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Optimal Ramsey interferometry with echo protocols based on one-axis twisting
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We study a variational class of generalized Ramsey protocols that include two one-axis twisting (OAT)
operations, one performed before the phase imprint and the other after. In this framework, we optimize the
axes of the signal imprint, the OAT interactions, and the direction of the final projective measurement. We
distinguish between protocols that exhibit symmetric or antisymmetric dependencies of the spin projection signal
on the measured phase. Our results show that the quantum Fisher information, which sets the limits on the
sensitivity achievable with a given one-axis twisted input state, can be saturated within our class of variational
protocols for almost all initial twisting strengths. By incorporating numerous protocols previously documented
in the literature, our approach creates a unified framework for Ramsey echo protocols with OAT states and
measurements.
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I. INTRODUCTION

Quantum metrology employs quantum strategies, such as,
e.g., entanglement and squeezing, to enhance the precision of
measurements beyond classical bounds [1] and has a wide
range of applications, e.g., in gravitational wave detection,
quantum phase estimation, quantum magnetometers, quantum
spectroscopy and atomic clock synchronization [2]. Here we
consider Ramsey interferometry as the most common method
in quantum metrology with a variety of applications such as
atom interferometers and optical atomic clocks. These in turn
pave the way for the search for new physics, such as experi-
ments on Lorentz violation [3], the search for dark matter [4]
and for variation of the fundamental constants [5], geodesy [6]
and tests of general relativity [7].

The precision in phase estimation achievable in a Ramsey
protocol is restricted by quantum projection noise (QPN),
i.e., unavoidable quantum fluctuations in a measurement. The
standard Ramsey protocol using classical states is limited by
the standard quantum limit (SQL). Nevertheless, it is possible
to overcome this limitation up to the Heisenberg limit (HL)
by using entangled or spin squeezed states, as pointed out
by Wineland et al. [8]. One promising method creating spin
squeezed states is one-axis twisting (OAT) [9] which can be
realized experimentally through collisions in Bose-Einstein
condensates [10,11], via cavity feedback squeezing of cold
atoms [12,13] or by implementing Mølmer-Sørensen gates
on trapped ions [14]. Besides the simple squeezing protocols
which already allow to reduce the phase estimation error by
a factor of O(N1/3) [9], there have been several previous
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investigations on so-called echo protocols, where
OAT [15–24] or other squeezing methods [25,26] applied
before and after the phase imprint help improving the
sensitivity of the Ramsey protocol even further.

In previous work [21] we considered a variational class of
echo protocols which was defined to allow for an analytical
optimization of geometric control parameters corresponding
to rotation axes and angles. Within this variational class, many
of the protocols known in the literature, as well as some
new protocols, could be identified as local maxima of the
achievable sensitivity. This allowed a systematization of echo
protocols, which, however, remained partial due to certain
constraints of the variational class adopted in Ref. [21]. This
concerns, on the one hand, restrictions on geometric con-
trol, which exclude, for example, some of the protocols of
Refs. [18,20]. On the other hand, the variational class was
constrained to protocols whose signal S(φ) is antisymmetric
with respect to the inversion of the metrological phase, i.e.,
S(−φ) = −S(φ). This constraint excluded, e.g., the schemes
of Refs. [15,22] generating symmetric signals S(−φ) = S(φ).

Building on the protocols considered in Ref. [21], in this
paper we aim at a much more general systematization of echo
protocols, which is broader in terms of both their geometric
degrees of freedom and the (anti)symmetry of the signal. To
this purpose, we define an enlarged variational class, still
based on one OAT operation each before and after signal
imprint, covering all protocols studied in Refs. [15–24]. This
generality comes at the cost of a largely numerical optimiza-
tion over the variational class considered here. Our main
findings are: (i) In this generalized class of Ramsey proto-
cols, the quantum Fisher information (QFI), which bounds
the maximum possible sensitivity, can be saturated for almost
all initial twisting strengths μ ∈ [0, π ]. Here, OAT operations
are described by unitaries Tz(μ) = exp(−iμS2

z /2) with col-
lective spin operator Sz. Saturation of the QFI is achieved
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(a) (b) (c)

FIG. 1. Generalized Ramsey protocols with OAT operations Tz(μ) = exp(−iμS2
z /2). Rotations about an axis n by an angle θ are denoted

by Rn(θ ). (a) Standard Ramsey protocol without OAT. (b) Variational class of Ramsey echo protocols with arbitrary rotations R1, R2, R3 and
OAT strengths μ1 and μ2. (c) The same variational class, reparametrized in terms of the axis n of signal imprint, axis k of second OAT, and
direction m of spin projection measurement. Here R1, R2, R3 do not require rotations around the z axis.

by means of suitably one-axis-twisted projective spin mea-
surements. (ii) Protocols with antisymmetric signal saturate
the QFI for all twisting strengths, except in a neighborhood
around μ � π . (iii) For an initial OAT around μ � π , gen-
erating Greenberger-Horne-Zeilinger–like (GHZ-like) states,
the QFI is saturated by schemes with symmetric signals, with
the protocols of Ref. [15] included as a special case.

Here, we deliberately restrict our investigations to rela-
tively simple protocols with only two squeezing operations,
corresponding to the schemes demonstrated experimentally in
Refs. [16,24,27]. This is complementary to the investigations
in Refs. [28–30], which consider variational classes com-
prising a larger number of OAT operations before and after
signal imprint. However, Refs. [28,29] investigate a reduced
set of geometrical control parameters as compared with the
protocols studied here. Optimization is performed here with
respect to the signal-to-noise ratio achieved locally at φ = 0,
but we do discuss the dynamic range of these optimized
protocols via a figure of merit introduced in Refs. [29,31] as
the effective measurement variance. The problem of Bayesian
phase estimation for a given prior [32] has been studied for
echo-protocols in Refs. [29,30].

The article is organized as follows: In Sec. II we introduce
our general framework and describe the way in which we
have generalized the Ramsey protocol. Building on that, in
Sec. III we present the local figure of merit we use for our
optimization and discuss the resulting optimal protocols, in-
cluding a comparison with the QFI. This reveals that the QFI
can be saturated by a generalized Ramsey protocol from our
variational class for almost all initial twisting strengths. To
assess the experimental practicability of the optimal protocols
encountered, we examine the effects of several noise sources
and imperfections on their stability in Sec. IV. In this con-
text, we elaborate the effect of particle number fluctuations
in Sec. IV A, the dynamic range of the optimal protocols in
Sec. IV B, and the influence of dephasing during the OAT
process in Sec. IV C. Finally, Sec. V contains a summary and
an outlook on future perspectives.

II. VARIATIONAL CLASS OF INTERFEROMETER
PROTOCOLS

The variational class of protocols considered here is based
on conventional Ramsey interferometry, sketched in Fig. 1(a).
In this context, the dynamics of the system can be understood
as the dynamics of a (pseudo) spin S with [Si, S j] = iεi jkSk ,

where i, j, k ∈ {x, y, z} and h̄ = 1. This could be an ensem-
ble of N two-level atoms, where Si = 1

2

∑N
α=1 σ

(α)
i and σx,y,z

denote the Pauli matrices and the index α corresponds to the
αth atom, but also an atomic interferometer with the modes of
motion a and b, where Sz = a†a − b†b, or the like. We denote
rotations Rn(θ ) = e−iθSn of the total spin vector about arbi-
trary directions n = nxx + nyy + nzz with |n| = 1 and angles
θ , where Sn = n · S.

Before introducing the generalized Ramsey protocols
which we have studied in this paper, we reconsider con-
ventional Ramsey interferometry, outlined in Fig. 1(a). This
proceeds in three steps, namely state preparation (i), in which

the state |ψin〉 = Ry( π
2 )|↓〉⊗N = ⊗N

j=1
|↓〉 j+|↑〉 j√

2
is prepared by

applying a π/2 pulse on the initial state |↓〉⊗N , corresponding
to an ensemble with all atoms in the ground state |↓〉, signal
imprint (ii), where the relative phase φ is imprinted on the
state during the free evolution time, and measurement (iii),
which consists of a second π/2 pulse and a measurement of
Sz, giving an average signal of

〈Sout
z (φ)〉 = 〈ψout (φ)|Sz|ψout (φ)〉,

where |ψout (φ)〉 = Rx( π
2 )Rz(φ)|ψin〉 is the final state of this

interferometric sequence. The challenge is to estimate the
phase φ imprinted in the unitary dynamics described by
Rz(φ). Around the working point φ = 0, the QPN of the
measurement is[

	Sout
z (φ)

]2 = 〈ψout (φ)
∣∣S2

z

∣∣ψout (φ)〉 − 〈Sout
z (φ)〉2.

The phase estimation error can be classified by the mean
squared error,

εM(φ) =
∑

m

[φ̂(m) − φ]2 p(m|φ), (1)

where φ̂(m) is the phase estimate corresponding to the mea-
surement outcome m, φ is the actual phase and p(m|φ)
the conditional probability for the measurement outcome m
given the phase φ [29]. Evaluating εM(φ) locally at the
working point φ = 0, using a linear phase estimator φ̂(m) =
m/∂φ〈Sz〉|φ=0, results in (cf. Appendix C)

(	φ)2 = (	Sz )2

|∂φ〈Sz〉|2
∣∣∣∣
φ=0

, (2)

which can also be obtained from Gaussian error propagation
of the QPN.
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TABLE I. Echo protocols reported in the literature as characterized by their geometry [axis n of signal imprint, axis k of second OAT,
direction m of spin projection, cf. Fig. 1(c)] and range of twisting strengths μ1 and μ2. Here, the notation S2 indicates that the direction of
the corresponding vector is not constraint in any way. This means it is a general three-dimensional normalized vector, i.e., a vector in the S2

sphere. The final two columns categorize the signal symmetry and indicate whether the work is theoretical or experimental.

n m k μ1 μ2 Signal symmetry Theor. or expt.

Kitagawa and Ueda [9] S2 S2 – [0, π ] 0 Undetermined T
Leibfried et al. [15] −x or y −x z π π Symmetric E
Davis et al. [17] y y z [0, π ] −μ1 Antisymmetric T
Fröwis et al. [18] y-z plane S2 y-z plane [0, π ] [−π, π ] Undetermined T
Macrì et al. [19] y z z [0, π ] [0, π ] Antisymmetric T
Nolan et al. [20] y-z plane x y-z plane [0, π ] [−π, π ] Symmetric T
Schulte et al. [21] S2 S2 z [0, π ] [−π, π ] Antisymmetric T
Li et al. [22] y x z [0, π ] −μ1 Symmetric T
Volkoff and Martin [23] y y z [−π, 0] [−π, π ] Antisymmetric T
Colombo et al. [24] y y z [0, 0.6] −μ1 Antisymmetric E

While the conventional Ramsey protocol, using only un-
correlated atoms, is limited by the standard quantum limit
(	φ)2

SQL = 1/N , extensions to entangled initial states can fur-
ther reduce (	φ)2 with the Heisenberg limit (	φ)2

HL = 1/N2

as the fundamental lower bound. This reduction is commonly
expressed in terms of the Wineland squeezing parameter [8]

ξ 2 = N (	φ)2, (3)

which takes ξ = 1 for conventional Ramsey interferometry.
A common method to reduce the QPN of the stan-

dard Ramsey protocol is to perform OAT operations Tz(μ)
during the Ramsey protocol. Here, we introduce a vari-
ational class of generalized Ramsey protocols, as shown
in Fig. 1(b). As conventional Ramsey interferometry, the
variational class of interferometer protocols considered here
starts with (i) state preparation, consisting of a rotation
Ry(π/2) of the initial state |↓〉⊗N into the equatorial
plane, a OAT interaction Tz(μ1) with strength μ1, squeezing
the coherent spin state (CSS) pointing in the x direc-
tion, and a rotation R1 of the z vector into an arbitrary
direction n. This is followed by (ii) the phase imprint
described by a rotation Rz(φ). Finally, in (iii) an OAT mea-
surement is performed with another rotation R2 turning the z
vector into a direction k, followed by a second OAT interac-
tion Tz(μ2) with strength μ2 and a third rotation R3 turning
the z vector in a direction m. Finally, the protocol is concluded
by a measurement of Sz.

Choosing R2 = R†
1R̃2 and R3 = R̃†

2R̃3, this corresponds
effectively to the interferometer sequence in Fig. 1(c), which
provides a more compact formal treatment, where first the
state |ψin〉 = Tz(μ1)Ry(π/2)|↓〉⊗N is prepared in (i) through
a π/2 pulse operated on the initial state |↓〉⊗N followed by an
OAT interaction Tz(μ1) with strength μ1. The signal imprint
(ii) is effectively represented by a rotation Rn(φ) around the
axis n. After that follows the measurement process (iii) with a
second OAT interaction Tk(μ2) with strength μ2 creating the
output state, given by

|ψout (φ)〉 = Tk(μ2)Rn(φ)Tz(μ1)|ψin〉,
and a measurement of Sm on this state, resulting in an average
signal of 〈Sm(φ)〉 with variance (	Sm(φ))2. Consequently,

this variational class of protocols depends on two twisting
strengths μ1 and μ2 and three directions n, k, and m. It
generalizes the standard Ramsey protocol in Fig. 1(a), and
reduces to a variety of protocols discussed in the literature
[9,15,17–23] when certain restrictions are made concerning
geometry or twisting strengths, cf. Table I.

While the protocols investigated by Refs. [17,19,21,23,24]
in general have an antisymmetric signal curve 〈Sm(φ)〉, the
signal curves of the protocols discussed by Refs. [15,20,22]
are symmetric. We refer to protocols as being antisym-
metric or symmetric if 〈Sm(φ)〉 = −〈Sm(−φ)〉 or 〈Sm(φ)〉 =
〈Sm(−φ)〉 is satisfied for all phases φ, respectively. Our vari-
ational class of protocols additionally encompasses protocols
without a definite signal symmetry or even with a constant
signal curve. Such protocols do not produce a useful error
signal and have to be excluded from the variational class by
imposing suitable conditions. For this reason, we restrict the
optimization of our variational class to protocols with sym-
metric or antisymmetric signal 〈Sm(φ)〉. Following Ref. [29],
we find that antisymmetry or symmetry in the signal 〈Sm(φ)〉
can be ensured by restricting n, m, and k to certain directions
as summarized in Table II (see also Appendix B). Only for
protocols with n = m = x and k in the y-z plane do we gain
no analytical insight on the symmetries of the underlying
signals. In this case, we have to filter for antisymmetric or
symmetric protocols respectively by numerically minimizing
the cosine or sine Fourier coefficients of the underlying signal
curve. We note that these considerations provide sufficient
(not necessary) conditions for symmetry or antisymmetry of
the signal.

TABLE II. Shapes of signal for given geometrical constraints on
n, m, and k, cf. Fig. 1(c).

Signal n m k

Antisymmetric y-z plane y-z plane x or y-z plane
Symmetric y-z plane x x or y-z plane
Zero x y-z plane x or y-z plane
Constant x x x
No insight x x y-z plane
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(a)

(b)

(c)

(d)

FIG. 2. Performance of the fully optimized (a), (b) antisymmetric and (c), (d) symmetric echo protocols for N = 32 atoms. (a), (c) Phase
sensitivity as quantified by the inverse measurement error 	φ−1 for given OAT strengths μ1 and μ2, optimized with respect to n, m, and k.
Dashed red lines define notable antisymmetric protocols A1–A5 and symmetric protocols S1–S4. (b), (d) Optimal sensitivity for protocols
A1–A5 and S1–S4 referenced to the quantum Fisher information for a given initial OAT strength μ1. Markers denote protocols of maximum
sensitivity whose signal shape is shown in Fig. 3.

III. OPTIMAL PROTOCOLS

A. Figures of merit

To optimize the variational class of protocols with anti-
symmetric or symmetric signals that have been identified, we
need to suitably adapt the figure of merit based on the phase
measurement error of the antisymmetric standard Ramsey
protocol in Eq. (2). For antisymmetric Ramsey protocols this
is straightforwardly achieved for a working point φ = 0 by

	φ(μ1, μ2, n, m, k) = 	Sm

|∂φ〈Sm〉|
∣∣∣∣
φ=0

. (4)

Since we want to reduce 	φ as far as possible, we maximize
the inverse of the phase deviation 	φ, the sensitivity

(	φ)−1
opt (μ1, μ2) = max

n,m,k

1

	φ(μ1, μ2, n, m, k)
, (5)

with respect to the directions n, m, and k. Analogous to
Ref. [21], we performed the optimization over n, m via a
singular value decomposition (cf. Appendix A), while we
executed the optimization of k using differential evolution
(DE), a numerical routine for global optimization of con-
strained parameters.

For symmetric Ramsey protocols the signal 〈Sm(φ)〉 has
an extremum at φ = 0, such that the slope vanishes there.
Therefore, the phase variance at φ = 0, as defined in Eq. (4),
is no longer a meaningful measure to characterize the qual-
ity of symmetric protocols. Instead, symmetric protocols are

operated with a two-point-sampling method [15]. This means
that, in contrast with the one-point-sampling used for anti-
symmetric protocols, for symmetric protocols the system is
no longer probed at only one phase value φ = 0, but at two
points with additional phase shift ±ϕ. The combined error
signal after these two measurement cycles is then used to
estimate the imprinted phase φ. We therefore optimize the
phase deviation at φ = ϕ 
= 0, i.e.,

	φ(μ1, μ2, n, m, k) = 	Sm

|∂φ〈Sm〉|
∣∣∣∣
φ=ϕ

, (6)

whereby the operating point ϕ, as proposed by Ref. [15], is
optimally chosen as the inflection point of the signal curve
〈Sm(φ)〉, since the slope |∂φ〈Sm〉| becomes maximum there.

B. Optimal antisymmetric protocols

First, we optimize the sensitivity (	φ)−1 for the antisym-
metric protocols. In doing so, we optimize the axes n, m, and k
for given squeezing strengths μ1 and μ2 and N = 32 particles
such that (	φ)−1 becomes maximal. The results of this opti-
mization are shown in Fig. 2(a) as a contour plot in the μ1-μ2

plane. In this landscape, we observe a large number of local
maxima, a selection of which we refer to as protocols A1–A5,
as defined in Fig. 2(a). Some of these local maxima A1–A3
correspond to previously studied echo protocols known from
the literature. The protocols with only initial twisting (A1),
i.e., μ2 = 0, correspond to the squeezing protocols discussed
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in Ref. [8], while region A2 denotes protocols with low initial
squeezing and small unsqueezing and comprises the echo
protocols introduced in Ref. [17]. In addition, the μ1 = −2μ2

protocols (A3), denoting an initial twisting and a final dou-
ble untwisting, comprise the antisymmetric over-untwisting
(OUT) protocols studied in Ref. [21]. Besides this, line A4
denotes the so-called pseudo-echo protocols [20], which do
not need squeezing inversion, and the protocols along line
A5 have an arbitrary initial twisting and an untwisting of
strength μ2 = ±π , corresponding to a projective measure-
ment of maximally twisted Dicke states.

To better assess the magnitude of improvement in these
regions, we show in Fig. 2(b) the resulting sensitivities, when
optimizing over μ2, n, m, and k for given values of ini-
tial twisting μ1. We also compare with the quantum Fisher
information, which bounds the sensitivity achievable with the
state Rn(φ)Tz(μ1)|ψin〉, optimized over all possible rotation
directions n, due to the quantum Cramér-Rao bound [1,33].
We find that the sensitivity along line A5 saturates the QFI
for all initial squeezing strengths μ1 from zero initial twisting
to the end of the plateau of the QFI until it slowly decreases
for μ1 approaching π . However, already the sensitivity of the
protocols with small initial and final squeezing strength μ1

and μ2 (A2) is strongly increased compared with the simple
squeezing protocols (A1). The sensitivity of region A2 sat-
urates the QFI for every small initial squeezing strength μ1

until it almost reaches the plateau value of the QFI but starts
to decrease shortly before this point. Overall, for small μ1, the
protocols based on twisting inversion perform significantly
better than those restricted to μ2 > 0. The other curves (A3,
A4) approach the plateau of the QFI only for certain larger
values of initial twisting μ1.

C. Optimal symmetric protocols

Analogous to the analysis of the antisymmetric protocols,
we first optimize n, m, and k for given μ1 and μ2 and
N = 32 particles and consider the resulting μ1-μ2 landscape
[see Fig. 2(c)]. Here we obtain fewer local sensitivity max-
ima compared with the antisymmetric case, but again select
different regions (S1–S4) with comparatively high sensitiv-
ity values that contain previously studied echo protocols. As
for the antisymmetric case, the protocols with only initial
squeezing (S1), i.e., μ2 = 0, correspond to the squeezing pro-
tocols discussed by Ref. [8], while now region S2 denotes the
protocols with small initial squeezing and over-squeezing. In
addition, the protocols with μ1 = −μ2 (S3) corresponding to
an initial twisting and a final untwisting include the GESP-o
protocols studied by Ref. [22], and the protocols in the S4
region include the symmetric GHZ protocols considered by
Refs. [15,16].

Again, we compare the maximum sensitivity values when
optimizing over μ2, n, m, and k for given values of μ1

with the quantum Fisher information (QFI) of the state
Rn(φ)Tz(μ1)|ψin〉 [see Fig. 2(d)]. In contrast with the an-
tisymmetric protocols, we find only little improvement in
sensitivity for the symmetric protocols with small initial and
final squeezing strengths μ1 and μ2 (S2) compared with the
simple squeezing protocols (S1). Here, the protocols with
small μ1 based on twisting inversion and those constrained

to μ2 > 0 perform almost equally well. Line S3 saturates
the QFI only for one particular initial squeezing strength μ1,
almost the same as for line A3, in the middle of its plateau.
However, as μ1 increases, the sensitivity of line S3 remains
close to the QFI until it diminishes at the end of the plateau.
Region S4 represents a neighborhood of the GHZ protocols
discussed by Refs. [15,16], all of which saturate the QFI for
μ1 near π and eventually reach saturation of the Heisenberg
limit for μ1 = π .

IV. NOISE AND IMPERFECTIONS

The above optimizations only consider an ideal case and
disregard any noise. In this section, we consider three im-
portant types of imperfections or limitations, namely, particle
number fluctuations, finite dynamic range, and dephasing dur-
ing twisting operations.

A. Particle number fluctuations

In some platforms, e.g., neutral atom traps, the number of
particles may not be precisely controlled and be subject to
particle fluctuations or loss. For this reason, it is essential to
consider how the optimal μ1-μ2 landscapes differ for even
and odd particle numbers N . In general, we can find optimal
axes n, m, and k for each point of the μ1-μ2 landscape such
that the landscapes for even and odd numbers of particles
appear very similar. However, the optimal axes for even and
odd particle numbers are truly different at many points of the
landscape. Only a few of the identified optimal protocols of
Fig. 2 are stable under particle number fluctuation, i.e., have
identical optimal axes n, m, and k for even and odd particle
number. This applies to the OUT protocols (A3) [21], the
protocols in the last maximum of line A4, the protocols of
region A2 and S2 with small initial squeezing strength μ1,
and the GESP-o protocols (S3) [22]. In many cases, one of the
optimal directions n, m, and k for N = 32 has to be rotated
about π/2 to reach the optimal sensitivity value of N = 33,
but in general the change of optimal axes from even to odd
particle number varies for each point of the landscape. There
is no general systematic for the variation of n, m, and k
from even to odd particle number observable. Our analysis
concludes that most optimal protocols identified, with the
above-mentioned exceptions, are limited to experiments with
stable particle numbers, such as in ion traps.

B. Dynamic range

Besides the phase measurement error 	φ, the fringe width
of the resulting signal curve 〈Sm(φ)〉 plays an important role
for the applicability of the protocols in the experiment. In
optical atomic clocks, for example, a small fringe width in-
creases the probability of the occurrence of fringe hops, which
then in turn limit the stability of the clock [34]. In Figs. 3(a)
and 3(b), we show the shape of the average signal 〈Sm(φ)〉
with optimized μ1, μ2, n, m, and k corresponding to the
maxima in sensitivity marked in Figs. 2(b) and 2(d) for the
antisymmetric (A1–A5) and symmetric (S1–S4) protocols.
This reveals that the central fringe can become quite narrow
for both antisymmetric and symmetric protocols using large
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(a) (b)

FIG. 3. Signal shapes 〈Sm(φ)〉 for protocols (a) A1–A5 and (b) S1–S4 at the points of maximal sensitivity marked in Figs. 2(b) and 2(d).

twisting strengths, which limits the dynamical range of the
interferometer.

To quantify the trade-off between enhancement in sensitiv-
ity and reduction of the dynamical range, we use the effective
measurement variance (	φM )2 defined by [29]

1

(	φM )2 = 1

εB(φ)
− I.

Here, the Bayesian mean squared error for a given prior phase
distribution P (φ) is

εB(φ) =
∫ ∞

−∞
dφεM(φ)P (φ),

where εM(φ) was defined in Eq. (1) and I is the Fisher infor-
mation of the prior distribution. The effective measurement
variance satisfies (	φM )2 � 1/FQ, similar to the quantum
Cramér-Rao bound, where FQ denotes the Fisher information
averaged over the prior distribution [29]. 	φM therefore quan-
tifies the true phase estimation error of a single measurement
tracing out the prior knowledge. In Fig. 4, we show the effec-
tive measurement variance in dependence of the prior width
δφ of a Gaussian laser phase distribution, i.e., the sensitivity
of measurement protocols for increasing dynamical range.
This shows that for a small prior phase variance δφ, the
protocols A2–A5 and S2–S4 lead to high improvements in

sensitivity compared with the squeezing protocols A1 and S1.
With increasing prior phase variance δφ, the advantage of the
protocols A2–A5 and S2–S4 over the squeezing protocols de-
creases until the sensitivity of the squeezing protocols prevails
due to their smaller dynamical range.

C. Dephasing during twisting

Another significant source of noise is the dephasing that
occurs during the twisting. Therefore, we consider how the
sensitivity changes as dephasing increases for each of the
local maxima in sensitivity corresponding to the regions A1–
A5 and S1–S4. We compare the achieved sensitivity to the
QFI of a dephased input state with the same initial twisting
strength μ1, cf. Fig. 5. Dephasing during the twisting process
is described by the master equation

∂

∂t
ρ = −i[H, ρ] + γ

[
LρL† − 1

2
L†Lρ − 1

2
ρL†L

]
,

where H = χS2
a with μ/2 = χt is the OAT Hamiltonian and

L = Sa. The dephasing strength is defined as dimensionless
parameter σ = γ /|χ |. Here, a = z for the first and a = k for
the second OAT operation.

First, we observe that, with increasing dephasing, the μ1

value of the corresponding sensitivity maximum as well as

(a) (b)

FIG. 4. Effective measurement variance of protocols (a) A1–A5 and (b) S1–S4 at the points of maximal sensitivity marked in
Figs. 2(b) and 2(d) in comparison with the Heisenberg limit (black line). For this analysis, a Gaussian phase distribution with prior variance
δφ was assumed.
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(a) (b)

FIG. 5. Sensitivity with increasing dephasing strength σ of protocols (a) A1–A5 and (b) S1–S4 at the points of maximal sensitivity marked
in Figs. 2(b) and 2(d) in comparison to the QFI of a dephased input state with equal initial twisting strength μ1 (inset).

the optimal axes n, m, and k undergo small changes. Thus,
we optimize μ1 and the axes n, m, and k in a small range
around the original value and direction at σ = 0, respectively.
Our analysis reveals that the sensitivity maximum of A3 at
μ1 ≈ π/2 is very unstable under dephasing. Therefore, in
Fig. 5(a) we show the sensitivity of the second maximum of
A3, which is marked with a triangle in Fig. 2(b). However, due
to the similar signal shape and dynamic range as the maximum
of A4, we have not included these protocols in Figs. 3 and 4.
Moreover, we find that the sensitivity at the maxima of A2,
A4, and S3 is relatively stable under dephasing, while the
sensitivity at the maxima of A5 and S4 decreases very rapidly
with increasing dephasing. At a dephasing strength of σ ≈ 1,
the sensitivity of all maxima, except the maximum of A2, falls
below the sensitivity of the simple squeezing protocols A1 and
S1. Surprisingly, we find that the sensitivity of the maximum
of A2 surpasses that of A1 for all dephasing strengths con-
sidered up to σ = 2. This shows that experiments with strong
dephasing during the twisting process can benefit from using
protocols with small twisting and untwisting, respectively.

However, in comparison with the QFI of a dephased input
state, we find that the sensitivities of regions A3–A5 and S3–
S4 quickly diverge from the QFI with increasing dephasing,
while the sensitivities of the simple squeezing protocols A1
and S1 exhibit a constant offset to the corresponding QFI.
Therefore, dephasing during the second OAT process results
in high losses compared with the possible achievable sensitiv-
ity with the corresponding dephased input state.

V. SUMMARY AND OUTLOOK

In conclusion, we have provided a comprehensive system-
atization of one-axis twisting echo protocols, building upon
the results of our earlier work [21]. We accounted for and
optimized a larger set of geometrical control parameters, also
considering protocols with symmetric signals. Although this
approach limited us to primarily numerical optimization, we
identified a larger number of local sensitivity maxima com-
pared with Ref. [21]. A significant finding is that the class of
entangled measurements considered in this study enables the
saturation of the QFI for nearly all initial squeezing strengths
μ1. This was not achievable with the protocols discussed

in Ref. [21], emphasizing the importance of optimizing the
direction k of the second twisting. Most of the QFI is saturated
by protocols with antisymmetric signals, except near μ1 = π ,
where only protocols with symmetric signals can saturate the
QFI.

Furthermore, we analyzed the impact of various noise
sources, including particle number fluctuations, prior phase
noise, and dephasing noise during the twisting process, on
the sensitivity of these optimal protocols. We discovered that
the sensitivity for the majority of the identified protocols is
not stable under particle number fluctuations; hence, these
protocols are most suitable for experiments where the particle
number N is well controlled. For experiments with substantial
particle number fluctuations, only the OUT protocols (A3)
discussed in Ref. [21], protocols at the maximum of region
A4, and protocols with minor twisting and untwisting (A2) are
appropriate. Regarding dephasing noise during the twisting
operation, we demonstrated that protocols in the maxima of
regions A2, A3, A4, and S3 are especially stable. Interest-
ingly, even with significant dephasing noise, the sensitivity
of the optimal A2 region protocols can surpass that of the
simple squeezing protocols (A1, S1). Our examination of the
trade-off between sensitivity gain and dynamic range loss
revealed that the protocols at the maximum of regions A2
and A4, along with the optimal protocols of region S3, ex-
hibit the greatest resilience to prior phase noise. However,
with extensive prior phase noise, only the simple squeezing
protocols (A1, S1) maintain nonvanishing sensitivity. An op-
timization using Bayesian phase estimation in the variational
class of echo-protocols discussed here, along with its applica-
tion in optical atomic clocks, will be addressed in subsequent
work.
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APPENDIX A: OPTIMIZATION

Analogous to Schulte et al. [21], we can rewrite

(	Sm)2|φ=0 = mT Qm and

∣∣∣∣∣ ∂〈Sm〉
∂φ

∣∣∣∣
φ=0

∣∣∣∣∣ = nT Mm,

with the help of the matrices M and Q, where
Mkl = i〈[Sk (μ1), Sl (μ1 + μ2)] 〉|φ=0 and Qkl = 〈Sk (μ1 +
μ2) Sl (μ1 + μ2) − 〈 Sk (μ1 + μ2)〉〈Sl (μ1 + μ2)〉〉|φ=0, and
optimize

(	φ)−1 = nT Mm√
mT Qm

= nT MQ−1/2v√
vT v

= nT MQ−1/2 v

‖v‖ = nT MQ−1/2e

via a singular value decomposition (SVD) of the matrix
MQ−1/2 = U�V ∗. Hereby, the maximum singular value cor-
responds to the maximum value (	φ)−1

max = σmax and the
optimal axes n and m are given by

n = Re
{
uT

max

}
and m = Re{Q1/2vmax}.

Due to the increased complexity of 〈Sm〉 and (	Sm)2, we
cannot evaluate the matrices M and Q analytically via the
characteristic function XA = 〈θ, ϕ|eγ S−eβSz eαS+ |θ, ϕ〉 [35], as
Schulte et al. [21] did, but evaluate them numerically by iden-
tifying Sx, Sy, and Sz with (N + 1) × (N + 1) matrices and the
states |m〉, m = −N/2, . . . , N/2, with (N + 1)-dimensional
vectors.

APPENDIX B: SYMMETRY REQUIREMENTS

Inspired by the work of Kaubruegger et al. [29], we introduce the unitary operator U = Px = e−iπSx . Since 〈Sm(φ)〉 is
given by

〈Sm(φ)〉 = 〈N/2|xT †
z (μ1)R†

n(φ)T †
k (μ2)SmTk(μ2)Rn(φ)Tz(μ1)|N/2〉x,

we can obtain a sufficient condition for symmetry and antisymmetry around the working point 〈Sm(φ = 0)〉 by looking for
geometrical restrictions on n, m, and k so that

URn(φ)U† = Rn(−φ), USmU† = ±Sm, UTz(μ1)U† = Tz(μ1), UTk(μ2)U† = Tk(μ2)

is fulfilled. Because |N/2〉x is an eigenstate in the Sx basis, we find

Px|N/2〉x = e−iπSx |N/2〉x = e−i πN
2 |N/2〉x.

With σxσxσx = σx, σxσyσx = iσzσx = −σy, and σxσzσx = −iσyσx = −σz we obtain

PxSxP†
x =

N∏
j,k=1

e−i π
2 σ

( j)
x Sxei π

2 σ (k)
x =

N∏
j,k=1

(
1

2

N∑
l=1

σ ( j)
x σ (l )

x σ (k)
x

)
= 1

2

N∑
l=1

σ (l )
x = Sx,

PxSy,zP†
x =

N∏
j,k=1

e−i π
2 σ

( j)
x Sy,ze

i π
2 σ (k)

x =
N∏

j,k=1

(
1

2

N∑
l=1

σ ( j)
x σ (l )

y,z σ
(k)
x

)
= −1

2

N∑
l=1

σ (l )
y,z = −Sy,z,

and from that it directly follows that

PxS2
xP†

x = PxSxP†
x PxSxP†

x = Sx Sx = S2
x

PxS2
y,zP†

x = PxSy,zP†
x PxSy,zP†

x = (−Sy,z ) (−Sy,z ) = S2
y,z.

Thus, we derive

PxSmP†
x = mxSx − mySy − mzSz.

So if we restrict Sm to the x direction (mx = 1, my = mz = 0), we obtain

PxSmP†
x = mxSx = Sm,

and we find

PxSmP†
x = −mySy − mzSz = −Sm

when restricting Sm to the y-z plane [mx = 0, my = cos(β ), mz = sin(β )]. With this we can follow

PxRn(φ)P†
x =

∞∑
j=1

(−iφ) j

j!
PxS j

nP†
x =

∞∑
j=1

(−iφ) j

j!
(PxSnP†

x ) j =
∞∑
j=1

(−iφ) j

j!
(nxSx − nySy − nzSz ) j .

Hence, restricting n to the x direction gives us

PxRn(φ)P†
x =

∞∑
j=1

(−iφ) j

j!
(nxSx ) j =

∞∑
j=1

(−iφ) j

j!
S j

n = Rn(φ),
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while a restriction of n to the y-z plane leads to

PxRn(φ)P†
x =

∞∑
j=1

(−iφ) j

j!
(−nySy − nzSz ) j =

∞∑
j=1

(−iφ) j

j!
(−Sn) j = Rn(−φ).

For the direction of the second OAT, we find that

PxTk(μ2)P†
x =

∞∑
j=1

[−i(μ2/2)] j

j!
Px[(kxSx + kySy + kzSz )2] jP†

x =
∞∑
j=1

[−i(μ2/2)] j

j!
[(kxSx − kySy − kzSz )2] j .

So for both cases, that k is restricted to the x direction and k lies in the y-z plane, we obtain

PxTk(μ2)P†
x =

∞∑
j=1

[−i(μ2/2)] j

j!
[(kxSx )2] j =

∞∑
j=1

[−i(μ2/2)] j

j!

(
S2

k

) j = Tk(μ2),

and

PxTk(μ2)P†
x =

∞∑
j=1

[−i(μ2/2)] j

j!
[(−kySy − kzSz )2] j =

∞∑
j=1

[−i(μ2/2)] j

j!
[(−Sk )2] j

=
∞∑
j=1

[−i(μ2/2)] j

j!

(
S2

k

) j = Tk(μ2),

respectively.
From these calculations we infer that restricting the vectors n to the y-z plane and m to the x direction as well as k to the x

direction or the y-z plane is sufficient to assure symmetry around 〈Sm(φ = 0)〉, since

〈Sm(φ)〉 = 〈N/2|xT †
z (μ1)R†

n(φ)T †
k (μ2)SmTk(μ2)Rn(φ)Tz(μ1)|N/2〉x

= 〈N/2|xP†
x PxT †

z (μ1)P†
x PxR†

n(φ)P†
x PxT †

k (μ2)P†
x PxSmP†

x PxTk(μ2)P†
x PxRn(φ)P†

x PxTz(μ1)P†
x Px|N/2〉x

= 〈N/2|xei πN
2 T †

z (μ1)R†
n(−φ)T †

k (μ2)SmTk(μ2)Rn(−φ)Tz(μ1)e−i πN
2 |N/2〉x

= 〈Sm(−φ)〉,
and restricting n and m to the y-z plane as well as k to the x direction or the y-z plane is sufficient to assure antisymmetry around
〈Sm(φ = 0)〉, since

〈Sm(φ)〉 = 〈N/2|xT †
z (μ1)R†

n(φ)T †
k (μ2)SmTk(μ2)Rn(φ)Tz(μ1)|N/2〉x

= 〈N/2|xP†
x PxT †

z (μ1)P†
x PxR†

n(φ)P†
x PxT †

k (μ2)P†
x PxSmP†

x PxTk(μ2)P†
x PxRn(φ)P†

x PxTz(μ1)P†
x Px|N/2〉x

= −〈N/2|xei πN
2 T †

z (μ1)R†
n(−φ)T †

k (μ2)SmTk(μ2)Rn(−φ)Tz(μ1)e−i πN
2 |N/2〉x

= −〈Sm(−φ)〉.
For n and m in the x direction as well as k in the x direction or in the y-z plane, we obtain

〈Sm(φ)〉 = 〈N/2|xT †
z (μ1)R†

n(φ)T †
k (μ2)SmTk(μ2)Rn(φ)Tz(μ1)|N/2〉x

= 〈N/2|xP†
x PxT †

z (μ1)P†
x PxR†

n(φ)P†
x PxT †

k (μ2)P†
x PxSmP†

x PxTk(μ2)P†
x PxRn(φ)P†

x PxTz(μ1)P†
x Px|N/2〉x

= 〈N/2|xei πN
2 T †

z (μ1)R†
n(φ)T †

k (μ2)SmTk(μ2)Rn(φ)Tz(μ1)e−i πN
2 |N/2〉x

= 〈Sm(φ)〉,
i.e., we do not gain any further insight. These protocols can be symmetric or antisymmetric but must not necessarily have any
symmetry properties at all. Here, we need to minimize the real or the imaginary Fourier coefficients respectively to cull the
symmetric and antisymmetric protocols of this set.

In the case, that n is in x direction, m in the y-z plane and k in x direction or in the y-z plane, we obtain

〈Sm(φ)〉 = 〈N/2|xT †
z (μ1)R†

n(φ)T †
k (μ2)SmTk(μ2)Rn(φ)Tz(μ1)|N/2〉x

= 〈N/2|xP†
x PxT †

z (μ1)P†
x PxR†

n(φ)P†
x PxT †

k (μ2)P†
x PxSmP†

x PxTk(μ2)P†
x PxRn(φ)P†

x PxTz(μ1)P†
x Px|N/2〉x

= 〈N/2|xei πN
2 T †

z (μ1)R†
n(φ)T †

k (μ2)(−Sm)Tk(μ2)Rn(φ)Tz(μ1)e−i πN
2 |N/2〉x

= −〈Sm(φ)〉,
i.e., the resulting signals are constantly zero.
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Apart from this, there may exist less severe restrictions on the geometrical degrees of freedom of n, m, and k to assure
symmetry or antisymmetry around 〈Sm(φ = 0)〉.

APPENDIX C: DERIVATION OF OUR FIGURE OF MERIT FROM THE MEAN SQUARE ERROR

For antisymmetric protocols, the mean squared error is given by

εM (φ) =
∑

m

[φ̂(m) − φ]2 p(m|φ).

Evaluating this at φ = 0 and using a linear phase estimator gives

εM (φ)
φ=0= (	φ)2 =

∑
m

[φ̂(m) − 0]2 p(m|φ) =
∑

m

φ̂2(m)p(m|φ) =
∑

m

(
m

∂φSm

∣∣∣∣
φ=0

)2

p(m|φ) = 1

(∂φSm)2|φ=0

∑
m

m2 p(m|φ)

=
〈
S2

m

〉|φ=0

(∂φSm)2|φ=0
= (	Sm)2

(∂φSm)2

∣∣∣∣
φ=0

.

For symmetric protocols, we know that

Sm(φ) = Sm(−φ), ∂φSm(φ) = −∂φSm(−φ).

Since symmetric protocols have an extremum at φ = 0, we measure the signal at φ = ±ϕ:
(1) (φ̂ + ϕ) = m+

∂φSm
|φ=ϕ .

(2) (φ̂ − ϕ) = m−
∂φSm

|φ=−ϕ .

A suitable estimator for the phase uncertainty is therefore

φ̂ = 1

2

(
m+

∂φSm

∣∣∣∣
φ=ϕ

+ m−
∂φSm

∣∣∣∣
φ=−ϕ

)
= 1

2

1

∂φSm

∣∣∣∣
φ=ϕ

(m+ − m−).

We assume that the conditional probabilities p(m+|φ + ϕ) and p(m−|φ − ϕ) are independent, i.e.,

p(m+, m−|φ) = p(m+|φ + ϕ) p(m−|φ − ϕ).

With this, we derive

εM (φ) =
∑

m+,m−

p(m+|φ + ϕ)p(m−|φ − ϕ)

[
1

2

1

∂φSm|φ=ϕ

(m+ − m−) − φ

]2

φ=0=
∑

m+,m−

p(m+|φ + ϕ)p(m−|φ − ϕ)

[
1

2

1

∂φSm|φ=ϕ

]2

(m+ − m−)2

= 1

4

1

(∂φSm)2|φ=ϕ

⎛
⎜⎜⎝〈

S2
m

〉|φ=ϕ + 〈
S2

m

〉|φ=−ϕ︸ ︷︷ ︸
=〈S2

m〉|φ=ϕ

−2〈Sm〉|φ=ϕ 〈Sm〉|φ=−ϕ︸ ︷︷ ︸
=〈Sm〉|φ=ϕ

⎞
⎟⎟⎠

= 1

4

1

(∂φSm)2|φ=ϕ

2
(〈

S2
m

〉 − 〈Sm〉2)∣∣∣∣
φ=ϕ

= 1

2

(	Sm)2

(∂φSm)2

∣∣∣∣
φ=ϕ

.
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