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Using a mean field approach and simulation, we study the non-linear mechanical response of
the vertex model (VM) of biological tissue under compression and dilation. The VM is known to
exhibit a transition between rigid and fluid-like, or floppy, states driven by geometric incompatibility.
Target perimeter and area set a target shape which may not be geometrically achievable, thereby
engendering frustration. Previously, an asymmetry in the linear elastic response was identified at
the rigidity transition between compression and dilation. Here we show and characterize how the
asymmetry extends away from the transition point for finite strains. Under finite compression, an
initially solid VM can totally relax perimeter tension, and thereby have reduced bulk and shear
modulus. Conversely, an initially floppy VM under dilation can rigidify and have a higher bulk and
shear modulus. These observations imply that re-scaling of cell area shifts the transition between
rigid and floppy states. Based on this insight, we calculate the re-scaling of cell area engendered
by intrinsic curvature and write a prediction for the rigidity transition in the presence of curvature.
The shift of the rigidity transition in the presence of curvature for the VM provides a new metric
for predicting tissue rigidity from image data for curved tissues in a manner analogous to the flat
case.

I. INTRODUCTION

Understanding the emergence of form in organ devel-
opment presents a major challenge to current continuum
physics modeling of biological tissues. Unlike passive
materials, certain tissues may tune their mechanical re-
sponse to applied strains and forces by modifying cell
shape and thereby be rigid or floppy. In particular, cell
shape as characterized by the shape index 𝑠 ≡ 𝑃√

𝐴
has

been found to serve as a signal for the onset of a solid-
liquid transition at constant density in epithelial tissues
[1].

One widely studied model of epithelial tissues is the
vertex model (VM) which models the epithelium as a col-
lection of vertices and edges in the 2D plane, and reduces
the tissue’s structural data to a polygonal tiling with
possible edge tension. Unlike conventional spring net-
work models which penalize deviations away from each
edge length, the VM instead only sets a target cell area
due to 3D bulk tissue incompressibility, along with terms
capturing cell-cell edge adhesion and cell contractility[2],
which constrain the cell’s perimeter. Thus the VM is less
constrained than a spring network, e.g. crystalline solids,
and naturally engenders zeros modes for any polygonal
tiling.[2–4].

What’s more these zero modes exist at the level of a
single cell. For example, assuming all cell edges have
identical adhesion and contractility, the VM energy re-
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duces to penalizing harmonic deviations away from a tar-
get area 𝐴0 and target perimeter 𝑃0. Thus in the VM
each cell has 2 shape constraints, but a general polygon
has at least 3 degrees of freedom such as is the case for
triangles [3].
Based on constraint counting it seems the VM can

never support a rigid state. Nonetheless the VM exhibits
a rigidity transition between solid and floppy states tuned
by the target shape index 𝑠0 =

𝑃0√
𝐴0

about a critical point

𝑠∗0 [5]. The transition is due to a geometric constraint set
by the isoperimetric inequality which gives a lower bound
on the ratio of 𝑃√

𝐴
for n-gons admissible on the plane [6].

𝑃
√
𝐴

≥ 𝑠∗0 (𝑛) (1)

Where 𝑠∗0 =

√︃
4𝑛 tan

(
𝜋
𝑛

)
is the isoperimetric quotient.

The lower bound sets an incompatible regime 𝑃0√
𝐴0

< 𝑠∗0
where polygons cannot simultaneously achieve 𝐴0 and
𝑃0, and a compatible regime 𝑃0√

𝐴0
≥ 𝑠∗0 where polygons

may achieve both 𝐴0 and 𝑃0. This geometric constraint
on shape indicates that rigidity stems from self-tension
due to geometrically incompatibility.
For VM simulations consisting of ordered tilings (tri-

angles, squares, hexagons) in the plane the rigidity tran-
sition occurs exactly at 𝑠∗0 (𝑛) [3]. Whereas for disordered
VM simulations the transition occurs at approximately
𝑠∗0 (5) [5].
The linear response of the VM to mechanical deforma-

tions is well studied [3, 7–9] but the non-linear response
relatively less so. Recent work showed that the VM ex-
hibits shear-thickening in the compatible regime [4]. In
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the same vein, this paper presents a careful study of the
non-linear elasticity of the VM under finite dilation and
compression via a mean-field approach and simulation.
In previous work by the authors, the onset of compat-
ibility in the VM at 𝑠∗0 showed anomalous elasticity as
reflected by an asymmetric bulk modulus under dilation
and compression, as well as coupling between stretching
and shear modes [3].

In this article, we show that the asymmetry of the bulk
modulus extends away from 𝑠∗0 under finite compression
and dilation. In particular, the VM exhibits a dilation-
hardening for compatible tissues and a compression-
softening in incompatible tissues for finite critical strain.
The hardening (softening) nonlinear response to dilation
(compression) is reflected by a jump (drop) discontinuity
of the bulk modulus and is associated with the sudden
lifting (onset) of zero-modes.

The mechanism of a tissue fine-tuning their rigidity in
response to areal re-scaling relates to several biological
processes such as tissue growth, shrinkage, applied de-
formations, and in particular spontaneous generation of
Gaussian (intrinsic) curvature. Based on insight from the
planar 2D non-linear elasticity, we use of mean field the-
ory to predict how local compression/dilation due to in-
trinsic curvature shifts the transition point between rigid
and floppy states.

The organization of the paper is as follows: in section
II we define our mean-field approach of the VM which
models 2D tissue elasticity at the single cell level. Sec-
tion III outlines the calculation of the non-linear bulk
modulus of the mean-field model and discusses simula-
tion results. In section IV we present a Landau energy
argument to elucidate the connection between the asym-
metry of the bulk modulus and how a finite critical strain
controls the onset/lifting of zero-modes. Section V uses
our results from the mean field theory to predict the ef-
fective critical shape index for cells on a curved surface.
We compare our prediction for the rigidity transition in
the presence of curvature to simulations done by [10]. We
conclude with discussion in section VI.

II. MEAN-FIELD THEORY OF ORDERED
VERTEX MODEL

Our mean field theory for the VM is defined as a uni-
form regular 2D tiling with all cells responding identi-
cally to applied deformations. The tissue energy is the
sum of all individual cells, and therefore our mean field
approach reduces the VM to a single polygonal cell. All
bulk tissue properties, such as elastic moduli, are defined
at the single cell level response. Details of the mean field
model are given in appendix C, and a thorough study
by the authors is in [3]. For concreteness, our simula-
tions and mean field theory are for hexagonal cells unless
stated otherwise. All results hold analogously for other
polygons.

The tissue energy per cell is rescaled by ^𝐴𝐴
2
0 such that

ℓ!
ℓ"

ℓ#
'
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FIG. 1. Under compression/dilation, the cell may respond via
an affine self-shear transformation where it tilts either right or
left. Only parallel edges change length in the same manner,
whereas neighboring edges change length differently.

the energy only has two dimensionless free parameters.
The VM energy per cell is cast as

𝐸 =
1

2
(𝑎 − 1)2 + 𝑟

2
(𝑝 − 𝑠0)2 (2)

where 𝑟 ≡ ^𝑃
^𝐴𝐴0

is the rigidity ratio, and 𝑠0 ≡ 𝑃0√
𝐴0

the

target shape index, and 𝑎 and 𝑝 are the scaled area and
perimeter.
To parameterize cell shape degrees of freedom, we work

with a Cartesian coordinate system (𝑋,𝑌 ) encompassing
the cell with 𝑌 along the height, and 𝑋 along the width.
The area and perimeter of a cell are purely geometric ob-
jects, and their shape change under various deformations
can be computed given a transformation law.
The externally imposed dilation and compression are

implemented via an overall re-scaling of the cell’s height
ℎ and width 𝑤 via the transformation 𝑤 → 𝑤(1 + 𝜖),
ℎ → ℎ(1 + 𝜖), where 𝜖 ∈ (−1, 1). In response to the
strain, the cell may also spontaneously shear while main-
taining the imposed rescaled area, as shown in Fig 1.
This ”tilt” response is parametrized via a self-shear de-
formation, with 𝑤 → 𝑤 + 𝑡ℎ, ℎ → ℎ, where 𝑡 (\) ≡ tan (\),
and represents the shape degeneracy of cells. In addition,
hexagonal cells can also respond via non-affine trans-
formations, and what’s more these non-affine responses
yield softer shear and Young’s moduli in the incompatible
regime [11]. In this study we preclude non-affine path-
ways for cell response as our previous work showed this
approximation well captures the response under imposed
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isotropic compression/dilation [3].
The deformed energy of an isotropically dilated or com-

pressed cell is then given by

𝐸 (𝜖, \; 𝑠0, 𝑟) =
1

2

[
ℓ2 (1 + 𝜖)2 − 1

]2 + 𝑟
2
[𝑝(𝜖, 𝑡 (\), ℓ) − 𝑠0]2 ,

(3)

where ℓ(𝑠0, 𝑟) is the rescaled ground state characteristic
cell size (see appendix C for details) and the deformed
perimeter is

𝑝(𝜖, \, ℓ) =
√
2ℓ

33/4
(1 + 𝜖)

(
2 (1 + 𝑡) +

√︃
1 + (𝑡 (\) −

√
3)2

+
√︃
1 + (𝑡 (\) +

√
3)2

)
. (4)

If we set 𝜖 = 0 and minimize with respect to \ we re-
cover the previous ground states results in [3] where the
ground state energy is gapped for 𝑠0 < 𝑠∗0 and vanishes
for 𝑠0 ≥ 𝑠∗0, populated by a manifold of degenerate shapes
parametrized by \. To study the response to 𝜖 ≠ 0 we
minimize \ as a function of applied strain in a manner
analogous to our study of the linear response [3]. For-
mally, the energetic response is given by

𝐸 = min
\
𝐸 (\; 𝜖, 𝑠0, 𝑟) (5)

Because height and width are fixed by dila-
tion/compression the energy minimization is 1D
and corresponds to solving,

𝜕𝐸

𝜕\

����
𝑠,𝑟 , 𝜖

= (𝑝 − 𝑠0)
𝜕𝑝

𝜕\

����
𝑠0 ,𝑟 , 𝜖

= 0 (6)

Which has two solutions: either a cell utilizes shape de-
generacy via \ so that the perimeter accommodates both
dilation/compression and target shape index 𝑠0, or the
perimeter is totally set by dilation/compression with no
tilt response. The relevant energy minimizing solution is
a function of 𝑠0, 𝑟 and 𝜖 .

III. NONLINEAR ELASTICITY IN THE
EUCLIDEAN PLANE

The non-linear response under finite dilation and com-
pression is characterized by the bulk modulus, defined
as

𝐾 =
1

2𝑎cell

(
𝜕2

𝜕𝜖2
min
\min

𝐸 (𝜖, \; 𝑠0, 𝑟)
)
𝑠0 ,𝑟 , 𝜖

(7)

where 𝑎cell =
3
√
3

2 ℓ2 is the rescaled cell area. Evaluating
Eq. 7 at 𝜖 = 0 yields the linear response, whereas a finite
𝜖 gives the non-linear response under finite strains.
It is crucial that the minimization occurs before differ-

entiation because the self-shear response \ is implicitly
dependent on 𝜖 via Eq. 6.

In the incompatible rigid state, (𝑠0 < 𝑠
∗
0), we find that

the mean field model and simulation exhibit a discontin-
uous drop in the bulk modulus at a critical compression.
The discontinuity occurs due to a spontaneous self-shear
of the cell which allows perimeter tension to vanish. Con-
versely, under dilation the bulks modulus remains contin-
uous as a function of strain, see Fig. 2 Plot A. Larger
choices of 𝑟 will shift the critical strain up, reflecting how
a higher perimeter tension may support higher compres-
sion before giving way to spontaneous self-shear.
In the compatible floppy state, (𝑠0 > 𝑠

∗
0), the bulk mod-

ulus is continuous under any finite compression but dis-
continuous jump at some critical dilation, see Fig. 2 plot
B. At sufficient dilation, the zero-modes of the degenerate
ground state are ”exhausted”, resulting in a frustrated
and thereby rigid state. Unlike the incompatible state,
the critical dilation is insensitive to 𝑟.
At the transition, 𝑠∗0, both dilation hardening and

compression softening are present for arbitrarily small
strains, and reflect an asymmetry of the response to area
re-scaling. For various dilation/compression strain mag-
nitudes we plot the difference between dilation and com-
pression bulk modulus Δ𝐾 vs. 𝑠0 as a measure of asym-
metry of the response in Fig. 2 plot C. Around the criti-
cal shape index, 𝑠∗0, the asymmetry extends continuously
away from the critical point for even modest strain values
(> 0.002). Note the curve Δ𝐾 vs. 𝑠0 is also not left-right
symmetric along the 𝑠0 = 𝑠0∗ axis; this is due to the
critical strain only depending on the choice of 𝑟 in the
incompatible state but not in the compatible state.

The origin of the bulk modulus discontinuity can be
partial elucidated by writing out Eq.8 explicitly

𝐾 =
1

2𝑎cell

(
𝑎2 + 𝑟

(
𝑝(\𝑚𝑖𝑛) − 𝑠0

) 𝜕2𝑝(\𝑚𝑖𝑛)
𝜕𝜖2

+ 𝑟
(
𝜕𝑝(\𝑚𝑖𝑛)

𝜕𝜖

)2)
.

(8)

In the incompatible state, if cells can accommodate tar-
get perimeter and imposed strains simultaneously, the
perimeter tension, 𝑟

(
𝑝(\𝑚𝑖𝑛) − 𝑠0

)
, vanishes thereby re-

sulting in a discontinuous drop of the bulk modulus. Con-
versely, in the compatible state sufficient dilation will
yield sudden contribution from perimeter tension. In the
following section, we apply a Landau-type energy analy-
sis to understand the trigger of shape zero-modes under
dilation and compression.

IV. LANDAU ENERGY EXPANSION

To understand how compression, or dilation, may trig-
ger, or lift, shape degeneracy we treat \ as an order pa-
rameter for the onset of shape degeneracy such that \ ≠ 0
when cells adjust their shape to accommodate imposed
strains, and \ = 0 when cells remain rigid (no cell re-
sponse).
Before minimization, we expand the energy in power
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of \ to quartic order,

𝐸 (𝜖, \; 𝑠0, 𝑟) ≈ 𝐸0 +
𝛼

2
(𝜖, 𝑠0, 𝑟)\2 +

𝛽(𝜖, 𝑠0, 𝑟)
4

\4 + O(\6)
(9)

Where

𝛼 =
3

5
4

2
√
2
𝑟ℓ(1 + 𝜖)

(
𝑠∗0 (6)ℓ(1 + 𝜖) − 𝑠0

)
, (10)

𝛽 =
3

128
3

1
4 𝑟ℓ(1 + 𝜖)

(
13
√
2𝑠0 − 28 × 3

1
4 (1 + 𝜖)ℓ

)
(11)

For the quartic approximation energy minimization

yields \min = 0 for 𝛼 > 0, or \min = ±
√︃

−𝛼
𝛽

for 𝛼 < 0. The

Landau expansion highlights the role of strain 𝜖 as tuning
parameter between the cell responding with \min = 0 or

by spontaneously tilting via a shear of \min = ±
√︃

−𝛼
𝛽
. The

form of 𝛼 reflects an asymmetric response between com-
pression versus dilation. From 𝛼 we can extract the crit-
ical strain, 𝜖∗, which controls the onset/lifting of shape
degeneracy.

𝜖∗ =
1

ℓ

𝑠0

𝑠∗0 (6)
− 1 (12)

The critical strain vanishes at the critical shape index
and coincides with the the failure of linear elasticity for
any applied strain [3]. In the compatible regime ℓ = 1
because target area is always achieved and 𝜖∗ is indepen-
dent of rigidity ratio 𝑟. Whereas in the incompatible 𝜖∗
is dependent on 𝑟 through ℓ.
We input the cell response via \min into the energy and

expand in powers of strain 𝜖 .

𝐸 (𝜖 ; 𝑠0, 𝑟) =min
\
𝐸 (𝜖, \; 𝑠0, 𝑟) (13)

≈min
\
𝐸0 +

𝛼

2
(𝜖, 𝑠0, 𝑟)\2 +

𝛽(𝜖, 𝑠0, 𝑟)
4

\4 + O(\6)
(14)

=𝐸0 +
1

2

(
𝜕2𝐸 (\min)

𝜕𝜖2

)
𝜖2 + O(𝜖3) (15)

In the final line the harmonic coefficient contains contri-
butions from \ which reduce the overall response of the
tissue. If we did not minimize over \ before expanding
in 𝜖 , the resultant deformed energy would not reflect the
self-shear response due to cell shape changes.

A summary of the consequences of \ on the response
are as follows: In the incompatible regime, the \min = 0
solution corresponds to the linear response in the solid

state (see Fig. 3), whereas \min = ±
√︃

−𝛼
𝛽

corresponds

to the softer renormalized nonlinear response at criti-
cal compression strain. On the other hand, in the com-
patible regime, the linear response is always given by

\min = ±
√︃

−𝛼
𝛽

which allows perimeter tension to van-

ish. The hardening under finite dilation occurs at a crit-
ical dilative strain 𝜖∗ and corresponds to a switch from

\min = ±
√︃

−𝛼
𝛽

to \min = 0, resulting in a higher response.

This hardening phenomena is due to the cell’s inability
access degenerate ground states to accommodate large
dilation.

Calculating new critical shape index

So far our mean-field model has predicted how com-
pression/dilation controls the onset/lifting of shape de-
generacy. If one defines the rigidity of a solid by the
availability of cell level zero modes, than the mean field
treatment suggests that dilation and compression shift
the rigidity transition of the VM.
The precise shift of the critical shape index can be

found by solving 𝛼 = 0 for 𝑠0 and setting the strain,
(1 + 𝜖), as a material parameter for local cell dila-
tion/compression. Then solving for 𝑠0 defines a ”new”
critical shape index as set by dilation/compression. The
effective critical point 𝑠critical0 is

𝛼 =

(
𝑠∗0 (𝑛)ℓ(1 + 𝜖) − 𝑠critical0

)
= 0

=⇒ 𝑠critical0 = 𝑠∗0 (𝑛)ℓ(1 + 𝜖) (16)

Where we used the modified version of Eq. 10 for n-gons
(see appendix C). Of course this is not a complete shift
of the rigidity transition since even if perimeter tension
vanishes there will always be areal tension. Hence the
system remains energetically frustrated, albeit less so,
but soft. Furthermore, 𝜖 needs to be determined by some
cell growth/compression process.

If cells are modeled on a 2D surface VM consisting
of a 2D tiling embedded in 3D then cells may accom-
modate in-plane dilation/compression by buckling and
achieve true geometric compatibility in a curved geome-
try. For example, geometrically frustrated (rigid) cells
under compression may buckle to achieve target area
and perimeter by utilizing additional d.o.f. associated
with curvature, and thereby become compatible. By the
same token, geometrically compatible (floppy) cells ex-
periencing dilation/growth will eventually rigidity and
become frustrated but may buckle to find a more opti-
mally/energetically lower frustrated state. Both case cor-
respond to cells utilizing curvature-related d.o.f to satisfy
area and perimeter constraints and thereby fine tuning
their rigidity.

In support of this perceptive, simulations have re-
ported that the rigidity transition - as signalled by the
critical target shape index - is indeed sensitive to curva-
ture. For example, a VM constrained on a sphere [10]
has a downward shifted 𝑠∗0 dependent on curvature mag-
nitude and relative cell size.

In the rest of this article, we calculate the effective
dilation/compression set by curvature by calculating cell
area on a curved surface relative to its flat counterpart.
Utilizing Eq.16, we predict the target shape index on
curved 2D tissues.
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FIG. 2. Plot A shows the mean field non-linear response bulk modulus versus compression in the incompatible regime. At
a critical strain 𝜖∗, there is sudden discontinuous softening. The critical strain depends on rigidity ratio, and we plot curves
for 𝑟 = 1, 10, 100. In the compatible regime, plot B shows the mean field bulk modulus hardening at a critical compression.
Note that 𝜖∗ in the incompatible regime is dependent on 𝑟 and thereby sensitive to the balance between perimeter and areal
elasticity. Whereas in the compatible regime, the critical strain is only a function of shape index. Plot C plot the difference in
the linear response between dilation and compression, and shows the continuous extension of the response asymmetry extends
away from the critical shape index. Plots A,B, and C corresponds to hexagons. Plot D shows the effective critical shape index

for a random tiling of N cells on a sphere of radius 𝐿 =

√︃
𝑁
4𝜋 . The mean field prediction is for pentagons , whereas the simulation

is for a disordered VM taken from [10].

V. RIGIDITY TRANSITION IN THE
PRESENCE OF CURVATURE.

We extend the mean field calculation by pertubatively
calculating expressions for cell area on surfaces of con-
stant curvature in powers of 𝐾𝐺𝑅

2
cell, where 𝐾𝐺 is the

Gaussian curvature, and 𝑅cell the cell radius. Polygons
and discs of fixed radius have different total area depend-
ing on the surface on which they are inscribed. The ef-
fective strain stems from the mismatch in area of curved
cells from their flat analog.

All geometric information of a surface 𝑀 is encoded in
the metric tensor g and we denote a surface generically
as (g, 𝑀). For a general shape/cell on a surface, 𝐷 ⊂ 𝑀,

the area is defined by

𝐴 =

∫
𝐷

√︁
det 𝑔𝑑2𝑥 (17)

Note that the determinant of the metric serves as a
weight which accounts for the local compression/dilation
of the distances between points. Unlike the planar set-
ting of the mean field model where 𝑔𝑖 𝑗 = 𝛿𝑖 𝑗 , the metric
on curved surfaces - even uniformly curved - is not homo-
geneous but a function of space. Nonetheless, the metric
always admits a local pertubative expansion in normal
coordinates, (𝑥0, 𝑥𝑖) which are defined by the condition
that geodesics can be locally parameterized as straight
lines, i.e. 𝛾(_) = (𝑥1_, 𝑥2_). In these coordinates, a per-
tubative expansion of the metric in powers of curvature
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yields

det(𝑔) = 1 − 1

3
R|𝑥 |2 + O(|𝑥 |3) (18)

Where R is the scalar curvature which is twice the Gaus-
sian curvature 𝐾𝐺 = 2R. The expansion reflects how
variations of the metric are tied to curvature, and is lo-
cally approximated as flat with corrections due to curva-
ture. An outline of the derivation for Eq. 18 is given in
appendix A.

In our calculation we restrict attention to surfaces of
uniform curvature by fixing R, and hence we only con-
sider uniformly flat, sphereical, and saddle-like surfaces.
Of course, real curved biological tissues are not not uni-
form and might have a boundary. Our approximation is
controlled by the dimensionless number set by the radius
𝑅cell of the cell over the radius of curvature 𝐿𝐾

𝐶 ≡ 𝑅cell

|𝐿𝐾 |
(19)

where 𝐾𝐺 ≡ ± 1
𝐿2
𝐾

. Our mean field result will hold best for

tissues with moderate curvature or relativity small cells.

COMPUTING AREA

Using the metric expansion the area is expanded to
quadratic order,

𝐴 =

∫
𝐷

√︁
det 𝑔𝑑2𝑥

=

∫
𝐷

𝑑2𝑥 − R
3

∫
𝐷

|𝑥 |2𝑑2𝑥 + h.o.t. (20)

The first term yields the flat case. We generalize our
calculation for n-sided polygons for easy comparison of
various tilings.

To parameterize the polygonal n-sided cell 𝐷 we de-
compose it into 2n triangles about the centroid as illus-
trated in figure 3. Details of the calculation are given in
appendix B. To quadratic order the area is

𝐴 = 𝐴

(
1 − R

6
𝑅2
cell 𝑓 (𝑛) + O(𝑅4

cell)
)

(21)

Where 𝑓 (𝑛) ≡ cos2
(
𝜋
𝑛

) (
2
3 + 1

3 sec
2
(
𝜋
𝑛

) )
, and 𝐴 =

𝑛𝑅2
cell cos

(
𝜋
𝑛

)2
tan

(
𝜋
𝑛

)
is the flat area. In the limit of

either very small cell size or very small curvature, we get
the typical planar area. Morever, in the limit 𝑛 → ∞
the first correction yields R

6 𝑅
2
cell𝜋 which reproduces the

classical result of Bertand-Diguet-Puiseux on the area
comparison of a 2D geodesic ball of radius 𝑅cell to its flat
counterpart [12].

RIGIDITY TRANSITION SHIFT

From Eq.21 (and using Eq. 3) we write down the in-
duced dilation/compression strain set by curvature

𝜖R (𝑛) = −1 +
√︂
1 − R

6
𝑅2
cell

𝑓 (𝑛)

= −1 +

√︄
1 − cos2

( 𝜋
𝑛

) (
2

3
+ 1

3
sec2

( 𝜋
𝑛

)) R
12
𝑅2
cell

(22)

The effective strain depends on the number of edges due
to the discrete rotational symmetry of polygons: the fur-
thest edges are weighted differently than the midpoint
of edges. This vanishes in the 𝑛 = ∞ limit as the cell is
approximates a disc and regains full rotational symmetry.
The predicted shift in the critical shape index is

𝑠critical0 (𝑛,R) = 𝑠∗0 (𝑛)ℓ(𝑛) (1 + 𝜖R (𝑛)) (23)

≈ 𝑠∗0 (𝑛) (1 + 𝜖R (𝑛))

Where we’ve set ℓ ≈ 1, which restricts our prediction near
the planar critical point or large rigidity ratio 𝑟 >> 1.

COMPARISON WITH SIMULATION

In the work by Sussman [10] a disordered vertex model

of 𝑁 cells on a uniform sphere of radius 𝐿 =

√︃
𝑁
4𝜋 was

simulated for various 𝑁. At the onset of rigidity, the ob-
servable shape index per cell 𝑃√

𝐴
was extracted and used

to compute a numerical probability distribution. The
peak of this distribution was used to define the criti-
cal shape index on the sphere. For large systems, the
critical point was found to be sharply peaked at around
𝑠∗0 ∼ 3.812, which corresponds to the the critical shape
index for pentagons[13].
To compare with [10] we re-cast R𝑅2

cell in terms of 𝑁.
The radius of curvature for a sphere gives the Gaussian
curvature 𝐾𝐺 ≡ 1

𝐿2 , which is 1/2 the scalar curvature.

𝑠critical0 (𝑛 = 5, 𝐾𝐺) ≈ 3.812

(
1 − (7 +

√
5)

72

2𝑅2
cell

𝐿2

)1/2
(24)

Sussman works on a sphere of raduis 𝐿 =

√︃
𝑁
4𝜋 and av-

erage cell area is set to unity, i.e. 𝐴cell ≡ 𝑁
4𝜋𝐿2 = 1. We

neglect cell packing since our mean field calculation is for
a single cell, and so we take 𝑅cell as given for a pentagon.

Thus 5𝑅2
𝑐𝑒𝑙𝑙

cos
(
𝜋
5

)2
tan

(
𝜋
5

)
= 1 =⇒ 𝑅2

cell ≈
1

2.377 .
Therefore the relative ratio of cell size to radius of cur-

vature goes as
𝑅2

cell

𝐿2 ≈ 4𝜋
2.377

1
𝑁
, yielding

𝑠critical0 (𝑛 = 5, 𝐾𝐺) ≈ 3.812

(
1 − (7 +

√
5)

36

4𝜋

2.377

1

𝑁

)1/2
(25)



7

Comparison to simulation data is shown in Fig. 2 Plot
D.

Besides expanding to higher order the calculation can
be improved by computing the ground state characteris-
tic cell size ℓ0 for curved vertex models, but this calcu-
lation is beyond our mean field approach. Additionally,
[10] reports that the shape index distribution broadens
for larger 𝑅2

cell𝐾𝐺, reflecting a greater diversity of poly-
gons at the rigidity transition than the flat counterpart.
Taking into account this greater diversity could help re-
fine the curvature correction in Eq. 25. In particular, for
relative large curvature other polygonal shapes besides
the pentagon could more relevant for disordered systems.

VI. DISCUSSION

Utilizing a mean field model we show the asymmetry
of the linear response in the vertex model under dilation
and compression extends away from the critical shape
index for finite strains. The asymmetry reflects how an
initially rigid tissue may be sufficiently compressed to in-
duce shape degeneracy and thereby relax perimeter ten-
sion, yielding a softer bulk modulus. Furthermore, suf-
ficient dilation applied to a compatible (floppy) cell lifts
shape degeneracy, yielding an uptick in the bulk mod-
ulus. Thus applied dilation and compression shift the
rigidity of the VM in 2D.

Using this insight, we extend our mean field theory to
calculate the effective dilation/compression engendered
by intrinsic curvature and predict the precise shift in
the rigidity transition by calculating the effective criti-
cal shape index. We compare our result to simulation
done by [10] and find good agreement.

Our mean field prediction provides a metric which can
be applied to studying the rigidity transition in curved
biological tissues in a manner analogous as the planar
shape index.

VII. APPENDICES

A. Details about metric expansion

The purpose of this appendix is to give a brief expla-
nation of the series expansion of the metric in terms of
curvature. A more complete and rigorous treatment may
be found in many textbooks on Riemannain geometry
such as [14, 15], and in particular we follow the classic
treatise [16].

In general the metric is a second order tensor whose
components are spatially dependent function of the sur-
face. It governs all geometric data in that the distance
between any two points is given by the line element

𝑑𝑠2 = 𝑔𝑖 𝑗 (𝑥)𝑑𝑥𝑖𝑑𝑥 𝑗 . (26)

About a given point 𝑥0 ∈ 𝑀 in some neighborhood, the
components of the metric are approximated as constants

to 1st order. One may diagonalize this linear approxima-
tion such that the metric at 𝑥0 is given by 𝛿𝑖 𝑗 . However to
2nd order the metric’s components need not be also con-
stants. In fact, if there exist coordinates such that the
metric’s Taylor series is constant up to 2nd order then
the metric is totally flat in the neighborhood.
Normal coordinates about a point 𝑥0 are defined lo-

cally where geodesics may be parametrized in local coor-
dinates 𝑥𝑖 by _ such that 𝛾𝑖 (_) = 𝑥𝑖_, where 𝛾(0) ≡ 𝑥0.
The Christoffel symbols are extracted from the geodesic
equation

0 =
𝑑2𝛾𝑖

𝑑_2
+ Γ𝑖𝑘ℓ

𝑑𝛾𝑘

𝑑_

𝑑𝛾ℓ

𝑑_
(27)

Utilizing normal coordinates, Eq. 29 immediately implies
Γ𝑖
𝑘ℓ
(𝑥0) = 0. Differentiation and index manipulation also

yields the differential constraint equation.

𝜕 𝑗Γ
𝑖
𝑘ℓ (𝑥0) + 𝜕𝑘Γ

𝑖
ℓ 𝑗 (𝑥0) + 𝜕ℓΓ

𝑖
𝑗𝑘 (𝑥0) = 0 (28)

The Riemann curvature tensor is defined as

𝑅𝑖𝑗𝑘𝑙 = 𝜕𝑘Γ
𝑖
𝑗𝑙 − 𝜕𝑙Γ

𝑖
𝑗𝑘 + Γ𝑖𝑝𝑘Γ

𝑝

𝑘𝑙
+ Γ𝑖𝑝𝑙Γ

𝑝

𝑘 𝑗
(29)

From the differential constraint and the definition of 𝑅𝑖
𝑗𝑘𝑙

,

one can show

𝜕𝑙Γ
𝑘
𝑖 𝑗 = −1

3

(
𝑅𝑘𝑖 𝑗𝑙 + 𝑅

𝑘
𝑗𝑖𝑙

)
(30)

Symmetry of the metric implies the covariant derivative
of the metric vanishes,i.e. ∇g = 0 =⇒ 𝜕𝑘𝑔𝑖 𝑗 − Γ

𝑝

𝑗𝑘
𝑔𝑖 𝑝 −

Γ
𝑝

𝑖𝑘
𝑔 𝑗 𝑝 = 0. The second derivative of the metric in thes

coordinates is

𝜕2𝑘𝑙𝑔𝑖 𝑗 = −1

3

(
𝑅𝑘𝑙𝑖 𝑗 + 𝑅 𝑗𝑙𝑖𝑘

)
, (31)

The Taylor expansion of the metric in normal coordinates
yields

𝑔𝑖 𝑗 = 𝛿𝑖 𝑗 −
1

3
𝑅𝑖 𝑗𝑘ℓ𝑥

𝑘𝑥ℓ + O(|𝑥 |2) (32)

Higher order terms can be generated iteratively by calcu-
lating higher order differential constraint equations from
Eqs.28 and ∇g = 0.
For 2D surfaces the Riemann curvature tensor only has

a single d.o.f. and admits the representation [15]

𝑅𝑖𝑘𝑙 𝑗 = R(𝑔𝑖𝑘𝑔𝑙 𝑗 − 𝑔𝑖 𝑗𝑔𝑘𝑙) (33)

Where R = 2𝐾𝐺 is the Ricci scalar curvature. From this
the Ricci tensor follows 𝑅𝑖 𝑗 ≡ 𝑔𝑘𝑙𝑅𝑖𝑘𝑙 𝑗 = R𝑔𝑖 𝑗 . Using the
expansion of the metric, we have to lowest order

𝑅𝑖𝑘𝑙 𝑗 = R(𝛿𝑖𝑘𝛿𝑙 𝑗 − 𝛿𝑖 𝑗𝛿𝑘𝑙) + O(|𝑥 |2) (34)

𝑅𝑖 𝑗 = R𝛿𝑖 𝑗 + O(|𝑥 |2) (35)

These expressions reflect that locally any surface looks
either flat (R = 0), spherical (R > 0), or saddle-like (R <

0).



8

To lowest order the metric expansion about 𝑝 becomes

𝑔𝑖 𝑗 =𝛿𝑖 𝑗 −
1

3
R(𝛿𝑖𝑘𝛿𝑙 𝑗 − 𝛿𝑖 𝑗𝛿𝑘𝑙)𝑥𝑘𝑥𝑙 + O(|𝑥 |3) (36)

(37)

and determinant yields

det(𝑔) = 1 − 1

3
R|𝑥 |2 + O(|𝑥 |3) (38)

which shows explicitly how curvature induces local com-
pression or dilation. Higher order terms contain gradi-
ents and higher order invariants of 𝑅𝑖 𝑗𝑘𝑙, and therefore
are completely determined by 𝐾. Thus it follows that if
the quadratic contribution vanishes, then the metric is
totally flat in the neighborhood.

B. Pertubative polygon area expansion

To explicitly parameterize the polygonal cell 𝐷, we
will consider a regular n-gon and decompose it into 2n-
triangles about its centroid as pictured in figure 3.

Working in terms of polar coordinates, this yields for
the first term∫

𝐷

𝑑2𝑥 = 2𝑛

∫ 𝜋
𝑛

0

∫ 𝑅cell cos( 𝜋𝑛 ) sec \

0

𝑑\𝑟𝑑𝑟

= 𝑛𝑅2
cell cos

( 𝜋
𝑛

)2
tan

( 𝜋
𝑛

)
(39)

In the limit of 𝑛 → ∞ we get 𝜋𝑅2
cell, as expected for

circles. Using the same coordinate system, we compute
the first correction due to curvature

R
3

∫
𝐷

|𝑥 |2𝑑2𝑥 = R
3
2𝑛

∫ 𝜋
𝑛

0

∫ 𝑅cell cos( 𝜋𝑛 ) sec \

0

𝑑\𝑟3𝑑𝑟

=
R
6
𝑅4
cell cos

4
( 𝜋
𝑛

)
𝑛

(
2

3
+ 1

3
sec2

( 𝜋
𝑛

))
tan

( 𝜋
𝑛

)
(40)

C. Mean field vertex model

The mean field model is defined by the area and
perimeter of a single cell, which is parameterized by n-
edges a𝛼 given by

®a𝛼 ≡ ℓ0
(
cos

(
2𝜋𝛼

𝑛

)
, sin

(
2𝜋𝛼

𝑛

))
(41)

Where ℓ0 the characteristic cell edge length. The perime-
ter is the sum of each edge length

𝑃 =

𝑛∑︁
𝛼

√︁
®a𝛼 · ®a𝛼 (42)

θ = #
$

% = #($ − 2)
2$

R!"##
ℓ! = 2R"#$$ sin/

R"#$$ cosθ
3⃗4 A ⃤=

!
" |a×b|

FIG. 3. To make our calculation easily applicable to squares,
pentagons, and hexagons we work with this figure to switch
between the different polygons and different choices of encod-
ing cell shape either via edge length ℓ0 or cell radius 𝑅cell.

Under an affine transformation, denoted as the matrix F,
the perimeter transformations as

𝑃 =

𝑛∑︁
𝛼

√︁
(F®a𝛼) · (F®a𝛼) (43)

The area can be calculated by the cross product

𝐴 =

∫
𝐷

𝑑𝑥2 = 𝑛| ®𝑎 × ®𝑏 | (44)

where ®𝑎 and ®𝑏 are defined in Fig.3.
The polygon will be changed under some affine trans-

formation F. The area term is striaigtforeward since cross

product transforms as | (F®𝑎) × (F®𝑏) | = det(F) | ®𝑎× ®𝑏 |. Thus
under any affine transformation, the area term takes the
simple form

𝐴 =det(F)𝑛| ®𝑎 × ®𝑏 | (45)

=det(F) 𝑛
4
ℓ20 cot

( 𝜋
𝑛

)
(46)

The energy per cell is cast as

𝐸 =
^𝐴

2

(𝑛
4
ℓ20 cot

( 𝜋
𝑛

)
det(F) − 𝐴0

)2
+ ^𝑃
2

(
𝑛∑︁
𝛼

√︁
(F®a𝛼) · (F®a𝛼) − 𝑃0

)2
(47)

To non-dimensionalize we define reference lengths ℓ𝐴 and
ℓ𝑃 such that

𝐴0 =
𝑛

4
ℓ2𝐴 cot

( 𝜋
𝑛

)
(48)

𝑃0 = 𝑛ℓ𝑃 (49)
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And rescale energy by ^𝐴𝐴
2
0, yielding

𝐸 =
1

2

(
ℓ2 det(F) − 1

)2 + 𝑟
2

(
ℓ

𝑛∑︁
𝛼

√︁
(F®a𝛼) · (F®a𝛼) − 𝑠0

)2
(50)

Where 𝑟 ≡ ^𝑃
^𝐴𝐴0

, 𝑠0 ≡ 𝑃0√
𝐴0

is the target shape index, and

ℓ ≡ ℓ0√
𝐴0

is the re-scaled characteristic cell edge length.

In the incompatible state, the ground state corre-
sponds to a regular polygon with ℓ0 defined to mini-
mize the energy. This involves solving the following cubic
equation.

𝜕𝐸

𝜕ℓ
= 0 (51)

The relevant solution obeys the inequality ℓ ≤ 1 for all
𝑠0 ≤ 𝑠∗0. In the compatible state energy minimization
yields that ℓ ≡ 1 for choices of 𝑟 and 𝑠0 ≥ 𝑠∗0.

Inputting deformations

The linear transformation F encodes both applied de-
formations and cell response. We assume that all shape
distortions of the cell can be captured in by linear affine
transformation. Although the non-affine contribution is
important in calculating exactly even the linear response
of the vertex model as shown by the authors [11].

The applied deformation is set by a transformation
rule. In this article we focus on compression and dila-
tion, which yields the matrix

F𝜖 =

(
1 + 𝜖 0
0 1 + 𝜖

)
(52)

On top of this, we also will allow the cell to adjust its
perimeter without changing the imposed re-scaled area.
This imposes the constraint

det(Fcell) = 1 (53)

Which only fixes a single degree of freedom, leaving in
principle three components of Fcell free. For simplicity,
we only consider the the cell’s response by tilting through
a simple shear transformation

Fcell
\ =

(
1 tan(\)
0 1

)
(54)

Note that our mean field model is invariant under rota-
tions since area and perimeter are rotationally invariant
objects. Additionally, if we include other affine transfor-
mation, all their respectively matrices F will commute
with one another.

We set the overall net deformation gradient in the
mean field model as

F = Fcell
\ · F𝜖 =

(
1 tan(\)
0 1

) (
1 + 𝜖 0
0 1 + 𝜖

)
(55)

With these two shape degrees of freedom, 𝜖 and \,
we study the non-linear response to finite compres-
sion/dilation and extract our rigidity transition shift due
to curvature.
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