
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Ying Zhu,
Genentech Inc., United States

REVIEWED BY

Aurobind Vidyarthi,
Yale University, United States
Soumya Panigrahi,
Case Western Reserve University,
United States

*CORRESPONDENCE

Anna C. Aschenbrenner

anna.aschenbrenner@dzne.de

†These authors share senior authorship

RECEIVED 09 August 2023

ACCEPTED 18 October 2023
PUBLISHED 20 November 2023

CITATION

Knoll R, Bonaguro L, dos Santos JC,
Warnat-Herresthal S,
Jacobs-Cleophas MCP, Blümel E,
Reusch N, Horne A, Herbert M,
Nuesch-Germano M, Otten T,
van der Heijden WA, van de Wijer L,
Shalek AK, Händler K, Becker M, Beyer MD,
Netea MG, Joosten LAB,
van der Ven AJAM, Schultze JL and
Aschenbrenner AC (2023) Identification
of drug candidates targeting
monocyte reprogramming
in people living with HIV.
Front. Immunol. 14:1275136.
doi: 10.3389/fimmu.2023.1275136

COPYRIGHT

© 2023 Knoll, Bonaguro, dos Santos,
Warnat-Herresthal, Jacobs-Cleophas,
Blümel, Reusch, Horne, Herbert, Nuesch-
Germano, Otten, van der Heijden, van de
Wijer, Shalek, Händler, Becker, Beyer, Netea,
Joosten, van der Ven, Schultze and
Aschenbrenner. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 20 November 2023

DOI 10.3389/fimmu.2023.1275136
Identification of drug
candidates targeting
monocyte reprogramming
in people living with HIV

Rainer Knoll 1,2, Lorenzo Bonaguro1,2, Jéssica C. dos Santos3,4,
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Introduction: People living with HIV (PLHIV) are characterized by functional

reprogramming of innate immune cells even after long-term antiretroviral

therapy (ART). In order to assess technical feasibility of omics technologies for

application to larger cohorts, we compared multiple omics data layers.

Methods: Bulk and single-cell transcriptomics, flow cytometry, proteomics,

chromatin landscape analysis by ATAC-seq as well as ex vivo drug stimulation

were performed in a small number of blood samples derived from PLHIV and

healthy controls from the 200-HIV cohort study.

Results: Single-cell RNA-seq analysis revealed that most immune cells in

peripheral blood of PLHIV are altered in their transcriptomes and that a

specific functional monocyte state previously described in acute HIV infection

is still existing in PLHIV while other monocyte cell states are only occurring acute

infection. Further, a reverse transcriptome approach on a rather small number of

PLHIV was sufficient to identify drug candidates for reversing the transcriptional

phenotype of monocytes in PLHIV.
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Discussion: These scientific findings and technological advancements for

clinical application of single-cell transcriptomics form the basis for the larger

2000-HIV multicenter cohort study on PLHIV, for which a combination of bulk

and single-cell transcriptomics will be included as the leading technology to

determine disease endotypes in PLHIV and to predict disease trajectories and

outcomes.
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Introduction

For people living with HIV (PLHIV), major risk factors for

developing cardiovascular diseases (CVDs), neurocognitive

impairment, frailty, and cancer are persistent low-grade

inflammation and immune dysfunction even under long-term

effective antiretroviral therapy (ART) (1–6). Although the

adaptive immune system appears to play an important role (7),

there is a growing body of evidence that suggests changes in the

innate immune system as exemplified by elevated levels of

circulating soluble CD163 and sCD14 derived from monocytes

are critical (1, 8, 9). We and others have recently demonstrated that

concentrations of pro-inflammatory monocyte-derived cytokines

are elevated in serum from PLHIV, which was further validated

when peripheral blood mononuclear cells were stimulated ex vivo

with a number of pathogens or their derivatives resulting in

increased levels of IL-1b (1, 10–14).

While CMV infection (15), the HIV reservoir itself (16), as well as

microbial translocation (17) have been proposed as potential drivers of

low-grade inflammation, the complex interplay between the different

immune cell compartments in PLHIV is not fully understood. To

study the role of different immune cells in the pathophysiology of

persistent inflammation in PLHIV it will be necessary to apply higher-

resolution single-cell technologies to larger cohorts of PLHIV (18–20).

Based on our previous experience applying single-cell technologies to

better understand the pathophysiology of COVID-19 (21–23) or

chronic obstructive pulmonary disease (COPD) (24), we have

recently suggested that large-scale studies should be preceded by

smaller optimization studies for clinical application of omics

technologies to a particular disease setting (25, 26).

Here, we describe a study using bulk and single-cell transcriptomics

technologies as well as chromatin landscaping by ATAC-seq under

clinically applicable conditions to assess the reprogramming of the

peripheral immune cell compartment in PLHIV cohorts. Despite

heterogeneity between individuals, scRNA-seq combined with bulk

transcriptomics on a limited number of PLHIV included in this pilot

study revealed important new information concerning the involvement

of the monocyte compartment in persistent low-grade inflammation.

Further, a reverse transcriptome approach in this setup allowed the

identification of drug candidates reducing the inflammatory

endophenotype, which we validated experimentally in an independent

group of PLHIV.
02
Results

Bulk transcriptomes from PBMC of PLHIV
are dominated by monocyte-related
proinflammatory programs

We previously demonstrated in a cross-sectional study that

PLHIV exhibits a proinflammatory profile in monocyte- but not

lymphocyte-derived cytokines (1). We recalled five male PLHIV

using long-term suppressive ART (mean 7.4 years) from the 200-

HIV study with no overt clinical symptoms at the time of blood

draw, determined as normal progressors, to investigate whether

higher-resolution technologies down to the single-cell level would

reveal further information about molecular and functional changes

within the peripheral immune system in PLHIV. We generated a

multi-layer dataset including selected soluble factors in plasma,

multicolor flow cytometry (MCFC), bulk RNA-seq, Assay for

Transposase-Accessible Chromatin using sequencing (ATAC-seq)

and microwell-based scRNA-seq comparing five age- and sex-

matched healthy controls (Figure 1A; Supplementary Table S1).

TheMCFC data generated here indicate that the five PLHIV chosen

were representative of the 200-HIV cohort with similar alterations in the

circulating immune cell compartment (e.g. higher CD8+ and lower

CD4+ T as well as NK cell population frequencies in PLHIV versus

healthy donors) (11) (Figure S1A). Principal component analysis (PCA)

of bulk RNA-seq of PBMC revealed a disease-associated separation of

the samples (Figure 1B). Exploration of these alterations by differential

gene expression analysis resulted in 287 up- and 914 down-regulated

genes in PLHIV compared to control (|FC|>1.5, adj p-value <0.05, with

independent hypothesis weighting (IHW) correction) (Figure S1B).

Inspection of those differentially expressed genes (DEGs) in more

detail by hierarchical clustering revealed four transcript clusters

similarly regulated across the donors (Figure 1C). One cluster

revealed a group of commonly upregulated early innate immune

response genes for PLHIV and a second cluster contained typical

interferon response genes (Figure 1C), which was corroborated by

functional enrichment analysis (Figure 1D; Supplementary Table S2).

Upregulation of alarmins S100A8 and S100A9 (cluster 1), which have

been previously associated with inflammation (27, 28) indicated a

strong signal from the myeloid cell compartment. In cluster 2,

STAT1, previously linked to enhanced inflammation in HIV (29, 30),

was strongly expressed. Both heatmap visualization (Figure 1C) and
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1275136
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Knoll et al. 10.3389/fimmu.2023.1275136
gene set variation analysis (Figure S1C) showed the highest

heterogeneity among the five patients in genes belonging to cluster 2.

Collectively, analysis of bulk transcriptomes from PBMCs of

PLHIV revealed upregulat ion of innate and myeloid

proinflammatory gene programs.
Bulk transcriptomics of monocytes in
PLHIV reveals enriched IFN-signaling

The bulk transcriptomes of PBMCs pointed towards the

involvement of myeloid cells in PLHIV, and indeed plasma
Frontiers in Immunology 03
concentrations indicated elevated monocyte-specific soluble

factors in circulation such as sCD163 and sCD14, a classical

marker of HIV disease progression and monocyte activation (8,

31, 32), while other markers such as liver-derived C-reactive protein

(CRP) did not show a significant elevation in these PLHIV (Figure

S2A). Consequently, we isolated CD14+ monocytes from the same

donors (Figure S2B) and analyzed their transcriptomes. DEGs were

calculated for the comparison of PLHIV vs. control, resulting in 65

up- and 6 down-regulated genes (|FC|>1.5, p-value <0.05, IHW)

(Figures 2A, S2C). Upregulated genes included several type I IFN-

related genes such as CXCL10, STAT2,MX2, and XAF1 (Figures 2B,

S2D). Functional enrichment analysis of the upregulated DEGs
A

B

DC

FIGURE 1

Bulk transcriptomes from PBMC in PLHIV are dominated by monocyte-related proinflammatory programs (A) Overview of the study design. (B)
Principal component analysis (PCA) of bulk RNA-seq data from PBMCs. (C) Heatmap of DEG (adj. p.val<0.05, |FC|>1.5) from bulk PBMC
transcriptomes based on HIV vs. control (see Figure S1C) and hierarchical clustering of genes into 4 clusters. (D) Functional enrichment using the GO
and Hallmark databases and transcription factor (TF) prediction of gene clusters from (C) (full list see Supplementary Table S2).
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supports these findings on the pathway level with IFN response and

response to the virus being the most highly enriched terms

(Figure 2C). The intersection of the CD14+ DEG with those from

the PBMC data revealed 3 shared downregulated (HERC2P10,

HSBP1L1 , PHLDB3) and 21 upregulated (e.g. CXCL10,

SERPING1, GBP1) genes, most of which belong to cluster 2 of the

PBMC DEGs (Figure 2D).

To investigate a possible epigenetic component of the disease-

associated changes, we performed ATAC-seq of sorted CD14+

monocytes. Using default analysis criteria (|FC|>1.5, adj. p-value

< 0.05), we identified no differentially accessible regions (DARs)

when comparing cells from PLHIV with control donors

(Figure S2E).

Collectively, the CD14+ monocytes in PLHIV show clear signs

of transcriptional activation of IFN-mediated pathways which is not

significantly impacted by chromatin packing.
“Anti-viral” monocyte state is
persistent in PLHIV

To address whether changes in the transcriptomes of

PBMCs (Figure 1), as well as isolated CD14+ monocytes

(Figure 2), are due to general alterations in the transcriptional

programs of the myeloid compartment or due to the presence of
Frontiers in Immunology 04
disease-specific cell states, scRNA-seq was performed on PBMCs of

the same individuals (Figure 3). Transcriptomes from 31,566 single

cells were produced representing all major immune cell types of the

peripheral circulation according to cluster-specific markers known

in literature, such as monocytes (LYZ, S100A9, S100A8), CD4+ T

cells (IL7R, TRAT1), CD8+ T cells (GZMH, CCL5, CD3G) and NK

cells (GNLY, NKG7, KLRF1) (Figures 3A; S3A). Density-based

coloring of the UMAP for PLHIV and control groups disclosed a

major transcriptional shift in the monocyte cluster, in the CD8+ T

cell cluster, but not in the CD4+ T cell cluster (Figure 3B).

These differences are also reflected in changes in the number of

DEG (log2FC=0.25, adj. p-value<0.05, min.pct=0.1) (Figure 3C).

Compared to other immune cell populations, monocytes

showed the highest number of DEGs comparing PLHIV with

controls, 90 up- and 25 down-regulated genes. Functional

enrichment analysis on the HIV-specific up-regulated

DEG of the monocyte compartment included terms such as ‘IFN-

g response”, “IFN-a response” and “response to virus” (Figure 3D),

in line with the PBMC and CD14 bulk RNA-seq data (Figures 1B,

2C). Similar to the bulk data produced from CD14+ monocytes,

19 genes were also upregulated in the monocyte cluster

resulting from scRNA-seq, including XAF1 and GBP1 (Figures

S3B, E; Supplementary Table S3). To confirm the upregulation

of the genes from that intersection, we measured protein levels

of SAMD9L, VAMP5, IFIT3, GBP1, SELL, and EIF2AK2, which are
A B

DC

FIGURE 2

Bulk transcriptomics of monocytes in PLHIV mainly reveals IFN-signaling (A) Volcano plot showing the DEGs (adj. p.val<0.05, |FC|>1.5) in HIV vs.
control of bulk CD14+ monocyte transcriptomes. (B) Boxplot and whisker of selected HIV-specific genes. Wilcoxon rank-sum for statistical testing
(*: p-value <0.05, **: p-value <0.01). (C) Functional enrichment using the GO and Hallmark databases upregulated DEG (HIV vs Ctrl). (D) Intersecting
DEG for the comparison of HIV vs Ctrl in bulk transcriptomes from CD14+ monocytes and PBMCs. Commonly upregulated DEG mapped to PBMC
clusters from Figure 1C.
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FIGURE 3

“Anti-viral” monocyte state is persistent in PLHIV (A) UMAP of PBMCs from PLHIV patients (n= 31,566 cells) indicating identified cell types. (B) UMAP
from (A) colored by disease group density distribution. (C) Number of DEG (adj. p.val<0.05, |log2FC|>0.25, min.pct=0.1) by major cell types for the
comparison HIV vs Ctrl. (D) Functional enrichment using the GO and Hallmark databases for HIV-specific (up-regulated) genes in monocytes. (E)
Marker expression of XAF1 and GBP1 by disease group for monocytes extracted from scRNA-seq data (left panel) and bulk CD14+ monocytes (right
panel). (F) Protein level quantification for SAMD9L, VAMP5, IFIT3, GBP1, SELL, and EIF2AK2 using the Olink system. Wilcoxon rank-sum for statistical
testing (ns: not significant, *: p-value <0.05, **: p-value <0.01). (G) UMAP of integrated PBMCs from PLHIV (A) and acute HIV (Kazer et al., n= 59,286
cells) for commonly present cell types in both datasets, identified cell types are indicated (total dataset n= 89,500 cells). (H) UMAP of integrated
monocyte subset (n= 39,803 cells) from PLHIV and acute HIV annotated by signatures from Kazer et al. and cluster marker expression. (I) UMAP of
integrated monocytes colored by dataset origin (PLHIV and acute HIV), each n= 10,000 cells. (J) Confusion matrix heatmap showing the distribution
of monocyte cell states for disease groups stratified by dataset. (K) Functional enrichment using the GO and Hallmark databases for markers (from
Figure S3E) of the ‘anti-viral’ monocyte state.
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all related to IFN responses (Figure 3F). In PLHIV, all six proteins

showed elevated levels compared to healthy controls with SAMD9L,

VAMP5, IFIT3, and GBP1 being significant.

To relate our findings from chronic HIV in PLHIV to acute

HIV, in which patients did not yet receive ART and have high

viremia, we integrated the newly produced data with our previously

published results using the same microwell-based single-cell

technology describing several inflammatory monocyte states in

acute HIV infection (33) resulting in 89,500 single-cell

transcriptomes (Figures 3G, S3C, D). To investigate the possible

presence of chronic disease-specific cell states within the monocyte

compartment, we subsetted the monocytes of the integrated

scRNA-seq dataset (Figure 3H). Clustering of the monocyte

compartment resulted in seven monocyte substrates, which could

be annotated based on the previously reported acute monocyte

states (33). These included several inflammatory monocyte states

associated with acute HIV infection, e.g. anti-viral/inflammatory or

IFI27hi monocytes (Figures 3H, S3E). Monocytes from our new data

predominantly exhibited resting and non-classical states,

irrespective of HIV group (Figures 3I, J). Chronic HIV was

characterized by an ‘anti-viral’ monocyte state that was also

found during acute infection (Figure 3J). This ‘anti-viral’

monocyte state expresses interferon-related genes, e.g. IFIT3 and

ISG15 (Figure S3E), and is strongly enriched for the hallmarks ‘IFNg
response’ and ‘IFNa response’ as well as the GO term ‘response to

virus’ (Figure 3K), reminiscent of our results in PBMCs (Figures 1C,

D) and CD14+ monocytes (Figure 2C).

Even within the resting and non-classical monocyte substates

that do not exhibit major changes in proportions between the

clinical groups (Figure 3J), differentially expressed genes

(log2FC=0.25, adj. p-value<0.05, min.pct=0.1) for PLHIV vs.

controls (resting: 70 DEGs, non-classical: 36 DEGs) had a

substantial overlay with the DE genes identified from bulk PBMC

data, i.e. clusters 1 and 2 (Figures 1C, S3F; Supplementary Table S3).

ScRNA-seq also revealed heterogeneity in cell state distribution in

the group of the PLHIV, which was not apparent in the healthy

individuals (Figure S3G).

Collectively, single-cell transcriptomics identified monocytes as

the major cause of changes in PLHIV. Common alterations were

evident across all identified cell states, including resting and non-

classical monocytes, yet scRNA-seq uncovered elevated numbers of

monocytes in the ‘anti-viral’ cell state in chronic HIV that had been

described for acute HIV infection. Thus, pathology in PLHIV is a

combination of molecular alterations and proportion changes that

could only be revealed by analysis on the single-cell level.
Drug repurposing to reverse monocyte
reprogramming in PLHIV

To illustrate how to identify potential drug targets for reversing

a molecular phenotype, here the changes observed in monocytes, we

performed a drug repurposing approach (Figure 4A) following a

previously established methodology (34). In brief, genes up- and

down-regulated in PLHIV who are under ART from scRNA-seq

monocytes, bulk RNA-seq PBMCs, and bulk RNA-seq CD14+
Frontiers in Immunology 06
monocytes were subjected to the drug prediction databases

iLINCS and CLUE (35, 36), resulting in 519 predicted drugs

(Supplementary Table S4). From those drugs, 17,641 signatures

were retrieved from iLINCS and used as input for GSEA on the bulk

RNA-seq CD14+ monocytes and PBMC datasets. Drug signatures

were then clustered by their delta normalized enrichment score

(DNES), resulting in 50 clusters (Figure 4B; Supplementary Table

S4). The DNES indicates the efficiency of the respective drug

signature to reverse the PLHIV-specific signature, with higher

DNES indicating a more complete reversal. Cluster 43, consisting

of 32 signatures, showed the highest DNES for CD14+ monocytes

and also a high DNES for PBMCs (Figure 4C). To decipher the

commonalities of those drug responses, we investigated recurring

target genes of all drug signatures in the cluster (Figure 4D). A

majority of genes were interferon-associated such as IFI27, OAS1,

MX1, and IFI44L, and the target genes were strongly enriched in the

‘anti-viral’ and ‘anti-viral/inflammatory’ monocyte states

(Figure S4A).

Of the 32 drug signatures, we chose five among the top 20

drugs according to DNES for CD14+ monocytes in PLHIV. Four

of them had been studied in the context of HIV infection

[trametinib (37), sunitinib (38, 39), sitagliptin (40, 41),

clofarabine (42)], but had not been reported to alter

transcriptional programs in monocytes. Additionally, the

predicted antibiotic doxycycline, for which neither anti-viral

nor immune-modulating function has been reported, was

chosen as well. Instead of addressing the viral life cycle, this

approach predicts a potential impact on the host’s immune

response to these drugs. To test this hypothesis and validate our

predictions, we performed in vitro experiments stimulating

PBMC from PLHIV with the respective drugs.

Six independent PLHIV were recruited, PBMCs were isolated

and co-cultured in the presence of the selected drugs or with

DMSO as control (Figure 4A, right panel). After overnight

incubation, RNA was extracted and bulk transcriptomics was

performed to measure transcriptional changes induced by the

respective treatment (Figure S4B). The different in vitro

treatments resulted in prominent transcriptional changes in the

PBMCs, evident in the PCA with the strongest alterations

induced by doxycycline followed by trametinib, sunitinib, and

clofarabine (Figure 4E). Differential expression analysis reflected

this finding in the number of DE genes (Figure S4C). Of note,

doxycycline, trametinib, and sunitinib induced a greater number

of downregulated DEGs.

Based on our previous findings, we tested the influence of the

different treatments by analyzing the reduction of gene signature

enrichment for 1) the recurring target genes of cluster 43 identified

from the drug repurposing pipeline (n=35), 2) the ‘anti-viral

monocyte’ markers from our integrated single-cell RNA-seq

analysis (n=137), and the hallmark terms 3) ‘IFNg response’

(n=200) and 4) ‘inflammatory response’ (n=200) (Figure 4F).

Sunitinib and doxycycline showed the most significant impact,

strongly reversing the four different HIV-specific gene signatures.

Trametinib also showed strong, clofarabine a moderate, and

sitagliptin no reductions of the four signatures in our in vitro

verification experiment. These differential effects of the different
frontiersin.org
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drugs are also seen on the gene level when investigating the top

leading edge genes of the four signatures by each drug (Figure S4D).

Taken together, we predicted drugs that could reverse the

altered monocyte-derived signatures and confirmed our
Frontiers in Immunology 07
repurposing approach in vitro with the drugs doxycycline

and sunitinib strongly reversing the HIV-specific gene

signatures , making them repurposed drug candidates

of interest.
A

B D

E F

C

FIGURE 4

Drug repurposing to reverse monocyte reprogramming in PLHIV. (A) Drug prediction workflow and follow-up in vitro verification, NES=normalized
enrichment score. (B) Heatmap showing hierarchical clustering (k-mean=50) of DNES from all drug signatures (n= 17,641) as groups enriched on
transcriptomes from bulk CD14+ monocytes and bulk PBMCs. (C) Zoom into cluster 43 from (B), depicting all involved drug signatures. (D) Recurring
target genes of drug signatures identified in cluster 43 from (C). (E) Principal component analysis (PCA) of bulk PBMC transcriptomes of the in vitro
verification experiment (five HIV donors with six conditions). Samples colored by treatment, DMSO as untreated control. (F) Enrichment of gene
signatures across in vitro treatments, analyzed signatures include the recurring target genes from cluster 43 (drug repurposing), marker for the ‘anti-
viral’ monocytes (integrated scRNA-seq analysis), and the hallmark terms ‘IFNg response’ and ‘inflammatory response’. Wilcoxon rank-sum for
statistical testing (ns: not significant, *: p-value <0.05, **: p-value <0.01).
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Discussion

In the present study, we illustrate in a small group of PLHIV

derived from our previous cross-sectional 200-HIV cohort study (1)

that single-cell and bulk transcriptomes of isolated immune cells

revealed reprogramming in multiple cellular compartments in

PLHIV, with innate immune cells, in particular monocytes,

showing most profound changes. We further illustrate that a

certain cellular state of monocytes, previously reported in acute

HIV infection can be observed in PLHIV, while other cell states

associated with acute inflammation are specific for acute HIV and

absent in PLHIV. Long-term usage of ART in PLHIV results in

undetectable viral loads and restores CD4 cell counts to normal

levels, and therefore PLHIV patients differ from people with an

acute HIV infection that have high-level viremia and reduced CD4

cell counts (33). Despite the small number of PLHIV studied, which

clearly showed heterogeneity in their transcriptional profiles, we

also illustrate that combined bulk and single-cell data of these

PLHIV was already sufficient to predict drug candidates for

reversing the observed transcriptional deviations in the monocyte

compartment. While technically applicable to a cohort study

setting, ATAC-seq of this small number of PLHIV did not reveal

any significant differences, which clearly points towards the need for

larger cohorts when assessing chromatin landscape differences. As

such the study reported here provides the necessary information to

include sophisticated transcriptome and epigenome data generation

to be integrated into the larger 2000-HIV cohort study currently

recruiting PLHIV including elite controllers.

The combined analysis of bulk transcriptomes from PBMC and

purified CD14+ monocytes together with single-cell transcriptomes

from blood allowed us already in a rather small number of PLHIV

to define major changes within the peripheral immune cell

compartment, e.g. the identification of a gene cluster

characterized by IFN signaling. The higher-resolution information

from scRNA-seq revealed that some of the changes observed in the

PBMC-derived transcriptomes was due to molecular changes in

monocytes including cell-state differences, but not due to cell-type

distribution differences, further supporting the use of higher-

resolution technologies in larger cohort studies. While IFN-

signaling related molecular changes (cluster 2, Figures 1C, D)

were also captured in bulk transcriptomes from purified CD14+

monocytes (Figure 2), the overall information content from purified

CD14+ monocytes was surprisingly low, indicating that many of the

changes observed in PBMC are derived from other monocyte cell

states (CD14low/-) and other cell types. Single-cell transcriptomes

clearly corroborated this hypothesis showing that basically all

immune cell types exhibited transcriptional changes in PLHIV.

With the lowest information content and highest technical effort,

we concluded that cell-type isolation procedures are not suitable for

larger cohort studies on PLHIV. Moreover, when assessing DEG in

monocytes using both bulk and single-cell transcriptomes, we

detected less DEG in bulk and only a small intersection with

single-cell data (n=19, Figure S3B). Differences in experimental

sample handling or sequencing resolution could explain this small

intersection, however, even though certain genes were not tested to
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be significantly altered in both methods, the general pathway

activation towards IFN responses was uncovered by both methods.

The systemic assessment of single-cell transcriptomes derived

from PBMC of PLHIV revealed that major transcriptional

reprogramming was mainly observed in monocytes and CD8+ T

cells with fewer changes in CD4+ T cells, NK cells, and B cells.

Focusing on the cell compartment with the major changes, we

revealed a cell state composition in PLHIV including the well-

described classical and non-classical monocyte states, but also a cell

state we previously termed ‘anti-viral monocytes’ in acute HIV

infection (33). Interestingly, this particular cell state showed high

heterogeneity between PLHIV, which will have to be studied in

larger cohorts to better define whether there is a pattern reminiscent

of PLHIV endotypes or whether this might be explained by

individual clinical incidents prior to blood sampling. Despite the

heterogeneity of this monocyte state, the assessment of genes

enriched in gene clusters derived from bulk transcriptomes

indicated that even classical and non-classical monocyte states in

PLHIV are characterized by elevated expression of cluster 2 genes,

supporting the notion that despite the observed heterogeneity,

persistent IFN signaling seems to be a major hallmark of

persistent inflammation in PLHIV (43). Based on these

informative and promising results we propose to integrate these

levels of omics technologies into larger PLHIV studies.

As we identified a major theme for persistent inflammation in

this small number of PLHIV, we addressed whether this

information would already be sufficient to identify drug

candidates by a reverse transcriptome approach (34).

Interestingly, while most therapeutic strategies are currently

addressing alternative antiviral drugs with less toxicity or

treatment strategies aiming at minimizing ART toxicity, fewer

drug regimens address immunomodulation itself including the

use of purinergic P2X receptor inhibitors (44) or statins (45–49).

In clinical studies testing the efficacy of these therapeutic

approaches to lower inflammation in PLHIV, mainly soluble

mediators (e.g. CRP, sCD14, IL-6, sCD163) measured in plasma

or serum were used as readouts, while high-resolution technologies

to address molecular changes in immune cells were not reported.

We exemplified here, how such an approach could be applied to the

identification of drug candidates lowering the inflammatory

response observed in PLHIV. We focused on a cluster of drugs

with a particularly high probability of reversing the transcriptional

alterations observed in monocytes and experimentally validated a

small number of drug candidates. A surprising finding was that the

antibiotic doxycycline induced the strongest effect mainly reducing

gene expression. Together with sunitinib, doxycycline was most

effective in reversing gene expression alterations of 1) the major

target genes used for drug prediction, 2) of the marker genes

expressed in monocytes with the ‘antiviral’ cell state, 3) of the

hallmark genes related to IFN signaling, and 4) hallmark genes

related to the pro-inflammatory response. These findings strongly

suggested that drugs such as doxycycline might not only function as

antibiotics but also modulate host immune responses. This is

similarly true for the drug candidates sunitinib and trametinib,

which have been developed for completely different purposes (50,
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51). Importantly, the modulation of the monocyte-related immune

activation should not be considered yet as being unrestrictedly

helpful for PLHIV, as it is not yet entirely clear whether these gene

programs would play a clinically beneficial role or not. As these

findings have to be considered as proof-of-concept, further

investigations using more drug candidates, different drug

concentrations, and further optimized computational and

miniaturized experimental procedures in a larger group of PLHIV

are certainly warranted to more quickly identify promising new

drug candidates counteracting the inflammatory state in PLHIV

under ART therapy.
Limitations of the study

The present study was conceptualized based on the previous cross-

sectional 200-HIV cohort study (1) to determine whether the

combination of high-resolution and high-content technologies such as

bulk and scRNA-seq data would lead to additional insights into the

pathophysiology of immune deviations in PLHI and therefore, only a

limited number of individuals were included in this study. As the main

purpose was to determine the best strategy to scale these technologies to

larger clinical cohorts, we were surprised that despite a rather small

number of individuals studied and obvious heterogeneity within the

group of PLHIV, we could retrieve important information about major

molecular changes on transcriptome level in all immune compartments.

However, it became also clear that other layers, e.g. chromatin

landscapes as assessed by ATAC-seq require a much larger number

of individuals to determine whether immune cells in PLHIV are also

altered on this epigenetic level. Based on these initial findings, we have

now started to include these technologies in the much larger 2000-HIV

cohort study of approx. 2000 PLHIV to study aspects such as disease

heterogeneity, potential disease endotypes, and association of cellular

changes with clinical trajectories, or to determine potential biomarkers

predicting disease outcome. Certainly, the observation that innate

immune cells such as monocytes show the most pronounced

transcriptional reprogramming in PLHIV was unexpected and will be

one major focus within the currently being assembled cohort of PLHIV.

Moreover, the identification of these monocyte-derived programs also

opens new avenues toward the identification of new mechanisms on

how transcriptional alterations contribute to immune dysregulation

in PLHIV.
Methods

Lead contact

Dr. Anna C. Aschenbrenner, anna.aschenbrenner@dzne.de.
Materials availability

This study did not generate unique reagents.
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Data and code availability

Bulk RNA-seq datasets and single-cell RNA-seq data have been

deposited at the European Genome-phenome Archive (EGA) and

are publicly available under the accession numbers.

All original code is stored on FASTGenomics: https://

beta.fastgenomics.org/p/HIV_Pilot

Any additional information required to reanalyze the data

reported in this paper is available from the lead contact

upon request.
Study cohort

Five PLHIV were recruited from the outpatient HIV clinic of

the Radboud University Medical Center on March 26-28th 2019.

Included patients were five males of Dutch/Western-European

ethnicity who were receiving cART for more than 6 months and

latest HIV-RNA levels ≤200 copies/ml. Ethical approval was

granted by the Ethical Committee of the Radboud University

Medical Center Nijmegen, the Netherlands under registration

number NL42561.091.12). Additionally, five age-/sex-matched

healthy volunteers were included as controls (age 43-61), and

ethical approval was granted by the Ethical Committee of the

Radboud University Medical Center Nijmegen, the Netherlands

under registration number NL32357.091.10). For the in vitro

verification experiments of drugs, six additional male PLHIV

were recruited (age 26-43, with ethical approval granted by the

Ethical Committee of the Radboud University Medical Center

Nijmegen, the Netherlands under registration number

NL68056.091.18). Written consent was obtained from all

participants involved in this study and experiments were

conducted according to the Declaration of Helsinki principles.
PBMC isolation

Human peripheral blood mononuclear cells (PBMCs) were

isolated by dilution of blood in pyrogen-free PBS and differential

density centrifugation over Ficoll-Paque (GE Healthcare, UK) as

previously described by (52). Briefly, the interphase layer was

collected, and cells were washed with cold PBS. Cells were

resuspended in RPMI 1640 culture medium (Roswell Park

Memorial Institute medium; Invitrogen, USA) supplemented with

50 g/mL gentamicin, 2 mM glutamax (Gibco, Life Technologies,

USA), and 1 mM pyruvate (Gibco) and quantified. A fraction of

PBMCs was viably frozen for later use. The cell suspension was

spun down for 5 min at 300g, 4°C, after which all supernatant was

removed. Cells were very gently resuspended in freezing medium

(90% fetal calf serum, 10% DMSO) and aliquoted into cryovials.

They were placed first at -80°C in a CoolCell freezing container

(Corning), after which they were transported the next day on dry ice

and moved to liquid nitrogen storage. For the thawing of PBMCs,
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one vial of 5 million cells was thawed in 10ml RMPI medium

supplemented with 10% FCS.
Preparation of Seq-Well
arrays/libraries/sequencing

Seq-Well arrays and libraries were prepared from isolated

PBMCs as described previously (24).
Measurements of plasma markers

Clinical plasma markers were measured using ELISA (Duoset

or Quantikine, R&D Systems) for IL18-BP, IL-18, hsCRP, sCD14,

sCD163 or using SimplePlex Cartridges (Protein Simple) for IL-6,

all performed according to manufacturers’ instructions. As a

reference, the mean of healthy controls from van der Heijden

et al. (1) were used.
Isolation of CD14+ monocytes

CD14+ monocytes were isolated from PBMC by magnetic-

activated cell sorting (MACS) positive selection with CD14

microbeads (Miltenyi Biotec), according to the manufacturer’s

instructions. Depending on the available PBMC counts used as input,

either MS or LS columns were used (Miltenyi Biotec). After isolation,

cells were again resuspended in a Dutch modified RPMI culture

medium (Invitrogen) supplemented with 50 µg/mL gentamycin, 2

mM glutamax and 1 mM pyruvate (Gibco, Life Technologies).
Flow cytometry

Frozen PBMCs were thawed then stained for surface markers

(Supplementary Table S1) in DPBS with BD Horizon Brilliant Stain

Buffer (Becton Dickinson) for 30min at 4°C. To distinguish live

from dead cells, the cells were incubated with LIVE/DEAD Fixable

Yellow Dead Cell Stain Kit (1:1000 – Thermo Scientific). Following

staining and washing, the cell suspension was fixed with 4% PFA for

10 min at room temperature to prevent any possible risk of

contamination due to aerosol formation during sample handling

and acquisition. Flow cytometry analysis was performed on a BD

Symphony instrument (Becton Dickinson) configured with 5 lasers

(UV, violet, blue, yellow-green, red).
ATAC-seq

Frozen PBMCs were thawed and sorted on a BD FACSAria III

(Blue, Yellow-Green, Red, and Violet lasers), and 20,000 live CD14+

cells were sorted and spun down at 500×g for 5 min at 4°C. The cell

pellet was washed with 50 mL of cold 1x PBS buffer and spun down

at 500 ×g for 5 min at 4°C. The pellet was then resuspended in 50 mL
of cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM
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MgCl2, 0.1% IGEPAL CA-630) and spun down immediately at

500×g for 10 min at 4°C. The supernatant was then discarded, and

the transposition reaction was immediately performed. To perform

the transposition reaction, a mixture of transposase, 5x TAPS-DMF

buffer (50mM TAPS (T5130 SIGMA), 25mMMgCl2, 50% DMF (N,

N-Dimethylformamide)), and water was combined and added to

the cell pellet. The transposition reaction was incubated at 37°C for

30 min. Following transposition, the DNA was purified using a

Qiagen MinElute Kit. The transposed DNA was eluted in 10 mL of

water, and purified DNA was stored at 4°C until the following day

or at -20°C.

To amplify the transposed DNA fragments, a PCR mixture was

prepared using the purified DNA, nuclease-free water, customized

Nextera PCR primers, and NEBNext High-Fidelity 2x PCR Master

Mix. The PCR mixture was cycled as follows: 72°C for 5 min, 98°C

for 30 sec, 98°C for 10 sec, 63°C for 30 sec, and 72°C for 1 min. Steps

3-5 were then repeated 11 times for a total of 12 cycles. The PCR

products were then purified using a Qiagen MinElute Kit and eluted

in 12 mL of water. To validate the quality and concentration of the

PCR products, gel electrophoresis was performed using the

TapeStation and Agilent High Sensitivity D1000 kit.
Protein measurements

Proteomic profiling of selected markers was performed as

described before (53). In brief, venous whole-blood samples were

collected in EDTA tubes and centrifuged into plasma, and then

stored at -80°C. Protein measurements were performed by Olink

Proteomics AB using the Olink Explore platform. QC and

normalization were performed by Olink services. For this study,

protein markers of interest were selected.
In vitro verification of selected drugs

To verify the effectiveness of predicted drugs, six different PLHIV

from the 200-HIV cohort were re-called, and the PBMCs were

extracted and seeded in triplicates with 500,000 cells per replicate.

The PBMCs were cultured for 24 hours in the presence of a selected

subset of drugs from cluster 43, including trametinib (50 mM in

0.000002% DMSO), sunitinib (100 mM in 0.0001% DMSO),

clofarabine (100 mM in 0.00001% DMSO), doxycycline (100 mM

in H2O) and sitagliptin (100 mM in 0.0001% DMSO) or DMSO

(0.001%) as control. After incubation, replicates were collected in a

total of 1 ml TRIzol reagent and processed for bulk RNA-seq.
Quantification and statistical analysis

RNA-sequencing analysis (bulk RNA
PBMC, CD14)

Sequenced reads were aligned and quantified using STAR: ultrafast

universal RNA-seq aligner (v2.7.3a) (54) and the human reference

genome, GRCh38p13, from the Genome Reference Consortium. Raw

counts were imported using the DESeqDataSetFromMatrix function
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from DESeq2 (v1.32.0) (55) and rlog transformed according to the

DESeq2 pipeline. DESeq2 was used for the calculation of normalized

counts for each transcript using default parameters. All normalized

transcripts with a maximum overall row mean lower than 10 were

excluded resulting in 26,920 present transcripts. All present transcripts

were used as input for principal component analysis (PCA).

Differentially expressed genes were calculated for HIV vs. control

using an independent hypothesis weighting (IHW) adjusted p-value

cutoff of 0.05 and an absolute fold change (|FC|) of 1.5. DEGs were

used as input for the k-mean clustered heatmap (k=4), generating

four clusters.

RNA-sequencing analysis (drug
verification analysis)

Sequenced reads were aligned and quantified using kallisto

v0.44.0 (56) and the human reference genome, GRCh38p13, from

the Genome Reference Consortium. Raw counts were imported

using the DESeqDataSetFromTximport function from DESeq2

(v1.32.0) (55) and vst-transformed according to the DESeq2

pipeline. DESeq2 was used for the calculation of normalized

counts for each transcript using default parameters. All

normalized transcripts with a maximum overall row mean lower

than 10 were excluded resulting in 37,952 present transcripts.

Variation in the data was identified using the SVA package

(v3.40) (57), and batch effects were removed with limma (v3.48.3)

(58) using the first six surrogate variables (SVs), which were also

added in the design of the dds object. All present transcripts were

used as input for principal component analysis (PCA) of the batch-

corrected data. Differentially expressed genes were calculated for

HIV vs. control using a p-value cutoff of 0.05, an adjusted p-value

(IHW) < 0.05 (independent hypothesis weighting), and a |FC|>2.

DEGs were used as input for the clustered heatmap.

Transcription factor prediction analysis
The R package RcisTarget (version 1.12.0) (59) was used to

predict the transcription factors potentially regulating heatmap

cluster-specifically contained gene sets. The genomic regions of

TF-motif search were limited to 10kb around the respective

transcriptional start sites by using the RcisTarget-implemented

“hg19-tss-centered-10kb-7species.mc9nr.feather” motifRanking

file. Prediction was performed using the cisTarget function and

the resulting top 3 predicted TF, according to their normalized

enrichment scores (NES), were selected for each heatmap cluster.

Gene set ontology enrichment analysis
Gene set ontology enrichment analysis using the heatmap

clusters as input was performed on the gene sets from the Gene

Ontology (GO) biological process (BP) database (60, 61) and the

Hallmark gene sets (62) using the R package clusterProfiler (version

4.0.5) (63). Ontologies with the highest and statistically significant

enrichment were used for presentation.

Gene set variation analysis
For the enrichment of the genes included in the four different

clusters of the DE heatmap (PBMC data) and for the enrichment of
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verification of drugs, the GSVA package (version 1.40.1) (64)

was applied.

Flow analysis
After pre-processing, compensated fluorescence intensities were

exported from FlowJo (BD, v. 10.7.1). Exported.fcs files were

imported in R with the flowCore package (v. 2.2.0). Fluorescence

intensities were auto-logicle transformed, used for dimensionality

reduction using the UMAP algorithm (umap package v. 0.2.7.0)

(65) and clustered using the Phenograph package (v. 0.99.1) (66).

Cell types were annotated for each cluster by respective marker

expression. For visualization, the proportions of main cell types

were calculated and stratified by disease group.

ATAC-seq analysis
Reads were aligned to human hg38 reference with bowtie2 (67).

Samtools (68) was used to remove adapter offset and to create bam

files. Open chromatin peaks were called using MACS2 (69),

blackl is ted regions (hg38-blackl is t .v2.bed.gz , https : / /

sites.google.com/site/anshulkundaje/projects/blacklists), the low

covered peaks were excluded, and then the peaks were annotated

with gene models from TxDb.Hsapiens.UCSC.hg38.knownGene

using the ChIPseeker package (applying annotatePeaks function)

(70). Downstream analysis was performed with the DESeq2

(v1.26.0) package (55). Differentially accessible regions (DAR)

were detected with a |FC|>1.5 and a corrected p-value > 0.05.

With these standard parameters, no DAR were identified.

ScRNA-seq data analysis
ScRNA-seq UMI count matrices were imported to R 4.1 and

gene expression data analysis was performed using the Seurat

package 4.0.4 (71, 72). Cells with more than 10% mitochondrial

reads and less than 200 expressed genes were excluded from the

analysis and only those genes present in more than 3 cells were

considered for downstream analysis. Moreover, the genes MT-

RNR1 and MT-RNR2 were excluded. Log-normalization, scaling,

and dimensionality reduction steps were performed using the

Seurat implemented functions. For scaling, the number of

detected transcripts per cell was regressed out to correct for

heterogeneity associated with differences in sequencing depth. For

dimensionality reduction, PCA was performed on the top 2,000

variable genes identified using the vst method implemented in

Seurat. Subsequently, UMAP was used for two-dimensional

representation of the data structure using the first 30 PCs. Cell

type annotation was based on the respective clustering results

combined with the expression of known marker genes. DEG by

celltype were calculated for the comparison of HIV vs control with a

|log2FC|>0.25, adj. p-value<0.05 and min.pct=0.1.

Data integration
Data integration of the PLHIV PBMCs (this study) and the

acute HIV PBMC dataset (33) were integrated using the harmony

algorithm (73) based on the first 15 principal components. Prior to

integration, the PLHIV dataset was subsetted for major cell types
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present in acute HIV. Cell type annotation was based on the

respective clustering results combined with the expression of

known marker genes.

Integrated scRNA-seq monocyte analysis
The monocyte compartment was subsetted from the integrated

PBMCs and subsequently normalized, scaled, and subjected to PCA

calculation. For UMAP visualization, the first 10 harmony PCs were

used. After clustering the integrated monocytes with the

FindNeighbors and FindClusters function from Seurat, monocyte

states were annotated according to the signatures described in acute

HIV (33) and cluster-specific markers, separating the monocyte

population into anti-viral (TNFSF10, ISG15, IFIT2, IFIT3),

inflammatory (IL8, IL1B, EREG), anti-viral/inflammatory (CCL2,

CCL4), IFI27/30hi (IFI27, IFI30), HLAhi (HLA-DRB1, HLA-DQA1),

resting (S100A8, S100A9, LYZ) and non-classical (FCGR3A,

C1QA) monocytes.

Confusion matrix
For each monocyte cell state, the relative proportion across the

groups (HIV, control) was visualized as a fraction of samples from

the respective condition contributing to the monocyte cell state

stratified by dataset (PLHIV vs. acute HIV).

Drug prediction
To identify drugs that reverse the gene expression signature

observed in the comparison HIV vs. control for bulk RNA-seq

PBMCs, bulk RNA-seq CD14 monocytes, and scRNA-seq

monocytes, the drug prediction databases iLINCS (http://

www.ilincs.org/ilincs/), and CLUE (https://clue.io/) were accessed.

As input for the drug prediction, the top 1000 (iLINCS) or the top

100 (CLUE) DEGs were used. Drugs reversing the HIV gene

expression signature (defined by a negative score) comprised a

total of 519 unique drugs. Using the iLINCS API (https://

github.com/uc-bd2k/ilincsAPI/blob/master/usingIlincsApis.Rmd),

every gene expression signature from each drug listed in the

signature libraries iLINCS chemical perturbagens (LINCSCP),

iLINCS targeted proteomics signatures (LINCSTP), Disease-

related signatures (GDS), Connectivity Map signatures (CMAP),

DrugMatrix signatures (DM), Transcriptional signatures from EBI

Expression Atlas (EBI), Cancer therapeutics response signatures

(CTRS), and Pharmacogenomics transcriptional signatures (PG)

was downloaded. Labeling was performed in the following

principle: “drug name”_”database”_”database ID”. Signatures

were ordered by fold change, and only the top 300 genes were

used. This resulted in a total of 17,641 unique drug signatures each

with an up- and downregulated set. Subsequently, GSEA was

performed on the sequencing data for every up- and down-

regulated set for each drug and each cluster comparison. The

resulting normalized enrichment scores (NES) were used to

calculate the delta NES for each drug, defined as DNES = NES

(down) −NES (up), ergo the difference of the NES from the

downregulated set and the NES from the upregulated set of each

respective drug. These DNES values were then k-mean clustered

(k = 40). The cluster with the highest DNES values for both CD14
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and PBMCs was chosen and uniquely present drugs were shown.

The leading edge genes of the downregulation signatures of these

drugs (cluster 43) were examined, and the frequency was counted

(recurring target genes).

Data visualization
For data visualization, the R packages Seurat, ggplot2 (version

3.3.5) (74), (https://ggplot2.tidyverse.org), pheatmap (version

1.0.12), and ComplexHeatmap (version 2.8.0) (75) were used.
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SUPPLEMENTARY FIGURE 1

Blood transcriptomes of PLHIV are dominated by monocyte-related

proinflammatory gene programs. (A) Overview of age and sex of the cohort
by disease group. (A) Multicolor flow cytometry (MCFC) cell distribution for

HIV and controls. (B) Number of DEG for the comparison HIV vs. Ctrl in bulk
PBMCs transcriptomes; IHW multiple comparison adjustment and false

discovery rate (FDR) cutoff of 5%, significant fold change of >|1.5|. (C) Gene
set variation analysis (GSVA) of the genes from the four clusters of the DE

heatmap (from ).

SUPPLEMENTARY FIGURE 2

Bulk transcriptomics of monocytes in PLHIV mainly reveals IFN-signaling.

(A) Boxplots of clinically relevant markers measured in the serum of PLHIV.
References as blue bars (1). (B)Overview of MACS CD14 positive selection. (C)
Number of DEG for the comparison HIV vs. Ctrl in bulk RNA-seq CD14; IHW
multiple comparison adjustment and false discovery rate (FDR) cutoff of 5%,

significant fold change of >|1.5|. (D) Boxplot and whisker of selected genes.

SUPPLEMENTARY FIGURE 3

‘Anti-viral’ monocyte state is persistent in PLHIV. (A) Cell type marker

expression of the PLHIV dataset for all identified cell types. (B) Overlap of

up-regulated DEG from monocytes extracted from scRNAseq and bulk
CD14+ transcriptomes (Supplementary Table S3). Genes contributing to the

IFN-g or IFN-a response pathways are indicated for the intersection as well as
the uniquely identified DEG. (C) UMAP of integrated PBMCs from PLHIV and

acute HIV split by dataset (total n= 89,500 cells, each 30,000 cells depicted).
(D) Cell type marker expression of the integrated HIV dataset for all included

cell types. (E) Monocyte cell state marker of the integrated monocytes from

PLHIV and acute HIV. (F) Mapping of HIV-specific (upregulated) DEG of
resting and non-classical monocyte states (for DEG see Supplementary

Table S3) to PBMC clusters from . (G) Integrated monocyte UMAP
subsetted for chronic HIV and stratified by donor.

SUPPLEMENTARY FIGURE 4

Drug repurposing to reverse monocyte reprogramming in PLHIV.

(A) Enrichment of recurring target genes from cluster 43 in monocyte
states of the integrated monocyte analysis (see ). (B) Included samples by

treatment condition after quality control (QC) for the in vitro verification
experiment. (C) Number of DEG (adj. p-value<0.05, |FC|>2, IHW) for each

treatment vs. control (DMSO). (D) Heatmap showing the union of top leading
edge genes of each signature (from ) for each treatment ranked by adj.

p-value.

SUPPLEMENTARY TABLE 1

Donor overview.

SUPPLEMENTARY TABLE 2

Functional enrichment (GO and Hallmark) and transcription factor (TF)

prediction of bulk RNA-seq PBMC heatmap clusters (related to Figure 1)

and MCFC marker.

SUPPLEMENTARY TABLE 3

ScRNA-seq monocytes DEG (related to Figure 3).

SUPPLEMENTARY TABLE 4

Predicted drug clusters and signatures (related to Figure 4).
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52. Domıńguez-Andrés J, Arts RJW, Bekkering S, Bahrar H, Blok BA, de Bree LCJ,
et al. In vitro induction of trained immunity in adherent human monocytes. STAR
Protoc (2021) 2(1):100365. doi: 10.1016/j.xpro.2021.100365

53. Vadaq N, Zhang Y, Vos WA, Groenendijk A, Blaauw M, Eekeren L, et al. High-
throughput proteomic analysis reveals systemic dysregulation in virally suppressed
people living with HIV. J Clin Invest Insight (2023) 8(11):e166166. doi: 10.1172/
jci.insight.166166

54. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics (2013) 29(1):15–21. doi: 10.1093/
bioinformatics/bts635

55. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol (2014) 15(12):550.
doi: 10.1186/s13059-014-0550-8

56. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq
quantification. Nat Biotechnol (2016) 34(5):525–7. doi: 10.1038/nbt.3519

57. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for
removing batch effects and other unwanted variation in high-throughput experiments.
Bioinformatics (2012) 28(6):882–3. doi: 10.1093/bioinformatics/bts034

58. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res (2015) 43(7):e47. doi: 10.1093/nar/gkv007
Frontiers in Immunology 15
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