
The Inverse Problem of Analog Gravity Systems

Saulo Albuquerque ,1, 2 Sebastian H. Völkel ,3 Kostas D. Kokkotas ,2 and Valdir B. Bezerra 1

1Departmento de Física, Universidade Federal da Paraíba,
Caixa Postal 5008, João Pessoa 58059-900, PB, Brazil

2Theoretical Astrophysics, IAAT, University of Tübingen, D-72076 Tübingen, Germany∗
3Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany†

(Dated: September 21, 2023)

Analog gravity models of black holes and exotic compact objects provide a unique opportunity
to study key properties of such systems in controlled laboratory environments. In contrast to astro-
physical systems, analog gravity systems can be prepared carefully and their dynamical aspects thus
investigated in unprecedented ways. While gravitational wave scattering properties of astrophys-
ical compact objects are more connected to quasi-normal modes, laboratory experiments can also
access the transmission and reflection coefficients, which are otherwise mostly relevant for Hawk-
ing radiation related phenomena. In this work, we report two distinct results. First, we outline
a semi-classical, non-parametric method that allows for the reconstruction of the effective pertur-
bation potential from the knowledge of transmission and reflection coefficients for certain types of
potentials in the Schrödinger wave equation admitting resonant tunneling. Second, we show how
to use our method by applying it to an imperfect draining vortex, which has been suggested as
analog of extreme compact objects. Although the inverse problem is in general not unique, choosing
physically motivated assumptions and requiring the validity of semi-classical theory, we demonstrate
that the method provides efficient and accurate results.

I. INTRODUCTION

Since the direct measurements of gravitational waves
from binary mergers of black holes and neutron stars, it
is finally possible to explore strong field dynamics in a di-
rect way [1–5]. Future improvements of existing detectors
and promising next generation successors will provide us
with pristine tests of general relativity and explore com-
pact objects [6–8]. As such measurements originate from
astrophysical sources, initial conditions and properties of
the systems cannot be explored in an arbitrary way, but
are ultimately given by whatever is realized in nature. In
particular from a theoretical point of view, certain types
of observables cannot be directly probed in this context,
but are of fundamental interest.

Within compact object perturbation theory, it is
known that the dynamics of perturbed fields or the met-
ric can often be cast in the form of one-dimensional wave
equations with potential term similar to those studied
in quantum mechanics [9–11]. Besides the question of
the eigenvalue spectrum of a given potential, one of the
most common problems is also computing transmission
and reflection coefficients. The former one manifests it-
self in the calculation of quasi-normal modes [12–15],
which are relevant for the ringdown phase of a binary
merger and of special interest for testing the assump-
tions of the Kerr hypothesis [16–18]. In astrophysical
scenarios, transmission and reflection coefficients cannot
directly be extracted. In fact, they are more accurately
described by a controlled comparison of ingoing and out-
going radiation. It may be indirectly addressable with

∗ saulosoaresfisica@gmail.com
† sebastian.voelkel@aei.mpg.de

extreme mass ratio inspirals (EMRIs) with future detec-
tors like LISA [6], in which the smaller object can be
treated perturbatively around a massive exotic compact
object, e.g., see Refs. [19, 20]. Moreover, very recently
it was demonstrated that it may also be possible to ex-
tract greybody factors from ringdown of EMRIs, at least
approximately [21].

Analog gravity provides exciting and complementary
ways to study qualitatively similar phenomena and sys-
tems [22–24], but based on much simpler underlying
physics. For an extensive review, see Ref. [25]. One
well-known example is Hawking radiation, which can-
not be directly measured for astrophysical black holes,
but can be mimicked in analog systems [26–29], as has
been suggested and studied in Bose-Einstein condensates,
both theoretically [30–32], and experimentally [33, 34].
Backreaction effects in a hydrodynamical setup have been
studied in Ref. [35]. Another black hole related observ-
able are quasi-normal modes, which have been investi-
gated experimentally in an analog black hole set up in
Ref. [36].

In recent years, the study of astrophysical exotic com-
pact object has received much attention, as some works
claimed tentative evidence of smoking-gun signs of so-
called “echoes” in gravitational wave data, e.g., Ref. [37].
The echo phenomenon was first studied for ultra compact
constant density stars in Refs. [38–41], and since then,
for a variety of exotic compact objects. See Ref. [42]
for a review on the topic. Although subsequent works
cannot confirm such findings and refuse claimed signifi-
cance [43, 44], the question of the existence of such ob-
jects remains intriguing. In the context of analog grav-
ity, a system with such properties has been proposed
in Ref. [45] and consists of an imperfect draining vor-
tex. In the same work, the observational consequences of
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such a system have been studied for scalar field pertur-
bations. These include transmission and reflection coef-
ficients, as well as possible super radiant features, whose
formal treatment, we can call direct problem in the follow-
ing. If analog exotic compact objects can be realized in
laboratory experiments and transmission/reflection co-
efficients can be measured, how could one use them to
study their properties in the inverse problem?

In this work, we present a novel method that is based
on a semi-analytic analysis of the underlying wave equa-
tion and that does not require the specification of the
details of the underlying model. Note that this is very dif-
ferent from standard inference approaches, in which one
reconstructs the parameters of a model using statistical
tools. Instead, we show how Wentzel-Kramers-Brillouin
(WKB) theory based results known for quasi-stationary
states of astrophysical exotic compact objects [46–48] can
be extended to recover main properties of the effective
potential, as well as absorption properties at the surface
of the objects. As proof of principle, we apply it to the
imperfect draining vortex model studied in Ref. [45], for
which we compute the relevant observables with stan-
dard, accurate numerical methods. Since inverse prob-
lems are often not uniquely solvable, we argue how phys-
ically motivated constraints allow one to reconstruct the
relevant potential. The quality of the reconstruction, due
to its relation to WKB theory, is very good for large an-
gular numbers. We are also able to reconstruct the re-
flectivity of the objects, for which results become more
accurate the more the object is reflecting incoming waves.

This work is structured as follows. In Sec. II, we first
outline the methods to solve the inverse problem for given
transmission and reflection functions. We then apply
these methods to the imperfect draining vortex model
and discuss our results in Sec. III. Finally, our conclu-
sions can be found in Sec. IV.

II. METHODS

In this section we first outline the fundamentals of the
direct problem in Sec. IIA, then we present the inversion
of the WKB-based methods in Sec. II B and finally dis-
cuss , in Sec. II C, how the transmission and reflection
functions need to be further analyzed in order to provide
the input for the analysis presented in the former section.

A. Outline of the direct problem

Throughout this work, the main properties of the sys-
tems we consider can be obtained by studying the follow-
ing effective one-dimensional wave equation

d2

dx2
ψ(x) +

[
E − V (x)

]
ψ(x) = 0. (1)

Here V (x) is, in general, an energy-dependent potential
that captures the dynamical properties of the object un-

der consideration. Exotic astrophysical systems [42], as
well as the analog systems we study in Sec. III can be
best described by a potential barrier with model depen-
dent reflection properties on one side of the barrier. To
understand the description of the inverse problem, let us
first review the key concepts of the direct one.

There are two common scenarios in which eq. (1) is
typically studied. One of them is an eigenvalue problem
for discrete values of En that are determined from suit-
ably chosen boundary conditions. In its most basic form,
this can either give bound states (purely real eigenval-
ues of potential wells) or quasi-normal modes (complex
eigenvalues of potential barriers). The second scenario
is the scattering problem of transmission and reflection
coefficients, that is more commonly studied in quantum
mechanics, or in the context of black holes for Hawking
radiation calculations. Both scenarios are not indepen-
dent from each other, and in fact, our framework requires
a joint analysis to address the inverse problem.

1. Semi-classical method

For those astrophysical or analog systems for which
the outlined method here is valid, the typical struc-
ture of the potential yields the so-called quasi-stationary
states as eigenvalue problem. The spectrum ω2

n = En =
E0n+iE1n of those modes is characterized by real valued
bound states E0n, together with a very small imaginary
part E1n reflecting the transmission through the barrier
and “surface” thus measuring the respective mode’s life-
time. In the astrophysical context, these modes have
first been found for ultra compact constant density stars
in Refs. [49, 50] and are also known as trapped modes.
Accordingly, as we usually have in the context of com-
pact objects perturbation theory, the real part of ωn de-
scribes the frequency of the n-th mode, while the imagi-
nary part of ωn is inversely proportional to the damping
time of that respective mode. Therefore, exponentially
small imaginary parts imply long-living trapped modes.
This is physically expected in a potential well created
between a reflective surface and a potential barrier. We
show such a typical case in Fig. 1.

As we will see later in the results, increasing the reflec-
tivity of the reflective wall tends to increase the life-time
of the trapped modes. Since a ’larger portion’ of the wave
is being reflected by the compact object’s surface, rather
than being absorbed, those waves will be trapped in the
well for a longer time before they actually manage to es-
cape the well (being absorbed by the object, or being sent
back to infinity). Therefore, larger reflectivity in the sur-
face of the compact object implies exponentially smaller
imaginary parts for the modes, which in turn leads to
narrower widths in the transmission plots, as we discuss
and illustrate later.

A semi-analytic treatment of astrophysical exotic com-
pact objects with such properties has been studied in
Ref. [51], which combined the classical Bohr-Sommerfeld
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FIG. 1. Here we show a typical potential barrier V (x) (blue)
with turning points x0(E), x1(E) and x2(E) for a given value
of E (orange dotted dashed). The location of the reflective
core’s surface coincides with x0(E) (black dotted).

rule ∫ x1

x0

√
E0n − V (x)dx = π

(
n+

1

2

)
, (2)

and the Gamow formula

E1n =− 1

2

(
T1(E) + T2(E)

)(∫ x1

x0

1√
En − V (x)

dx

)−1

.

(3)

Here x0, x1, x2 are the classical turning points defined by
E0n = V (x). The semi-classical approximations for the
transmissions T2(E) through a potential barrier is given
by

T2(E) = exp

(
2i

∫ x2

x1

√
En − V (x)dx

)
, (4)

while T1(E) is defined in terms of boundary conditions
at the objects “surface” located at x0 and discussed in
Sec. III A. See also Ref. [52] for a very similar approach
for the direct problem. The inverse problem related to
reconstructing properties of V (x) given the spectrum of
quasi-stationary states was studied in Refs. [46, 47] by in-
verting the Bohr-Sommerfeld rule and Gamow’s formula,
as is explained in more detail in Sec. II B.

2. Numerical method

Since the main focus of this work is to study the inverse
problem from the transmission and reflection coefficients,
we conclude this section with a summary of the approach
to solve the direct problem numerically. We refer the
interested reader to Ref. [45] for more details. The results
of the direct study of the scattering problem then provide

us with the starting point for our study of the inverse
problem.

The boundary condition that needs to be incorporated
at the inner boundary is given by

ψ(x ≈ x0) ∼ Awall
[
e−iω̃x +Ke−2iω̃x0eiω̃x

]
, (5)

with ω̃ = ω −mC, and K being the reflectivity constant
at the wall in x0. At spatial infinity they are given by

ψ(x→ ∞) ∼ Aine−iωx +Aoute+iωx. (6)

From the amplitudes (Ain, Aout), we can define the re-
flection and transmission coefficients by

|t|2 =
|Awall|2
|Ain|2 (1− |K|2), (7)

|r|2 =
|Aout|2
|Ain|2 . (8)

They are related to each other by

|r|2 = 1− ω̃

ω
|t|2. (9)

Note the notation T (E) = t(E)2 as used in eqs. (3) and
(4). As usually, we know that the physical solutions satis-
fying the boundary conditions given by eq. (5) and eq. (6)
can be decomposed into the basis of solutions (uh, u∞),
defined by the following asymptotic behaviour

uh ∼
{
e−iω̃x, x→ −∞,
A−

∞e
−iωx +A+

∞e
iωx, x→ +∞,

(10)

and

u∞ ∼
{
A−

h e
−iω̃x +A+

h e
iω̃x, x→ −∞,

eiωx, x→ +∞.
(11)

If we express our general solution ψ into this basis of
solutions (uh, u∞), we can obtain the following relations
between the coefficients

A+
h =

ω

ω̃
A−

∞, (12)

Ain

Awall =
ω̃

ω

(
A+

h −A−
hKe

−2iω̃x0

)
, (13)

Awall =
ω

ω̃

(
A−

∞A
out −A+

∞A
in
)

Ke−2iω̃x0
. (14)

These are the basic relations that are needed for the di-
rect scattering problem calculation and further discus-
sions about their derivation can be found in [45].

For the direct problem, we first need to evaluate the
set of coefficients (A+

h , A
−
h , A

+
∞, A

−
∞). This is done

by numerically evolving the uh solution from the wall
at x0 to infinity, and vice versa, with the u∞ solu-
tion. With the evaluated coefficients, and by using
eqs. (12), (13) and (14), we can then determine the co-
efficients (Awall, Ain, Aout), and accordingly, the trans-
mission and reflection coefficients T and R, respectively.
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Finally, the transmission and reflection coefficients,
calculated here by means of the direct numerical problem,
provide the starting point to study the inverse method
which we consider within this framework. In principle
these are the observables that could be obtained through
future laboratory experiments of analog gravity systems.

B. Inversion of Bohr-Sommerfeld rule and Gamow
formula

With the numerical results for reflection and transmis-
sion coefficients available now, we will outline the differ-
ent steps of the inverse problem method. We start with a
high-level description of the main idea, and explain more
specific details afterwards.

The first step is to identify the location of reso-
nance peaks as an approximation for the energies of the
quasi-stationary states E0n. Assuming that the Bohr-
Sommerfeld rule eq. (2) is a good approximation, it is
known [53, 54] that it can be used to reconstruct the
“width” L1(E) of the potential well as a function of the
energy via

L1(E) = x1(E)− x0(E) =
∂

∂E
I(E), (15)

where I(E) is the so-called inclusion and given by

I(E) = 2

∫ E

Emin

n(E′) + 1/4√
E − E′

dE′. (16)

Here Emin is the minimum of the potential defined by ex-
trapolating where n(E) + 1/4 = 0. Note that the poten-
tial cannot be uniquely reconstructed, but instead there
are infinitely many potentials with a given condition on
their turning points.

The second step is to combine the inversion of Gamow’s
formula for a two turning point potential barrier with the
information about the potential well, which has been de-
rived in Ref. [46] for a single barrier next to a reflective
boundary condition, and in Ref. [47] for quasi-stationary
states trapped between two potential barriers. The in-
version of the Gamow formula allows one to connect the
transmission through a single potential barrier with the
width of the barrier. This was first shown in [55, 56] and
is given by

L2(E) = x1(E)− x0(E) (17)

=
1

π

∫ Emax

E

(
dT (E′)/dE′)
T (E′)

√
E′ − E

dE′. (18)

Note that T (E) here is not the same as the full measured
transmission coefficient, as the latter one includes the net
result of the potential and the reflective wall combined
together.

To circumvent this limitation, we developed a numeri-
cal fitting procedure that provides an effective transmis-
sion through the potential barrier individually, which can

then be used for the reconstruction of the barrier. This
numerical procedure starts from the total transmission
through the barrier and reflective wall and isolates the
pure effect of the potential barrier. The final result ob-
tained by this procedure is what one could use as the
input for the inversion of the Gamow formula, given by
eq. (17) to reconstruct the barrier with the additional
information coming from the potential well. However,
in order to obtain robust results, one needs to slightly
modify the transmission for energies close to the peak of
the barrier, which we outline in the sequence. Finally,
although we have not faced problems from possible low-
energy inaccuracies from the WKB method, it could be
a problem in other cases. In that case, it may be useful
to extrapolate the low-energy transmission with analytic
functions that do not cause so-called “overhanging cliffs”
in the corresponding potentials, see Ref. [57] for a related
study on such analytic extensions.

1. Treatment at energies close to the barrier peak

Due to the reduced validity of the Bohr-Sommerfeld
rule and Gamow formula for energies around the peak
of the barrier, we complement the close vicinity of the
maximum of the potential barrier with a parabolic ap-
proximation

Vparabolic(x) = Emax + a(x− xmax)
2. (19)

Here the two relevant free parameters (Emax and a)
are directly obtained from fitting the analytic form of
the transmission to the numerical one; see appendix of
Ref. [48]. With the estimate of Emax, one can now com-
pute L2(E) to obtain width-equivalent potentials VL2

(x).
Finally, we define the effective reconstructed barrier to be
a smooth interpolation between the two potentials

Veff(x;xint, λ) =Vparabolic(x)

(
1

2
− 1

2
tanh[λ(x− xint)]

)
+VL2

(x)

(
1

2
+

1

2
tanh[λ(x− xint)]

)
, (20)

where λ controls the ’smoothness’ of the transition be-
tween the two connected curves Vparabolic(x) and VL2(x)
in xint, where these two curves intersect. Directly approx-
imating the maximum of the potential with a parabola
improves the reconstruction, because the inversion of the
Gamow formula used to derive L2(E) is only valid for en-
ergies below the barrier peak. The choice of the match-
ing point where the two curves shall intersect is done
by optimizing the determination of the position of the
parabola maximum in x-axis, while looking for an inter-
section point where the functions to be matched have the
same value and same slope.
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C. Analysis of the transmission

Knowing the transmission/reflection coefficients, we
now outline how exactly we analyse it to provide the
necessary input for the semi-classical inversion methods.
These quasi-stationary states, as well as the transmission
are only related to the potential barrier and the reflective
wall.

1. Extracting quasi-stationary states from transmission

Given the numerical transmission curve as the starting
point of our analysis, we need to extract the spectrum of
quasi-stationary modes. They are imprinted in the loca-
tions and widths of the resonance peaks. For example,
the real part of the mode energies (E0n) are the energy
values at the local center of the peaks (or the local cen-
ter of the small ’bumps’, in the low-reflectivity scenario),
while the imaginary parts (E1n) are related to the widths
of those peaks.

As we will discuss later, for some cases (high-
reflectivity regime), the local center of the peaks are, with
a very good approximation, the local maximum as well.
For those cases, we extract the locations using a basic
peak-finder algorithm, and then numerically fit a three
parameter Lorentzian [58] in a very close vicinity to it

f(E) =
T (Emax, n)Γ

2
n

(E − Emax, n)2 + Γ2
n

, (21)

where Emax, n is the location of the resonance peak and
the real part of En, Γn is the half-width of the half-
maximum, and T (Emax, n) is the peak value of the trans-
mission at the resonant energy. The width Γn of a certain
peak will be related to the imaginary part/damping time
of its respective mode. To increase the accuracy and
optimize the algorithm, we iteratively refine the energy
resolution in a more narrow region around a given peak.

For the cases where the local maximums at the peaks
are not a good approximation for the centers of the peak,
a rather different approach is needed. This new approach
is based on the analysis of the slope of the transmission
and its variation within the peak. When passing through
a peak/bump, the transmission’s slope reaches a local
maximum and it quickly decays into a local minimum
(passing trough zero, when there is a local maximum at
this peak/bump). Accordingly, at the local center of the
peak, the slope is decaying at the faster rate, so that
the transmission’s second order derivative reaches a local
minimum there. This way, we can estimate the local cen-
ter of the small bumps by calculating the local minimum
of their second derivative there. We further discuss the
low-reflectivity scenarios in Sec. III B 2.

In all scenarios, we will be able to obtain the energies of
the quasi-stationary modes (E0n, E1n) for all different re-
flectivity regimes. These energies for the quasi-stationary
states can then be solved for n(E0), interpolated and then
used as input for eq. (16).

2. Defining effective transmission through the barrier

As we demonstrate explicitly in Sec. III, one can use
the transmission including the resonance peaks to con-
struct an “effective” transmission that only captures the
transmission through the barrier. To obtain this effective
transmission, we first compute the envelopes connecting
only the minima Tmin(E) and only the maxima Tmax(E)
of the logarithm of the transmission curve and then
construct an effective logarithmic transmission defined
only by the envelopes log(Teffective) = (log(Tmax)(E) +
log(Tmin)(E))/2. As can be seen in Fig. 4, it is a very
good approximation of the barrier transmission obtained
in the case of perfect absorption at the core. Accordingly,
this transmission will be the input for eq. (17).

III. APPLICATION AND RESULTS

In this section, we first outline the imperfect draining
vortex system in Sec. III A, and then show the results of
our inverse method in Sec. III B.

A. Imperfect draining vortex model

In the following, we summarize the main details of the
imperfect draining vortex as an analog of an extremely
compact object. We refer the interested reader for more
details to Ref. [45], where this model was outlined in more
depth. The effective wave-equation, which is the central
piece of our analysis, can be written in the form

d2

dx2
ψ(x)− V̄ (r)ψ(x) = 0, (22)

where the potential V̄ (r) is given by

V̄ (r) = −
(
ω − mC

r2

)2

(23)

+

(
1− 1

r2

)(
m2 − 1/4

r2
+

5

4r4

)
, (24)

where x(r) is the so-called tortoise coordinate

x(r) = r +
1

2
log

(
r − 1

r + 1

)
. (25)

The rotational properties of the vortex are characterized
by the constant C, and m is labeling the harmonic de-
composition used in the derivation of the effective wave
equation for the radial part of the wave-function. The
latter one has a similar meaning as in the case of the
Schwarzschild black hole. Note that as in the case of
rotating black holes, the potential becomes non-trivially
ω-dependent for rotating configurations (for C ̸= 0). The
absorption at the core of the vortex is modeled by defin-
ing a reflectivity K through the interface surface, and it
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is defined by the boundary conditions at r = rh(1 + ϵ),
where ϵ is a very small number, and we normalize our
acoustic horizon radius with rh = 1.

As applications for our inverse method, we have used
the numerical setup described in Sec. II to generate trans-
mission curves as function of energy. From now on, we
assume that the reflective wall is defined as the cylin-
drical surface (since we are in a 2 + 1 dimensional sce-
nario) with a radial distance of the center defined by
the value (1 + ϵ), where ϵ = 2e−20. According to eq.
(25), this implies that the tortoise coordinate is given by
x0 = −9 at the reflective wall. In order to study different
analog system realization, we choose several reflectivity
values K = [0, 0.75, 0.9, 0.99, 0.999], several harmonics
m = [4, 6, 8, 10] and C = 0. To make the impact of
each parameter more clear, and to avoid a plethora of
various combinations, we vary only one of the parame-
ters at a time, and set the others ones to default values.
The transmission curves for different reflectivity values
are shown in Fig. 2. As one would expect, the resonance
peaks become more dominant for K → 1 and vanish in
the limit K → 0, but their location remains extremely
similar. Varying the harmonic parameter m yields trans-
mission curves provided in Fig. 3. Note that m changes
the height of the potential barrier, which mainly controls
the number of resonance peaks, but only mildly impacts
their separation.

B. Reconstruction of potential and reflectivity

With the transmission curves of the previous section,
we now apply the inverse methods introduced in Sec. II.
We first show and discuss our results for varying the har-
monic number m in Sec. III B 1 and then study the re-
flectivity K in Sec. III B 2.

1. Dependency on harmonic m

In the following, we demonstrate the various steps that
have been explained in Sec. II. We start our analysis with
the transmission curves from Fig. 3 (for K = 0.99 and
m = [4, 6, 8, 10]). To obtain an accurate estimate for
the location and widths of the resonance peaks, we could
first normalize it with the K = 0 transmission. If the
K = 0 transmission is not available, e.g., because such a
case could not be realized in an experiment, it can also
be approximated with high accuracy from constructing
Teffective(E) from envelopes, as discussed in Sec. II C 2.
In the following, we assume the latter is the case and
do not make explicit use of any K = 0 knowledge. The
result of the envelope construction is shown in Fig. 4,
which clearly demonstrates the excellent agreement be-
tween the effective transmission and the K = 0 trans-
mission, at least until it reaches energies close to the
maximum of the potential (E ≈ 20 ∼ 25). Using the
location of the resonance peaks E0n, we can invert the

0 5 10 15 20 25
E

−20

−15

−10

−5

0

lo
g 1

0(
T

(E
))

K = 0.999
K = 0.99
K = 0.9
K = 0.75
K = 0

1 2 3 4 5
E

−4

−2

0

2

4

lo
g 1

0(
T
/T

0)

FIG. 2. Here we show different aspects of the transmission
T (E). Top panel: transmission for different values of K =
[0, 0.75, 0.9, 0.99, 0.999], C = 0 and m = 10. Bottom panel:
same transmissions as before (same colors), but normalized
with the one for no reflectivity K = 0 denoted with T0 and in
a smaller E range for better visibility of the resonance peaks.

relation for n(E0n), interpolate it, and use it as input
for eq. (16), which then enters eq. (15). This yields the
width of the cavity L1(E), which we report in the bottom
panel of Fig. 5, and concludes the reconstruction of the
cavity properties.

Next, we use the effective transmission Teffective(E) to
compute the width of the barrier L2(E) via eq. (17). Be-
cause Teffective(E) deviates from the K = 0 transmis-
sion close to the potential maximum (depending on the
value of K), we use the Gamow formula eq. (3) and the
width of the resonance peaks Γn = E1n to define T2(E).
The Gamow formula relates those values with the sum
of transmission T1(E) + T2(E). Note the presence of
the integral over the potential well, which can only be
computed using our reconstructed width L1(E). Due to
the non-uniqueness of the reconstructed potentials from
L1(E), we can construct any potential with such a turn-
ing point relation to carry out the integration numer-
ically. Since the transmission is constant through the
wall T1(E) = 1 −K2, and the transmission through the
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0 1 2 3 4 5
E

−30

−25

−20
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−10

−5

0
lo

g 1
0(

T
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m = 4
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1 2 3 4 5
E
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−1

0

1

2

3

lo
g 1

0(
T
/T

0)

FIG. 3. Here we show different aspects of the transmission
T (E). Top panel: transmission for different values of m =
[4, 6, 8, 10], C = 0 and K = 0.99. The K = 0 case for each m
is shown for comparison (black lines). Bottom panel: same
transmissions as before (same colors), but normalized with
the ones for no reflectivity K = 0 denoted with T0 and in a
smaller E range for better visibility of the resonance peaks.

barrier T2(E) is exponentially smaller for lower energies,
we can assert that in the low energy regime, the sum
T1(E)+T2(E) tends to T1(E)+T2(E) ≈ T1(E) = 1−K2.
This helps us infer the transmission through the wall
T1(E) and its associated reflectivity K. With these val-
ues, we can infer the behaviour of T2(E) for higher ener-
gies if we use T2(E) = T1(E) + T2(E)− (1−K2), where
T1(E) + T2(E) is obtained by Gamow formula (Eq. (3)).
This procedure gives us some points slightly below the
blue dots shown in Fig. 4. If we interpolate those points,
we obtain the green dot-dashed line, which can be used
to properly continue the Teffective(E) in the energy do-
main where the envelopes’ mean failed to approximate
the transmission through the barrier TK=0(E).

Smoothing T2(E) with Teffective(E) we capture the bar-
rier transmission for low and maximum energies, and fi-
nally, use it in eq. (17) to obtain L2(E), which we report
in the bottom panel of Fig. 4. Because the L2(E) in-
tegration requires the knowledge of Emax, which is not
known a priori, we used the parabolic transmission (19)
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FIG. 4. Here we compare the transmission TK=0.99(E) for
m = 10 and C = 0 (blue solid) with TK=0(E) (black solid).
The corresponding envelopes T envelopes

K=0.99 (E) (orange solid) and
the average transmission T average

K=0.99(E) (red solid dotted) de-
fined by the two envelopes that are shown as well. It is evident
that the average transmission is a very accurate approxima-
tion for TK=0(E) until E ≈ 20, where it plateaus towards
around 10−2 (black dotted), which corresponds to 1 − K2.
Here, the effective transmission T effective

K=0.99 (E) (green dashed)
follows TK=0(E) closely until around the maximum of the
potential barrier (around E = 25). TGamow(E) (blue points)
are the transmissions obtained from the resonance peaks and
Gamow formula, see main text. In the bottom panel we show
the same system as in the top panel, but for a smaller energy
range for better visibility of details.

approximation to fit T2(E) transmission in a range that
can initially be estimated from where the transmission
starts to plateau.

With two relations L1(E), L2(E) for three turning
points x0, x1, x2, one needs to provide a third relation
to define a specific potential. The natural choice in our
problem is to assume that the location of the reflective
wall does not depend on the energy, and thus, we set x0
to be some constant. The only freedom in choosing the
constant is a coordinate shift, which is not relevant for
the underlying properties of the system. Finally, we re-
port the reconstructed potentials defined by this choice
in Fig. 6. As can be seen in both figures, the overall
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FIG. 5. In this plot we show the exact (colored solid) and
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L2(E) (bottom panel) for K = 0.99 and m = [4, 6, 8, 10].

accuracy of the reconstruction improves with larger val-
ues of m. Because m mostly controls the height of the
barrier, and thus the number of quasi-stationary states
that appear as resonance peaks, one should expect the
reconstruction to be more accurate because more infor-
mation can be used for the interpolation of the spectrum
and effective transmission. Furthermore, the underlying
WKB based methods are expected to be most accurate
for the quasi-stationary states that are located not too
close to the minimum of the potential, and not too close
to the maximum of the barrier.

2. Dependency on reflectivity K

What remains is the reconstruction of the correspond-
ing reflectivity parameters K. We assume that the wall’s
reflectivity K is energy independent, and thus the same
for all different incident wave frequencies. In this case,
the transmission through the wall is also a constant and
given by

T1(E) = 1−K2. (26)
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FIG. 6. Here we show the true (colored lines) and recon-
structed (black dashed) effective potentials V (x) for K = 0.99
and m = [4, 6, 8, 10]. The location of the effective core’s sur-
face is at x = −9.

Accordingly, as an outcome of applying the Gamow for-
mula eq. (3), one can obtain the sum of the value above,
for the transmission through the wall, with the transmis-
sion T2(E) through the potential barrier as if the wall
would be perfectly absorbing. The sum T1(E)+T2(E) is
dominated by T1(E) for low energies, because T2(E) be-
comes exponentially small. This fact can be illustrated
graphically in Fig. 4. If we look at the blue dots (the
Gamow points T1(E)+T2(E)), we can see that they start
to plateau as we decrease the energy. This plateau gives
us the constant value of T1(E) = 1−K2.

We show the reconstructed values of K in Fig. 7. Here,
the x-axis labels the n−th quasi-stationary state that has
been used in the Gamow formula eq. (3). One can observe
that for values of K close to 1, the reconstruction is very
accurate. In this case the transmission through the wall
is much smaller than the one through the barrier and the
resonance peaks can be very accurately extracted. For
smaller values of K, the reconstruction looses accuracy,
and deviates from the correct injection by 10 ∼ 20%
for K = 0.75. To investigate this, we tried several im-
provements. First, even when the T2(E) contribution is
included in the Gamow formula (by using the effective
transmission extrapolated), the results for K = 0.75 do
not change significantly, especially not for moderate val-
ues of n, where the approximation is excellent. Second,
we also checked whether fitting all resonance peaks si-
multaneously can give better results, because peaks start
to overlap and results may get biased. However, also
in this case we do not report improvements, as we fit
the resonance peaks in a close vicinity around the max-
imum, where the impact of the other peaks is mainly
absorbed by the value of the transmission at each maxi-
mum, T (Emax) eq. (21), and does not impact Γn signifi-
cantly. Finally, the alternative and more direct approach
to determine K is from T (E) via eq. (26) evaluated for
energies beyond the maximum of the barrier, since then
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respond to the exact values, while the different points are the
reconstructed values using the n−the resonance peak.

the effect of the barrier becomes negligible. We note that
the latter approach is complementary to using the widths
of the resonance peaks. Which of the two approaches
yields more accurate results when applied to real data
with measurement uncertainties remains for future work.

IV. CONCLUSIONS

Analog gravity systems may provide unique and con-
trolled measurements of their key properties, which are
not accessible from their astrophysical counterparts. The
novel method that we developed in this work is based on
the extension of semi-classical methods and is tailored
to study measured transmission/reflection coefficients of
analog exotic compact objects. The outcome of the
method is the reconstruction of the effective potential,
which captures the dynamical properties of the system, as
well as the reflectivity coefficient describing the internal
boundary condition. In this work, we chose the imper-
fect draining vortex model suggested in Ref. [45] as one
example. First, we obtained the transmission/reflection
coefficients with accurate (numerical) methods to explore
different properties of the system, in particular the im-
pact of the reflectivity K and different angular numbers
m. These results were then used as ideal measurements
of a future experiment to demonstrate the capabilities of
the new (semi-classical) method.

Our main findings are as follows. The reconstruction
of the effective potential becomes very accurate with in-
creasing angular numbers m, which is expected from the
validity of the underlying WKB theory. This is also re-
lated to the fact that for the same location of the core,
increasing m yields more resonance states, and thus more
information used for the interpolation of the inclusion
eq. (16), that is needed to reconstruct the width of cav-

ity. The reconstruction of the reflectivity coefficient K
through the width of the resonance peaks becomes more
accurate when it approaches unity, which corresponds to
the full reflection case. This may also be expected, be-
cause large values of the reflectivity result in in more
prominent resonance peaks. Although inverse problems
are often not uniquely solvable (typically not limited by
the chosen methods), we suggested physically motivated
assumptions that allow one to reconstruct the effective
potential. We want to stress that because the input of
our method has been computed with accurate numeri-
cal methods, but the reconstruction is based on semi-
analytic results, comparing the original potential with its
reconstruction is not circular, but indeed self-consistent.
Due to the explicit energy dependence of the potential for
rotating configurations (for C ̸= 0), we have focused on
C = 0 and leave the conceptually more involved inverse
problem of the energy dependent potential for a separate
work.

Since our method is based on modifying similar ap-
proaches for the inverse problem of quasi-stationary
states [46, 47] and Hawking radiation [48], we also want to
briefly compare some aspects. Although the knowledge
of the transmission/reflection coefficients does not rely on
the knowledge of the spectrum of quasi-stationary states,
our method partially relies on identifying them indirectly.
Thus, for specific model parameters that only provide
very few of such states, our method is not very accurate.
However, since increasing angular numbers yield larger
potential barriers, they also yield potentials with more
quasi-stationary states. This means, if one is experimen-
tally able to measure transmission/reflection coefficients
of large enough angular numbers, our method can even in
such cases always be used. In the context of astrophys-
ical objects, this is not easily possible, as standard bi-
nary mergers mostly excite small angular numbers, which
undermines the opportunities of studying analog gravity
systems.

We conclude with a comment on measurement uncer-
tainties. Throughout this work we assumed that the
transmission/reflection coefficients can be provided with
pristine accuracy. However, any real experiment will
come with statistical and systematic uncertainties, which
may need to be taken into account. This could for exam-
ple be done by repeating the reconstruction procedure
for different realizations of the transmission coefficient
that represent the statistical uncertainties of the mea-
surements. At the same time, these uncertainties may
not be relevant for all energy ranges, since the transmis-
sion varies over many orders of magnitude. We leave a
detailed study of these aspects for future work.

ACKNOWLEDGMENTS

S. S. de Albuquerque acknowledges funding from Con-
selho Nacional de Desenvolvimento Científico e Tec-
nológico (CNPQ)-Brazil and Coordenação de Aper-



10

feiçoamento de Pessoal de Nível Superior (CAPES)-
Brazil. S. H. Völkel acknowledges funding from the
Deutsche Forschungsgemeinschaft (DFG) - project num-
ber: 386119226. V. B. Bezerra is partially supported

by the Conselho Nacional de Desenvolvimento Cientí-
fico e Tecnológico (CNPq)-Brazil, through the Research
Project no. 307211/2020-7.

[1] B. P. Abbott et al. (LIGO Scientific, Virgo), “Obser-
vation of Gravitational Waves from a Binary Black
Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016),
arXiv:1602.03837 [gr-qc].

[2] B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170814:
A Three-Detector Observation of Gravitational Waves
from a Binary Black Hole Coalescence,” Phys. Rev. Lett.
119, 141101 (2017), arXiv:1709.09660 [gr-qc].

[3] B. P. Abbott et al. (LIGO Scientific, Virgo), “GWTC-
1: A Gravitational-Wave Transient Catalog of Compact
Binary Mergers Observed by LIGO and Virgo during
the First and Second Observing Runs,” Phys. Rev. X
9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE].

[4] R. Abbott et al. (LIGO Scientific, Virgo), “GWTC-2:
Compact Binary Coalescences Observed by LIGO and
Virgo During the First Half of the Third Observing Run,”
Phys. Rev. X 11, 021053 (2021), arXiv:2010.14527 [gr-
qc].

[5] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA),
“GWTC-3: Compact Binary Coalescences Observed by
LIGO and Virgo During the Second Part of the Third
Observing Run,” (2021), arXiv:2111.03606 [gr-qc].

[6] Pau Amaro-Seoane et al. (LISA), “Laser Interferometer
Space Antenna,” (2017), arXiv:1702.00786 [astro-ph.IM].

[7] Michele Maggiore et al., “Science Case for the Ein-
stein Telescope,” JCAP 03, 050 (2020), arXiv:1912.02622
[astro-ph.CO].

[8] David Reitze et al., “Cosmic Explorer: The U.S. Contri-
bution to Gravitational-Wave Astronomy beyond LIGO,”
Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833
[astro-ph.IM].

[9] Tullio Regge and John A. Wheeler, “Stability of a
Schwarzschild singularity,” Phys. Rev. 108, 1063–1069
(1957).

[10] Frank J. Zerilli, “Effective potential for even parity
Regge-Wheeler gravitational perturbation equations,”
Phys. Rev. Lett. 24, 737–738 (1970).

[11] Saul A. Teukolsky, “Perturbations of a rotating black
hole. 1. Fundamental equations for gravitational electro-
magnetic and neutrino field perturbations,” Astrophys.
J. 185, 635–647 (1973).

[12] Kostas D. Kokkotas and Bernd G. Schmidt, “Quasinor-
mal modes of stars and black holes,” Living Rev. Rel. 2,
2 (1999), arXiv:gr-qc/9909058.

[13] Emanuele Berti, Vitor Cardoso, and Andrei O. Starinets,
“Quasinormal modes of black holes and black branes,”
Class. Quant. Grav. 26, 163001 (2009), arXiv:0905.2975
[gr-qc].

[14] R. A. Konoplya and A. Zhidenko, “Quasinormal modes
of black holes: From astrophysics to string theory,” Rev.
Mod. Phys. 83, 793–836 (2011), arXiv:1102.4014 [gr-qc].

[15] Nicola Franchini and Sebastian H. Völkel, “Testing Gen-
eral Relativity with Black Hole Quasi-Normal Modes,”
(2023), arXiv:2305.01696 [gr-qc].

[16] B. Carter, “Axisymmetric Black Hole Has Only Two De-
grees of Freedom,” Phys. Rev. Lett. 26, 331–333 (1971).

[17] D. C. Robinson, “Uniqueness of the Kerr black hole,”
Phys. Rev. Lett. 34, 905–906 (1975).

[18] Roy P. Kerr, “Gravitational field of a spinning mass as
an example of algebraically special metrics,” Phys. Rev.
Lett. 11, 237–238 (1963).

[19] Elisa Maggio, Maarten van de Meent, and Paolo Pani,
“Extreme mass-ratio inspirals around a spinning horizon-
less compact object,” Phys. Rev. D 104, 104026 (2021),
arXiv:2106.07195 [gr-qc].

[20] Vitor Cardoso and Francisco Duque, “Resonances, black
hole mimickers, and the greenhouse effect: Consequences
for gravitational-wave physics,” Phys. Rev. D 105,
104023 (2022), arXiv:2204.05315 [gr-qc].

[21] Naritaka Oshita, “Greybody Factors Imprinted on Black
Hole Ringdowns: an alternative to superposed quasi-
normal modes,” (2023), arXiv:2309.05725 [gr-qc].

[22] Matt Visser, “Acoustic propagation in fluids: An Un-
expected example of Lorentzian geometry,” (1993),
arXiv:gr-qc/9311028.

[23] Matt Visser, “Acoustic black holes: horizons, ergospheres
and Hawking radiation,” Classical and Quantum Gravity
15, 1767–1791 (1998).

[24] Emanuele Berti, Vitor Cardoso, and José P. S. Lemos,
“Quasinormal modes and classical wave propagation in
analogue black holes,” Phys. Rev. D 70, 124006 (2004).

[25] Carlos Barcelo, Stefano Liberati, and Matt Visser, “Ana-
logue gravity,” Living Rev. Rel. 8, 12 (2005), arXiv:gr-
qc/0505065.

[26] W. G. Unruh, “Experimental black hole evaporation,”
Phys. Rev. Lett. 46, 1351–1353 (1981).

[27] Carlos Barceló, Stefano Liberati, and Matt Visser,
“Towards the Observation of Hawking Radiation in
Bose–Einstein Condensates,” International Journal of
Modern Physics A 18, 3735–3745 (2003).

[28] Carlos Barceló, S. Liberati, and Matt Visser, “Prob-
ing semiclassical analog gravity in Bose-Einstein conden-
sates with widely tunable interactions,” Phys. Rev. A 68,
053613 (2003).

[29] Petr O. Fedichev and Uwe R. Fischer, “Gibbons-Hawking
Effect in the Sonic de Sitter Space-Time of an Expand-
ing Bose-Einstein-Condensed Gas,” Phys. Rev. Lett. 91,
240407 (2003).

[30] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, “Sonic
Analog of Gravitational Black Holes in Bose-Einstein
Condensates,” Phys. Rev. Lett. 85, 4643–4647 (2000).

[31] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller,
“Sonic black holes in dilute Bose-Einstein condensates,”
Phys. Rev. A 63, 023611 (2001).

[32] H. S. Vieira, Kyriakos Destounis, and Kostas D. Kokko-
tas, “Analog Schwarzschild black holes of Bose-Einstein
condensates in a cavity: Quasinormal modes and quasi-
bound states,” Phys. Rev. D 107, 104038 (2023).

http://dx.doi.org/ 10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://dx.doi.org/10.1103/PhysRevLett.119.141101
http://dx.doi.org/10.1103/PhysRevLett.119.141101
http://arxiv.org/abs/1709.09660
http://dx.doi.org/10.1103/PhysRevX.9.031040
http://dx.doi.org/10.1103/PhysRevX.9.031040
http://arxiv.org/abs/1811.12907
http://dx.doi.org/10.1103/PhysRevX.11.021053
http://arxiv.org/abs/2010.14527
http://arxiv.org/abs/2010.14527
http://arxiv.org/abs/2111.03606
http://arxiv.org/abs/1702.00786
http://dx.doi.org/ 10.1088/1475-7516/2020/03/050
http://arxiv.org/abs/1912.02622
http://arxiv.org/abs/1912.02622
http://arxiv.org/abs/1907.04833
http://arxiv.org/abs/1907.04833
http://dx.doi.org/10.1103/PhysRev.108.1063
http://dx.doi.org/10.1103/PhysRev.108.1063
http://dx.doi.org/10.1103/PhysRevLett.24.737
http://dx.doi.org/10.1086/152444
http://dx.doi.org/10.1086/152444
http://dx.doi.org/ 10.12942/lrr-1999-2
http://dx.doi.org/ 10.12942/lrr-1999-2
http://arxiv.org/abs/gr-qc/9909058
http://dx.doi.org/ 10.1088/0264-9381/26/16/163001
http://arxiv.org/abs/0905.2975
http://arxiv.org/abs/0905.2975
http://dx.doi.org/10.1103/RevModPhys.83.793
http://dx.doi.org/10.1103/RevModPhys.83.793
http://arxiv.org/abs/1102.4014
http://arxiv.org/abs/2305.01696
http://dx.doi.org/ 10.1103/PhysRevLett.26.331
http://dx.doi.org/10.1103/PhysRevLett.34.905
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1103/PhysRevD.104.104026
http://arxiv.org/abs/2106.07195
http://dx.doi.org/10.1103/PhysRevD.105.104023
http://dx.doi.org/10.1103/PhysRevD.105.104023
http://arxiv.org/abs/2204.05315
http://arxiv.org/abs/2309.05725
http://arxiv.org/abs/gr-qc/9311028
http://dx.doi.org/ 10.1088/0264-9381/15/6/024
http://dx.doi.org/ 10.1088/0264-9381/15/6/024
http://dx.doi.org/10.1103/PhysRevD.70.124006
http://dx.doi.org/10.12942/lrr-2005-12
http://arxiv.org/abs/gr-qc/0505065
http://arxiv.org/abs/gr-qc/0505065
http://dx.doi.org/10.1103/PhysRevLett.46.1351
http://dx.doi.org/10.1142/S0217751X0301615X
http://dx.doi.org/10.1142/S0217751X0301615X
http://dx.doi.org/10.1103/PhysRevA.68.053613
http://dx.doi.org/10.1103/PhysRevA.68.053613
http://dx.doi.org/ 10.1103/PhysRevLett.91.240407
http://dx.doi.org/ 10.1103/PhysRevLett.91.240407
http://dx.doi.org/ 10.1103/PhysRevLett.85.4643
http://dx.doi.org/10.1103/PhysRevA.63.023611
http://dx.doi.org/ 10.1103/PhysRevD.107.104038


11

[33] Jeff Steinhauer, “Observation of self-amplifying Hawking
radiation in an analog black hole laser,” Nature Phys. 10,
864 (2014), arXiv:1409.6550 [cond-mat.quant-gas].

[34] Jeff Steinhauer, “Observation of quantum Hawking radi-
ation and its entanglement in an analogue black hole,”
Nature Phys. 12, 959 (2016), arXiv:1510.00621 [gr-qc].

[35] Sam Patrick, Harry Goodhew, Cisco Gooding, and
Silke Weinfurtner, “Backreaction in an analogue black
hole experiment,” Phys. Rev. Lett. 126, 041105 (2021),
arXiv:1905.03045 [gr-qc].

[36] Theo Torres, Sam Patrick, Maurício Richartz, and Silke
Weinfurtner, “Quasinormal Mode Oscillations in an Ana-
logue Black Hole Experiment,” Phys. Rev. Lett. 125,
011301 (2020), arXiv:1811.07858 [gr-qc].

[37] Jahed Abedi, Hannah Dykaar, and Niayesh Afshordi,
“Echoes from the Abyss: Tentative evidence for Planck-
scale structure at black hole horizons,” Phys. Rev. D 96,
082004 (2017), arXiv:1612.00266 [gr-qc].

[38] Subrahmanyan Chandrasekhar, Valeria Ferrari, and
Roland Winston, “On the non-radial oscillations of a star
- II. Further amplifications,” Proceedings of the Royal
Society of London. Series A: Mathematical and Physical
Sciences 434, 635–641 (1991).

[39] K. D. Kokkotas, “Pulsating relativistic stars,” in Les
Houches School of Physics: Astrophysical Sources of
Gravitational Radiation (1995) pp. 89–102, arXiv:gr-
qc/9603024.

[40] Kazuhiro Tominaga, Motoyuki Saijo, and Kei-ichi
Maeda, “Gravitational waves from a test particle scat-
tered by a neutron star: Axial mode case,” Phys. Rev. D
60, 024004 (1999), arXiv:gr-qc/9901040.

[41] V. Ferrari and K. D. Kokkotas, “Scattering of particles by
neutron stars: Time evolutions for axial perturbations,”
Phys. Rev. D 62, 107504 (2000), arXiv:gr-qc/0008057.

[42] Vitor Cardoso and Paolo Pani, “Testing the nature of
dark compact objects: a status report,” Living Rev. Rel.
22, 4 (2019), arXiv:1904.05363 [gr-qc].

[43] R. Abbott et al. (LIGO Scientific, Virgo), “Tests of gen-
eral relativity with binary black holes from the second
LIGO-Virgo gravitational-wave transient catalog,” Phys.
Rev. D 103, 122002 (2021), arXiv:2010.14529 [gr-qc].

[44] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA),
“Tests of General Relativity with GWTC-3,” (2021),
arXiv:2112.06861 [gr-qc].

[45] Theo Torres, Sam Patrick, and Ruth Gregory, “Imperfect
draining vortex as analog extreme compact object,” Phys.
Rev. D 106, 045026 (2022), arXiv:2204.10139 [gr-qc].

[46] Sebastian H. Völkel and Kostas D. Kokkotas, “Ul-
tra Compact Stars: Reconstructing the Perturbation
Potential,” Class. Quant. Grav. 34, 175015 (2017),
arXiv:1704.07517 [gr-qc].

[47] Sebastian H. Völkel and Kostas D. Kokkotas, “Worm-
hole Potentials and Throats from Quasi-Normal Modes,”
Class. Quant. Grav. 35, 105018 (2018), arXiv:1802.08525
[gr-qc].

[48] Sebastian H. Völkel, Roman Konoplya, and Kostas D.
Kokkotas, “Inverse problem for Hawking radiation,”
Phys. Rev. D 99, 104025 (2019), arXiv:1902.07611 [gr-
qc].

[49] Subrahmanyan Chandrasekhar, Valeria Ferrari, and
John Edwin Enderby, “On the non-radial oscillations of
a star. III. A reconsideration of the axial modes,” Pro-
ceedings of the Royal Society of London. Series A: Math-
ematical and Physical Sciences 434, 449–457 (1991).

[50] K. D. Kokkotas, “Axial modes for relativistic stars,” Mon.
Not. Roy. Astron. Soc. 268, 1015 (1994).

[51] Sebastian H. Völkel and Kostas D. Kokkotas, “A Semi-
analytic Study of Axial Perturbations of Ultra Com-
pact Stars,” Class. Quant. Grav. 34, 125006 (2017),
arXiv:1703.08156 [gr-qc].

[52] Vitor Cardoso, Luís C. B. Crispino, Caio F. B. Macedo,
Hirotada Okawa, and Paolo Pani, “Light rings as obser-
vational evidence for event horizons: long-lived modes, er-
goregions and nonlinear instabilities of ultracompact ob-
jects,” Phys. Rev. D 90, 044069 (2014), arXiv:1406.5510
[gr-qc].

[53] J. A. Wheeler, Studies in Mathematical Physics: Essays
in Honor of Valentine Bargmann, Princeton Series in
Physics (Princeton University Press, 2015) pp. 351–422.

[54] K. Chadan and P. C. Sabatier, Inverse problems in quan-
tum scattering theory , 2nd ed., Texts and Monographs in
Physics (Springer-Verlag, New York, 1989).

[55] J. C. Lazenby and D. J. Griffiths, “Classical inverse scat-
tering in one dimension,” American Journal of Physics
48, 432–436 (1980).

[56] S. C. Gandhi and C. J. Efthimiou, “Inversion of Gamow’s
formula and inverse scattering,” American Journal of
Physics 74, 638–643 (2006), quant-ph/0503223.

[57] Sebastian H. Völkel, “Inverse spectrum problem for
quasi-stationary states,” J. Phys. Comm. 2, 025029
(2018), arXiv:1802.08684 [quant-ph].

[58] K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical
Methods for Physics and Engineering: A Comprehensive
Guide, 3rd ed. (Cambridge University Press, 2006) pp.
"1193–1194".

http://dx.doi.org/10.1038/NPHYS3104
http://dx.doi.org/10.1038/NPHYS3104
http://arxiv.org/abs/1409.6550
http://dx.doi.org/10.1038/nphys3863
http://arxiv.org/abs/1510.00621
http://dx.doi.org/ 10.1103/PhysRevLett.126.041105
http://arxiv.org/abs/1905.03045
http://dx.doi.org/ 10.1103/PhysRevLett.125.011301
http://dx.doi.org/ 10.1103/PhysRevLett.125.011301
http://arxiv.org/abs/1811.07858
http://dx.doi.org/10.1103/PhysRevD.96.082004
http://dx.doi.org/10.1103/PhysRevD.96.082004
http://arxiv.org/abs/1612.00266
http://dx.doi.org/10.1098/rspa.1991.0117
http://dx.doi.org/10.1098/rspa.1991.0117
http://dx.doi.org/10.1098/rspa.1991.0117
http://arxiv.org/abs/gr-qc/9603024
http://arxiv.org/abs/gr-qc/9603024
http://dx.doi.org/10.1103/PhysRevD.60.024004
http://dx.doi.org/10.1103/PhysRevD.60.024004
http://arxiv.org/abs/gr-qc/9901040
http://dx.doi.org/10.1103/PhysRevD.62.107504
http://arxiv.org/abs/gr-qc/0008057
http://dx.doi.org/ 10.1007/s41114-019-0020-4
http://dx.doi.org/ 10.1007/s41114-019-0020-4
http://arxiv.org/abs/1904.05363
http://dx.doi.org/ 10.1103/PhysRevD.103.122002
http://dx.doi.org/ 10.1103/PhysRevD.103.122002
http://arxiv.org/abs/2010.14529
http://arxiv.org/abs/2112.06861
http://dx.doi.org/ 10.1103/PhysRevD.106.045026
http://dx.doi.org/ 10.1103/PhysRevD.106.045026
http://arxiv.org/abs/2204.10139
http://dx.doi.org/10.1088/1361-6382/aa82de
http://arxiv.org/abs/1704.07517
http://dx.doi.org/10.1088/1361-6382/aabce6
http://arxiv.org/abs/1802.08525
http://arxiv.org/abs/1802.08525
http://dx.doi.org/10.1103/PhysRevD.99.104025
http://arxiv.org/abs/1902.07611
http://arxiv.org/abs/1902.07611
http://dx.doi.org/ 10.1098/rspa.1991.0104
http://dx.doi.org/ 10.1098/rspa.1991.0104
http://dx.doi.org/ 10.1098/rspa.1991.0104
http://dx.doi.org/10.1088/1361-6382/aa68cc
http://arxiv.org/abs/1703.08156
http://dx.doi.org/ 10.1103/PhysRevD.90.044069
http://arxiv.org/abs/1406.5510
http://arxiv.org/abs/1406.5510
https://press.princeton.edu/titles/861.html
https://press.princeton.edu/titles/861.html
http://dx.doi.org/10.1007/978-3-642-83317-5
http://dx.doi.org/10.1007/978-3-642-83317-5
http://dx.doi.org/10.1119/1.11998
http://dx.doi.org/10.1119/1.11998
http://dx.doi.org/ 10.1119/1.2190683
http://dx.doi.org/ 10.1119/1.2190683
http://arxiv.org/abs/quant-ph/0503223
http://dx.doi.org/ 10.1088/2399-6528/aaaee2
http://dx.doi.org/ 10.1088/2399-6528/aaaee2
http://arxiv.org/abs/1802.08684
http://dx.doi.org/10.1017/CBO9780511810763
http://dx.doi.org/10.1017/CBO9780511810763
http://dx.doi.org/10.1017/CBO9780511810763

	The Inverse Problem of Analog Gravity Systems
	Abstract
	Introduction
	Methods
	Outline of the direct problem
	Semi-classical method
	Numerical method

	Inversion of Bohr-Sommerfeld rule and Gamow formula
	Treatment at energies close to the barrier peak

	Analysis of the transmission
	Extracting quasi-stationary states from transmission
	Defining effective transmission through the barrier


	Application and results
	Imperfect draining vortex model
	Reconstruction of potential and reflectivity
	Dependency on harmonic m
	Dependency on reflectivity K


	Conclusions
	Acknowledgments
	References


