Tk⃗(µ2)P†
x =

∞∑
j=1

(−i (µ2/2))
j

j!
((kxSx)

2)j =

∞∑
j=1

(−i (µ2/2))
j

j!
(S2

k⃗
)j = Tk⃗(µ2)

and

Px Tk⃗(µ2)P†
x =

∞∑
j=1

(−i (µ2/2))
j

j!
((−kySy − kzSz)

2)j =

∞∑
j=1

(−i (µ2/2))
j

j!
((−Sk⃗)

2)j =

∞∑
j=1

(−i (µ2/2))
j

j!
(S2

k⃗
)j = Tk⃗(µ2)

respectively.

From these calculations we infer that restricting the vectors n⃗ to the y-z-plane and m⃗ to the x-direction as well as k⃗
to the x-direction or the y-z-plane is sufficient to assure symmetry around ⟨Sm⃗⟩(ϕ = 0), since

⟨Sm⃗⟩(ϕ) = ⟨N/2|x T †
e⃗z
(µ1)R†

n⃗(ϕ) T
†
k⃗
(µ2)Sm⃗ Tk⃗(µ2)Rn⃗(ϕ) Te⃗z (µ1) |N/2⟩x

= ⟨N/2|x P†
x Px T †

e⃗z
(µ1)P†

x Px R†
n⃗(ϕ)P

†
x Px T †

k⃗
(µ2)P†

x Px Sm⃗ P†
x Px Tk⃗(µ2)P†

x

Px Rn⃗(ϕ)P†
x Px Te⃗z (µ1)P†

x Px |N/2⟩x
= ⟨N/2|x ei

πN
2 T †

e⃗z
(µ1)R†

n⃗(−ϕ) T
†
k⃗
(µ2)Sm⃗ Tk⃗(µ2)Rn⃗(−ϕ) Te⃗z (µ1) e

−i πN
2 |N/2⟩x

= ⟨Sm⃗⟩(−ϕ)

and restricting n⃗ and m⃗ to the y-z-plane as well as k⃗ to the x-direction or the y-z-plane is sufficient to assure
anti-symmetry around ⟨Sm⃗⟩(ϕ = 0), since

⟨Sm⃗⟩(ϕ) = ⟨N/2|x T †
e⃗z
(µ1)R†

n⃗(ϕ) T
†
k⃗
(µ2)Sm⃗ Tk⃗(µ2)Rn⃗(ϕ) Te⃗z (µ1) |N/2⟩x

= ⟨N/2|x P†
x Px T †

e⃗z
(µ1)P†

x Px R†
n⃗(ϕ)P

†
x Px T †

k⃗
(µ2)P†

x Px Sm⃗ P†
x Px Tk⃗(µ2)P†

x

Px Rn⃗(ϕ)P†
x Px Te⃗z (µ1)P†

x Px |N/2⟩x
= −⟨N/2|x ei

πN
2 T †

e⃗z
(µ1)R†

n⃗(−ϕ) T
†
k⃗
(µ2)Sm⃗ Tk⃗(µ2)Rn⃗(−ϕ) Te⃗z (µ1) e

−i πN
2 |N/2⟩x

= −⟨Sm⃗⟩(−ϕ).

For n⃗ and m⃗ in x-direction as well as k⃗ in x-direction or in the y-z-plane, we obtain

⟨Sm⃗⟩(ϕ) = ⟨N/2|x T †
e⃗z
(µ1)R†

n⃗(ϕ) T
†
k⃗
(µ2)Sm⃗ Tk⃗(µ2)Rn⃗(ϕ) Te⃗z (µ1) |N/2⟩x

= ⟨N/2|x P†
x Px T †

e⃗z
(µ1)P†

x Px R†
n⃗(ϕ)P

†
x Px T †

k⃗
(µ2)P†

x Px Sm⃗ P†
x Px Tk⃗(µ2)P†

x

Px Rn⃗(ϕ)P†
x Px Te⃗z (µ1)P†

x Px |N/2⟩x
= ⟨N/2|x ei

πN
2 T †

e⃗z
(µ1)R†

n⃗(ϕ) T
†
k⃗
(µ2)Sm⃗ Tk⃗(µ2)Rn⃗(ϕ) Te⃗z (µ1) e

−i πN
2 |N/2⟩x

= ⟨Sm⃗⟩(ϕ),
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i.e. we do not gain any further insight. These protocols can be symmetric or anti-symmetric but must not necessarily
have any symmetry properties at all. Here, we need to minimize the real or the imaginary Fourier coefficients
respectively to cull the symmetric and anti-symmetric protocols of this set.

In the case, that n is in x-direction, m in the y-z-plane and k in x-direction or in the y-z-plane, we obtain

⟨Sm⃗⟩(ϕ) = ⟨N/2|x T †
e⃗z
(µ1)R†

n⃗(ϕ) T
†
k⃗
(µ2)Sm⃗ Tk⃗(µ2)Rn⃗(ϕ) Te⃗z (µ1) |N/2⟩x

= ⟨N/2|x P†
x Px T †

e⃗z
(µ1)P†

x Px R†
n⃗(ϕ)P

†
x Px T †

k⃗
(µ2)P†

x Px Sm⃗ P†
x Px Tk⃗(µ2)P†

x

Px Rn⃗(ϕ)P†
x Px Te⃗z (µ1)P†

x Px |N/2⟩x
= ⟨N/2|x ei

πN
2 T †

e⃗z
(µ1)R†

n⃗(ϕ) T
†
k⃗
(µ2) (−Sm⃗) Tk⃗(µ2)Rn⃗(ϕ) Te⃗z (µ1) e

−i πN
2 |N/2⟩x

= −⟨Sm⃗⟩(ϕ),

i.e. the resulting signals are constantly zero.

Apart from this, there may exist less severe restrictions on the geometrical degrees of freedom of n, m and k to assure
symmetry or anti-symmetry around ⟨Sm⃗⟩(ϕ = 0).

Appendix C: Derivation of our figure of merit from the mean squared error

For anti-symmetric protocols, the mean squared error is given by

ϵ(ϕ) =
∑
m

[
ϕ̂(m)− ϕ

]2
p(m|ϕ).

Evaluating this at ϕ = 0 and using a linear phase estimator gives

ϵ(ϕ)
ϕ=0
= (∆ϕ)2 =

∑
m

[
ϕ̂(m)− 0

]2
p(m|ϕ) =

∑
m

ϕ̂2(m)p(m|ϕ)

=
∑
m

(
m

∂ϕSm
|ϕ=0

)2

p(m|ϕ) = 1

(∂ϕSm)2|ϕ=0

∑
m

m2 p(m|ϕ)

=
⟨S2

m⟩|ϕ=0

(∂ϕSm)2|ϕ=0
=

(∆Sm)2

(∂ϕSm)2

∣∣∣
ϕ=0

For symmetric protocols, we know that

Sm(ϕ) = Sm(−ϕ), ∂ϕSm(ϕ) = − ∂ϕSm(−ϕ).

Since symmetric protocols have an extremum at ϕ = 0, we measure the signal at ϕ = ±φ:

1. (ϕ̂+ φ) = m+

∂ϕSm

∣∣
ϕ=φ

2. (ϕ̂− φ) = m−
∂ϕSm

∣∣
ϕ=−φ

A suitable estimator for the phase uncertainty is therefore

ϕ̂ =
1

2

(
m+

∂ϕSm

∣∣
ϕ=φ

+
m−

∂ϕSm

∣∣
ϕ=−φ

)
=

1

2

1

∂ϕSm

∣∣∣
ϕ=φ

(m+ −m−) .

We assume that the conditional probabilities p(m+|ϕ+ φ) and p(m−|ϕ− φ) are independent, i.e.

p(m+,m−|ϕ) = p(m+|ϕ+ φ) · p(m−|ϕ− φ).
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With this, we derive

ϵ(ϕ) =
∑

m+,m−

p(m+|ϕ+ φ) p(m−|ϕ− φ)

[
1

2

1

∂ϕSm|ϕ=φ
(m+ −m−)− ϕ

]2
ϕ=0
=

∑
m+,m−

p(m+|ϕ+ φ) p(m−|ϕ− φ)

[
1

2

1

∂ϕSm|ϕ=φ

]2
(m+ −m−)

2

=
1

4

1

(∂ϕSm)2|ϕ=φ

(
⟨S2

m⟩|ϕ=φ + ⟨S2
m⟩|ϕ=−φ︸ ︷︷ ︸

= ⟨S2
m⟩|ϕ=φ

−2 ⟨Sm⟩|ϕ=φ ⟨Sm⟩|ϕ=−φ︸ ︷︷ ︸
= ⟨Sm⟩|ϕ=φ

)

=
1

4

1

(∂ϕSm)2|ϕ=φ
2
(
⟨S2

m⟩ − ⟨Sm⟩2
)∣∣∣

ϕ=φ

=
1

2

(∆Sm)2

(∂ϕSm)2

∣∣∣
ϕ=φ

.
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