

View

Online

Export
Citation

CrossMark

RESEARCH ARTICLE | SEPTEMBER 18 2023

Recent advances in the SISSO method and their
implementation in the SISSO++ code
Special Collection: Software for Atomistic Machine Learning

Thomas A. R. Purcell ; Matthias Scheffler ; Luca M. Ghiringhelli

J. Chem. Phys. 159, 114110 (2023)
https://doi.org/10.1063/5.0156620

 16 January 2024 14:37:07

https://pubs.aip.org/aip/jcp/article/159/11/114110/2911564/Recent-advances-in-the-SISSO-method-and-their
https://pubs.aip.org/aip/jcp/article/159/11/114110/2911564/Recent-advances-in-the-SISSO-method-and-their?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jcp/article/159/11/114110/2911564/Recent-advances-in-the-SISSO-method-and-their?pdfCoverIconEvent=crossmark
https://pubs.aip.org/jcp/collection/1349/Software-for-Atomistic-Machine-Learning
javascript:;
https://orcid.org/0000-0003-4564-7206
javascript:;
https://orcid.org/0000-0002-1280-9873
javascript:;
https://orcid.org/0000-0001-5099-3029
javascript:;
https://doi.org/10.1063/5.0156620
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2291284&setID=592934&channelID=0&CID=842343&banID=521636251&PID=0&textadID=0&tc=1&scheduleID=2211497&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1705415827547809&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0156620%2F18128272%2F114110_1_5.0156620.pdf&hc=b6cf7cc03365848e2543bda46d2684219b1c6875&location=

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Recent advances in the SISSO method
and their implementation in the SISSO++ code

Cite as: J. Chem. Phys. 159, 114110 (2023); doi: 10.1063/5.0156620
Submitted: 1 May 2023 • Accepted: 21 August 2023 •
Published Online: 18 September 2023

Thomas A. R. Purcell,1,a) Matthias Scheffler,1 and Luca M. Ghiringhelli1 ,2,b)

AFFILIATIONS
1 The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin,
Faradayweg 4–6, D-14195 Berlin, Germany

2Physics Department and IRIS-Adlershof, Humboldt Universität zu Berlin, Zum Großen Windkanal 2, D-12489 Berlin, Germany

Note: This paper is part of the JCP Special Topic on Software for Atomistic Machine Learning.
a)Electronic mail: purcell@fhi-berlin.mpg.de
b)Author to whom correspondence should be addressed: ghiringhelli@fhi-berlin.mpg.de

ABSTRACT
Accurate and explainable artificial-intelligence (AI) models are promising tools for accelerating the discovery of new materials. Recently,
symbolic regression has become an increasingly popular tool for explainable AI because it yields models that are relatively simple analytical
descriptions of target properties. Due to its deterministic nature, the sure-independence screening and sparsifying operator (SISSO) method
is a particularly promising approach for this application. Here, we describe the new advancements of the SISSO algorithm, as implemented
into SISSO++, a C++ code with Python bindings. We introduce a new representation of the mathematical expressions found by SISSO.
This is a first step toward introducing “grammar” rules into the feature creation step. Importantly, by introducing a controlled nonlinear
optimization to the feature creation step, we expand the range of possible descriptors found by the methodology. Finally, we introduce
refinements to the solver algorithms for both regression and classification, which drastically increase the reliability and efficiency of SISSO.
For all these improvements to the basic SISSO algorithm, we not only illustrate their potential impact but also fully detail how they operate
both mathematically and computationally.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156620

I. INTRODUCTION

Data-centric and artificial-intelligence (AI) approaches are
becoming a vital tool for describing physical and chemical properties
and processes. The key advantage of AI is its ability to find correla-
tions between different sets of properties without the need to know
which ones are important before the analysis. Because of this, AI has
become increasingly popular for materials discovery applications
with uses in areas such as thermal transport properties,1,2 catalysis,3
and quantum materials.4 Despite the success of these methodolo-
gies, creating explainable and physically relevant AI models remains
an open challenge in the field.5–7

One prevalent set of methods for explainable AI is sym-
bolic regression.8–11 Symbolic regression algorithms identify opti-
mal nonlinear, analytic expressions for a given target prop-
erty from a set of input features, i.e., the primary features,
that are related to the target.12 Originally, (stochastic) genetic-
programming-based approaches were and still are used to find these

expressions,12–15 but recently, a more diverse set of solvers have
been developed.16–21 The sure-independence screening and spar-
sifying operator (SISSO) approach combines symbolic regression
with compressed sensing22–25 to provide a deterministic way of
finding these analytic expressions. This approach has been used to
describe numerous properties, including phase stability,23,26,27 catal-
ysis,28 and glass transition temperatures.29 It has also been used in a
multi-task22 and hierarchical fashion.25

In this paper, we introduce the new concepts implemented in
the recently released SISSO++ code24 and detail their implemen-
tation. SISSO++ is a new, modular implementation of SISSO that
provides a more user-friendly interface to run SISSO with several
methodological updates. Before detailing the updated methodology,
we summarize the main aspects of the SISSO algorithm and define
some of the terminologies we use below. The SISSO approach starts
with a collection of primary features and mathematical unary and
binary operators (e.g., addition, multiplication, nth root, and log-
arithms). The first step is the feature-creation step, where a pool

J. Chem. Phys. 159, 114110 (2023); doi: 10.1063/5.0156620 159, 114110-1

Published under an exclusive license by AIP Publishing

 16 January 2024 14:37:07

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0156620
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0156620
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0156620&domain=pdf&date_stamp=2023-September-18
https://doi.org/10.1063/5.0156620
https://orcid.org/0000-0003-4564-7206
https://orcid.org/0000-0002-1280-9873
https://orcid.org/0000-0001-5099-3029
mailto:purcell@fhi-berlin.mpg.de
mailto:ghiringhelli@fhi-berlin.mpg.de
https://doi.org/10.1063/5.0156620

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

of generated features is built by exhaustively applying the set of
mathematical operators onto the primary features. The algorithm
is iteratively repeated by applying the set of operators onto the
previously generated features. The number of iterations in this
feature-creation step is called the rung. The generated features, pro-
jected onto the training dataset, build the so-called sensing matrix
D, with one column for each generated feature and one row for each
data point.

The subsequent step is the descriptor identification step, i.e.,
compressed sensing is used to identify the best D-dimensional linear
model by performing an ℓ0-regularized optimization on a subspace
S of all generated features. S is selected using sure-independence
screening30 (SIS), with a suitable projection score, depending on the
loss function used to evaluate the models. For a regression prob-
lem (see further below for the discussion of classification problems),
i.e., the prediction of a continuous property P (an array with as
many components as the number of training points), one solves
argminc∥Dc − P∥2 + λ∥c∥0, where ∥c∥0 is the number of nonzero
components in c, which we call the dimensionality D of the model
Dc. The hyperparameter λ is fixed by cross-validation, i.e., by min-
imizing the validation error over the values of D. Within the SISSO
algorithm, the SIS step works iteratively by ranking all generated
features according to their Pearson correlation values to the target
property and adding only the most correlated features to S. At the
next iteration, SIS ranks and adds to S the features that Pearson cor-
relate the most with the residual of the previous step, ΔD−1, i.e., the
difference between P, and the estimates predicted by the (D − 1)-
dimensional model: ΔD−1 = DcD−1 − P. The SIS step is followed by
the sparsifying operator (SO) step, where linear-regression models
are trained on all subsets of features in S, i.e., on all single features,
then all pairs, then all triplets, etc. This yields a set of models of
dimensions D = 1, 2, 3, etc. For each dimension, models are ranked
by training error and the best model is selected. The model with the
lowest validation error across dimensions is the final SISSO model.
In practice, models at increasing dimension are trained until the val-
idation error starts increasing or reaches a plateau. In summary, the
result of the SISSO analysis is a D−dimensional descriptor, which
is a vector with components from S. For a regression problem, the
SISSO model is the scalar product of the identified descriptor with
the vector of linear coefficients resulting from the ℓ0-regularized
linear regression.

For a classification problem, the SISSO model is given as a set
of hyperplanes that divide the data points into classes, which are
described by the scalar product of the identified descriptor, with a set
of coefficients found by linear support vector machines (SVMs). The
loss function for classification is based on a convex-hull algorithm,
where the convex hulls for each set of points with the same prop-
erty label, i.e., the same class, are evaluated, and the algorithm tries
to minimize the number of data points inside more than one con-
vex hull, i.e., the number of points inside the overlap region. The SIS
step ranks features by how well an individual feature separates the
remaining unclassified data points by first minimizing the number
of misclassified points and then minimizing the hypervolume of the
overlap region where they are located. When a feature leaves no mis-
classified points, the tiebreaker maximizes the minimum separation
distance between points in different classes. The residual here is the
set of all misclassified points from the D − 1-dimensional descriptor.
The SO uses a convex-hull based loss function, i.e., minimizes the

number of points inside the overlap region of a set of D-dimensional
convex hulls.

This paper is organized as follows. We separately describe
the recent updates to the SISSO methodology for the feature cre-
ation (Sec. II) and descriptor identification steps (Sec. III). The most
important advancement of the code is expressing the features as
binary expression trees (Subsection II A), instead of strings, allowing
us to recursively define all aspects of the generated features from the
primary features. With this implementation choice, we are able to
keep track of the units for each generated feature, as well as an initial
representation of its domain and range. This allows for the cre-
ation of grammatically correct expressions, in terms of consistency
of the physical units, and the control of numerical issues generated
by features going out of their physically meaningful range. In terms
of the feature-creation step, we also discuss the implementation of
parametric SISSO (Subsection II B), which introduces the flexibil-
ity of nonlinear parameters together with the operators that are
optimized against a loss function based on the compressed-sensing-
based feature-selection metrics. This procedure was used to describe
the thermal conductivity of a material in a recent publication.31

For the descriptor-identification step, we cover two components: an
improved classification algorithm and the multi-residual approach.
For classification problems, we generalized the algorithm to work
for any problem to an arbitrary dimension and explicitly include a
model identification via linear SVM (Subsection III A). The multi-
residual approach (Subsection III B), which was previously used in
Ref. 25, introduces further flexibility for the identification of mod-
els with more than one dimension. Here, we provide an in-depth
discussion of its machinery.

II. FEATURE CREATION
A. Binary-expression-tree representation of features

The biggest advancement to the implementation of SISSO in
SISSO++, compared to the original implementation in Ref. 23, is its
modified representation of the features as binary expression trees,
instead of strings. While the choice of feature representation does
not affect the methodology and could be used in any implemen-
tation, it does impact the performance and readability of the code
base. This representation is illustrated in Fig. 1 and easily allows
for all aspects of the generated features to be recursively calculated
on the fly from the data stored in the primary features. For certain
applications, it is also possible to store the data of higher-rung fea-
tures to reduce the overall computational cost of the calculations.
The individual features are addressed by the root node of the binary
expression tree and stored in the code as a SHARED_PTR from the
C++ standard library. This representation reduces the overall mem-
ory footprint of each calculation as the individual features only need
to be created once and only copies of shared pointers need to be
stored for each new expression. The remainder of this section will
be used to describe the various aspects of the new representation,
including a description of the units and range of the features, as well
as how it is used to generate the feature space.

1. Units
An important upgrade in SISSO++ is its generalized and exact

treatment of units for the expressions. In physics, dimensional anal-
ysis is an important tool when generating physically meaningful

J. Chem. Phys. 159, 114110 (2023); doi: 10.1063/5.0156620 159, 114110-2

Published under an exclusive license by AIP Publishing

 16 January 2024 14:37:07

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 1. A demonstration of the new representation of the features in the SISSO++
code. The feature is stored as the root of the tree (represented by the thick border),
the primary features are the leaves, and the rung corresponds to the height of
the tree, i.e., the longest path between each leaf and the root. The unit, range,
expressions, and values of the features are necessarily stored only for the primary
features, with them defined recursively for all generated features.

expressions, and it is necessary to include it when using symbolic
regression for scientific problems. We introduced this into SISSO++
by determining the units for each new expression from the primary
features and explicitly checking to ensure that a new expression is
physically possible. Within the code, the UNITS are implemented as
dictionaries with the key representing the base unit and the value
representing the exponent for each key, e.g., m/s2 would be stored as
{m : 1, s : −2}. Functions exist to transform the UNITS to and from
strings to more easily represent the information. We then imple-
mented a multiplication, division, and power operators for these
specialized dictionaries, allowing for the units of the generated fea-
tures to be derived recursively following the rules in Table I. An
important caveat is that the current implementation cannot con-
vert between two units for the same physical quantity, e.g., between
nanometers, picometers, and Bohr radii for length.

Using this implementation of units, a minimal treatment of
dimensional analysis can be performed in the code. The dimensional

TABLE I. How the units are calculated for each operation.

Operation Resulting unit

A + B Unit (A)
A − B Unit (A)
A ∗ B Unit (A) ∗ unit (B)
A/B Unit (A)/unit (B)
∣A − B∣ Unit (A)
∣A∣ Unit (A)
sin (A) Unitless
cos (A) Unitless
exp (A) Unitless
exp (−A) Unitless
log (A) Unitless
(A)−1 Unit (A)−1

(A)2 Unit (A)2

(A)3 Unit (A)3

(A)6 Unit (A)6
√

A Unit (A)1/2

3
√

A Unit (A)1/3

TABLE II. Restrictions for each unit; if an operation is not listed, there are no
restrictions.

Operation Unit restriction

A + B Unit (A) = = unit (B)
A − B Unit (A) = = unit (B)
∣A − B∣ Unit (A) = = unit (B)
sin (A) Unit (A) = = ∅
cos (A) Unit (A) = = ∅
exp (A) Unit (A) = = ∅
exp (−A) Unit (A) = = ∅
log (A) Unit (A) = = ∅

analysis focuses on whether the units are consistent within each
expression and for the final model. This check is used to determine
the units of the fitted constants in the linear models at the end, which
can take arbitrary units and therefore, can do any unit conversion
natively. The restrictions, used to reject expressions by dimensional
analysis, are outlined in Table II and can be summarized as follows:
Addition and subtraction are only allowed to act on features of the
same units, and all transcendental operations must act on a unitless
quantity. With these two restrictions in place, only physically rele-
vant features can be found, and the choice of units should no longer
affect which features are selected. If one wants to revert back to pre-
vious descriptions without these restrictions, this can be achieved by
providing all primary features with no units associated with them.

2. Range
Another important advancement of the feature-creation step

is the introduction of ranges for the primary features, which act
as a domain for future operations during feature creation. One of
the challenges associated with symbolic regression, especially with
smaller datasets, is that the selected expressions can sometimes con-
tain discontinuities that are outside of the training data, but still
within the relevant input space for a given problem. For example,
this can lead to an expression taking the logarithm of a negative
number, resulting in an undefined prediction. SISSO++ solves this
problem by including an option for describing the range of a pri-
mary feature in a standard mathematical notation, e.g., [0,∞) , and
then using that to calculate the range for all generated formulas using
that primary feature, following the rule specified in Table III. In the
code, the ranges are referenced as the DOMAIN because the range
for a feature of rung n − 1 is the domain for a possible expression of
rung n that is using that feature. While all ranges in Table III assume
inclusive endpoints, the implementation can handle both exclusive
endpoints and a list of values explicitly excluded from the range, e.g.,
point discontinuities inside the primary features themselves.

Table IV lists the cases where the range of a feature is used to
prevent a new expression from being generated. In all cases, this pre-
vents an operation from occurring where a mathematical operation
would be not defined, such as taking the square-root of a negative
number. In cases where the range of values for a primary feature is
not defined, then these checks are not performed and the original
assumption that all operations are safe is used.

B. Parametric SISSO
Parametric SISSO extends the feature creation step of SISSO

to automatically include scale and bias terms for each operation, as

J. Chem. Phys. 159, 114110 (2023); doi: 10.1063/5.0156620 159, 114110-3

Published under an exclusive license by AIP Publishing

 16 January 2024 14:37:07

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

TABLE III. How the range for each operation is calculated.

Operation Resulting range

A + B [min (A) +min (B), max (A) +max (B)]
A − B [min (A) −max (B), max (A) −min (B)]
A ∗ B [min (min (A) ∗ min (B), min (A) ∗ max (B), max (A) ∗ min (B), max (A) ∗ max (B)),

max (min (A) ∗ min (B), min (A) ∗ max (B), max (A) ∗ min (B), max (A) ∗ max (B))]
A/B [Range(A) ∗ Range(B−1)]
sin (A) [−1, 1]
cos (A) [−1, 1]
exp (A) [exp (min (A)), exp (max (A))]
exp (−A) [exp (−max (A)), exp (−min (A))]
log (A) [log (min (A)), log (max (A))]
(A)−1 if(0 ∈ Range(A)): and min (A) ! = 0 and max (A)! = 0:

(−∞, 0) ∪ (0,∞)
else if (0 ∈Range(A)) and min (A) == 0:

(0,∞)
else if (0 ∈Range(A)) and max (A) == 0:

(−∞, 0)
else:
[(max (A))−1, (min (A))−1]

(A)3 [(min (A))3, (max (A))3]
√

A [
√

min (A),
√

max (A)]
3
√

A [3
√

min (A), 3
√

max (A)]
∣A∣ [max (0, min (A)), max (∣max (A)∣, ∣min (A)∣)]
(A)2 [max (0, min (A))2, max (∣max (A)∣, ∣min (A)∣)2]
(A)6 [max (0, min (A))6, max (∣max (A)∣, ∣min (A)∣)6]
∣A − B∣ [max (0, min (A) −max (B)),

max (∣max (max (A) −min (B))∣, ∣min (max (A) −min (B))∣)]

TABLE IV. Domain restrictions for each operation; if an operation is not listed, there
are no restrictions.

Operation Domain restriction

A/B 0 ∉ Range(B)
(A)−1 0 ∉ Range(A)
log (A) min (Range(A)) > 0√

A min (Range(A)) ≥ 0

used by Purcell et al.31 For a general operator, ĥ(x) ∈ Ĥ, with a set of
scale and bias parameters, P̂, the parameterization scheme updates
the operator to be

ĥ(x)→ ĥ P̂ (αx + β), (1)

where α is the scale parameter, β is the bias term, and x is a vector
containing all input data. For binary operators, the scale and shift
parameters for both input features can be set, leading to

ĥ(x0, x1)→ ĥ(α0x0 + β0, α1x1 + β1). (2)

These new operators can then be used to create a new feature,
ϕ̂ P̂ (x), as is normally done in SISSO, where each feature has its own
set of parameters stored as a vector. However, it is important to note
that when the operations are combined or incorporated into a lin-
ear model, as is done in SISSO, some of the parameters will become
linearly dependent on each other. For example, the multiplication
operation would be defined as

(α0x0 + β0)(α1x1 + β1), (3)

which expands to

α0α1x0x1 + α0β1x0 + α1β0x1 + β0β1. (4)

By factoring out α0α1 from the expression and defining β′0 = β0
α1

and
β′1 = β1

α0
, we can rewrite this expression to be

α0α1(x0x1 + β′1x0 + β′0x1 + β′0β′1). (5)

J. Chem. Phys. 159, 114110 (2023); doi: 10.1063/5.0156620 159, 114110-4

Published under an exclusive license by AIP Publishing

 16 January 2024 14:37:07

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

TABLE V. The free parameters and updated equations for each operation used in the
updated feature creation step of SISSO. For each operation, parameter restrictions
are shown in the third column.

Operation Parameterized expressions Fixed parameters

A + B A + α1B β0 = 0; β1 = 0; α0 = 1
A − B A − α1B β0 = 0; β1 = 0; α0 = 1
A ∗ B (A + β0) ∗ (B + β1) α0 = 1; α1 = 1
A/B (A + β0)/(B + β1) α0 = 1; α1 = 1
∣A − B∣ ∣A − (α1B + β1)∣ β0 = 0; α0 = 1

∣A∣ ∣A + β∣ α = 1
sin (A) sin (αA + β)
cos (A) cos (αA + β)
exp (A) exp (αA) β = 0; α > 0
exp (−A) exp (−αA) β = 0; α > 0
log (A) log (αA + β) α = ±1
(A)−1 (A + β)−1 α = 1
(A)2 (A + β)2 α = 1
(A)3 (A + β)3 α = 1
(A)6 (A + β)6 α = 1√

A
√

αA + β α = ±1
3
√

A 3
√

A + β α = 1

This expression can then be refactored, resulting in

α0α1(x0 + β′0)(x1 + β′1), (6)

with the α0α1 term getting set by either the linear model or an oper-
ator further up the tree. For the log operator, α is always set to ±1 to
also avoid these linear dependencies as

log (±∣α∣x + β) = log(±x + β
∣α∣) + log (∣α∣). (7)

Although this does leave a unit dependency, it can be removed with

ln (±x + β)→ ln (αunit(±x + β)) − ln (αunit), (8)

where αunit is the unit conversion factor. Table V defines all the free
parameters for each operation in parametric SISSO.

This parameterization scheme is created at the root node and
is recursively defined for all other operators in the binary expres-
sion tree at any level below the root. As a result, we introduce a new
hyperparameter, the parameterization level, Pl, to specify the maxi-
mum number of levels that can be included within the parameters.
For example, if Pl = 1, then only the root node and its associated
parameters will be optimized, but if Pl = 2, then the parameters
associated with the root node and its children will be optimized.
This is best illustrated in Fig. 2, where a parameterized-sine oper-
ator (blue node) is acting on a parameterized square expression (left
graph/green and orange nodes), (x + βsq

0)
2 and an unparameterized

cube expression (right graph/red and orange nodes), (x)3. In both
cases when Pl = 1, only the scale and shift parameters associated
with the sine operator are optimized, with all other previously found
or not included parameters fixed to their current values, with the
resulting expressions shown in the lower row of Fig. 2. However, if
Pl = 2, then the parameters for the square and cube operations (βsin

1)
are added to those of the sine operator, and the entire expression is

FIG. 2. A graphical representation of the effect of the parameterization level for
the case where a new parameterized operator is added to a feature that was (left)
or was not (right) previously parameterized. If Pl = 1, then only the parameters
associated with the root node (blue, sine operator), αsin

0 and βsin
0 , get optimized.

If the non-root operations were previously parameterized, then those parameters,
βsq

0 , remain fixed. If Pl = 2, then additional parameters associated with child nodes
(βsin

1) are added to the set that are to be optimized irregardless of if the previous
child node had optimized parameters.

optimized. The resulting equations in this case are shown in the
upper row of Fig. 2.

Once ϕ̂ P̂ (x) is defined, all parameters p̂ ∈ P̂ are optimized
using the nonlinear optimization library NLopt.32 We use the
Cauchy loss function as the objective for the optimization,

min
P̂

f (P, ϕ̂ P̂) (9a)

f (P, ϕ̂ P̂) =
nsamp

∑
i

c2

nsamp
log
⎛
⎝

1 + (Pi − ϕ̂ P̂ (xi)
c

)
2⎞
⎠

, (9b)

where P is a property vector, c is a scaling factor set to 0.5 for all cal-
culations, and nsamp is the number of samples. We use the Cauchy
loss function over the mean square error to make the nonlinear
optimization more robust against outliers in the dataset. Because
Eq. (9b) is not scale or bias invariant, additional external parameters
αext and βext are introduced to, respectively, account for these effects.
For the case of multi-task SISSO,22 each task has its own external bias
and scale parameters to account for the individual linear-regression
solutions. As an example for the features illustrated in Fig. 2 (Pl = 2),
the functions that are optimized would be

ϕ̂ P̂ (x) = αext sin (αsin
0 (x + βsin

1)
2 + βsin

0) + βext , (10a)

ϕ̂ P̂ (x) = αext sin (αsin
0 (x + βsin

1)
3 + βsin

0) + βext. (10b)

To initialize the parameters in P̂, we set all internal α and β terms
to 1.0 and 0.0, respectively, and αext and βext are set to the solution
of the least squares regression problem for each task. In some cases,
β can be set to a nonzero value if leaving it at zero would include
values outside the domain of the operator. In these cases, β is set to
min (sign (α)x) + 10−10.

Each optimization follows a two or three step process out-
lined here. First, a local optimization is performed to find the local
minimum associated with the initial parameters. Once, at a local
minimum, an optional global optimization is performed to find
any minima that are better than the one initially found. For these
first two steps, the parameters are optimized to a relative tolerance
of 10−3 and 10−2, respectively, with a maximum of five thousand

J. Chem. Phys. 159, 114110 (2023); doi: 10.1063/5.0156620 159, 114110-5

Published under an exclusive license by AIP Publishing

 16 January 2024 14:37:07

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 3. A comparison of the expressions found nonparametric (a), (c), and (e) and parametric (b), (d), and (f) SISSO for a Lorentzian (a), (b), (e), and (f) and sine (c) and (d)
function. Blue dots represent the training data, and the red line represents the expressions found by SISSO. The parameterization scheme either finds the correct (b) and (d)
or better (f) model than the nonparametric functions, even when the high noise or bad initial guess of the parameters leads to a nonoptimal solution.

function evaluations for each step. Finally, a more accurate local
optimization is done to a relative tolerance of 10−6 to find the best
parameter set. For this final optimization, ten thousand function
evaluations are allowed. Additionally, for both the initial and global
optimization steps, the parameters are bounded to be in a range
between −100 and 100 to improve the efficiency of the optimiza-
tion, but this restriction is removed for the final optimization. For
all local optimizations, the subplex algorithm,33 a faster and more
robust variant of the Nelder–Mead simplex method,34 is used. The
improved stochastic ranking evolution strategy algorithm35 is used
for all global optimizations. Once optimized, only the internal α and
β parameters are stored in P̂. This procedure is repeated for all oper-
ators specified to be parameterized by the user, so it can increase the
cost of feature creation considerably.

Figure 3 illustrates the power of the new parameterization
scheme. For both toy problems represented by analytic Lorentzian
and sine functions with some white noise, the nonparametric version
of SISSO cannot find accurate models for the equations as it cannot
address the nonlinearities properly. By using this new parameteri-
zation scheme, SISSO is now able to accurately find the models, as
shown in Figs. 3(c) and 3(d). However, it is important to note that
the more powerful featurization comes at the cost of a significantly
increased time to generate the feature space as the parameterization

becomes the bottleneck for the calculations. Additionally, there can
be cases where the parameterization scheme does not find an optimal
solution because there is too much noise or the optimal parameters
are too far away from the initial guesses, as shown in Figs. 3(e)
and 3(f).

C. Building the complete feature set
With all the new aspects of the feature representation in place,

SISSO++ has a fully parallelized feature set construction that uses a
combination of threads and Message Passing Interface (MPI) ranks
for efficient feature set construction. The basic process of creating
new features is illustrated in Fig. 4, where each new rung builds on
top of existing features by adding a new operation on top of exist-
ing binary expression trees for the previous rung. In this step, the
operators are separated into parameterized and nonparameterized
versions of each other to allow for the optional use of the paramet-
ric SISSO concepts. Throughout this process, all checks are done
to ensure that the units are correct and the domains for each new
operation are respected. For example, this is why sin (t) and sin (ω)
are not included in the rung 1 features as taking the sine of a unit
quantity is physically meaningless. If the sine operation was replaced
by an algebraic operation or included the parameterization scheme,

J. Chem. Phys. 159, 114110 (2023); doi: 10.1063/5.0156620 159, 114110-6

Published under an exclusive license by AIP Publishing

 16 January 2024 14:37:07

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 4. Illustration of how the feature space of SISSO is created. In this example,
the user selects two primary features ω (purple) and t (orange) and three opera-
tors sin (blue), multiplication (green), and division (red). SISSO then builds up a
more complicated expression space by applying the operations onto the existing
features by increasing the height of the binary expression trees. Throughout this
process, the units and ranges of each of the operations are respected.

then two additional rung 1 features would be created with the unary
operations acting on each primary feature. Finally, the code checks
for invalid values, e.g., NAN or INF, and some basic simplifications
for all features, e.g., features such as tω

ω , are rejected.

III. DESCRIPTOR IDENTIFICATION
A. Linear programming implementation
for classification problems

One of the largest updates to the SISSO methodology is the new,
generalized approach for solving classification problems. In previous
implementations, when finding a classification scheme, SISSO would
explicitly build the convex hull and then calculate the number of
points inside the overlap region between different classes and either
the normalized overlap volume or separation distance to find the
optimal solution. While this works for two dimensions, finding the
overlap volume or separation distance becomes intractable for three
or more dimensions, and even defining the convex hull becomes
intractable for four- or more-dimensional classification. SISSO++
replaces these conditions with an algorithm that determines the
number of points inside the convex-hull overlap region using lin-
ear programming and explicitly creates a model using linear SVM.
While for small problem sizes explicitly checking all possible models
with linear SVM would be possible, for real-world problems where
SISSO has to evaluate more than ten million possible combina-
tions of features, this becomes too expensive. To solve this problem,

SISSO++ uses a linear-programming algorithm that checks for the
feasibility of

min 0

subject to∑
i∈I

αixi = x j , ∑
i∈I

αi = 1, αi ≥ 0, ∀i ∈ I, (11)

where xi is the ith point inside the set of all points of a class I, αi
is the coefficient for xi, and xj is the point to check if it is inside
the convex hull. The above problem is only feasible if and only if xj
lies inside the set of points, I, representing a class in the problem.
Here, we are optimizing a zero function because the actual solution
to this optimization does not matter; rather, it is important that such
a solution can be found, i.e., the constraints can be fulfilled. The fea-
sibility and linear-programming problem is defined using the CLP
library.36 The classifier then tries to minimize the number of points
that are inside more than one of the convex hulls, with the region
of feature space that contains the overlap between any of the convex
hulls defined as the overlap region. Once the number of points in
the overlap region is determined, a linear SVM model is calculated
for the best candidates and used as the new tie-breaking procedure.
The first tiebreaker is the number of misclassified points by the SVM
model, and the second one is the margin distance. The SVM model
is calculated using libsvm.37

FIG. 5. A demonstration of the classification algorithm. A set of 1000 points of
three features, x0, x1, and x2, are sampled from a Gaussian distribution with a
standard deviation of 0.5 and centered at the origin. The set is separated into
four classes (the red, black, yellow, and light blue circles) by the planes x0 + x1
+ x2 = 0 and x2 = 0 (green surfaces). (a) All points where ∣x0 + x1 + x2∣ < 0.6 or
∣x2∣ < 0.45 are moved to a random point in the same class, but outside the margin
region, and (b) the original data stored as x3, x4, and x5. The updated classification
algorithm correctly determines that {x0 , x1, and x2} is the superior classifier, while
for the original definitions of only the convex overlap region for three and more
dimensions, they would be considered equally good. The projections are shown
with an elevation angle of 7.5○ and an azimuthal angle of 145○.

J. Chem. Phys. 159, 114110 (2023); doi: 10.1063/5.0156620 159, 114110-7

Published under an exclusive license by AIP Publishing

 16 January 2024 14:37:07

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Figure 5 demonstrates the capabilities of the new classification
algorithm on a toy problem where a spherical point cloud is sep-
arated into four classes by the planes x0 + x1 + x2 = 0 and x2 = 0.
The choice to use a three-dimensional model was done to demon-
strate that the new method can work beyond two dimensions and
still be easily visualized, but in principle, this can find a descriptor
with an arbitrary dimension. In this example, we randomly sam-
ple a Gaussian distribution with a standard deviation of 0.5 and
centered at the origin to generate one thousand samples for three
features, x0, x1, and x2, which are then copied and relabeled to x3,
x4, and x5. The samples are then separated into four classes based on
whether (x0 + x1 + x2) is greater than (light blue and black) or less
than (red and yellow) zero and whether x2 > 0 (red and light blue)
or x2 < 0 (black and yellow). To better highlight the separation of
the four classes, an artificial margin area is created for x0, x1, and x2
by replacing all points where ∣x1 + x2 + x3∣ < 0.6 or ∣x2∣ < 0.45, with
another random point away from the margin, but still within the
same class. To focus on the new solver, we do not perform the fea-
ture creation step of SISSO for this problem; however, the rung two
feature of (x0 + x1) + x2 and x2 would be able to completely sepa-
rate the classes in two dimensions. Using the updated algorithm,
SISSO can now easily identify that the set {x0, x1, x2} is the better
classifier than the set {x3, x4, x5}, which all previous implementa-
tions would fail to do as neither set has any points in the overlap
region. More importantly, SISSO now provides the D-dimensional
dividing planes found by linear-SVM for all pairs of classes creating
an actual classifier automatically.

B. Multiple residuals

The second advancement to the descriptor-identification step
of the SISSO algorithm is the introduction of a multiple-residuals
approach to select the features for models with a dimension higher
than one. As outlined in the Introduction, in the original SISSO
algorithm,38 the residual of the previously found model, Δ0

D−1,
i.e., the difference between the vector storing the values of the
property for each sample, P, and the estimates predicted by the
(D − 1)-dimensional model (Δ0

D−1 = DcD−1 − P), is used to calcu-
late the projection score of the candidate features during the SIS
step for the best D-dimensional model, s0

j = R2(Δ0
D−1, d j). Here, R is

the Pearson correlation coefficient, representing a regression prob-
lem, and j corresponds to each expression generated during the
feature-creation step of SISSO. In SISSO++,24 we extend the resid-
ual definition and use the best r residuals to calculate the projection
score: max (s0

j , s1
j , . . . , sr−1

j). The multiple-residual concept general-
izes the descriptor identification step of SISSO by using information
from an ensemble of models to determine which features to add to
the selected subspace. The ensemble is created by using the r best
models from the DcD−1 identification step instead of only the top
one. The value of r for a calculation is set as any hyperparameter via
cross-validation.

This process is illustrated in Fig. 6 for a three-dimensional
problem space (three training samples) defined by e1, e2, and e3 with
five candidate features F1, . . . , F5 to describe the property P. In prin-
ciple, there can be an arbitrary number of feature vectors, but for

FIG. 6. An illustration of how tracking multiple residuals can improve the performance of SISSO. A three-dimensional problem space (three training samples) defined by
e1, e2, and e3 with five feature vectors F1 (gray), F2 (blue), F3 (red), F4 (brown), and F5 (turquoise) for a property vector, P (purple). For this example, the size of the SIS
subspace, nsis, is two. The residuals for the best (Δ1, gray) and second best (Δ2

1, blue) one-dimensional models are shown as dashed lines. Note that both residuals are
plotted twice, once connecting the tips of the arrows representing the vectors the residuals are difference of and once rigidly translated in order to stem from the origin. If the
number of residuals, nres, is one, then only Δ1

1 is used (d) and (e) and F3 will not be selected in the second SIS step. This means that the best two-dimensional model is not
found. However, if nres = 2 (b) and (c), then F3 is selected and the best two-dimensional model, a combination of F2 and F3, can be found in the second ℓ0 step.

J. Chem. Phys. 159, 114110 (2023); doi: 10.1063/5.0156620 159, 114110-8

Published under an exclusive license by AIP Publishing

 16 January 2024 14:37:07

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 7. The training RMSE of a two-dimensional model against the size of the SIS
subspace for y = 5.5 + 0.4158d1 − 0.0974d2 + δ, where d1 = x2

0
3
√

x1, d2 = ∣x3
2 ∣,

and δ is a Gaussian white noise term pulled from a distribution with a standard
deviation of 0.05. The dark blue solid line is the error when learning using one
residual, the light blue dashed line is the error when learning using 25 residuals,
and the red solid line is the error when learning with 50 residuals.

clarity, we only show five. If only a single residual is used, then the
selected two-dimensional model will comprise of F1 and F4, as F3
is never selected because it has the smallest projection score from
the residual of the model found using F1. However, because F2 has a
component along e2, a better two-dimensional model consisting of a
linear combination of F2 and F3 exists, despite F2 not being the most
correlated feature to P. When going to higher-dimensional feature
spaces, it becomes more likely that the feature vectors similarly cor-
related with the property contain orthogonal information, thus the
need for using multiple residuals in SISSO.

In order to demonstrate the effect of learning over multiple
residuals and to get an estimate of the optimal number of residuals
and size of the SIS subspace (nsis), we plot the training root-
mean-square error of prediction (RMSE) for the two-dimensional
models for the function y = 5.5 + 0.4158d1 − 0.0974d2 + δ, where
d1 = x2

0
3
√

x1, d2 = ∣x3
2∣, and δ is a Gaussian white noise term pulled

from a distribution with a standard deviation of 0.05 in Fig. 7. For
this problem, the best one-dimensional descriptor is 1

3√x3
, with x3

being explicitly set to (y + Δ)−3, and Δ is a Gaussian white noise term
with a standard deviation of 20.0. This primary feature was explic-
itly added in order to ensure that the best one-dimensional model
would not be contain d1 or d2 in this synthetic problem. Because of
this, when using a single residual, the SIS subspace size has to be
increased to over 400, before y can be reproduced by SISSO. How-
ever, by increasing the number of residuals to 50, SISSO can now
find which features are most correlated with the residual of d1 and it
immediately finds y. In a recent paper published by some of us, we
further demonstrate that this approaches effectiveness for learning
models of the bulk modulus of cubic perovskites.25

IV. CONCLUSIONS
In this paper, we described recently developed improvements

to the SISSO method and their implementation in the SISSO++
code in terms of both their mathematical and computational details,
which constitute a large leap forward in terms of the expressivity of
the SISSO method. Utilizing these features provides greater flexibil-
ity and control over the expressions found by SISSO and acts as a
start to introducing “grammatical” rules into SISSO and symbolic

regression. In particular, concepts such as the units and ranges of
the formula could be extended to prune the search space of pos-
sible expressions for the final models. We have also described the
implementation of parametric SISSO, which considerably opens up
the range of possible expressions found by SISSO. Finally, we dis-
cussed two improvements related to the SISSO solver, i.e., a linear
programming implementation for the classification problems and
the multiple-residuals technique, both providing extended flexibility
in the descriptors and models found by SISSO.

ACKNOWLEDGMENTS
TARP thanks Christian Carbogno for valuable discussions

related to the parametric SISSO scheme and proof reading those
parts of the manuscript. TARP thanks Lucas Foppa for discus-
sions related to the multi-residual approach and proof reading those
parts of the manuscript. This work was funded by the NOMAD
Center of Excellence (European Union’s Horizon 2020 Research
and Innovation Program, Grant Agreement No. 951786), the ERC
Advanced Grant TEC1p (European Research Council, Grant Agree-
ment No. 740233), BigMax (the Max Planck Society’s Research
Network on Big-Data-Driven Materials-Science), and the project
FAIRmat (FAIR Data Infrastructure for Condensed-Matter Physics
and the Chemical Physics of Solids, German Research Foundation,
Project No. 460197019). TARP acknowledges the Alexander von
Humboldt (AvH) Foundation for their support through the AvH
Postdoctoral Fellowship Program.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

TARP implemented all methods and performed all calcula-
tions. TARP ideated all methods with assistance from LMG. MS and
LMG supervised the project. All authors wrote the manuscript.

Thomas A. R. Purcell: Conceptualization (equal); Data curation
(lead); Formal analysis (equal); Funding acquisition (equal);
Investigation (lead); Methodology (equal); Software (lead);
Writing – original draft (equal); Writing – review & editing (equal).
Matthias Scheffler: Conceptualization (supporting); Funding
acquisition (equal); Supervision (supporting); Writing – original
draft (equal); Writing – review & editing (equal). Luca M.
Ghiringhelli: Conceptualization (equal); Formal analysis (equal);
Funding acquisition (equal); Methodology (equal); Supervision
(equal); Writing – original draft (equal); Writing – review & editing
(equal).

DATA AVAILABILITY
The data that support the findings is available in FigShare at

http://dx.doi.org/10.6084/m9.figshare.23813889. The code used here
can be found on gitlab: https://gitlab.com/sissopp_developers/
sissopp.

J. Chem. Phys. 159, 114110 (2023); doi: 10.1063/5.0156620 159, 114110-9

Published under an exclusive license by AIP Publishing

 16 January 2024 14:37:07

https://pubs.aip.org/aip/jcp
http://dx.doi.org/10.6084/m9.figshare.23813889
https://gitlab.com/sissopp_developers/sissopp
https://gitlab.com/sissopp_developers/sissopp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

REFERENCES
1T. Zhu et al., Energy Environ. Sci. 14, 3559 (2021).
2S. A. Miller et al., Chem. Mater. 29, 2494 (2017).
3K. Tran and Z. W. Ulissi, Nature Catalysis 1, 696 (2018).
4V. Stanev, K. Choudhary, A. G. Kusne, J. Paglione, and I. Takeuchi, Commun.
Mater. 2, 105 (2021).
5P. P. Angelov, E. A. Soares, R. Jiang, N. I. Arnold, and P. M. Atkinson, WIREs
Data Min. Knowl. Discovery 11, e1424 (2021).
6D. Gunning et al., Sci. Rob. 4, eaay7120 (2019).
7A. Das and P. Rad, arXiv:2006.11371 (2020).
8F. Xu et al., “Explainable AI: A brief survey on history, research areas, approaches
and challenges,” in Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics (Springer, 2019),
Vol. 11839 LNAI, pp. 563–574.
9G. S. I. Aldeia and F. O. De França, “Measuring feature importance of sym-
bolic regression models using partial effects,” in GECCO ‘21: Proceedings of the
Genetic and Evolutionary Computation Conference (Association for Computing
Machinery, 2021), p. 750–758.
10A. Holzinger, A. Saranti, C. Molnar, P. Biecek, and W. Samek, “Explainable
AI methods - a brief overview,” in Lecture Notes in Computer Science (Including
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol.
13200 LNAI (Springer Science and Business Media Deutschland GmbH, 2022),
pp. 13–38.
11Z. Li, J. Ji, and Y. Zhang, arXiv: 2111.12210 (2021).
12Y. Wang, N. Wagner, and J. M. Rondinelli, MRS Commun. 9, 793 (2019).
13J. R. Koza, Stat. Comput. 4, 87 (1994).
14T. Mueller, E. Johlin, and J. C. Grossman, Phys. Rev. B 89, 115202 (2014).
15F. Yuan and T. Mueller, Sci. Rep. 7, 17594 (2017).
16S.-M. Udrescu and M. Tegmark, Sci. Adv. 6(16), eaay2631 (2020).
17S. Kim et al., IEEE Trans. Neural Networks Learn. Syst. 32, 4166 (2021).
18M. D. Cranmer, R. Xu, P. Battaglia, and S. Ho, Learning Symbolic Physics
with Graph Networks (Curran, 2019), see Associates https://ml4physicalsciences.
github.io/2019/files/NeurIPS_ML4PS_2019_15.pdf.
19M. Valipour, B. You, M. Panju, and A. Ghodsi, Symbolicgpt: A Genera-
tive Transformer Model for Symbolic Regression (Curran Associates, 2021), see
https://neurips2022-enlsp.github.io/papers/paper_62.pdf.

20B. K. Petersen et al., “Deep symbolic regression: Recovering mathematical
expressions from data via risk-seeking policy gradients,” in OpenReview ICLR
2021 Conference (2023), see https://openreview.net/forum?id=m5Qsh0kBQG &
utm_source=miragenews & utm_medium=miragenews\ & utm_campaign=news
21W. Tenachi, R. Ibata, and F. I. Diakogiannis, “Deep symbolic regression
for physics guidconstraints: Toward the automated discovery of physical laws,”
arXiv:2303.03192 [astro-ph.IM].
22R. Ouyang, E. Ahmetcik, C. Carbogno, M. Scheffler, and L. M. Ghiringhelli,
J. Phys. Mater. 2, 024002 (2019).
23R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, and L. M. Ghiringhelli,
Phys. Rev. Mater. 2, 83802 (2018).
24T. A. R. Purcell, M. Scheffler, C. Carbogno, and L. M. Ghiringhelli, J. Open
Source Software 7, 3960 (2022).
25L. Foppa, T. A. Purcell, S. V. Levchenko, M. Scheffler, and L. M. Ghringhelli,
Phys. Rev. Lett. 129, 55301 (2022).
26C. J. Bartel et al., Sci. Adv. 5, eaav0693 (2019).
27G. R. Schleder, C. M. Acosta, and A. Fazzio, ACS Appl. Mater. Interfaces 12,
20149 (2020).
28Z.-K. Han et al., Nat. Commun. 12, 1833 (2021).
29G. Pilania, C. N. Iverson, T. Lookman, and B. L. Marrone, J. Chem. Inf. Model.
59, 5013 (2019).
30J. Fan and J. Lv, J. R. Stat. Soc. Ser. B: Stat. Methodol. 70, 849 (2008).
31T. A. R. Purcell, M. Scheffler, L. M. Ghiringhelli, and C. Carbogno, npj Comput.
Mater 9, 112 (2023).
32S. G. Johnson, The NLopt nonlinear-optimization package, 2021,
http://github.com/stevengj/nlopt.
33T. H. Rowan, “Functional stability analysis of numerical algorithms,” Ph.D.
thesis, University of Texas at Austin, 1990.
34J. A. Nelder and R. Mead, Comput. J. 7, 308 (1965).
35T. Runarsson and X. Yao, IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
35, 233 (2005).
36J. J. Forrest et al., coin-or/clp: Version 1.17.6.
37C.-C. Chang and C.-J. Lin, ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011),
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
38R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, and L. M. Ghiringhelli,
Phys. Rev. Mater. 2, 083802 (2018).

J. Chem. Phys. 159, 114110 (2023); doi: 10.1063/5.0156620 159, 114110-10

Published under an exclusive license by AIP Publishing

 16 January 2024 14:37:07

https://pubs.aip.org/aip/jcp
https://doi.org/10.1039/d1ee00442e
https://doi.org/10.1021/acs.chemmater.6b04179
https://doi.org/10.1038/s41929-018-0142-1
https://doi.org/10.1038/s43246-021-00209-z
https://doi.org/10.1038/s43246-021-00209-z
https://doi.org/10.1002/widm.1424
https://doi.org/10.1002/widm.1424
https://doi.org/10.1126/scirobotics.aay7120
http://arxiv.org/abs/2006.11371
https://doi.org/10.1145/3449639.3459302
https://doi.org/10.1145/3449639.3459302
http://arxiv.org/abs/2111.12210
https://doi.org/10.1557/mrc.2019.85
https://doi.org/10.1007/BF00175355
https://doi.org/10.1103/physrevb.89.115202
https://doi.org/10.1038/s41598-017-17535-3
https://doi.org/10.1126/sciadv.aay263
https://doi.org/10.1109/TNNLS.2020.3017010
https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_15.pdf
https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_15.pdf
https://neurips2022-enlsp.github.io/papers/paper_62.pdf
https://openreview.net/forum?id=m5Qsh0kBQG%26utm_source=miragenews%26utm_medium=miragenews%26utm_campaign=news
https://openreview.net/forum?id=m5Qsh0kBQG%26utm_source=miragenews%26utm_medium=miragenews%26utm_campaign=news
https://arxiv.org/abs/2303.03192
https://doi.org/10.1088/2515-7639/ab077b
https://doi.org/10.1103/PhysRevMaterials.2.083802
https://doi.org/10.21105/joss.03960
https://doi.org/10.21105/joss.03960
https://doi.org/10.1103/PhysRevLett.129.055301
https://doi.org/10.1126/sciadv.aav0693
https://doi.org/10.1021/acsami.9b14530
https://doi.org/10.1038/s41467-021-22048-9
https://doi.org/10.1021/acs.jcim.9b00807
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1038/s41524-023-01063-y
https://doi.org/10.1038/s41524-023-01063-y
http://github.com/stevengj/nlopt
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1109/tsmcc.2004.841906
https://doi.org/10.1145/1961189.1961199
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1103/physrevmaterials.2.083802

