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Identifying a general quasi-local notion of energy-momentum and angular momentum would be an
important advance in general relativity with potentially important consequences for mathematical
and astrophysical studies in general relativity. In this paper we study a promising approach to this
problem first proposed by Wang and Yau in 2009 based on isometric embeddings of closed surfaces
in Minkowski space. We study the properties of the Wang-Yau quasi-local mass in high accuracy
numerical simulations of the head-on collisions of two non-spinning black holes within full general
relativity. We discuss the behavior of the Wang-Yau quasi-local mass on constant expansion surfaces
and we compare its behavior with the irreducible mass. We investigate the time evolution of the
Wang-Yau Quasi-local mass in numerical examples. In addition we discuss mathematical subtleties
in defining the Wang-Yau mass for marginally trapped surfaces.

I. INTRODUCTION

The quasi-local definition of energy-momentum re-
mains one of the major problems in classical general rel-
ativity [1, 2]. The goal is to find appropriate notions of
energy-momentum and angular momentum for finite, ex-
tended regions of spacetime. At spatial infinity and at
null infinity, there are well-established concepts of energy
and angular momentum. The energy-momentum defined
by Arnowitt-Deser-Misner (ADM) [3] at spatial infinity
measures the total energy in a spacetime, and it is con-
served and shown to be positive [4, 5]. The Bondi energy
is measured at null-infinity and satisfies appropriate bal-
ance laws as gravitational radiation carries away energy
and angular momentum [6]. Similarly, there are notions
of quasi-local energy and angular momentum and balance
laws applicable for black hole horizons [7–9]. In contrast,
finding suitable analogous definitions for a finitely ex-
tended body or for an arbitrary region in spacetime is
still under active research.

Finding appropriate quasi-local notions of energy mo-
mentum and angular momentum would be desirable for
various reasons. For example, one might expect that
gravitational waves emitted from a given region in space-
time would carry away energy thus leading to a corre-
sponding decrease in the quasi-local mass. Such a link
has been shown for the Bondi mass and for black hole
horizons, but is still not available for general spacetime
regions. Once fully understood, it could potentially allow
us to infer detailed properties of dynamical spacetimes in
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the strong field region from gravitational wave observa-
tions, such as from the merger of compact objects. On
the mathematical side, it is likely that appropriate quasi-
local notions of energy and angular momentum would
play an important role in providing a full proof of the
Penrose inequality. Similarly, as we shall discuss in this
paper, quasi-local mass also plays an important role in
the process of gravitational collapse and black hole for-
mation via the hoop conjecture.
We expect quasi-local mass to be a flux type inte-

gral on a closed space-like 2-surface Σ which bounds a
space-like hypersurface Ω. Since Ω is not unique in the
sense of being bounded by a given Σ, one would expect
that a proper notion of quasi-local mass should not de-
pend on which specific Ω is chosen. Restricting ourselves
to vacuum spacetimes, we can enumerate some minimal
requirements that any viable notion of quasi-local mass
M(Σ) should satisfy [10]:

• In flat Minkowski spacetime, M(Σ) should vanish.

• In a curved spacetime, the quasi-local mass should
be non-negative.

• In the limit when Σ approaches a sphere at space-
like infinity on an asymptotically flat slice, or a
cross-section of null infinity, the quasi-local mass
must approach the ADM mass or the Bondi mass,
respectively.

• When Σ is an apparent horizon, the quasi-local
mass must be bounded from below by the irre-
ducible mass of Σ, i.e.

√
AΣ/16π, where AΣ is the

area of Σ.

In this work we shall investigate properties of the quasi-
local mass originally proposed by Wang & Yau [11]; see
also [12]. There are several other proposed definitions
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of quasi-local mass, energy-momentum and angular mo-
mentum in the literature. Some notable ones are due to
Bartnik [13], Hawking [14], and Penrose [15]; see [1, 2]
for a review.

Based on a variational analysis of the action of General
Relativity, Brown & York proposed a quasi-local energy
arising as a boundary term in the Hamiltonian [16, 17];
see also [10, 12, 18]. However, the Brown-York definition
depends explicitly on a choice of spacelike hypersurface
Ω that is bounded by the two-surface Σ under considera-
tion. Specifically, the mean curvature of Σ as embedded
in Ω appears in the Brown-York definition. Moreover, a
specific choice of unit lapse and zero shift is needed in re-
lating the Hamiltonian to the Brown-York mass. This
rather arbitrary gauge-fixing is undesirable in general
relativity studies. Furthermore, the Brown-York quasi-
local mass can fail to be positive in general except for
the time symmetric case [19]. On the other hand, there
exist surfaces in Minkowski spacetime with strictly pos-
itive Brown-York mass. These undesirable features are
resolved in Wang & Yau [20] by further including momen-
tum information (second fundamental form in the time
direction) in their definition. Indeed, Euclidean space
can be regarded as the totally geodesic space-like hy-
persurface of zero momentum in Minkowski spacetime.
While Brown & York defined their reference surface by an
isometric embedding of Σ into 3-dimensional Euclidean
space R3, Wang & Yau defined their reference surface by
an isometric embedding into Minkowski space R3,1 di-
rectly. The positivity proof of Wang-Yau quasilocal mass
is given along with the definition [20]. The new defini-
tion is proven to recover the ADM mass at spatial infinity
[21] and the Bondi mass at null infinity [22]. Further, the
small sphere limit is proven to recover the stress-energy
tensor at the limiting point for a spacetime with matter
fields and is related to the Bel–Robinson tensor at higher
orders for vacuum spacetime. Along the same line, they
also give a quasi-local definition for angular momentum
and center of mass [23], which are proven to be super-
translation invariant [24–26]. We will review the defini-
tion of Wang & Yau quasi-local mass below and compare
with Brown & York when it is helpful.

Besides the requirements enumerated above, addi-
tional properties would be desirable when considering the
dynamical aspects of general relativity. As mentioned
earlier, for the Bondi mass at null infinity, the Bondi
mass loss formula shows that gravitational waves carry
away energy, leading to a decrease of the Bondi mass
[6]. The flux of gravitational radiation is written as a
surface integral over cross-sections of null infinity, and
is manifestly positive. Similarly, restricting ourselves to
black hole horizons and marginally trapped surfaces, sim-
ilar balance laws with positive fluxes can be shown, lead-
ing to a physical process version of the area increase law
[7–9]. Extending these considerations to a more general
quasi-local setting would lead one to conjecture that the
emission (or absorption) of gravitational radiation from
a domain Ω could be written as a surface flux integral

over Σ, directly related to the decrease (or increase) of
the quasi-local mass. At present we do not have a well
defined notion of such fluxes. As a first step in this di-
rection, in this work we shall study the time evolution of
Wang-Yau quasi-local mass, henceforth denoted as QLM,
in the context of a binary black hole merger. This ques-
tion is hard to answer analytically, and we resort instead
to high precision numerical simulations of the full Ein-
stein equations.
The plan for this paper is the following. The basics

of the Wang-Yau QLM and its properties are introduced
in Sec. II. We shall consider the head-on collision of two
non-spinning black holes starting with time-symmetric
initial data. The initial data and our numerical evolution
scheme is described in III. Our numerical implementa-
tion for calculating the Wang-Yau QLM, and numerical
convergence, are described in Sec. IV. The numerical
results are presented in Sec. V in three steps. First,
Sec. VA shows the results in the initial data, i.e. with
time symmetry. As the evolution proceeds, the later time
slices are no longer time-symmetric. Sec. VB shows re-
sults for non-time-symmetric slices and finally Sec. VC
presents the time evolution of the QLM and also an ex-
ploration of the hoop conjecture in the context of the
formation of the common horizon in a black hole merger.
In the course of presenting the numerical results, it will
be clear that there are mathematical subtleties in defin-
ing the QLM for a marginally trapped surface. This will
be clarified mathematically in Sec. VI and will justify
the various choices made in the numerical work. Finally,
Sec. VII will discuss some implications of our results and
suggestions for future work.

II. BASIC NOTIONS

The Wang-Yau quasi-local energy (QLE) associated
with a suitable surface is defined through anchoring the
surface intrinsic geometry while comparing the extrin-
sic geometry as embedded in the original spacetime N 4

versus that embedded in the flat Minkowski space R3,1.
Given a spacelike two-surface Σ ⊂ N 4 with induced met-
ric σab, let i0 : Σ ↪→ R3,1 be an isometric embedding into
the Minkowski spacetime. Fixing a unit, future-pointing,
timelike vector T0 in R3,1, a one-to-one correspondence
between vector fields in N 4 and those in R3,1 is built
through the ‘canonical gauge’ condition,

⟨H, ē4⟩ = ⟨H0, ě4⟩ , (1)

where H and H0 are mean curvature vectors of Σ ⊂ N 4

and i0(Σ) ⊂ R3,1, respectively, and ⟨ · , · ⟩ denotes the
corresponding scalar product in N 4 and R3,1. The ba-
sis vectors ēα of N 4, α ∈ {0, 1, 2, 3}, and ěα of R3,1 are
chosen as follows. Let ě3 be the spacelike unit normal of
i0(Σ) which is also perpendicular to T0. Let ě4 be the
future-pointing, timelike unit normal that is perpendic-
ular to ě3. Then {ě3, ě4} forms an orthonormal basis for
the normal bundle of i0(Σ) ⊂ R3,1. The canonical gauge
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condition (1) picks uniquely a future-pointing, timelike
unit normal of Σ, ē4. Then ē3 is the spacelike normal of
Σ that combined with ē4 gives an orthonormal basis for
the normal bundle of Σ ⊂ N 4.
Given τ ∈ C∞(Σ), a generalized mean curvature for Σ

is defined as

H = −
√

1 + |∇τ |2⟨H, ē3⟩ − αē3(∇τ) , (2)

where ∇ denotes the covariant derivative on Σ associated
with σab, |∇τ |2 = σab∇aτ∇bτ and we write αě3(∇τ) =
(αě3)a∇aτ . The connection one-form αē3 associated with
the basis {ē3, ē4} is defined as

αē3(Y ) = ⟨(4)∇Y ē3 , ē4⟩ ,

where Y ∈ TΣ and (4)∇ denotes the covariant derivative
in N 4. Similarly, one can define αě3 for the connection
one-form associated with {ě3, ě4} in R3,1 as

αě3(Y ) = ⟨(3,1)∇Y ě3 , ě4⟩ ,

where (3,1)∇Y denotes the covariant derivative in R3,1.
A generalized mean curvature for i0(Σ) is defined as

H0 = −
√

1 + |∇τ |2⟨H0, ě3⟩ − αě3(∇τ) . (3)

The Wang-Yau quasi-local energy associated with τ is
then defined as

QLE(τ) =
1

8π

∫

Σ

(H0 −H) dvolΣ . (4)

When the mean curvature vector H is spacelike, one can
use H = −⟨H, ē4⟩ ē4 + ⟨H, ē3⟩ ē3 = p ē4 − k ē3 and its
conjugate vector J = k ē4 − p ē3 to form an orthonormal
basis for the normal bundle NΣ, {eH = − H

|H| , eJ = J
|H|}.

In terms of this mean curvature vector basis,

QLE(τ) =

1

8π

∫

Σ

{
√
1 + |∇τ |2 · (cosh θ0|H0| − cosh θ|H|)

−∇τ · ∇(θ0 − θ)− (αH0
− αH)(∇τ)

}
,

where θ denotes the hyperbolic angle between {e3, e4}
and {eH = − H

|H| , eJ = J
|H|}. Specifically,

{
e3 = cosh θ eH − sinh θ eJ
e4 = − sinh θ eH + cosh θ eJ

(5)

and similarly for θ0 in R3,1.
Solving the variational problem of minimizing the QLE

with respect to the time function τ , one gets the Euler-
Lagrange equation, called the optimal embedding equa-
tion (OEE),

∇aj
a = 0 . (6)

The minimum value of QLE is defined to be the Wang-
Yau quasi-local mass

QLM =
1

8π

∫

Σ

ρ+ ja∇aτ =
1

8π

∫

Σ

ρ , (7)

where (see (4.4)–(4.5) in [27] for details)

ρ =

√
|H0|2 + (∆τ)2

1+|∇τ |2 −
√
|H|2 + (∆τ)2

1+|∇τ |2√
1 + |∇τ |2

(8)

and

ja = ρ∇aτ −∇a sinh
−1 ρ∆τ

|H0||H| − (αH0)a + (αH)a . (9)

The Wang-Yau QLM is defined for any closed spacelike
surface Σ whose mean curvature vector is spacelike and
where an admissible solution to the OEE (6) exists (see
Definition 5.1 in [20] for admissible τ).
Note that if τ = const is admissible and solves the

optimal embedding equation, it must be the global min-
imum of Wang-Yau quasi-local energy [28]. Substituting
τ = const to (7), one sees that the Wang-Yau quasi-local
mass reduces to the Liu-Yau mass in this case [10, 12]

QLM =
1

8π

∫

Σ

|H0| − |H| . (10)

If further Σ lies in a totally geodesic slice, the Wang-Yau
quasi-local mass reduces to the Brown-York mass

mBY =
1

8π

∫

Σ

k0 − k , (11)

where k is the only nonzero component of H lying in
the totally geodesic slice while k0 is the mean curvature
vector of i0(Σ) embedded in R3. Note that τ only appears
through derivatives and we hence use τ = 0 and τ =
const interchangeably.
In black hole spacetimes, there is a particular set of

surfaces of interest—the marginally outer trapped sur-
faces (MOTSs). These are used to study various aspects
of black holes quasi-locally via the framework of isolated
and dynamical horizons, respectively describing black
holes in equilibrium and in dynamical situations (see e.g.
[29–33]). In any given spacelike slice S ⊂ N 4, the out-
ermost MOTS is called the apparent horizon. Given a
MOTS on a spacelike slice, the results of Andersson et
al. [34–36] show the conditions under which it evolves
smoothly. It is shown that when a MOTS is stable un-
der outward deformations, then it will evolve smoothly.
Recent numerical work has applied and further explored
the stability of MOTSs and its implications for the time
evolution [37–42].
A MOTS is defined as follows. Let Σ ⊂ N 4 be a closed

spacelike surface and let ℓ+, ℓ− be two future directed
null normal fields on Σ taken to point outward and in-
ward, respectively. We fix the cross normalization by
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⟨ℓ+, ℓ−⟩ = −2, which still leaves a remaining freedom to
scale

ℓ+ → fℓ+ , ℓ− → 1

f
ℓ− (12)

for any positive function f . The outward and inward null
expansions, denoted Θ+ and Θ− respectively, are defined
as

Θ± = σαβ (4)∇αℓ
±
β , (13)

where σαβ = σabπα
a π

β
b with πα

a the projection onto the
tangent bundle of Σ. Then, Σ is called a marginally outer
trapped surface (MOTS) if Θ+ = 0, an outer trapped sur-
face if Θ+ < 0 and an outer untrapped surface if Θ+ > 0.
A marginally trapped surface (MTS) is a MOTS with
Θ− < 0. Note that although Θ+ → fΘ+ under (12),
the signs of Θ± are invariant and so these definitions are
not affected.

We will often consider families of surfaces Σs with
constant Θ+ = s ∈ R, called constant expansion sur-
faces (CESs). These do depend on the choice of ℓ±,
which we fix uniquely using the spacelike slice S ⊂ N 4

within which the family Σs is constructed. Concretely,
let Σs ⊂ S, v the spacelike outward unit normal of Σs

in S and u the future timelike unit normal on S in N 4.
Then, we choose

ℓ± = u± v . (14)

In terms of the null expansions Θ±, the mean curvature
vector H and its conjugate vector J can be expressed as

H =
Θ+ℓ

− +Θ−ℓ+

2
, J =

Θ+ℓ
− −Θ−ℓ+

2
. (15)

Since ⟨H,H⟩ = −Θ+Θ−, the mean curvature vector be-
comes a null vector on a MOTS. If in addition the slice
S is time symmetric, i.e. its second fundamental form
vanishes, then σαβ (4)∇αuβ = 0 and thus Θ+ = −Θ−
implying that H and J both vanish on a MOTS.
To characterize the quasi-local mass of a black hole re-

gion, we take the QLM of apparent horizons. However,
the current definition of the Wang-Yau quasi-local mass
assumes the surface mean curvature vector to be space-
like and hence does not apply to MOTSs. Therefore, one
of our goals is to extend the definition of the Wang-Yau
QLM (7) to a MOTS in time symmetry and to an MTS
without time symmetry. Limiting ourselves to the case of
axisymmetry and no angular momentum, we will argue
that a suitable extension is

QLM =
1

8π

∫

Σ

|H0| with τ = const . (16)

With this extension, we can then investigate the time
evolution of QLM during black hole collisions. As noted
above if Σ lies in a totally geodesic slice, e.g. in the
moment of time-symmetry, Wang-Yau QLM reduces to

Brown-York mass. In this case, the above extension
simply reduces to QLM = 1

8π

∫
k0, which is what one

would expect for the Brown-York limit at minimal sur-
faces. Further extension of QLM to surfaces of timelike
mean curvature vector, e.g. trapped surfaces inside event
horizons, is certainly of great interest and will be studied
elsewhere.

III. INITIAL DATA AND NUMERICAL
EVOLUTION

We use Brill-Lindquist initial data [43], which solves
the constraint equations of General Relativity with van-
ishing extrinsic curvature and vanishing scalar curvature,
i.e. a time-symmetric slice in vacuum spacetime. The
Riemannian three-metric is defined on R3 \ {x1, . . . , xn}
with n+1 asymptotically flat ends, one at ∥x∥ → ∞ and
n at the punctures xi. We restrict ourselves to the case
n = 2, which describes a two-black-hole configuration.
The three-metric can then be written as

hij = Φ4δij , (17)

where δij is the flat metric and the conformal factor is

Φ = 1 +
mA

2|x− xA|
+

mB

2|x− xB |
. (18)

We take the two punctures to be located on the z-axis at
coordinates xA,B = (0, 0,±d/2), respectively. The three
ends at ∥x∥ → ∞, xA and xB , respectively, have ADM-
masses

MADM = mA +mB , (19)

MADM
A = mA +

mAmB

2d
, (20)

MADM
B = mB +

mAmB

2d
. (21)

For sufficiently large d, the slice S contains two sepa-
rate black holes, each surrounded by a stable MOTS that
contains either xA or xB . We shall call these the individ-
ual MOTSs ΣA and ΣB , respectively. If d becomes small
enough, there exists a stable common MOTS Σouter sur-
rounding ΣA,B . In fact, as d passes through the value at
which Σouter appears, it is found that an unstable MOTS
Σinner forms together with Σouter and “moves” inward as
d is decreased. This is discussed in more detail elsewhere
[44].1 The two common and two individual MOTSs for
an equal mass configuration are shown in Fig. 1.
The numerical data for this initial slice are generated

by the TwoPunctures [45] thorn of the Einstein Toolkit
[46, 47]. These data are evolved in time using an axi-
symmetric version of McLachlan [48], which in turn uses

1 There is a large number of additional MOTSs in these data [40–
42], which are all found to be unstable. We will hence not discuss
these surfaces in the present work.
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FIG. 1. Common MOTS Σouter, inner common MOTS Σinner

and the two individual MOTSs ΣA and ΣB in Brill-Lindquist
initial data with parameters mA = mB = d = 1/2.

Kranc [49, 50] for generating C++ code. This uses the
BSSN formulation of the Einstein equations with gauge
conditions chosen as the so-called 1+ log slicing and a Γ-
driver shift condition [51, 52]. More details about our nu-
merical simulation setup, including a convergence analy-
sis, are described in [38].

Our analysis is based on two simulations, both starting
from BL data. The first, referred to as Sim1, uses initial
data with mB/mA = 2, d = 0.9 and the second, simula-
tion Sim2, uses mB/mA = 1.6, d = 1. Both simulations
were performed with different spatial grid resolutions to
check the accuracy of our calculations. Results shown for
Sim1 use a resolution 1/∆x = 720, which was evolved
until simulation time tf = 6. For Sim2, we used a lower
resolution of 1/∆x = 312 to extend the evolution up to
time tf = 38.

The MOTSs and CESs are numerically found with high
accuracy both in the analytical initial data as well as in
slices produced by the Einstein Toolkit using the method
in [44, 53].

In general, the problem of locating a surface Σs with
expansion Θ+ = s may have many solutions within a
given slice S. For s = 0, this corresponds to the different
MOTSs in S. By choosing suitable initial guesses for the
numerical search, we can easily select which particular
MOTS to find. As mentioned above, we focus here on
the three stable MOTSs Σouter, ΣA and ΣB , interpreted
as the horizon of the merger remnant and the smaller
and larger (in case of unequal masses) individual black
holes. Choosing one of these MOTSs as initial guess, we
construct CESs for s close to zero. Families of Σs are
then built by taking small steps in s, each time using
the previous CES as initial guess for the next. CESs
far from Σouter in the nearly flat region of S are close

to being spherical in our coordinates and so we can use
coordinate spheres as initial guesses in this case.

IV. NUMERICAL METHOD FOR
EVALUATING THE QUASI-LOCAL MASS

The strategy to solve the optimal embedding equation
∇aj

a = 0 is to consider ∇aj
a as a nonlinear operator

L acting on τ , linearize that operator L and solve the
linear problem multiple times, each time taking a small
step towards a solution of the full nonlinear problem.
This is also called the Newton-Kantorovich method [54,
Appendix C].
Analytically linearizing L requires determining the ex-

plicit dependency of ∇aj
a on τ . We make use of ax-

isymmetry, i.e. assuming the surface Σ, the embedding
i0 and τ are all axisymmetric, to simplify calculations.
The time function τ then depends only on one param-
eter, say θ, increasing from one pole of Σ to the other,
and the embedding i0 can be expressed in terms of the
intrinsic metric σab and τ ′, where τ ′ = dτ

dθ . Explicitly,

for coordinates {y1 = θ, y2 = ϕ} on Σ, 0 < θ < π and
0 < ϕ < 2π, an axisymmetric ansatz for the embedding
is

i0(θ, ϕ) =




τ(θ)
R(θ) cosϕ
R(θ) sinϕ
Z(θ)


 . (22)

Writing the two-metric as dσ2 = P 2 dθ2 + Q2 sin2 θ dϕ2,
we then have

R2 = Q2 sin2 θ , Z ′2 = P 2 − V ′2 + τ ′2 , (23)

where V = Q sin θ. Using this, we calculate ⟨H0, H0⟩ =
k20 − p20 via

k0 =
V V ′′Z ′ − P 2Z ′ + V V ′Z ′′

√
P 2 + τ ′2P 2V

, (24)

p0 =
P ′V τ ′ − P (V τ ′′ + V ′τ ′)√

P 2 + τ ′2P 2V
. (25)

Furthermore,

(αH0)θ =
k0p

′
0 − p0k

′
0

|H0|2
+ τ ′

V ′Z ′′ − V ′′Z ′

P (P 2 + τ ′2)
. (26)

The respective terms in curved space are calculated
differently using the null expansions, which we have in
highly accurate form from the MOTS and CES finding
process. In addition to (15), we use

(αH)a =
1

2

(
Θ+

,a

Θ+
− Θ−

,a

Θ−
− ℓµ+π

ν
a
(4)∇νℓ

−
µ

)
, (27)

where Θ±
,a = ∂Θ±

∂ya . We remark that Θ± contains first

derivatives of the 3-metric, which means that ∇aj
a con-

tains third derivatives. In order to get numerically accu-
rate results, we expand Θ± into a set of basis functions
and differentiate these directly.
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FIG. 2. Maximum residual of the OEE (6) as the resolution
of our representation of τ is increased. The error drops expo-
nentially up to reaching a numerical roundoff at about 10−11.
The case shown here is for a CES with Θ+ ≈ 0.114 in a non-
time-symmetric slice.

To linearize the operator Lτ = ∇aj
a, the above ex-

pressions are first inserted in turn into (8), (9) and ∇aj
a.

Afterwards, we use SymPy [55] to symbolically differen-
tiate L with respect to τ ′, τ ′′, τ (3) and τ (4). In the end,
the linearized operator we implement into our numerical
code is of the form

(δL)∆ =

4∑

n=1

(δτ(n)L)∂
n∆

∂θn
, (28)

where ∆ is a scalar function on Σ. Starting with an initial
guess τ0, usually τ0 = 0, we perform steps τi+1 = τi+∆i,
where ∆i solves the linear equation

(δL)∆i = −Lτi , (29)

which we solve using a pseudospectral method. In most
cases, it took between 5 and 15 steps to converge up to
numerical roundoff. Fig. 2 shows that the residual of the
OEE (6) decreases exponentially with the resolution of
τ , where the resolution is the number of basis functions
used for the finite representation of τ .

V. NUMERICAL RESULTS

A. The QLM in time-symmetric initial data

For a time-symmetric slice S, the mean curvature vec-
tor H of Σ lies in S. A MOTS therefore coincides with a
minimal surface (k = −⟨H, v⟩ = 0, where, as before, v is
the outward unit normal of Σ in S). Moreover, in time
symmetry we have αH = −⟨(4)∇eJ , eH⟩ ≡ 0 since eH lies
in S while eJ is the normal to the totally geodesic slice S.
And for τ = const, i0(Σ) ⊂ R3, by a similar argument,
αH0

≡ 0. Thus τ = const trivially solves the optimal em-
bedding equation (6). Furthermore, τ = const is known
to be the global minimum of the QLE provided that it

solves the optimal embedding equation [28]. The Wang-
Yau quasi-local mass reduces to the Brown-York mass
mBY for any surface Σ in a moment of time symmetry.

1. On the monotonicity along geometric flows

It is well known that for some cases, the Brown-York
mass exhibits a monotonically decreasing behavior [56].
As an example, consider a Schwarzschild black hole. In
a time-symmetric slice, with the metric in isotropic co-
ordinates

ds2 =
(
1 +

m

2r

)4 (
dr2 + r2dΩ2

)
, (30)

the horizon lies at r = m/2. One can show that

mBY

(
r =

m

2

)
= 2m > mBY(r = ∞) = m .

This is interpreted as negative gravitational field energy
bringing downmBY as the surface approaches infinity [2].
In fact, this monotonicity property could be shown

more precisely. Consider two mean convex surfaces in
S, Σi = ∂Ωi, i ∈ {1, 2}, with Ω1 ⊂ Ω2 and suppose there
exists a geometric flow

dF

dt
= fv, f > 0

from F (t1) = Σ1 to F (t2) = Σ2. Then it is proven [57,
Corollary 3.3] that

mBY(Σ2)−mBY(Σ1)

=
1

16π

∫

Ω2\Ω1

R+ |B0 −B|2 − (k0 − k)2 , (31)

where B and B0 are the second fundamental forms of
Σt ⊂ S and of i0(Σt) ⊂ R3, respectively. For a time-
symmetric slice S, the scalar curvature R = 2T00 and
hence the

∫
R term can be interpreted as matter con-

tribution, which in our case vanishes. The remaining∫
|B0 − B|2 − (k0 − k)2 term is then supposed to char-

acterize the pure gravitational field energy. Note that
although the integrand |B0 −B|2 − (k0 − k)2 clearly de-
pends on the foliation Σt, the total integral does not.
The work of Huisken & Yau [58] and later improvements
[59–63] show that ends of an asymptotically flat Rie-
mannian 3-manifold with positive ADM mass and non-
negative scalar curvature admit a unique canonical folia-
tion through stable constant mean curvature (CMC) sur-
faces. The geometric flow is assured in this case with Σt

being CMC surfaces. Nonetheless, assume (31) holds true
(in our case true numerically, see below), one can discuss
the sign of the gravitation field energy term. For simplic-
ity, take an orthonormal basis for Σt, {e1, e2}, such that
σab = δab. This basis is also an orthonormal basis for the
isometric embedding i0(Σt). Then in this basis,

|B0 −B|2 − (k0 − k)2 = −2 det(B0 −B) , (32)
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FIG. 3. QLM calculated for a family of CESs in BL data with
mA = mB = d = 1/2, going from spatial infinity (QLM∞ =
1) to the common horizon Σouter (QLMouter ≈ 2.019209822).
The dotted line shows the QLM for constant radius surfaces in
the time-symmetric Schwarzschild slice for comparison. The
left panel shows the QLM as function of the area radius r̃,
defined by 4πr̃2 = A, where A is the area, and the right panel
as function of the expansion Θ+.

where B0 − B = DR3

v0 − Dv : TΣ → TΣ is regarded

as a linear map in this ON basis, with DR3

and D de-
noting covariant differentiation in R3 and in Rieman-
nian S, respectively. If B0 − B can be chosen to be
orientation preserving throughout a foliation Σt, then∫
Σ
|B0 − B|2 − (k0 − k)2 < 0, i.e. it indicates negative

gravitational field energy. Then mBY would be mono-
tonically decreasing as the surfaces approach infinity. We
suspect this is generally true for at least mean convex Σ
but a proof is missing at the moment.

We examine the above equality (31) numerically. Fig. 3
shows the QLM for CESs with Θ+ ≥ 0. Outside the ap-
parent horizon, the QLM decreases monotonically with
increasing distance to the horizon, whereas the expan-
sion Θ+ = k increases from 0 at first (right panel, upper
part) and then drops back to 0 at infinity (right panel,
lower part). The balance (31) is also verified (see Fig. 4)
although we cannot prove for now that there exists a geo-
metric flow among constant expansion (mean curvature)
surfaces in our case.

2. Outer trapped surfaces in time symmetry

In time symmetry, we have Θ+ = −Θ− and, since

k = −⟨H, v⟩ = Θ+ −Θ−
2

, (33)

k < 0 everywhere for outer trapped surfaces (Θ+ < 0).
However, both the Wang-Yau QLE and the Brown-York
mass implicitly make the assumption that k > 0 and
hence do not apply to such surfaces. We argue that for
k = −|H| < 0 in the time-symmetric case, the same
formula works with k replaced by its absolute value.
We first exemplify this with a time-symmetric slice of

the Schwarzschild metric (30). Recall that there is an

isometric inversion r → (m/2)2

r that sends surfaces inside
the horizon to the outside, reversing the sign of H while

5 10 15
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4

z
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0.35

FIG. 4. Numerical evaluation of (31). The left panel shows
the numerical integral, where Φ = |B0 − B|2 − (k0 − k)2. It
agrees with the separately computed difference QLM(Σ2) −
QLM(Σ1) to within about 10−7. The x-axis represents the
area radius of the outer surface Σ2, which is varied from agree-
ing with Σ1 to an almost spherical CES of area radius r̃ = 15.
The inner surface Σ1 is a CES outside the apparent horizon
with expansion Θ+ = 0.1. The right panel shows part of the
CES family integrated over. The plots were produced with a
Brill-Lindquist setup with mA = mB = d = 1/2.
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Q
L

M

Σouter

Σinner

Brill-Lindquist, k0 − |k|
Brill-Lindquist, k0 − k
Schwarzschild, k0 − |k|
Schwarzschild, k0 − k

FIG. 5. Same as Fig. 3, but continuing the families to the
inside of the apparent horizon in both the BL data (blue) and
in a Schwarzschild slice (orange). We show a comparison of
the Brown-York mass (11) calculated either via 1

8π

∫
Σ
k0 −|k|

(solid lines) or via 1
8π

∫
Σ
k0 − k (dotted lines). For Θ+ ≥ 0,

the two definitions agree. In the Brill-Lindquist case, the CES
family interpolates between the inner common MOTS Σinner

and the apparent horizon Σouter via surfaces with Θ+ < 0.
However, these latter surfaces intersect each other (Fig. 7).
Monotonicity in this regime can therefore not be expected.
See text for discussion.

preserving H0 (H0 only depends on the surface metric).
Taking the absolute value of k, one has for a surface of
constant radius

QLM =
1

8π

∫
k0 − |k| =

{
m(1 + m

2r ) r ≥ m
2

2r(1 + m
2r ) r ≤ m

2

. (34)

This is shown in Fig. 5 (orange), where (34) is plotted
together with the case of no absolute value taken (dot-
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FIG. 6. Upper panel: CESs near the individual MOTS ΣB

in BL data with mA = mB = d = 1/2. Lower panel: QLM
calculated for these CESs. The inset shows a close-up near
Θ+ = 0. As in Fig. 5, the dotted line shows (11) calculated
via 1

8π

∫
Σ
k0−k. The QLM asymptotes to the ADM mass 3/4

of the end at xB as the family approaches the puncture xB .

ted), and compared with the analogous Brill-Lindquist
case (blue). Note that r denotes the isotropic radial co-
ordinate. The QLM attains its maximum value 2m at
the horizon while both the r → ∞ and r → 0 limit
yield QLM = m, consistent with the interpretation of a
time-symmetric slice in Schwarzschild as a wormhole con-
necting two identical, asymptotically flat regions. More
specifically, for Θ+ < 0, the surface lies in the other
asymptotic region, where its outward normal is −v. If
we use k < 0 as-is, then the BY-mass remains monotonic
and diverges as ∥x− xi∥ → 0 (i.e. approaching the other
end xi). In summary, a naive extension of Brown-York
mass into the k < 0 region results in a smooth QLM
profile while taking absolute value yields a “kink” at the
horizon. In this case, a non-smooth QLM profile (k0−|k|)
is clearly more natural than a smooth one (k0 − k) and
one might in general expect some non-analytic behavior
of QLM around MOTSs or horizons.
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FIG. 7. Family of CESs interpolating between Σouter and
Σinner in BL data with parameters mA = mB = d = 1/2.
Close to Σinner, members of this family intersect each other
and hence fails to foliate the space in this interior region.

For multiple black holes, taking the absolute value
of k yields results consistent with [43]. That is, for
large spheres one recovers the ADM mass as expected
while for small spheres approaching each puncture xi, an
asymptotic expansion yields the ADM mass associated
to each puncture (19). Numerical calculation for CES
around Σouter is also included in Fig. 5 (blue) and re-
veals a similar behavior as in the Schwarzschild case up
to Θ+ ≈ −0.2 where a turn-over happens in the multiple
holes BL data (see below for discussion). Numerical cal-
culation for CES toward each puncture, i.e. around ΣA,B ,
is shown in Fig. 6 and again reveals a similar behavior as
in the Schwarzschild case.

We emphasize that in Brill-Lindquist data, only CES
families outside Σouter and inside each individual ΣA,B

are comparable with the Schwarzschild case. The region
bounded by Σouter surrounding all punctures and ΣA,B

surrounding each individual puncture does not have a di-
rect correspondence in the Schwarzschild case. The CES
family interpolates between Σouter and the unstable com-
mon MOTS Σinner and does not approach either of the
two asymptotic ends xA,B (Fig. 7). Moreover, in this
region, constant expansion or constant mean curvature
(CMC) surfaces fail to foliate space and monotonicity
of the QLM indeed fails here. These explain peculiar
features around Σinner in BL data seen in Fig. 5. We re-
mark that choosing other families of foliating surfaces
such as coordinate spheres yields qualitatively similar
conclusions. The choice of families of CESs, which in
time symmetry are constant mean curvature surfaces, al-
lows us to get arbitrarily close to a MOTS, which is a
CES itself.

Our extension confirms that QLM at the MOTS (16)
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FIG. 8. Monotonicity of the QLM along a CES family going
outward from Σ1 = Σouter at time t = 2.5M in simulation
Sim1. The area radius r̃(Σ) increases monotonically along
this family. The left panel shows the difference of the QLM
between Σouter and Σ2 as Σ2 is moved outward. The right
panel shows the region around Σouter foliated by the CES
family.

should be

QLM =
1

8π

∫
H0 ≥ 2

√
|Σ|
16π

(35)

where |Σ| denotes the area of Σ and the Minkowski in-
equality is invoked. This is already assumed in earlier
studies [2].

B. QLM in non-time-symmetric slices

As one numerically evolves the time-symmetric initial
data, the slices S become non-time-symmetric and the
mean curvature vector of a surface Σ ⊂ S may acquire
a timelike component. The Wang-Yau quasi-local mass
will then in general differ from the Brown-York mass.

This has various consequences, one being that the
monotonicity of the QLM along geometric flows is not
guaranteed by (31) anymore, although we numerically
find monotonicity remains true, as can be seen in Fig. 8.
An analytic generalization of (31) to the non-time-
symmetric case is under study.

1. QLM at a MOTS without time symmetry

In this section, we will numerically determine the QLM
on CES families near Σouter. The goal is to justify the
definition (16) of the QLM on a MOTS Σ by exploring
its behavior as we approach Σ along the family from the
Θ+ > 0 side, where the QLM is well defined.
Although ρ (8) and QLM (7) seem well-defined even for

|H| → 0, the OEE that determines τ is clearly singular
at a MOTS: |H| appears as denominator in both (9) and
(27). Therefore, the definition of the QLM cannot triv-
ially be extended to the case of a MOTS. In other words,
as Θ+ → 0, |H| → 0, and so the assumption of having a
spacelike mean curvature vector in the Wang-Yau QLM

breaks down. We focus on examining this issue here nu-
merically. A mathematical treatment of this case will be
given in Sec. VI.
To numerically explore what happens as Θ+ → 0, we

look at the individual terms in the OEE (9) that deter-
mines τ . As can be seen in Fig. 9, ρ remains finite while
τθ = τ ′ approaches zero, so their product vanishes at a
MOTS. Since τ ′ → 0, τ → const and clearly αH0

→ 0.
The remaining terms ψθ and αH both remain finite in the
limit. However, within numerical limits, they cancel in
jθ as Θ+ → 0. The net result is thus τ → 0 is a solution
to the OEE at a MOTS.
This suggests that as we approach a MOTS, τ becomes

constant and ja vanishes, so that ρ → |H0|. In terms of
the QLM, this limit is shown in Fig. 10 together with the
value of the QLM calculated at the MOTS using (16).

C. Time evolution of the QLM at a MOTS

Having argued that one can extend the Wang-Yau
QLM to the common apparent horizon and each individ-
ual horizon by (16), we now examine its time evolution
during the head-on merger of two black holes.
If one interprets the Wang-Yau QLM as a measure

to separate quasi-local degrees of freedom from travel-
ing gravitational waves, then Fig. 11 indicates the re-
gion surrounded by Σouter loses energy/mass while sub-
regions surrounded by each individual horizon ΣA,B gain
energy/mass during the collision. Furthermore, in the
longer simulation Sim2, we find an oscillation in en-
ergy/mass contained inside the apparent horizon Σouter

(Fig. 12). It is well known that for two black hole col-
lisions, the intrinsic geometry of the apparent horizon
experiences oscillations at the (lowest) quasi-normal fre-
quency of the final black hole [64]. While the apparent
horizon area monotonically increases despite the oscilla-
tion at the quasi-normal frequency, QLM of the apparent
horizon fails to maintain monotonicity with the oscilla-
tion. Nevertheless, as the final black hole settles down
to equilibrium, the measure of QLM and area for the
apparent horizon converges.
First of all, although the Wang-Yau quasi-local mass is

defined for a 2-surface and does not depend on the choice
of slicing S, determining the apparent horizon through
Θ+ does depend on the choice of slicing S. Bearing in
mind this ambiguity associated with the apparent hori-
zon, one tends to conclude that the Wang-Yau quasi-local
mass suggests that the region bounded by the outermost
MOTS Σouter could lose energy to infinity. This is a
different picture from that indicated by the area of the
horizons, which increase monotonically, and the standard
first law of black hole thermodynamics. This difference
is actually expected: equation (6.20) in [16] indicates
that the Brown-York quasi-local mass for a Schwarzschild
black hole satisfies a balance equation that differs from
the standard black hole thermodynamics. This again em-
phasizes that quasi-local mass as defined by Brown and
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FIG. 9. Terms appearing in (9), i.e., jθ = ρτθ − ψθ − (αH0)θ + (αH)θ, where ψ = sinh−1
(

ρ∆τ
|H0| |H|

)
. They are plotted as

function of Θ+ for CESs outside Σouter. For each curve, we fix the coordinate θ ∈ (0, π) along the surface and show its value as
color. The right column is a close-up of Θ+ = 0 and depicts two individual values of θ. The first five rows show the individual
quantities whereas the final row shows −ψθ + (αH)θ. The slice is from Sim1 at time t = 2.5M .

York or Wang and Yau measures a different quantity than
irreducible mass. More specifically, as the horizon ex-
pands, more negative gravitational field energy is taken
into account by QLM which counteracts the positive con-
tribution from growing area and absorbed gravitational
waves. This issue is crucial in understanding Wang-Yau
quasi-local mass and will be carefully studied with a di-
rect calculation of gravitational wave energy in a future
study.

1. Investigating the hoop-conjecture

A viable notion of QLM in general relativity should
lead to numerous applications. We conclude this section
on numerical results by exploring one such application,
namely the hoop conjecture [65, 66]. This conjecture
addresses the question of under what conditions a black
hole forms. As we shall shortly see, several aspects of the
conjecture are not precisely formulated and numerical
relativity has a role to play in exploring and evaluating
various possibilities; see e.g. [67] for recent work in this
direction.

In the case of gravitational collapse, the intuitive pic-
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FIG. 11. QLM and area masses of Σouter and ΣB calculated
using (16) in simulation Sim1 as function of simulation time.
The smaller horizon ΣA (not shown) has a qualitatively simi-
lar behavior, though less pronounced, as ΣB . For easier com-
parison, the QLM has been divided by 2 to account for the
fact that for Schwarzschild, the QLM of the horizon is twice
the ADM mass.

ture is that of matter fields getting compressed due to
their self-gravity and eventually becoming sufficiently
dense to form a black hole. As originally formulated by
Kip Thorne: Horizons form when and only when a mass
M gets compacted into a region whose circumference C in
every direction does not exceed 4πGM/c2. Thus, in units
with G = c = 1, a horizon should form when, and only
when, C/4πM ≲ 1. Here the notion of what one means
by mass is left vague, as is the space of curves (“hoops”)
one should use. Moreover, the value of 1 on the right
hand side is motivated by the Schwarzschild metric, and
other numerical values might be appropriate in general
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FIG. 12. Evolution of the QLM calculated using (16) on
Σouter and the horizon’s irreducible mass. This plot shows
the longer simulation Sim2. At the final time, we have
QLMouter/2 ≈ 0.9999303 and

√
Aouter/16π ≈ 0.9999309.

The lower panel is a close-up on the y-axis of the first panel.

situations.

If a notion of QLM is generally viable, it should be
possible to use it as the appropriate mass within the
hoop conjecture. For the Schwarzschild spacetime, as
we have seen, the Wang-Yau QLM for the horizon is
twice the ADM mass. Thus, one might expect the rele-
vant hoop conjecture inequality should be modified to
C/4πM < 0.5. For the hoops, we shall use closed
geodesics lying within the constant expansion surfaces
that we have already found. In our present case, we do
not deal with gravitational collapse, but rather with a bi-
nary black hole merger where we always have black holes
present on any time slice. We instead seek to investi-
gate the issue of when the common horizon forms, and
whether its formation can be predicted by a hoop con-
jecture argument using the Wang-Yau QLM. We assume
further that the hoop conjecture applies to the formation
of marginally trapped surfaces. In our case, the constant
expansion surfaces and the marginally trapped surfaces
turn out to be prolate so that the polar circumference Cp
is larger than the equatorial circumference. Thus we cal-
culate the ratio Cp/4πM for constant expansion surfaces
on different time slices in the vicinity of the time when
the common horizon is first formed.

Our results are shown in Fig. 13. We see that the ratio
Cp/4πM approaches 0.5 asymptotically as expected. At
earlier times, this ratio is somewhat larger than the lim-
iting value 0.5. This is not unusual – similar results were
found in e.g. [67] where the ratio was about 12% larger
than the limiting value predicted by the hoop conjecture.
At each time just before the horizon is formed, the value
of Cp/4πM approaches the limiting value as the expan-
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FIG. 13. Exploring the use of the Wang-Yau QLM in the
hoop conjecture for the formation of the common horizon.
The figure shows the ratio Cp/(4π × QLM) as functions of
time for various constant expansion surfaces. The curve in
red refers to the common horizon while the other curves refer
to positive values of the expansion; the color scale indicates
the values of the expansion, which lie apart by 0.02 at the
color scale’s ticks. The time labeled as tbifurcate is when the
common horizon is formed.

sion becomes smaller. These results are suggestive but
inconclusive – it is not yet clear whether this can be used
as a prediction for the formation of the common horizon.
This would require us to identify a suitable threshold for
Cp/4πM for these surfaces. In the above discussion we
have considered only the constant expansion surfaces. It
is plausible that there exist other surfaces which have a
smaller value of Cp/4πM . Therefore, while we shall not
do so here, it would be more satisfactory to consider a
more general class of 2-spheres and to minimize the ratio
Cp/4πM over these spheres. Following the spirit of the
hoop conjecture, one could then look for a threshold on
this minimum value of Cp/4πM , and investigate whether
it can predict the formation of a black hole horizon.

VI. DEFINING THE QLM ON A MOTS

The above numerical results have already used a
“working definition” (16) for evaluating the Wang-Yau
QLM on a MOTS. In this section, we explore the limit
Θ+ → 0 from a mathematical perspective to justify this
definition. It seems plausible that an extension to the
case with angular momentum is possible. However, this
will be left to future work.

Lemma VI.1. Consider an axisymmetric collision with
no angular momentum involved. Further assume isomet-
ric embedding or time function τ being axisymmetric,
then j ≡ 0 when it is well-defined, i.e. when the mean
curvature vector H is spacelike.

Proof. Use the definition (9). We first observe that under
the above assumptions, jϕ ≡ 0. It is easy to see that

∇∂ϕτ = ∇ϕ

(
sinh−1 ρ∆τ

|H0||H|

)
= 0 by assumption. That

connection one-forms vanish can be seen from computing
Christoffel symbols, using subscripts 3, 4 for the H and
J direction,

Γ4
ϕ3 =

1

2
g4µ
(
∂ϕ(g3µ) + ∂3(gϕµ)− ∂µ(gϕ3)

)

=
1

2
g4µ ∂3(gϕµ)

and noting that the spacetime under consideration pos-
sesses a symmetry ϕ → −ϕ such that cross terms in the
metric involving ϕ all vanish.
Next we show jθ = 0. The most general axisymmetric

metric for a 2-surface is

dσ2 = r20P (r0, θ)
2dθ2 + r20Q(r0, θ)

2 sin2 θdϕ2 .

Then

∇aj
a =

1√
σ
∂θ(

√
σσθθjθ) =

1√
σ
∂θ(

Q

P
sin θ jθ) = 0

Q

P
sin θ jθ = const .

Using that Q,P do not vanish (metric non-degenerate),
sin(0) = sin(π) = 0 and that j is well-defined, one gets
const = 0 and hence jθ ≡ 0 on the surface.

Remark VI.2. This may sound contradictory to the
well-known fact that there are infinitely many non-
vanishing, smooth, divergence-free vector fields on S2.
We elaborate on this. Denote the volume form by ω =√
σdθ ∧ dϕ. Take divergence-free vector field j = jθ∂θ

with jϕ = 0. Then

div(j)ω = Ljω = dιjω = 0 .

Given that H1
dR(S

2) = 0, there exist a smooth function
f(θ, ϕ) such that ιjω = df . That is,

r20PQ sin θ jθdϕ = df =
∂f

∂θ
dθ +

∂f

∂ϕ
dϕ .

It follows that ∂f
∂θ = 0. Then noting that the RHS is only

a function of ϕ while the LHS clearly has a dependence
on θ, it follows that jθ = f = 0. We again reach j ≡ 0
when axisymmetry is imposed.

Remark VI.3. When angular momentum is present, the
metric would have cross terms involving ϕ and the con-
nection one-form αH would generally not vanish (αH0

=
0 since the reference spacetime is static). In fact, the
quasi-local angular momentum as defined in [23] vanishes
exactly when jϕ = 0, consistent with our proof above. Re-
call that quasi-local angular momentum is defined as

E(Σ, X, T0,K = ∂ϕ) = − 1

8π

∫
⟨K,T0⟩ρ+Kaja .

If one assumes Σ and τ both axisymmetric, ⟨K,T0⟩ = 0.
E(Σ, X, T0,K = ∂ϕ) = 0 if and only if jϕ = 0.



13

Theorem VI.4. Assume H0 remains spacelike as H
turns into null or |H| → 0, then the solution τ to the
OEE approaches a constant as the surface approaches the
apparent horizon.

Proof. Note that H0 = k̂ě3 +
∆τ√

1+|∇τ |2
ě4, where k̂ is the

mean curvature of the projected surface π(i0(Σ)) in R3,
with π : R3,1 → R being projection along T0. Assuming
H0 remains spacelike thus implies that τ is well behaved
since otherwise ∆τ

|∇τ | → ∞ and H0 is surely timelike.

Having proved that j ≡ 0 as |H| → 0, we next examine

(9) term by term to show that ∇a

(
sinh−1 ρ∆τ

|H||H0|
)
needs

to be bounded, which in turn leads to ∆τ → 0 and hence
τ → const as |H| → 0.
First look at the αH term. Use (27) and the fact

that the family of Σ is constant expansion surface with
∂aΘ+ ≡ 0,

αH =
1

2

(
−∂aΘ−

Θ−
− ⟨(4)∇aℓ−, ℓ+⟩

)

and hence bounded as θ+ → 0.
Next look at the αH0

term. Using ě4 = T0+∇τ√
1+|∇τ |2

and

⟨(4)∇aě3, T0⟩ = 0

αH0
(ea) = ⟨(3,1)∇aě3, ě4⟩ = II

(
ea,

∇τ√
1 + |∇τ |2

)
,

where II is the second fundamental form of the cylinder
spanned by i0(Σ) and T0 in R3,1. Therefore αH0

is also
bounded as θ+ → 0.
Lastly, note that

ρ∇τ =

(√
|H0|2 +

(∆τ)2

1 + |∇τ |2 −
√
|H|2 + (∆τ)2

1 + |∇τ |2

)

× ∇τ√
1 + |∇τ |2

also remains bounded as θ+ → 0.

Putting together, one sees that ∇θ

(
sinh−1 ρ∆τ

|H||H0|

)

has to remain finite for j ≡ 0 as |H| → 0. This is only
possible when ∆τ → 0 as |H| → 0, i.e. τ → const.
To gain more understanding about the limit τ → const,

we use another formula for j that does not invoke picking
the specific frame {eH , eJ}

j = ρ∇τ − αě3 + αe3 .

Indeed,

−αH0 + αH −∇
(
sinh−1 ρ∆τ

|H||H0|

)

= −αH0
−∇ψ0 + αH +∇ψ

= −αě3 + αe3 .

Imposing τ = const, ρ∇τ = 0 and αě3 =
⟨(3,1)∇ě3, ě4⟩ = 0 , recalling that ě4 = T0+∇τ√

1+|∇τ |2
. One

is left with αe3 only. Recall that e3 is the ‘spacelike’ unit
normal chosen by the gauge condition

⟨e4, H⟩ = ⟨ě4, H0⟩ ,

which vanishes for τ = const or i0(Σ) ⊂ R3. When
H is spacelike, this gauge condition picks e3 ∝ H and
αe3 = αH which in general do not vanish. So τ = const
does not solve OEE in general.
Now consider the limit Θ+ → 0. Since

H =
Θ+ℓ− +Θ−ℓ+

2
, J =

Θ+ℓ− −Θ−ℓ+
2

as Θ+ → 0, H and J both turn to null vectors along ℓ+.
The gauge condition ⟨e4, H⟩ = 0 forces e4, e3 ∝ ℓ+. Thus
αe3 = ⟨∇e3, e4⟩ = 0 and j = 0 is satisfied.

Remark VI.5. The above proposition shows that one
can extrapolate the definition of the QLM to |H| = 0 with
the optimal embedding being τ = const. In this case, i.e.
τ = const and |H| = 0,

QLM =
1

8π

∫
ρ

=
1

8π

∫
√

|H0|2 + (∆τ)2

1+|∇τ |2 −
√
|H|2 + (∆τ)2

1+|∇τ |2√
1 + |∇τ |2

=
1

8π

∫
|H0| .

Remark VI.6. As proved in [28], a solution τ to the
optimal embedding equation is a local minimum of Wang-
Yau quasi-local energy if

|Hτ | > |H| > 0 ,

where Hτ is the mean curvature vector of the isomet-
ric embedding with time function τ . The condition is
satisfied for constant expansion surfaces with Θ+ > 0
(Fig. 14). Assume continuity, τ = const is a local min-
imum of Wang-Yau quasi-local energy at the apparent
horizon.

The numerical calculations in Sec. VB1 comply with
the above results.

VII. CONCLUSIONS

In this work, we have studied the Wang-Yau quasi-
local mass during a binary black hole merger. The Wang-
Yau QLM uses an embedding of 2-surfaces in Minkowski
space. We have solved the optimal embedding equation
numerically and applied it to the head-on collision of two
non-spinning black holes starting with Brill-Lindquist
initial data. We numerically determined the QLM for
surfaces close to the horizons and for families of surfaces
approaching the asymptotically flat ends and study their
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FIG. 14. Value of |Hτ | and |H| along the CESs outside Σouter

at simulation time t = 2.5M in Sim1. As Fig. 9, the colors
indicate the coordinates on the surface.

time evolution, and also present a preliminary investi-
gation of the hoop conjecture applied to the formation
of the common horizon. Finally, we have suggested an
extension of the Wang-Yau QLM to marginally trapped
surfaces.

For a Schwarzschild black hole, our calculations agree
with the well known result of the Brown-York mass, i.e.
the QLM is twice the ADM mass on the horizon. The
Brown-York mass decreases monotonically as one moves
outward from the horizon, and for the sphere at infinity,
it yields the ADMmass. This is in sharp contrast to other
quasi-local mass definitions such as Hawking and Bart-
nik masses. The Wang-Yau quasi-local mass also inherits
this monotonic decreasing property. Such monotonicity
is clearly demonstrated numerically for our family of con-
stant expansion surfaces. Therefore, it is a crucial prop-
erty of the Wang-Yau quasi-local mass that some measure
of negative gravitational field energy is accounted for. In
particular, for surfaces Σ in a time-symmetric slice S,
an explicit expression for gravitational field energy was
written down [57]. An analogous expression for the case
of non-time-symmetric slices is under study.

We have extended the definition of Wang-Yau quasi-
local mass for 2-surfaces of spacelike mean curvature vec-
tor to 2-surfaces of null mean curvature vector, i.e. (16).
With this extension, we examined the time evolution of
QLM for a black hole, defined as QLM at Σouter, during
the head-on collision of two non-spinning black holes. As
is well known, the area increases monotonically through-
out the evolution. At late stages, the area evolution ex-
hibits damped oscillations which are known to be associ-
ated with the quasi-normal modes of the remnant black

hole (see e.g. [68]). In contrast, QLM decreases mono-
tonically at first and starts to lose monotonicity when
oscillations take place. We see from the bottom panel
of Fig. 12 that the oscillation frequency of the QLM is
similar to that of the area and one might expect these to
also be associated with the quasi-normal modes. Mono-
tonicity could be included as one of the additional re-
quirements for a QLM, and in future work we shall in-
vestigate the possibility to modifying the definition of the
QLM appropriately to make it monotonic.
That QLM and area evolve differently seems to comply

with a variation equation for the Brown-York mass in the
Schwarzschild black hole case [16], which differs from the
standard first law of black hole thermodynamics. One
might again invoke negative gravitational field energy to
explain this difference. Nevertheless, both of these mea-
sures, namely the area and half of QLM of the apparent
horizon converge to the same value asymptotically as the
final black hole settles down to its equilibrium state. We
expect that employing estimates of gravitational wave
energy will greatly clarify on various distinctive features
of the Wang-Yau quasi-local energy.
Future work will extend this study in various direc-

tions. Further extension of quasi-local definition for mass
and angular momentum to surfaces of time-like mean cur-
vature vector is of great interest. An example is trapped
surfaces inside the horizon, whose quasi-local mass might
reveal important information about black holes. An at-
tempt definition based on Brown-York mass was made in
a previous study [17], where it is found the quasi-local
mass either experiences an infinite slope or a cusp at the
horizon while the former was preferred by those authors.
A naive extension of Wang-Yau QLM presented here re-
veals a similar behavior. A careful study of this issue will
be presented elsewhere.
Furthermore, it will be important to calculate the

QLM in cases with rotation or angular momentum. In
these cases, we can also calculate the quasi-local angu-
lar momentum. Quasiloal mass and angular momentum
for surfaces inside Kerr’s ergoregion might exhibit inter-
esting features related to the Penrose process. The time
variation of the mass and angular momentum should be
related to appropriate fluxes. Moreover, the event hori-
zon, whose determination requires the knowledge of the
whole spacetime evolution, may reveal different informa-
tion from the apparent horizon studied here. Finally, an
extension of the QLM and angular momentum to cos-
mological spacetimes would be of great interest. Here it
would be necessary to consider a reference configuration
not in Minkowski spacetime, but in de Sitter or anti-
de Sitter spacetime [69].
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