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Identifying a general quasilocal notion of energy-momentum and angular momentum would be an
important advance in general relativity with potentially important consequences for mathematical and
astrophysical studies in general relativity. In this paper, we study a promising approach to this problem first
proposed byWang and Yau in 2009 based on isometric embeddings of closed surfaces in Minkowski space.
We study the properties of the Wang-Yau quasilocal mass in high-accuracy numerical simulations of the
head-on collisions of two nonspinning black holes within full general relativity. We discuss the behavior of
the Wang-Yau quasilocal mass on constant expansion surfaces, and we compare its behavior with the
irreducible mass. We investigate the time evolution of the Wang-Yau quasilocal mass in numerical
examples. In addition, we discuss mathematical subtleties in defining the Wang-Yau mass for marginally
trapped surfaces.
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I. INTRODUCTION

The quasilocal definition of energy-momentum remains
one of themajor problems in classical general relativity [1,2].
The goal is to find appropriate notions of energy-momentum
and angular momentum for finite, extended regions of
spacetime. At spatial infinity and at null infinity, there are
well-established concepts of energy and angularmomentum.
The energy-momentum defined by Arnowitt-Deser-Misner
(ADM) [3] at spatial infinity measures the total energy in a
spacetime, and it is conserved and shown to be positive [4,5].
The Bondi energy is measured at null infinity and satisfies
appropriate balance laws as gravitational radiation carries
away energy and angular momentum [6]. Similarly, there are
notions of quasilocal energy and angular momentum and
balance laws applicable for black hole horizons [7–9]. In
contrast, finding suitable analogous definitions for a finitely

extended body or for an arbitrary region in spacetime is still
under active research.
Finding appropriate quasilocal notions of energy-

momentum and angular momentum would be desirable
for various reasons. For example, one might expect that
gravitational waves emitted from a given region in space-
time would carry away energy, thus leading to a corre-
sponding decrease in the quasilocal mass. Such a link has
been shown for the Bondi mass and for black hole horizons,
but is still not available for general spacetime regions. Once
fully understood, it could potentially allow us to infer
detailed properties of dynamical spacetimes in the strong
field region from gravitational wave observations, such as
from the merger of compact objects. On the mathematical
side, it is likely that appropriate quasilocal notions of
energy and angular momentum would play an important
role in providing a full proof of the Penrose inequality.
Similarly, as we shall discuss in this paper, quasilocal mass
also plays an important role in the process of gravitational
collapse and black hole formation via the hoop conjecture.
We expect quasilocal mass to be a flux-type integral

on a closed, spacelike 2-surface Σ which bounds a space-
like hypersurface Ω. Since Ω is not unique in the sense
of being bounded by a given Σ, one would expect that a
proper notion of quasilocal mass should not depend on
which specific Ω is chosen. Restricting ourselves to
vacuum spacetimes, we can enumerate some minimal
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requirements that any viable notion of quasilocal massMðΣÞ
should satisfy [10]:
(1) In flat Minkowski spacetime, MðΣÞ should vanish.
(2) In a curved spacetime, the quasilocal mass should be

non-negative.
(3) In the limit when Σ approaches a sphere at spacelike

infinity on an asymptotically flat slice, or a cross
section of null infinity, the quasilocal mass must
approach the ADM mass or the Bondi mass,
respectively.

(4) When Σ is an apparent horizon, the quasilocal mass
must be bounded from below by the irreducible mass
of Σ (i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΣ=16π

p
) where AΣ is the area of Σ.

In this work, we shall investigate properties of the
quasilocal mass originally proposed by Wang & Yau [11];
see also [12]. There are several other proposed definitions
of quasilocal mass, energy-momentum, and angular
momentum in the literature. Some notable ones are due
to Bartnik [13], Hawking [14], and Penrose [15]; see [1,2]
for a review.
Based on a variational analysis of the action of general

relativity, Brown & York proposed a quasilocal energy
arising as a boundary term in the Hamiltonian [16,17]; see
also [10,12,18]. However, the Brown-York definition
depends explicitly on a choice of spacelike hypersurface
Ω that is bounded by the 2-surface Σ under consideration.
Specifically, the mean curvature of Σ as embedded in Ω
appears in the Brown-York definition. Moreover, a specific
choice of unit lapse and zero shift is needed in relating the
Hamiltonian to the Brown-York mass. This rather arbitrary
gauge fixing is undesirable in general relativity studies.
Furthermore, the Brown-York quasilocal mass can fail
to be positive in general, except for the time-symmetric
case [19]. On the other hand, there exist surfaces in
Minkowski spacetime with strictly positive Brown-York
mass [20]. These undesirable features are resolved in Wang
& Yau [21] by further including momentum information
(second fundamental form in the time direction) in their
definition. Indeed, Euclidean space can be regarded as the
totally geodesic spacelike hypersurface of zero momentum
in Minkowski spacetime. While Brown & York defined
their reference surface by an isometric embedding of Σ into
three-dimensional Euclidean space R3, Wang & Yau
defined their reference surface by an isometric embedding
into Minkowski space R3;1 directly. The Wang & Yau
definition gives the most natural modification of that of
Brown & York by the inclusion of the time-direction
second fundamental form in the reference space [see
Eq. (6) in [11]; also see [22] ], which vanishes for
Σ ↪ R3 ⊂ R3;1. The positivity proof of Wang-Yau quasi-
local mass is given along with the definition [21]. The new
definition is proven to recover the ADM mass at spatial
infinity [23] and the Bondi mass at null infinity [24].
Further, the small sphere limit is proven to recover the
stress-energy tensor at the limiting point for a spacetime

with matter fields and is related to the Bel-Robinson tensor
at higher orders for vacuum spacetime. Along the same
line, they also give a quasilocal definition for angular
momentum and center of mass [25], which are proven to be
supertranslation invariant [26–28]. We will review the
definition of Wang & Yau quasilocal mass below and
compare with that of Brown & York when it is helpful.
Besides the requirements enumerated above, additional

properties would be desirable when considering the
dynamical aspects of general relativity. As mentioned
earlier, for the Bondi mass at null infinity, the Bondi mass
loss formula shows that gravitational waves carry away
energy, leading to a decrease of the Bondi mass [6]. The
flux of gravitational radiation is written as a surface integral
over cross sections of null infinity, and it is manifestly
positive. Similarly, restricting ourselves to black hole
horizons and marginally trapped surfaces, similar balance
laws with positive fluxes can be shown, leading to a
physical process version of the area increase law [7–9].
Extending these considerations to a more general quasilocal
setting would lead one to conjecture that the emission (or
absorption) of gravitational radiation from a domain Ω
could be written as a surface flux integral over Σ, directly
related to the decrease (or increase) of the quasilocal mass.
At present, we do not have a well-defined notion of such
fluxes. As a first step in this direction, in this work we shall
study the time evolution of the Wang-Yau quasilocal mass,
henceforth denoted as QLM, in the context of a binary
black hole merger. This question is hard to answer
analytically, and we resort instead to high-precision
numerical simulations of the full Einstein equations.
The plan for this paper is the following: The basics of

the Wang-Yau QLM and its properties are introduced in
Sec. II. We shall consider the head-on collision of two
nonspinning black holes starting with time-symmetric
initial data. The initial data and our numerical evolution
scheme are described in Sec. III. Our numerical imple-
mentation for calculating the Wang-Yau QLM and numeri-
cal convergence are described in Sec. IV. The numerical
results are presented in Sec. V in three steps. First, Sec. VA
shows the results in the initial data—i.e., with time
symmetry. As the evolution proceeds, the later time slices
are no longer time symmetric. Section V B shows results
for non-time-symmetric slices, and finally Sec. V C
presents the time evolution of the QLM and also an
exploration of the hoop conjecture in the context of the
formation of the common horizon in a black hole merger.
In the course of presenting the numerical results, it will be
clear that there are mathematical subtleties in defining the
QLM for a marginally trapped surface. This will be
clarified mathematically in Sec. VI and will justify the
various choices made in the numerical work. Finally,
Sec. VII will discuss some implications of our results
and suggestions for future work.
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II. BASIC NOTIONS

The Wang-Yau quasilocal energy (QLE) associated with
a suitable surface is defined through anchoring the surface
intrinsic geometry while comparing the extrinsic geometry
as embedded in the original spacetime N 4 versus that
embedded in the flat Minkowski space R3;1. Given a
spacelike 2-surface Σ ⊂ N 4 with induced metric σab, let
i0∶ Σ ↪ R3;1 be an isometric embedding into the
Minkowski spacetime. Fixing a unit, future-pointing, time-
like vector T0 in R3;1, a one-to-one correspondence
between vector fields in N 4 and those in R3;1 is built
through the “canonical gauge” condition,

hH; ē4i ¼ hH0; ě4i; ð1Þ
whereH andH0 are mean curvature vectors of Σ ⊂ N 4 and
i0ðΣÞ ⊂ R3;1, respectively, and h·; ·i denotes the corre-
sponding scalar product in N 4 and R3;1. The basis vectors
ēα of N 4, α∈ f1; 2; 3; 4g, and ěα of R3;1 are chosen as
follows. Let ě3 be the spacelike unit normal of i0ðΣÞ which
is also perpendicular to T0. Let ě4 be the future-pointing,
timelike unit normal that is perpendicular to ě3. Then
fě3; ě4g forms an orthonormal basis for the normal bundle
of i0ðΣÞ ⊂ R3;1. The canonical gauge condition (1) picks
uniquely a future-pointing, timelike unit normal of Σ, ē4.
Then ē3 is the spacelike normal of Σ that, combined with
ē4, gives an orthonormal basis for the normal bundle
of Σ ⊂ N 4.
Given τ∈C∞ðΣÞ, a generalized mean curvature for Σ is

defined as

H ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2

q
hH; ē3i − αē3ð∇τÞ; ð2Þ

where ∇ denotes the covariant derivative on Σ associated
with σab, j∇τj2 ¼ σab∇aτ∇bτ, and we write αē3ð∇τÞ ¼
ðαē3Þa∇aτ. The connection one-form αē3 associated with
the basis fē3; ē4g is defined as

αē3ðYÞ ¼ hð4Þ∇Yē3; ē4i;

where Y ∈TΣ and ð4Þ∇ denotes the covariant derivative in
N 4. Similarly, one can define αě3 for the connection one-
form associated with fě3; ě4g in R3;1 as

αě3ðYÞ ¼ hð3;1Þ∇Yě3; ě4i;

where ð3;1Þ∇Y denotes the covariant derivative in R3;1. A
generalized mean curvature for i0ðΣÞ is defined as

H0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2

q
hH0; ě3i − αě3ð∇τÞ: ð3Þ

The Wang-Yau quasilocal energy associated with τ is then
defined as

QLEðτÞ ¼ 1

8π

Z
Σ
ðH0 −HÞdvolΣ: ð4Þ

When the mean curvature vector H is spacelike, one can
use H ¼ −hH; ē4iē4 þ hH; ē3iē3 ¼ pē4 − kē3 and its con-
jugate vector J ¼ kē4 − pē3 to form an orthonormal basis
for the normal bundle NΣ, feH ¼ − H

jHj ; eJ ¼ J
jHjg. In terms

of this mean curvature vector basis,

QLEðτÞ ¼ 1

8π

Z
Σ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2

q
· ðcosh θ0jH0j − cosh θjHjÞ

−∇τ ·∇ðθ0 − θÞ − ðαH0
− αHÞð∇τÞ

�
;

where θ denotes the hyperbolic angle between fē3; ē4g and
feH ¼ − H

jHj ; eJ ¼ J
jHjg. Specifically,

�
ē3 ¼ cosh θeH − sinh θeJ
ē4 ¼ − sinh θeH þ cosh θeJ

; ð5Þ

and similarly for θ0 in R3;1.
Solving the variational problem of minimizing the QLE

with respect to the time function τ, one gets the Euler-
Lagrange equation, called the optimal embedding equation
(OEE),

∇aja ¼ 0: ð6Þ

The minimum value of the QLE is defined to be the Wang-
Yau quasilocal mass

QLM ¼ 1

8π

Z
Σ
ρþ ja∇aτ ¼

1

8π

Z
Σ
ρ; ð7Þ

where [see Eqs. (4.4) and (4.5) in [24] for details]

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jH0j2 þ ðΔτÞ2

1þj∇τj2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHj2 þ ðΔτÞ2

1þj∇τj2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2p ð8Þ

and

ja ¼ ρ∇aτ−∇a sinh−1
ρΔτ

jH0jjHj− ðαH0
Þa þ ðαHÞa: ð9Þ

The Wang-Yau QLM is defined for any closed spacelike
surface Σ whose mean curvature vector is spacelike and
where an admissible solution to the OEE (6) exists (see
Definition 5.1 in [21] for admissible τ).
Note that if τ ¼ const: is admissible and solves the

optimal embedding equation, it must be the global mini-
mum of Wang-Yau quasilocal energy [29]. Substituting τ ¼
const: into (7), one sees that the Wang-Yau quasilocal mass
reduces to the Liu-Yau mass in this case [10,12]:
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QLM ¼ 1

8π

Z
Σ
jH0j − jHj: ð10Þ

If further Σ lies in a totally geodesic slice, the Wang-Yau
quasilocal mass reduces to the Brown-York mass:

mBY ¼ 1

8π

Z
Σ
k0 − k; ð11Þ

where k is the only nonzero component of H lying in the
totally geodesic slice, while k0 is the mean curvature vector
of i0ðΣÞ embedded in R3. Note that τ only appears through
derivatives, and we hence use τ ¼ 0 and τ ¼ const:
interchangeably.
In black hole spacetimes, there is a particular set of

surfaces of interest—the marginally outer trapped surfaces
(MOTSs). These are used to study various aspects of black
holes quasilocally via the framework of isolated and dynami-
cal horizons, describing black holes in equilibrium and in
dynamical situations, respectively (see, e.g., [30–34]). In any
given spacelike sliceS ⊂ N 4, the outermostMOTS is called
the apparent horizon. Given aMOTS on a spacelike slice, the
results ofAndersson et al. [35–37] show the conditions under
which it evolves smoothly. It is shown that when a MOTS is
stable under outward deformations, then it will evolve
smoothly. Recent numerical work has applied and further
explored the stability of MOTSs and its implications for the
time evolution [38–43].
A MOTS is defined as follows. Let Σ ⊂ N 4 be a closed

spacelike surface, and let lþ, l− be two future-directed
null normal fields on Σ taken to point outward and
inward, respectively. We fix the cross normalization by
hlþ;l−i ¼ −2, which still leaves a remaining scaling
freedom:

lþ → flþ; l− →
1

f
l− ð12Þ

for any positive function f. The outward and inward
null expansions, denoted Θþ and Θ−, respectively, are
defined as

Θ� ¼ σαβð4Þ∇αl�
β ; ð13Þ

where σαβ ¼ σabπαaπ
β
b, with π

α
a being the projection onto the

tangent bundle of Σ. Then, Σ is called a marginally outer
trapped surface (MOTS) if Θþ ¼ 0, an outer trapped
surface if Θþ < 0, and an outer untrapped surface if
Θþ > 0. A marginally trapped surface (MTS) is a MOTS
with Θ−< 0. Note that although Θþ→ fΘþ under (12),
the signs ofΘ� are invariant, and so these definitions are not
affected.
We will often consider families of surfaces Σs with

constant Θþ ¼ s∈R, called constant expansion surfaces
(CESs). These do depend on the choice of l�, which we fix

uniquely using the spacelike slice S ⊂ N 4 within which the
family Σs is constructed. Concretely, let Σs ⊂ S, let v
denote the spacelike outward unit normal of Σs in S, and let
u denote the future timelike unit normal on S in N 4. Then,
we choose

l� ¼ u� v: ð14Þ

In terms of the null expansions Θ�, the mean curvature
vector H and its conjugate vector J can be expressed as

H¼Θþl−þΘ−lþ

2
; J¼Θþl− −Θ−lþ

2
: ð15Þ

Since hH;Hi ¼ −ΘþΘ−, the mean curvature vector
becomes a null vector on a MOTS. If, in addition, the
slice S is time symmetric—i.e., its second fundamental
form vanishes—then σαβð4Þ∇αuβ ¼ 0, and thus Θþ ¼ −Θ−,
implying that H and J both vanish on a MOTS.
To characterize the quasilocal mass of a black hole

region, we take the QLM of apparent horizons. However,
the current definition of the Wang-Yau quasilocal mass
assumes the surface mean curvature vector to be spacelike
and hence does not apply to MOTSs. Therefore, one of our
goals is to extend the definition of the Wang-Yau QLM (7)
to a MOTS in time symmetry and to an MTS without time
symmetry. Limiting ourselves to the case of axisymmetry
and no angular momentum, we will argue that a suitable
extension is

QLM ¼ 1

8π

Z
Σ
jH0j with τ ¼ const: ð16Þ

With this extension, we can then investigate the time
evolution of QLM during black hole collisions. As noted
above, if Σ lies in a totally geodesic slice—e.g., in the
moment of time symmetry—Wang-Yau QLM reduces to
Brown-York mass. In this case, the above extension simply
reduces to QLM ¼ 1

8π

R
k0, which is what one would expect

for the Brown-York limit at minimal surfaces. Further
extension of QLM to surfaces of timelike mean curvature
vector—e.g., trapped surfaces inside event horizons—is
certainly of great interest and will be studied elsewhere.

III. INITIAL DATA AND
NUMERICAL EVOLUTION

We use Brill-Lindquist initial data [44], which solves the
constraint equations of general relativity with vanishing
extrinsic curvature and vanishing scalar curvature—i.e., a
time-symmetric slice in vacuum spacetime. The
Riemannian 3-metric is defined on R3nfx1;…; xng with
nþ 1 asymptotically flat ends, one at kxk → ∞ and n at the
punctures xi. We restrict ourselves to the case n ¼ 2, which
describes a two-black-hole configuration. The 3-metric can
then be written as
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hij ¼ Φ4δij; ð17Þ

where δij is the flat metric and the conformal factor is

Φ ¼ 1þ mA

2jx − xAj
þ mB

2jx − xBj
: ð18Þ

We take the two punctures to be located on the z axis at
coordinates xA;B ¼ ð0; 0;�d=2Þ, respectively. The three
ends at kxk → ∞, xA, and xB, respectively, have the
ADM masses

MADM ¼ mA þmB; ð19Þ

MADM
A ¼ mA þmAmB

2d
; ð20Þ

MADM
B ¼ mB þmAmB

2d
: ð21Þ

For sufficiently large d, the slice S contains two separate
black holes, each surrounded by a stable MOTS that
contains either xA or xB. We shall call these the individual
MOTSs ΣA and ΣB, respectively. If d becomes small
enough, there exists a stable common MOTS Σouter sur-
rounding ΣA;B. In fact, as d passes through the value at
which Σouter appears, it is found that an unstable MOTS
Σinner forms together with Σouter and “moves” inward as d is
decreased. This is discussed in more detail elsewhere [45].1

The two common and two individual MOTSs for an equal
mass configuration are shown in Fig. 1.
The numerical data for this initial slice are generated by the

TwoPunctures [46] thorn of the Einstein Toolkit [47,48]. These data
are evolved in time using an axisymmetric version of
McLachlan [49], which in turn uses KRANC [50,51] for gen-
erating C++ code. This uses the BSSN formulation of the
Einstein equations with gauge conditions chosen as the so-
called 1þ log slicing and a Γ-driver shift condition [52,53].
More details about our numerical simulation setup, including
a convergence analysis, are described in [39].
Our analysis is based on two simulations, both starting

from BL data. The first, referred to as Sim1, uses initial data
with mB=mA ¼ 2, d ¼ 0.9, and the second, simulation
Sim2, uses mB=mA ¼ 1.6, d ¼ 1. All stated numerical
values refer to an ADM mass of mA þmB ¼ 1. Both
simulations were performed with different spatial grid
resolutions to check the accuracy of our calculations.
Results shown for Sim1 use a resolution 1=Δx ¼ 720,
which was evolved until simulation time tf ¼ 6. For Sim2,
we used a lower resolution of 1=Δx ¼ 312 to extend the
evolution up to time tf ¼ 38.

The MOTSs and CESs are numerically found with high
accuracy both in the analytical initial data as well as in
slices produced by the Einstein Toolkit using the method
in [45,54].
In general, the problem of locating a surface Σs with

expansionΘþ ¼ smay have many solutions within a given
slice S. For s ¼ 0, this corresponds to the different MOTSs
in S. By choosing suitable initial guesses for the numerical
search, we can easily select which particular MOTS to find.
As mentioned above, we focus here on the three stable
MOTSs Σouter, ΣA, and ΣB, interpreted as the horizon of the
merger remnant and the smaller and larger (in the case of
unequal masses) individual black holes. Choosing one of
these MOTSs as an initial guess, we construct CESs for s
close to zero. Families of Σs are then built by taking small
steps in s, each time using the previous CES as the initial
guess for the next. CESs far from Σouter in the nearly flat
region of S are close to being spherical in our coordinates,
and so we can use coordinate spheres as initial guesses in
this case.

IV. NUMERICAL METHOD FOR EVALUATING
THE QUASILOCAL MASS

The strategy to solve the optimal embedding equation
∇aja ¼ 0 is to consider ∇aja as a nonlinear operator L
acting on τ, linearize that operator L, and solve the linear
problem multiple times, each time taking a small step
toward a solution of the full nonlinear problem. This is also
called the Newton-Kantorovich method [55, Appendix C].
Analytically linearizing L requires determining the

explicit dependency of ∇aja on τ. We make use of
axisymmetry—i.e., assuming the surface Σ, the embedding
i0, and τ are all axisymmetric—to simplify calculations.

FIG. 1. Common MOTS Σouter, inner common MOTS Σinner,
and the two individual MOTSs ΣA and ΣB in Brill-Lindquist
initial data with parameters mA ¼ mB ¼ d ¼ 1=2.

1There is a large number of additional MOTSs in these data
[41–43], which are all found to be unstable. We will hence not
discuss these surfaces in the present work.
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The time function τ then depends only on one parameter,
say θ, increasing from one pole of Σ to the other, and the
embedding i0 can be expressed in terms of the intrinsic
metric σab and τ0, where τ0 ¼ dτ

dθ. Explicitly, for coordinates
fy1 ¼ θ; y2 ¼ ϕg on Σ, 0 < θ < π, and 0 < ϕ < 2π, an
axisymmetric ansatz for the embedding is

i0ðθ;ϕÞ ¼

0
BBB@

τðθÞ
RðθÞ cosϕ
RðθÞ sinϕ

ZðθÞ

1
CCCA: ð22Þ

Writing the 2-metric as dσ2 ¼ P2dθ2 þQ2 sin2 θdϕ2, we
then have

R2 ¼Q2 sin2 θ; Z02 ¼P2−V 02þ τ02; ð23Þ

where V ¼ Q sin θ. Using this, we calculate hH0; H0i ¼
k20 − p2

0 via

k0 ¼
VV 00Z0 − P2Z0 − VV 0Z00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þ τ02
p

P2V
; ð24Þ

p0 ¼
P0Vτ0 − PðVτ00 þ V 0τ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þ τ02
p

P2V
: ð25Þ

Furthermore,

ðαH0
Þθ ¼

k0p0
0 − p0k00
jH0j2

þ τ0
V 0Z00 − V 00Z0

PðP2 þ τ02Þ : ð26Þ

The respective terms in curved space are calculated
differently using the null expansions, which we have in
highly accurate form from the MOTS and CES finding
process. In addition to (15), we use

ðαHÞa ¼
1

2

�
Θþ

;a

Θþ
−
Θ−

;a

Θ−
− lμ

þπνað4Þ∇νl−
μ

�
; ð27Þ

where Θ�
;a ¼ ∂Θ�

∂ya . We remark that Θ� contains first deriv-
atives of the 3-metric, which means that∇aja contains third
derivatives. In order to get numerically accurate results, we
expand Θ� into a set of basis functions and differentiate
these directly.
To linearize the operator Lτ ¼ ∇aja, the above expres-

sions are first inserted in turn into (8), (9), and ∇aja.
Afterwards, we use SymPy [56] to symbolically differentiate
L with respect to τ0, τ00, τð3Þ, and τð4Þ. In the end, the
linearized operator we implement into our numerical code
is of the form

ðδLÞΔ ¼
X4
n¼1

ðδτðnÞLÞ
∂
nΔ
∂θn

; ð28Þ

where Δ is a scalar function on Σ. Starting with an initial
guess τ0, usually τ0 ¼ 0, we perform steps τiþ1 ¼ τi þ Δi,
where Δi solves the linear equation

ðδLÞΔi ¼ −Lτi; ð29Þ

which we solve using a pseudospectral method. In most
cases, it took between 5 and 15 steps to converge up to
numerical roundoff. Figure 2 shows that the residual of the
OEE (6) decreases exponentially with the resolution of τ,
where the resolution is the number of basis functions used
for the finite representation of τ.

V. NUMERICAL RESULTS

A. The QLM in time-symmetric initial data

For a time-symmetric slice S, the mean curvature vector
H of Σ lies in S. A MOTS therefore coincides with a
minimal surface (k ¼ −hH; vi ¼ 0, where, as before, v is
the outward unit normal of Σ in S). Moreover, in time
symmetry we have αH ¼ −hð4Þ∇eJ; eHi≡ 0, since eH lies
in S while eJ is the normal to the totally geodesic slice S.
And for τ ¼ const., i0ðΣÞ ⊂ R3, by a similar argument,
αH0

≡ 0. Thus, τ ¼ const: trivially solves the optimal
embedding equation (6). Furthermore, τ ¼ const: is known
to be the global minimum of the QLE, provided that it
solves the optimal embedding equation [29]. The Wang-
Yau quasilocal mass reduces to the Brown-York mass mBY
for any surface Σ in a moment of time symmetry.

1. On the monotonicity along geometric flows

It is well known that for some cases, the Brown-York
mass exhibits a monotonically decreasing behavior [57]. As
an example, consider a Schwarzschild black hole. In a time-
symmetric slice, with the metric in isotropic coordinates

FIG. 2. Maximum residual of the OEE (6) as the resolution of
our representation of τ is increased. The error drops exponentially
until reaching a numerical roundoff at about 10−11. The case
shown here is for a CES with Θþ ≈ 0.114 in a non-time-
symmetric slice.
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ds2 ¼
�
1þ m

2r

�
4

ðdr2 þ r2dΩ2Þ; ð30Þ

the horizon lies at r ¼ m=2. One can show that

mBY

�
r ¼ m

2

�
¼ 2m > mBYðr ¼ ∞Þ ¼ m:

This is interpreted as negative gravitational field energy
bringing down mBY as the surface approaches infinity [2].
In fact, this monotonicity property could be shown more

precisely. Consider two mean convex surfaces in S,
Σi ¼ ∂Ωi, i∈ f1; 2g, with Ω1 ⊂ Ω2, and suppose there
exists a geometric flow

dF
dt

¼ fv; f > 0

from Fðt1Þ ¼ Σ1 to Fðt2Þ ¼ Σ2. Then it is proven [58,
Corollary 3.3] that

mBYðΣ2Þ −mBYðΣ1Þ

¼ 1

16π

Z
Ω2nΩ1

Rþ jB0 − Bj2 − ðk0 − kÞ2; ð31Þ

where B and B0 are the second fundamental forms of Σt ⊂
S and of i0ðΣtÞ ⊂ R3, respectively. For a time-symmetric
slice S, the scalar curvature R ¼ 2T00, and hence the

R
R

term can be interpreted as the matter contribution, which in
our case vanishes. The remaining

R jB0 − Bj2 − ðk0 − kÞ2
term is then supposed to characterize the pure gravitational
field energy. Note that although the integrand jB0 − Bj2 −
ðk0 − kÞ2 clearly depends on the foliation Σt, the total
integral does not. The work of Huisken & Yau [59] and
later improvements [60–64] show that the ends of an
asymptotically flat Riemannian 3-manifold with positive
ADM mass and non-negative scalar curvature admit a
unique canonical foliation through stable constant mean
curvature (CMC) surfaces. The geometric flow is assured in
this case with Σt being CMC surfaces. Nonetheless,
assuming that (31) holds true (in our case true numerically,
see below), one can discuss the sign of the gravitational
field energy term. For simplicity, we take an orthonormal
basis for Σt, fe1; e2g, such that σab ¼ δab. This basis is also
an orthonormal basis for the isometric embedding i0ðΣtÞ.
Then, in this basis,

jB0 − Bj2 − ðk0 − kÞ2 ¼ −2 detðB0 − BÞ; ð32Þ

where B0 − B ¼ DR3

v0 −Dv∶TΣ → TΣ is regarded
as a linear map in this ON basis, with DR3

and D
denoting covariant differentiation in R3 and in
Riemannian S, respectively. If B0 − B can be chosen to

be orientation preserving throughout a foliation Σt,
then

R
Σ jB0 − Bj2 − ðk0 − kÞ2 < 0—i.e., it indicates nega-

tive gravitational field energy. Then mBY would be mono-
tonically decreasing as the surfaces approach infinity. We
suspect this is generally true for at least mean convex Σ, but
a proof is missing at the moment.
We examine the above equality (31) numerically.

Figure 3 shows the QLM for CESs with Θþ ≥ 0. Outside
the apparent horizon, the QLM decreases monotonically
with increasing distance to the horizon, whereas the
expansion Θþ ¼ k increases from 0 at first (right panel,
upper part) and then drops back to 0 at infinity (right panel,
lower part). The balance (31) is also verified (see Fig. 4),
although we cannot prove for now that there exists a
geometric flow among constant expansion (mean curva-
ture) surfaces in our case.

FIG. 3. QLM calculated for a family of CESs in BL data with
mA ¼ mB ¼ d ¼ 1=2, going from spatial infinity (QLM∞ ¼ 1)
to the common horizon Σouter (QLMouter ≈ 2.019209822). The
dotted line shows the QLM for constant radius surfaces in the
time-symmetric Schwarzschild slice for comparison. The left
panel shows the QLM as a function of the area radius r̃, defined
by 4πr̃2 ¼ A, where A is the area, and the right panel shows the
QLM as a function of the expansion Θþ.

FIG. 4. Numerical evaluation of (31). The left panel shows the
numerical integral, where Φ ¼ jB0 − Bj2 − ðk0 − kÞ2. It agrees
with the separately computed differenceQLMðΣ2Þ − QLMðΣ1Þ to
within about 10−7. The x axis represents the area radius of
the outer surface Σ2, which is varied from agreeing with Σ1 to
an almost spherical CES of area radius r̃ ¼ 15. The inner surface
Σ1 is a CES outside the apparent horizon with expansion
Θþ ¼ 0.1. The right panel shows part of the CES family integrated
over. The plots were produced with a Brill-Lindquist setup with
mA ¼ mB ¼ d ¼ 1=2.
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2. Outer trapped surfaces in time symmetry

In time symmetry, we have Θþ ¼ −Θ−, and since

k ¼ −hH; vi ¼ Θþ − Θ−

2
; ð33Þ

k < 0 everywhere for outer trapped surfaces (Θþ < 0).
However, both the Wang-Yau QLE and the Brown-York
mass implicitly make the assumption that k > 0, and they
hence do not apply to such surfaces. We argue that for
k ¼ −jHj < 0 in the time-symmetric case, the same for-
mula works with k replaced by its absolute value.
We first exemplify this with a time-symmetric slice of the

Schwarzschild metric (30). Recall that there is an isometric

inversion r → ðm=2Þ2
r that sends surfaces inside the horizon

to the outside, reversing the sign of H while preserving H0

(H0 only depends on the surface metric). Taking the
absolute value of k, one has for a surface of constant radius

QLM¼ 1

8π

Z
k0 − jkj ¼

(
mð1þ m

2rÞ r≥ m
2

2rð1þ m
2rÞ r≤ m

2

: ð34Þ

This is shown in Fig. 5 (orange), where (34) is plotted
together with the case of no absolute value taken (dotted)
and compared with the analogous Brill-Lindquist case
(blue). Note that r denotes the isotropic radial coordinate.
The QLM attains its maximum value 2m at the horizon,
while both the r → ∞ and r → 0 limit yield QLM ¼ m,
consistent with the interpretation of a time-symmetric slice

in Schwarzschild as a wormhole connecting two identical,
asymptotically flat regions. More specifically, for Θþ < 0,
the surface lies in the other asymptotic region, where its
outward normal is −v. If we use k < 0 as it is, then the BY
mass remains monotonic and diverges as kx − xik → 0
(i.e., approaching the other end xi). In summary, a naive
extension of Brown-York mass into the k < 0 region results
in a smooth QLM profile, while taking absolute value
yields a “kink” at the horizon. In this case, a nonsmooth
QLM profile (k0 − jkj) is clearly more natural than a
smooth one (k0 − k), and one might in general expect
some nonanalytic behavior of QLM around MOTSs or
horizons.
For multiple black holes, taking the absolute value of k

yields results consistent with [44]. That is, for large
spheres, one recovers the ADM mass as expected, while
for small spheres approaching each puncture xi, an asymp-
totic expansion yields the ADM mass associated with each

FIG. 5. Same as Fig. 3, but continuing the families to the inside
of the apparent horizon in both the BL data (blue) and in a
Schwarzschild slice (orange). We show a comparison of the
Brown-York mass (11) calculated either via 1

8π

R
Σ k0 − jkj (solid

lines) or via 1
8π

R
Σ k0 − k (dotted lines). For Θþ ≥ 0, the two

definitions agree. In the Brill-Lindquist case, the CES family
interpolates between the inner common MOTS Σinner and the
apparent horizon Σouter via surfaces with Θþ < 0. However, these
latter surfaces intersect each other (Fig. 7). Monotonicity in this
regime can therefore not be expected. See text for discussion.

FIG. 6. Upper panel: CESs near the individual MOTS ΣB in BL
data with mA ¼ mB ¼ d ¼ 1=2. Lower panel: QLM calculated
for these CESs. The inset shows a close-up near Θþ ¼ 0. As in
Fig. 5, the dotted line shows (11) calculated via 1

8π

R
Σ k0 − k. The

QLM asymptotes to the ADM mass 3=4 of the end at xB as the
family approaches the puncture xB.
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puncture (21). Numerical calculation for CESs around
Σouter is also included in Fig. 5 (blue) and reveals a similar
behavior to the Schwarzschild case up to Θþ ≈ −0.2,
where a turnover happens in the multiple-holes BL data
(see below for discussion). The numerical calculation
for CESs toward each puncture—i.e., around ΣA;B—is
shown in Fig. 6 and again reveals similar behavior to
the Schwarzschild case.
We emphasize that in Brill-Lindquist data, only CES

families outside Σouter and inside each individual ΣA;B are
comparable with the Schwarzschild case. The region
bounded by Σouter surrounding all punctures and ΣA;B

surrounding each individual puncture does not have a
direct correspondence in the Schwarzschild case. The
CES family interpolates between Σouter and the unstable
common MOTS Σinner and does not approach either of the
two asymptotic ends xA;B (Fig. 7). Moreover, in this region,
constant expansion or constant mean curvature (CMC)
surfaces fail to foliate space, and the monotonicity of the
QLM indeed fails here. These properties explain peculiar
features around Σinner in BL data seen in Fig. 5. We remark
that choosing other families of foliating surfaces such as
coordinate spheres yields qualitatively similar conclusions.
The choice of families of CESs, which in time symmetry
are constant mean curvature surfaces, allows us to get
arbitrarily close to a MOTS, which is a CES itself.
Our extension confirms that QLM at the MOTS (16)

should be

QLM ¼ 1

8π

Z
H0 ≥

ffiffiffiffiffiffi
jΣj
4π

r
; ð35Þ

where jΣj denotes the area of Σ and the Minkowski
inequality is invoked. This is already assumed in earlier
studies [2].

B. QLM in non-time-symmetric slices

As one numerically evolves the time-symmetric initial
data, the slices S become non-time-symmetric, and the
mean curvature vector of a surface Σ ⊂ S may acquire a
timelike component. The Wang-Yau quasilocal mass will
then in general differ from the Brown-York mass.
This has various consequences, one being that the

monotonicity of the QLM along geometric flows is not
guaranteed by (31) anymore, although we numerically find
that monotonicity remains true, as can be seen in Fig. 8. An
analytic generalization of (31) to the non-time-symmetric
case is under study.

1. QLM at a MOTS without time symmetry

In this section, we will numerically determine the QLM
on CES families near Σouter. The goal is to justify the
definition (16) of the QLM on a MOTS Σ by exploring its
behavior as we approach Σ along the family from the Θþ >
0 side, where the QLM is well defined.
Although ρ (8) and QLM (7) seem well defined even for

jHj → 0, the OEE that determines τ is clearly singular at a
MOTS: jHj appears as a denominator in both (9) and (27).
Therefore, the definition of the QLM cannot trivially be
extended to the case of a MOTS. In other words, as
Θþ → 0, jHj → 0, and so the assumption of having a
spacelike mean curvature vector in the Wang-Yau QLM
breaks down. We focus on examining this issue here
numerically. A mathematical treatment of this case will
be given in Sec. VI.
To numerically explore what happens as Θþ → 0, we

look at the individual terms in the OEE (9) that determine τ.
As can be seen in Fig. 9, ρ remains finite while τθ ¼ τ0
approaches zero, so their product vanishes at a MOTS.
Since τ0 → 0, τ → const:, and clearly αH0

→ 0. The remain-
ing terms ψθ and αH both remain finite in the limit.
However, within numerical limits, they cancel in jθ as
Θþ → 0. The net result is thus that τ → 0 is a solution to the
OEE at a MOTS.

FIG. 7. Family of CESs interpolating between Σouter and Σinner
in BL data with parametersmA ¼ mB ¼ d ¼ 1=2. Close to Σinner,
members of this family intersect each other and hence fail to
foliate the space in this interior region.

FIG. 8. Monotonicity of the QLM along a CES family going
outward from Σ1 ¼ Σouter at time t ¼ 2.5M in simulation Sim1.
The area radius r̃ðΣÞ increases monotonically along this family.
The left panel shows the difference of the QLM between Σouter
and Σ2 as Σ2 is moved outward. The right panel shows the region
around Σouter foliated by the CES family.
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This suggests that as we approach a MOTS, τ becomes
constant and ja vanishes, so that ρ → jH0j. In terms of the
QLM, this limit is shown in Fig. 10 together with the value
of the QLM calculated at the MOTS using (16).

C. Time evolution of the QLM at a MOTS

Having argued that one can extend the Wang-Yau QLM
to the common apparent horizon and each individual
horizon by (16), we now examine its time evolution during
the head-on merger of two black holes.
Before presenting our results, we would like to remark

on the well-known result that Brown-York mass evaluated
at the Schwarzschild horizon, where Liu-Yau and

Wang-Yau masses reduce to Brown-York mass, yields a
value of twice the ADM mass [16,57,65]. A heuristic
argument invoking gravitational potential energy to
account for the factor-of-2 difference between QLM
evaluated at the Schwarzschild horizon and ADM mass
evaluated at infinity is given in [66]. On the other hand, in
numerical simulations of black hole or star collisions, the
radiated energy is only a few percent of the total ADM
mass [67]. This is because the radiated energy resulting from
spacetime geometry adjustment only accounts for a small
part of total gravitational field energy stored in spacetime
curvature. Therefore, in presenting our results, we will
compare QLM=2 with the irreducible mass

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A=16π

p
.

FIG. 9. Terms appearing in (9)—i.e., jθ ¼ ρτθ − ψθ − ðαH0
Þθ þ ðαHÞθ, where ψ ¼ sinh−1

�
ρΔτ

jH0jjHj
�
. They are plotted as a function of

Θþ for CESs outside Σouter. For each curve, we fix the coordinate θ∈ ð0; πÞ along the surface and show its value according to the color
code to the right. The right column is a close-up ofΘþ ¼ 0 and depicts two individual values of θ. The first five rows show the individual
quantities, whereas the final row shows −ψθ þ ðαHÞθ. The slice is from Sim1 at time t ¼ 2.5M.
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If one interprets the Wang-Yau QLM as a measure to
separate quasilocal degrees of freedom from traveling
gravitational waves, then Fig. 11 indicates that the region
surrounded by Σouter loses energy/mass, while subregions
surrounded by each individual horizon ΣA;B gain energy/
mass during the collision. Furthermore, in the longer
simulation Sim2, we find an oscillation in energy/mass
contained inside the apparent horizon Σouter (Fig. 12). It is
well known that for two black hole collisions, the intrinsic
geometry of the apparent horizon experiences oscillations
at the (lowest) quasinormal frequency of the final black
hole [68]. While the apparent horizon area monotonically
increases despite the oscillation at the quasinormal fre-
quency, QLM of the apparent horizon fails to maintain
monotonicity with the oscillation. Nevertheless, as the final

black hole settles down to equilibrium, the measure of
QLM and area (and hence irreducible mass) for the
apparent horizon converges.
First of all, although the Wang-Yau quasilocal mass is

defined for a 2-surface and does not depend on the choice
of slicing S, determining the apparent horizon through Θþ
does depend on the choice of slicing S. Bearing in mind
this ambiguity associated with the apparent horizon, one
tends to conclude that the Wang-Yau quasilocal mass
suggests that the region bounded by the outermost
MOTS Σouter could lose energy to infinity.
This is a different picture from that indicated by the area

of the horizons, which increases monotonically, and the
standard first law of black hole thermodynamics. As noted
in [16] [Eq. (6.20)], the balance equation for the Brown-
York quasilocal mass at surfaces Σ of constant, finite radius
R in Schwarzschild spacetime differs from the standard
first law of black hole thermodynamics by (1) the black
hole temperature (surface gravity) in front of the
Bekenstein entropy being blueshifted to finite radius R,
[i.e., 1

8πM
ffiffiffiffiffiffiffiffiffiffiffiffi
1−2M=r

p dð4πM2Þ], and (2) an additional term

involving the area of Σ, [i.e., −sdð4πR2Þ], with s being the
surface pressure defined in the same paper. This second
additional term is reminiscent of the −PdV term in the first
law of classical thermodynamics and would break the
monotonically increasing property of horizon area. This
again emphasizes that the quasilocal mass as defined by
Brown and York or Wang and Yau are qualitatively
different from the irreducible mass. More specifically, as
the horizon expands, more negative gravitational field
energy is taken into account by QLM, which counteracts

FIG. 10. QLM for CESs with Θþ > 0 outside the MOTS Σouter.
The value for Σouter atΘþ ¼ 0 is calculated using (16). The dotted
line in the inset interpolates the data points (red) and is obtained
by fitting c1 − c2

ffiffiffiffiffiffiffi
Θþ

p
. The curve ends before reaching a QLM

of 1, since the numerical slice does not extend to infinity. This is
for simulation Sim1 at time t ¼ 2.5M.

FIG. 11. QLM and area masses of Σouter and ΣB calculated
using (16) in simulation Sim1 as a function of simulation time.
The smaller horizon ΣA (not shown) has a qualitatively similar
behavior to ΣB, though less pronounced. For easier comparison,
the QLM has been divided by 2 to account for the fact that for
Schwarzschild, the QLM of the horizon is twice the ADM mass.

FIG. 12. Evolution of the QLM calculated using (16) on Σouter
and the horizon’s irreducible mass. This plot shows the longer
simulation Sim2. At the final time, we have QLMouter=2 ≈
0.9999303 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aouter=16π

p
≈ 0.9999309. The lower panel is

a close-up on the y axis of the first panel.
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the positive contribution of absorbed gravitational waves.
This issue is crucial in understanding the Wang-Yau
quasilocal mass and will be carefully studied with a direct
calculation of gravitational wave energy in a future study.

1. Investigating the hoop conjecture

Aviable notion of QLM in general relativity should lead
to numerous applications. We conclude this section on
numerical results by exploring one such application—
namely, the hoop conjecture [69,70]. This conjecture
addresses the question of what conditions allow a black
hole to form. As we shall shortly see, several aspects of the
conjecture are not precisely formulated, and numerical
relativity has a role to play in exploring and evaluating
various possibilities; see, e.g., [71] for recent work in this
direction.
In the case of gravitational collapse, the intuitive picture

is that of matter fields getting compressed due to their self-
gravity and eventually becoming sufficiently dense to form
a black hole. As originally formulated by Kip Thorne,
horizons form when and only when a mass M gets
compacted into a region whose circumference C in every
direction does not exceed 4πGM=c2. Thus, in units with
G ¼ c ¼ 1, a horizon should form when, and only when,
C=4πM ≲ 1. Here the notion of what one means by mass is
left vague, as is the space of curves (“hoops”) one should
use. Moreover, the value of 1 on the right-hand side is
motivated by the Schwarzschild metric, and other numeri-
cal values might be appropriate in general situations.
If a notion of QLM is generally viable, it should be

possible to use it as the appropriate mass within the hoop
conjecture. For the Schwarzschild spacetime, as we have
seen, the Wang-Yau QLM for the horizon is twice the ADM
mass. Thus, one might expect that the relevant hoop
conjecture inequality should be modified to C=4πM≲0.5.
For the hoops, we shall use closed geodesics lyingwithin the
constant expansion surfaces that we have already found. In
our present case, we do not deal with gravitational collapse,
but rather with a binary black hole merger where we always
have black holes present on any time slice. We instead seek
to investigate the issue of when the common horizon forms,
and whether its formation can be predicted by a hoop
conjecture argument using theWang-Yau QLM.We assume
further that the hoop conjecture applies to the formation of
marginally trapped surfaces. In our case, the constant
expansion surfaces and the marginally trapped surfaces turn
out to be prolate, so that the polar circumference Cp is larger
than the equatorial circumference. Thus, we calculate the
ratio Cp=4πM for constant expansion surfaces on different
time slices in the vicinity of the time when the common
horizon is first formed.
Our results are shown in Fig. 13. We see that the ratio

Cp=4πM approaches 0.5 asymptotically as expected. At
earlier times, this ratio is somewhat larger than the limiting
value 0.5. This is not unusual—similar results were found

in, e.g., [71], where the ratio was about 12% larger than the
limiting value predicted by the hoop conjecture. At each
time just before the horizon is formed, the value of Cp=4πM
approaches the limiting value as the expansion becomes
smaller. These results are suggestive but inconclusive—it is
not yet clear whether this can be used as a prediction for the
formation of the common horizon. This would require us to
identify a suitable threshold for Cp=4πM for these surfaces.
In the above discussion, we have considered only the
constant expansion surfaces. It is plausible that there exist
other surfaces which have a smaller value of Cp=4πM.
Therefore, while we shall not do so here, it would be more
satisfactory to consider a more general class of 2-spheres
and to minimize the ratio Cp=4πM over these spheres.
Following the spirit of the hoop conjecture, one could then
look for a threshold on this minimum value of Cp=4πM,
and investigate whether it can predict the formation of a
black hole horizon.

VI. DEFINING THE QLM ON A MOTS

The above numerical results have already used a “work-
ing definition” (16) for evaluating the Wang-Yau QLM on a
MOTS. In this section, we explore the limit Θþ → 0 from a
mathematical perspective to justify this definition. It seems
plausible that an extension to the case with angular
momentum is possible. However, this will be left to future
work.
Lemma VI.1. Consider an axisymmetric collision with

no angular momentum involved. Further assume isometric
embedding or time function τ being axisymmetric; then
j≡ 0 when it is well defined—i.e., when the mean
curvature vector H is spacelike.

FIG. 13. Exploring the use of the Wang-Yau QLM in the hoop
conjecture for the formation of the common horizon. The figure
shows the ratio Cp=ð4π × QLMÞ as functions of time for various
constant expansion surfaces. The curve in red refers to the
common horizon, while the other curves refer to positive values
of the expansion; the color scale indicates the values of the
expansion, which lie separated by 0.02 at the color scale’s ticks.
The time labeled as tbifurcate is when the common horizon is
formed.
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Proof. Use the definition (9). We first observe that under

the above assumptions, jϕ ≡ 0. It is easy to see that∇∂ϕτ ¼
∇ϕ

�
sinh−1 ρΔτ

jH0jjHj
�
¼ 0 by assumption. That connection 1-

forms vanish can be seen from computing Christoffel
symbols, using subscripts 3 and 4 for the H and J
directions,

Γ4
ϕ3 ¼

1

2
g4μ

�
∂ϕðg3μÞ þ ∂3ðgϕμÞ − ∂μðgϕ3Þ

�
¼ 1

2
g4μ∂3ðgϕμÞ;

and noting that the spacetime under consideration pos-
sesses a symmetry ϕ → −ϕ such that cross terms in the
metric involving ϕ all vanish.
Next, we show jθ ¼ 0. The most general axisymmetric

metric for a 2-surface is

dσ2 ¼ r20Pðr0; θÞ2dθ2 þ r20Qðr0; θÞ2 sin2 θdϕ2:

Then,

∇aja ¼
1ffiffiffi
σ

p ∂θð
ffiffiffi
σ

p
σθθjθÞ¼

1ffiffiffi
σ

p ∂θ

�
Q
P
sinθjθ

�
¼ 0;

Q
P
sinθjθ ¼ const:

Using the information that Q and P do not vanish (metric
nondegenerate), that sinð0Þ ¼ sinðπÞ ¼ 0, and that j is well
defined, one gets const: ¼ 0, and hence jθ ≡ 0 on the
surface. ▪
Remark VI.2. This may sound contradictory to the well-

known fact that there are infinitely many nonvanishing,
smooth, divergence-free vector fields on S2. We elaborate
on this. Denote the volume form by ω ¼ ffiffiffi

σ
p

dθ ∧ dϕ. Take
the divergence-free vector field j ¼ jθ∂θ with jϕ ¼ 0.
Then,

divðjÞω ¼ Ljω ¼ dιjω ¼ 0:

Given that H1
dRðS2Þ ¼ 0, there exists a smooth function

fðθ;ϕÞ such that ιjω ¼ df. That is,

r20PQ sin θjθdϕ ¼ df ¼ ∂f
∂θ

dθ þ ∂f
∂ϕ

dϕ:

It follows that ∂f
∂θ ¼ 0. Then, noting that the rhs is only a

function of ϕ while the lhs clearly has a dependence on θ, it
follows that jθ ¼ f ¼ 0. We again reach j≡ 0 when
axisymmetry is imposed.
Remark VI.3. When angular momentum is present, the

metric would have cross terms involving ϕ, and the
connection 1-form αH would generally not vanish

(αH0
¼ 0, since the reference spacetime is static). In fact,

the quasilocal angular momentum as defined in [25]
vanishes exactly when jϕ ¼ 0, consistent with our proof
above. Recall that quasilocal angular momentum is
defined as

EðΣ; X; T0; K ¼ ∂ϕÞ ¼ −
1

8π

Z
hK; T0iρþ Kaja:

If one assumes that Σ and τ are both axisymmetric,
hK; T0i ¼ 0. EðΣ;X;T0;K¼ ∂ϕÞ¼ 0 if and only if jϕ ¼ 0.
Theorem VI.4. Assume that H0 remains spacelike as H

turns into null or jHj → 0; then the solution τ to the OEE
approaches a constant as the surface approaches the
apparent horizon.
Proof. Note that H0 ¼ k̂ě3 þ Δτffiffiffiffiffiffiffiffiffiffiffiffi

1þj∇τj2
p ě4, where k̂ is the

mean curvature of the projected surface πði0ðΣÞÞ in R3,
with π∶ R3;1 → R being projection along T0. Assuming
that H0 remains spacelike thus implies that τ is well
behaved, since otherwise Δτ

j∇τj→∞ and H0 is surely
timelike.
Having proved that j≡ 0 as jHj → 0, we next examine

(9) term by term to show that ∇aðsinh−1 ρΔτ
jHjjH0jÞ needs to be

bounded, which in turn leads to Δτ → 0, and hence
τ → const., as jHj → 0.
First, we look at the αH term, using (27) and the fact that

the family of Σ is a constant expansion surface with
∂aΘþ ≡ 0,

αH ¼ 1

2

�
−
∂aΘ−

Θ−
− hð4Þ∇al−;lþi

�
;

and is hence bounded as θþ → 0.
Next, we look at the αH0

term. Using ě4 ¼ T0þ∇τffiffiffiffiffiffiffiffiffiffiffiffi
1þj∇τj2

p and
hð4Þ∇aě3; T0i ¼ 0,

αH0
ðeaÞ ¼ hð3;1Þ∇aě3; ě4i ¼ II

�
ea;

∇τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τj2

p �
;

where II is the second fundamental form of the cylinder
spanned by i0ðΣÞ and T0 in R3;1. Therefore, αH0

is also
bounded as θþ → 0.
Lastly, we note that

ρ∇τ ¼
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jH0j2 þ

ðΔτÞ2
1þ j∇τj2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHj2 þ ðΔτÞ2

1þ j∇τj2
s 1

A
×

∇τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τ

p j2

also remains bounded as θþ → 0.
Putting this information together, one sees that

∇θ

�
sinh−1 ρΔτ

jHjjH0j
�

has to remain finite for j≡ 0 as
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jHj → 0. This is only possible when Δτ → 0 as jHj → 0;
i.e., τ → const.
To gain more understanding about the limit τ → const:,

we use another formula for j that does not invoke picking
the specific frame feH; eJg:

j ¼ ρ∇τ − αě3 þ αē3 :

Indeed,

−αH0
þ αH −∇

�
sinh−1

ρΔτ
jHjjH0j

�
¼ −αH0

−∇ψ0 þ αH þ∇ψ
¼ −αě3 þ αē3 :

Imposing τ ¼ const:, ρ∇τ ¼ 0 and αě3 ¼
hð3;1Þ∇ě3; ě4i ¼ 0, recalling that ě4 ¼ T0þ∇τffiffiffiffiffiffiffiffiffiffiffiffi

1þj∇τj2
p . One is left

with αē3 only. Recall that ē3 is the “spacelike” unit normal
chosen by the gauge condition

hē4; Hi ¼ hě4; H0i;

which vanishes for τ ¼ const: or i0ðΣÞ ⊂ R3. When H is
spacelike, this gauge condition picks ē3 ∝ H and αē3 ¼ αH,
which in general do not vanish. So, τ ¼ const: does not
solve OEE in general.
Now, we consider the limit Θþ → 0. Since

H¼Θþl−þΘ−lþ
2

; J¼Θþl− −Θ−lþ
2

asΘþ → 0,H and J both turn to null vectors along lþ. The
gauge condition hē4; Hi ¼ 0 forces ē4; ē3 ∝ lþ. Thus,
αē3 ¼ h∇ē3; ē4i ¼ 0, and j ¼ 0 is satisfied. ▪
Remark VI.5. The above proposition shows that one can

extrapolate the definition of the QLM to jHj ¼ 0 with the
optimal embedding being τ ¼ const. In this case—i.e.,
τ ¼ const: and jHj ¼ 0—

QLM ¼ 1

8π

Z
ρ

¼ 1

8π

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jH0j2 þ ðΔτÞ2

1þj∇τj2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHj2 þ ðΔτÞ2

1þj∇τj2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇τp j2

¼ 1

8π

Z
jH0j:

Remark VI.6. As proved in [29], a solution τ to the
optimal embedding equation is a local minimum of Wang-
Yau quasilocal energy if

jHτj > jHj > 0;

where Hτ is the mean curvature vector of the isometric
embedding with time function τ. The condition is satisfied
for constant expansion surfaces with Θþ > 0 (Fig. 14).
Assuming continuity, τ ¼ const: is a local minimum of
Wang-Yau quasilocal energy at the apparent horizon.
The numerical calculations in Sec. V B 1 comply with

the above results.

VII. CONCLUSIONS

In this work, we have studied the Wang-Yau quasilocal
mass during a binary black hole merger. The Wang-Yau
QLM uses an embedding of 2-surfaces in Minkowski
space. We have solved the optimal embedding equation
numerically and applied it to the head-on collision of two
nonspinning black holes, starting with Brill-Lindquist
initial data. We numerically determined the QLM for
surfaces close to the horizons and for families of surfaces
approaching the asymptotically flat ends and studied their
time evolution, and also presented a preliminary inves-
tigation of the hoop conjecture applied to the formation of
the common horizon. Finally, we have suggested an
extension of the Wang-Yau QLM to marginally trapped
surfaces.
For a Schwarzschild black hole, our calculations agree

with the well-known result of the Brown-York mass—i.e.,
the QLM is twice the ADM mass on the horizon. The
Brown-York mass decreases monotonically as one moves
outward from the horizon, and for the sphere at infinity, it
yields the ADM mass. This is in sharp contrast to other
quasilocal mass definitions such as Hawking and Bartnik
masses. The Wang-Yau quasilocal mass also inherits this
monotonic decreasing property [72]. Such monotonicity is
clearly demonstrated numerically for our family of constant
expansion surfaces. Therefore, it is a crucial property of the
Wang-Yau quasilocal mass that some measure of negative
gravitational field energy is accounted for. In particular,
for surfaces Σ in a time-symmetric slice S, an explicit
expression for gravitational field energy was written

FIG. 14. Value of jHτj and jHj along the CESs outside Σouter at
simulation time t ¼ 2.5M in Sim1. As with Fig. 9, the colors
indicate the coordinates on the surface.
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down [58]. An analogous expression for the case of non-
time-symmetric slices is under study.
We have extended the definition of Wang-Yau quasilo-

cal mass for 2-surfaces of spacelike mean curvature vector
to 2-surfaces of null mean curvature vector—i.e., (16).
With this extension, we examined the time evolution of
QLM for a black hole, defined as QLM at Σouter, during the
head-on collision of two nonspinning black holes. As is
well known, the area increases monotonically throughout
the evolution. At late stages, the area evolution exhibits
damped oscillations which are known to be associated with
the quasinormal modes of the remnant black hole (see,
e.g., [73]). In contrast, QLM decreases monotonically at
first and starts to lose monotonicity when oscillations take
place. We see from the bottom panel of Fig. 12 that the
oscillation frequency of the QLM is similar to that of the
area, and one might expect these to also be associated with
the quasinormal modes. Monotonicity could be included as
one of the additional requirements for a QLM, and in
future work we shall investigate the possibility of modi-
fying the definition of the QLM appropriately to make it
monotonic.
That QLM and area evolve differently seems to comply

with a variation equation for the Brown-York mass in the
Schwarzschild black hole case [16], which differs from the
standard first law of black hole thermodynamics. One
might again invoke negative gravitational field energy to
explain this difference. Nevertheless, both of these mea-
sures—namely, the area and half of QLM of the apparent
horizon—converge to the same value asymptotically as the
final black hole settles down to its equilibrium state. We
expect that employing estimates of gravitational wave
energy will greatly clarify various distinctive features of
the Wang-Yau quasilocal energy.

Future work will extend this study in various directions.
Further extension of the quasilocal definition for mass and
angular momentum to surfaces of timelike mean curvature
vector is of great interest. One example is trapped surfaces
inside the horizon, whose quasilocal mass might reveal
important information about black holes. An attempted
definition based on Brown-York mass was proposed in a
previous study [17], where it was found that the quasilocal
mass experiences either an infinite slope or a cusp at the
horizon, with the former preferred by those authors. A
naive extension of Wang-Yau QLM presented here reveals
a similar behavior. A careful study of this issue will be
presented elsewhere.
Furthermore, it will be important to calculate the QLM in

cases with rotation or angular momentum. In these cases,
we can also calculate the quasilocal angular momentum.
Quasilocal mass and angular momentum for surfaces inside
Kerr’s ergoregion might exhibit interesting features related
to the Penrose process. The time variation of the mass and
angular momentum should be related to appropriate fluxes.
Moreover, the event horizon, whose determination requires
the knowledge of the whole spacetime evolution, may
reveal different information from the apparent horizon
studied here. Finally, an extension of the QLM and angular
momentum to cosmological spacetimes would be of great
interest. Here, it would be necessary to consider a reference
configuration not in Minkowski spacetime, but in de Sitter
or anti–de Sitter spacetime [74].
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