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Evolutionary modelling indicates that
mosquito metabolism shapes the life-history
strategies of Plasmodium parasites

Paola Carrillo-Bustamante 1 , Giulia Costa 1, Lena Lampe1,2 &
Elena A. Levashina 1

Within-host survival and between-host transmission are key life-history traits
of single-celled malaria parasites. Understanding the evolutionary forces that
shape these traits is crucial to predict malaria epidemiology, drug resistance,
and virulence. However, very little is known about how Plasmodium parasites
adapt to their mosquito vectors. Here, we examine the evolution of the time
Plasmodium parasites require to develop within the vector (extrinsic incuba-
tion period) with an individual-based model of malaria transmission that
includes mosquito metabolism. Specifically, we model the metabolic cascade
of resource allocation induced by blood-feeding, as well as the influence of
multiple blood meals on parasite development. Our model predicts that suc-
cessful vector-to-human transmission events are rare, and are caused by long-
lived mosquitoes. Importantly, our results show that the life-history strategies
of malaria parasites depend on themosquito’s metabolic status. In our model,
additional resources provided by multiple blood meals lead to selection for
parasites with slow or intermediate developmental time. These results chal-
lenge the current assumption that evolution favors fast developing parasites
to maximize their chances to complete their within-mosquito life cycle. We
propose that the long sporogonic cycle observed for Plasmodium is not a
constraint but rather an adaptation to increase transmission potential.

Malaria, a parasitic disease caused by Plasmodium spp, poses one
of the greatest medical and economical challenges in our society.
Plasmodium parasites infected 229 million people in 2019 alone and
claimed the lives of 409,000 individuals1. Malaria parasites exhibit a
complex life cycle, invading and developing in a wide range of host
environments, both within blood-feeding mosquitoes (their definitive
host) and in vertebrates (their intermediate hosts). For malaria para-
sites, within-host survival and transmission between hosts are major
components of fitness, consequently natural selection is expected to
benefit adaptations that maximize these components. Understanding
the mechanisms within each host that affect parasite’s life-history
traits, and how parasites adapt to changes in their environment is

crucial to determine potential bottlenecks in transmission, and predict
the course of malaria epidemics.

Given the parasite’s complex life cycle, the study of Plasmodium
evolution is not trivial. Important insights have been obtained by
applying ecological and evolutionary theories to study some repro-
ductive strategies utilized bymalariaparasites in the vertebrate host2–7.
Here, malaria parasites face life-history trade-offs typical to all sexually
reproducing organisms, when resources must be divided between
growth (asexual replication in red blood cells) and reproduction
(production of non-replicating sexual stages, gametocytes)8. Malaria
parasites indeed deploy several strategies to alter their conversion
rate (investment between asexuals and gametocytes)3,5,6,9, and sex
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allocation (investment into female vs male gametes)10,11 to adapt to
changes in their host environment12, demonstrating a high level of
adaptive phenotypic plasticity.

Although the mosquito is Plasmodium definitive host, the evolu-
tion of malaria life-history traits in the vector remains largely unex-
plored, and trade-offs are expected to occur here as well. For
transmission to be successful, the within-vector development period
must be shorter than the mosquito’s average life span. Given the
assumed short life-span of mosquitoes in the field, the fitness of
malariaparasites is thought to increasewith a short sporogonic period.
Yet, a parasite developing too fast might not accumulate sufficient
resources, which could limit the quantity and/or quality of produced
sporozoites—its transmissible form. The trade-off between within-
vector survival and between-hosts transmission might be further
affected by numerous aspects of mosquito biology that have a direct
effect on parasite development. For example, the acquisition of mul-
tiple blood meals increases oocyst size13, oocyst growth rates14–16, and
sporozoite numbers17, possibly contributing to a rapid yet successful
parasite development.

Similarly, the metabolic status of the mosquito is crucial for
Plasmodiumdevelopment.Anophelesmosquitoesmostly feedonplant
nectar, and only females take a blood meal to replenish their amino
acid and lipid stores required for their reproductive cycle. In contrast
to non-hemophagous insects like Drosophila that progressively accu-
mulate resources for reproduction, mosquitoes have evolved a dif-
ferent strategy, characterized by a rapid nutrient assimilation from a
blood meal. This process floods the mosquito with the essential
nutrients for egg development within a short period of 48 hours, after
which the reproductive investment is restrained18. Plasmodium para-
sites exploit the blood-feeding behavior as an entry point and also as
nutritional source for their own development. The co-dependance on
blood meal derived lipids for egg and parasite development has been
reported to rely on nutrients/lipids carried by the lipid transporter
lipophorin14,19. Interestingly, the allocation of nutrients to reproduc-
tion inversely affects oocyst and sporozoite development. For exam-
ple, increasing reproductive investment by prolonging the mosquito
reproductive cycle, compromises Plasmodium ’s sporogonic devel-
opment. Consequently, a restriction of reproductive investment ben-
efits parasite development18. Importantly, mosquitoes do not exhaust
all available resources on reproduction18, and therefore, the surplus
metabolic resources that are available to parasites can vary from one
mosquito to another.

During the typically studied single blood meal scenario, parasites
are thought to interact non-competitively with their vector, as they
scavenge the surplus internal resources only after reproductive
investment is restrained and successful oviposition occurred14,18–20.
However, whether this symbiotic interaction is relevant for natural
settings of multiple feedings remains unexplored and is difficult to
study experimentally. Here, we present a theoretical framework that
integrates the effects of within-vector metabolism (i.e. the metaboli-
cally induced resource allocation initiated by blood feeding) into an
individual-based model of malaria transmission, with the aim to
answer the following questions: (1) how does mosquito feeding
behavior and metabolism affect Plasmodium development? (2) how
does mosquito metabolism shape the evolution of Plasmodium life-
history traits?

We show that malaria parasites exploit a small proportion of the
mosquito population for transmission: rare mosquitoes that are long
lived and take multiple blood meals during their life span. Moreover,
our mosquito metabolism model demonstrates that malaria parasites
compete for metabolic resources within their vector and benefit from
the nutrients acquired after the second blood meal at the expense of
mosquito reproduction. Importantly, we find that our model selects
for parasites with longer sporogony time to maximize transmission
potential. The evolution of long sporogony time critically depends on

mosquito metabolism: when we let parasites evolve without con-
sidering mosquito metabolism, we observe that short developmental
times are instead selected. We therefore conclude that mosquito
metabolismprofoundly affects the evolution of Plasmodium parasites,
offering a new perspective for understanding malaria epidemiology
and transmission.

Results
Multiple blood meals result in competitive parasite-vector
interactions
We first studied the effect ofmultiple (>2) bloodmeals on Plasmodium
development within its mosquito host with a simple mathematical
model that focuses on how nutrients are allocated after the ingestion
of a bloodmeal inside the mosquito host (Fig. 1a). The acquisition of a
bloodmeal triggers essential metabolic pathways that ensure a robust
egg development within three days. The major physiological event is
vitellogenesis, a process finely orchestrated by the steroid hormone
20-hydroxyecdysone (20E)21–24, during which essential nutrient trans-
porters are secreted by the insect’s fat body, and transferred to the
ovaries where they provide nutrients for growing eggs25. Here we
abstract these complex processes and develop a model in which the
within-host energy reserves of a female mosquito (R) grow after the
ingestion of a blood meal (σ(t)BM), activating the necessary signal for
the steroid hormone 20E synthesis in the ovaries, here represented
with abloodmeal-activated variableβE(t).Once activated, a proportion
of the host resources are mobilized into the fat body for the produc-
tion of the necessary yolk proteins, which are then utilized by devel-
oping oocytes (E) in the ovaries. The remaining host resources are
invested into other physiological processes, including immunity,
physical activity, and waste, at a rate δR. If a bloodmeal is infectedwith
Plasmodium, blood-borne sexual forms of the parasite fuse and con-
vert into motile ookinetes, which in turn traverse the midgut epithe-
liumandbyday three after infection round-up to formoocysts.Mature
oocysts generate then thousands of infective-to-human sporozoites
that ultimately accumulate in the salivary glands. The duration of this
parasite developmental process is known as extrinsic incubation per-
iod (EIP) (hereafter called sporogonic cycle Tsp), and lasts approxi-
mately 10-14 days in natural systems26. We simplify this complex
process and model oocysts (O) that grow by accumulating resources
taken from the vector’s reserves at a constant rate βP. Importantly, the
ookinetes and young oocysts are less active metabolically and require
approximately 5-6 days before initiating active growth19. We model
these early metabolically inactive parasites by having a very low initial
metabolic energy in the oocyst compartment (O(0) = 0.01). Once
mature, oocysts transfer their internal energy into sporozoites (S) at a
rate γ(t). The model consists of a system of ordinary differential
equations (ODE). See Methods for details.

As a control, we first simulated the allocation of internal energy
resources after a mosquito has acquired one non-infectious (BM) and
one infectious blood meal (iBM) (Fig. 1b, left columns). After ingestion
of a blood meal, the mosquito’s internal reserves are directed to the
energy compartment used by reproduction, resulting in the rapid
development of eggs. Importantly, the dynamics of reproduction are
not affected in the presence of Plasmodium. Because in our model
the total rate of energy acquisition grows with increasing amount of
metabolic energy inside the oocyst compartment, the early (and
metabolically low energy) parasites cannot scavenge enough resources,
resulting in a very weak competition with its vector, like that observed
experimentally14,19,20. We next simulated the acquisition of three blood
meals (Fig. 1b, right columns). Interestingly, the energy accumulated by
developing eggs during the second and third gonotrophic cycle
decreases only in infected mosquitoes. Because the mosquito’s second
and third reproductive cycles and oocysts development now occur
simultaneously, and the oocysts are sufficiently large to scavengemore
nutrients, there is large competition for resources.
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We further assessed how parasites and vectors compete for
resources by varying simultaneously the rate at which parasites sca-
venge mosquito resources and the number of additional blood meals
(Fig. 1c). We then quantified the differences in ‘fitness’ ΔF of both
parasites and eggs, by calculating the difference in total accumulated
energy to the control simulations (i.e. simulations without parasites,
and with only one iBM for eggs and parasites, respectively). We
observed a strong competitive vector-parasite interaction, with the
largest fitness difference detected after three blood meals.

As in this model parasites strongly compete for resources only if
the additional blood meal is given during oocyst development, we
hypothesized that the duration of the sporogonic cycle Tsp will also
play a role in the parasite’s competition strength. We tested this
hypothesis by running different simulations, varying the Tsp from 8 to
14 days together with the number of blood meals (Fig. 1d). While all
parasites (fast and slow) benefit from two additional bloodmeals, only
parasites with long sporogonic cycles have the opportunity to sca-
venge resources acquiredduring subsequent feedings, becomingfitter

than fast parasites. In conclusion, our model of nutrient allocation
shows thatparasites scavengeprogressivelymore resources from their
mosquito host after the second blood meal, suggesting that malaria
parasites would benefit from long sporogonic cycles.

Mosquito metabolism restraints the advantage of shorter
sporogonic cycles for malaria transmission
To study whether mosquito metabolism would indeed affect malaria
transmission, we developed a stochastic individual-based model that
considers female mosquitoes, humans, and parasites. In this model,
humans and mosquito individuals are randomly selected during every
time step of one day and exposed to specific events with probabilities
described in the Methods section. These events include birth, growth,
infection, death, and recovery in the case of humans. Our model
encompasses the complete mosquito life cycle, including larval and
adult stages. Individual larvae exhibit variability in the time of pupa-
tion, growth rate, and death rate, which leads to population hetero-
geneity. We assume that all larval parameters (mentioned above)

Fig. 1 | The parasite interacts competitively with its mosquito host after
the second bloodmeal. a Schematic representation of the within-vectormodel of
metabolic resource allocation. A successful blood meal replenishes the initial
energy resources, a small proportion of which will be used for the development of
eggs andPlasmodiumparasites. Thenutrientmobilization ismodeled considering a
periodic blood meal behavior given by σ(t)BM and four different compartments:
within-host energy reserves (R), energy invested in reproduction (E), developing
oocysts (O), and sporozoites (S). The full model is described by Eqs. (3)-(7) and the
parameters are given in Table 1. b Simulation of internal energy resources after one
(BM / iBM) and three (3BM/ iBM + 2BM) blood meals (depicted in purple). The
ingestion of one bloodmeal (BM) activates themobilization ofmosquito resources

(depicted in dark blue) to the ovaries, where energy accumulates in developing
oocytes (depicted in light blue). The investment in reproduction remains unaf-
fected during an infectious blood meal (iBM). After successful oviposition, the
remaining internal reserves are used by the parasite, accumulating mosquito
resources for the development of oocysts (depicted in dark green) and subse-
quently its transmissible form, sporozoites (depicted in light green). The ingestion
of additional BM benefits the parasite. Parameter sweep of different parasite
strength (c) and sporogonic cycle Tsp (d) under different feeding regimes. The
colors show the difference in fitness ΔF of sporozoites (Spz) and eggs in every
simulated scenario. The mosquito icons were created with BioRender.com, pub-
lication license numbers JK260OOX5C and RU260OOX95.
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depend on ecological variables, such as density, temperature, and
carrying capacity (see Methods). After a mosquito reaches the adult
stage, it seeks a human blood meal. If successful, fully fed mosquitoes
are considered to be digesting for three days before they lay eggs and
seek a new bloodmeal. The cycle of seeking, digesting, and egg-laying
is continued during their entire life span, and mosquito death is
modeled as an age-dependent function. With these parameters we
could model stable mosquito population dynamics (Supplementary
Fig. 1a) that matches the age-distribution of mosquitoes observed in
field settings27 (Supplementary Fig. 2).

Infection occurs when a mosquito bites a Plasmodium-infected
human. To simplify the representation of complex processes involved
during parasite infection, we consider three mutually exclusive infec-
tion states in mosquitoes (susceptible, exposed, and infectious), and
five in humans (susceptible, exposed, infectious, recovered, reservoir).
Moreover, parasites are defined only by their sporogonic cycle Tsp.
Thus, upon an infectious bite, mosquitoes carry the parasite (exposed),
but are infectious only after Tsp = 13 days. For simplicity, we consider
that infectious mosquitoes transmit the parasite only to susceptible
humans. We implement an incubation period in humans of
TIP = 28 days, after which exposed humans become infectious28. During
infection, humans have a higher death rate, simulating a high level of
parasitemia (δH = δH + δp,H, where δH is the intrinsic human death rate,
and δp,H the parasitemia). Only during the infectious state, humans can
recover at a rate pr, becoming immune to the parasite (recovered).
Humans that fail to clear the infection become chronically infected,
but harbor lower parasitemia (0.001δp,H), and a lower probability of
transmitting the parasite (0.1pH→M).We considered these individuals to
be asymptomatic carriers, i.e., are in the reservoir state. We modeled a
homogeneous human population in which individuals die at a fixed
rate, and are immediately replaced by new susceptible ones. These
infection dynamics, albeit simplified, allowed us to model a natural
course of infection, during whichmore than 60% of individuals remain
susceptible (Supplementary Fig. 1b–c and Supplementary Fig. 3).

As a control, we first simulated malaria epidemics excluding the
description of resource allocation in the mosquito population (Sup-
plementary Fig. 1a–c). We quantified the exact malaria transmission
events by categorizing all mosquitoes in every simulated population
into four groups: uninfected, carriers (exposedmosquitoes), spreaders
(infectious mosquitoes that caused one human infection), and super-
spreaders (infectious mosquitoes responsible for more than one
human infection). We observed that spreader and super-spreader
mosquitoes are older, and consequently feed multiple times during
their life span (Supplementary Fig. 1d–f). However, these mosquitoes
are rare in the population (at least one order of magnitude lower than
the observed prevalence, Supplementary Fig. 1d), confirming the
conventional expectation that Plasmodium transmission can be
maintained by a few, long-lived vectors that acquire multiple blood
meals29.

To explore the impact of mosquito metabolism on Plasmodium
transmission, we integrated the effects of nutrient allocation into our
individual-based model. For simplicity, we assumed that the parasite’s
energy accumulated in the sporozoites is related to the mosquito-to-
human transmission probability pt. Wemodified the original model by
describing pt as a function of the number of blood meals acquired
during oocyst development (i.e., starting from three days post-
infection until the end of the sporogonic cycle Tsp). Because in our
stochastic simulations mosquitoes display individual feeding patterns
(i.e., every mosquito will obtain a different number of blood meals
during their life span and consequently also during oocyst develop-
ment), this description of transmission probability (pt(NBM)) gives rise
to a large heterogeneity in transmission potential. An increase in
transmission results in a lower number of eggs per female, allowing us
to model the competitive vector-parasite interactions in a simple
manner (see Methods). Integrating the properties of mosquito

metabolism (while keeping all other model parameters equal) slightly
decreases the infection prevalence (Fig. 2a), a result of the hetero-
geneity in transmission probabilities and, with it, the number of
spreader mosquitoes (Fig. 2b). All other transmission patterns,
including the age and blood meal distribution of spreaders, remained
similar to the control simulations (Fig. 2c, d).

As the length of the sporogonic cycle is one of themost influential
parameters in classical mathematical models of malaria transmission,
small reductions in Tsp are expected to have a large effect on parasite
transmission26,30. We next tested how infection dynamics are affected
by fast-developing parasites and simulated host populations infected
with Plasmodium parasites, varying in their sporogonic development
from Tsp = 11 to 13 days. We measured infection prevalence at steady-
state in both hosts (at t = 1, 000 days, Fig. 3a), and the number of
spreader mosquitoes (Fig. 3b). As expected from classical predictions,
malaria transmission increasedwith shorterTsp following a linear trend
in control simulations. However, when we explicitly modeled within-
vector metabolism, this increase was significantly smaller, confirming
the results of our resource allocation model showing that mosquito
metabolism limits the transmission advantage of short develop-
mental times.

Mosquito metabolism shapes the evolution of Plasmodium
parasites
To study whether parasites would indeed benefit from long spor-
ogonic cycles in the context of mosquito metabolism, we next per-
formed evolutionary simulations. First, we allowed mosquito and
human individuals to reach stable population dynamics. After this
‘burn-in’period of 1000days, we introducedmalaria parasites.We also
ensured that infection dynamics reach equilibrium and switched on
mutation only after 5000 days. Mutations occur during transmission
events and can increaseor decrease the lengthof the sporogonic cycle.
We followed the population for further 5000 days and used as control
evolutionary simulations without metabolism (Fig. 4a).

There was no difference between the models in the first days of
infection dynamics before mutation is switched on. Once evolution
started, therewas a clear divergence between the simulations excluding
(control) and includingmetabolism (Fig. 4b). In the control simulations,
infection prevalence suddenly rose, infecting twice as many humans
and mosquitoes. As the fitness of the parasite is independent of mos-
quitometabolism, a short sporogonic developmentTsp evolves because
fast-developing parasites spread more rapidly in the population,
reaching the minimum of Tsp = 5 days allowed in our simulations
(Fig. 4c, purple line). Accordingly, the number of bloodmeals acquired
by every infectious mosquito during the parasite development time
shifted during evolution (Fig. 4d, purple bars): most parasites entered
their mosquito vectors, and after 5 days, were mature to infect a new
human host without acquiring any additional blood meal. In contrast,
mosquito metabolism limited the evolution of very short sporogonic
development times (Fig. 4c, cyan line). As parasites require bloodmeals
to increase their otherwise low transmission potential, there is selection
pressure to acquire at least two blood meals during oocyst develop-
ment (Fig. 4d, cyan bars), resulting in parasites with an ‘optimal’
Tsp = 12 days. Importantly, the evolution of this long sporogonic devel-
opment time was robust, and independent of the initial conditions:
starting the simulations with a low Tsp= 10 days resulted in the same
‘optimal’ Tsp= 12 days (Fig. 4e, f). Thus, our evolutionary simulations
show that parasites change their life-history strategies depending on
mosquito metabolism, providing a plausible explanation for the long
sporogonic cycles observed in natural systems.

Mosquito longevity and the parasite’s scavenging strength
determine the evolution of Plasmodium sporogonic cycle
In our simulations Plasmodium fitness is limited to an optimal
Tsp = 12days, irrespective of the initial conditions. IncreasingTspbeyond
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this value may not be beneficial for the parasite due to the risk of
exceeding themosquito’s average lifespan and, consequently, failing to
be transmitted. To investigate the influence of mosquito lifespan on
Plasmodium evolution,we conducted two additional sets of simulations
by adjusting the shape parameter x of the Gompertz distribution to
modelmosquitoeswith higher (x =0.089 resulting inmedian survival of
27 days) and lower (x =0.18 resulting in median survival of 17 days)
survival rates compared to our current simulations (x =0.169 resulting
in median survival of 19 days, Fig. 5a). Note that modeling a larger
decrease in mosquito life span would not assure stable infection
dynamics. Therefore, we chose to model only a modest decrease in
mosquito life span as a proof of principle. Starting the simulation with a
‘fast’ Tsp = 10 days, we observed that malaria parasites evolved an even
longer Tsp = 14 whenmosquitoes had an extended lifespan. Conversely,
in mosquitoes with a shorter lifespan than in our previous simulations,
the evolutionofPlasmodiumwas limited alreadyatTsp= 11.5, confirming
that mosquito lifespan constrains the benefits of an extended spor-
ogony period.

Next, we examined the impact of the parasite’s ability to scavenge
resources. Since our individual-basedmodel only considers the effects
of nutrient allocation, we evaluated the parasite scavenging strength
bymodifying the slope of the function that describes the transmission
probability pM→H(NBM) (Fig. 5b). By changing the relation between
number of blood meals and transmission potential, we could investi-
gate how different parasites would evolve. Consistent with our within-
vector resource allocationmodel, we observed that parasites requiring

more blood meals to increase their transmission probability (‘low
scavenging strength’) do not benefit as much from long Tsp since they
would risk exceeding the vector’s lifespan. In contrast, parasites with a
‘high scavenging strength’, i.e., parasites that require fewer blood
meals to increase transmission potential (h = 0.5), benefit more from
an extended Tsp, evolving a slightly longer ‘optimal’ Tsp ≈ 12, 2 days.
Notably, this effect reaches saturation due to the inherent character-
istics of the Hill function, wherein the mosquito-to-human transmis-
sion probability pM→H(NBM) approaches 1. Taken together, our
simulations show that Plasmodium ’s evolutionary strategies in
response to mosquito metabolism are shaped by the mosquito life
span and the parasite’s ability to effectively scavenge resources.

Discussion
We provide a framework that integrates complex mosquito metabolic
traits and its interactions with Plasmodium parasites into a model of
transmission. Our model demonstrates that mosquito metabolism
shapes the parasite’s evolutionary life-history strategies. Specifically,
we show that (1) Plasmodium is transmitted by rare long-lived “super-
spreader” mosquitoes that take multiple blood meals; (2) successive
blood feeding introduces a competitive parasite behavior within the
female mosquito that restricts the allocation of nutrients into repro-
duction, and aids the parasite’s own development; and consequently,
(3) parasites with long sporogony are selected during evolution.

Our results challenge the current concept that malaria parasites
strive to shorten their development to maximize transmission. Given
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Fig. 2 | Model of Plasmodium transmission including mosquito metabolism.
Summary of N = 15 stochastic simulations excluding (control simulations depicted
in purple) or including the effects of mosquito metabolism (cyan). a Infection
prevalence given by the percentage of novel infections in humans andmosquitoes.
The solid line depicts the mean and the shaded areas—the standard deviation.
b Number of spreaders and super-spreaders throughout the entire simulation as

defined in Supplementary Fig. 1. c Distribution of the number of blood meals
acquired by single mosquitoes (spreaders and super-spreaders) during oocyst
development. d Age distribution of spreaders and super-spreaders. Bar plots show
themean, and error bars—the standard deviation. Box plots depict themedianwith
first and third quartile, whiskers depict min and max values.
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the assumed short life span of themosquito observed in the field31,32, it
has remained puzzling why malaria parasites develop so slowly. Based
on the concept that long sporogony guarantees a large number of
sporozoites in the salivary glands, two major explanations have been
provided until now. First, a high number of sporozoites is necessary to
transmit at least a few to the vertebrate host33,34; and second, a high
number of sporozoites stimulates mosquito biting to increase
transmission33,35. Here, we introduce a novel mechanism in which long
sporogony is beneficial because parasites scavenge increasingly more
resources with successive blood meals. Our model identifies two dif-
ferent mosquito traits that shape the fitness landscape of Plasmodium
parasites: 1) mosquito lifespan, exerting selection pressure for the
parasite to develop fast, and 2) mosquito metabolism which deter-
mines the nutrient availability for malaria parasites, resulting in pres-
sure Plasmodium to develop slowly (Fig. 6). We, therefore, propose
that the long sporogonic cycles observed in nature are not a constraint
but rather an adaptation, potentially resulting in a higher transmission
success.

A critical parameter in our model is the age-distribution of adult
mosquitoes, as it directly determines the number of long-lived vectors
and, consequently, of spreaders. The survival rates we use to para-
meterize our model were obtained under laboratory conditions and
result in an older age structure thanpreviously estimated31,32. However,
the age distribution of our simulated mosquito populations is
remarkably similar to wild An.coluzzi mosquitoes, as recently mea-
sured with novel age-gradingmethods27. Like in our simulations, these
natural mosquito populations have a very small proportion of old

individuals (>17 days) that feed frequently (> 4 bloodmeals). Our work
suggests that these rare individuals are the major malaria spreaders
and should therefore be studied in more detail.

Our study demonstrates the importance of integrating complex
parasite-vector interactions into nested models of Plasmodium trans-
mission to realistically predict malaria epidemics and evolution. Since
the first mathematical model developed by Ross and MacDonald29,
there has been an expansion of theoretical approaches that consider a
variety of geographical, ecological and epidemiological complexities
(reviewed in refs. 36–38), aswell asmultiplemosquito life-history traits
(e.g., larval stages39, biting frequency40,41, feeding, and movement
patterns42). However, only very few of thesemodels explicitly consider
within-vector parasite development19,43 beyond the original Ross-
MacDonald description26,30,36,44. Importantly, parasite evolution has
not been traditionally studied in thesemodel extensions, and only one
study has investigated the effects of immune dynamics and drug
resistance in the human host45. Here, we study the mosquito-driven
evolution of Plasmodium parasites, and show that if mosquito meta-
bolism is explicitly modeled, the exponential relationship between
sporogonic cycle andmosquito life-spanno longer holds (Fig. 6). Thus,
our results indicate that Tsp is not as sensitive in determining trans-
mission intensity as was originally suggested16. While recent experi-
mental evidence has shown that reductions in sporogony time does
not diminish the infectivity to primary hepatocytes14, these early
sporozoites are very low in numbers. Whether such low sporozoite
numberswill be sufficient for a successful infectious bite, remains to be
demonstrated. Further studies are needed to assess the effect of
shorter EIP on parasite transmission efficiency.

By conceptualizing complex metabolic processes within the mos-
quito, we have obtained a new perspective for understanding malaria
transmission and evolution. This work raises new questions that need to
be addressed both experimentally and theoretically. Experimentally, the
relationship between parasite competition strength and the number of
bloodmealsmustbequantified.Howstrongwillmosquito reproduction
be impaired by malaria parasites during natural feeding regimes (more
than two blood meals)? Moreover, we assumed that the metabolic
energy accumulated by the parasite can be translated into transmission
probability. Our simulations show that the relationship between the
number of blood meals and transmission is essential in determining
Plasmodium ’s evolutionary outcomes, calling for more empirical work
in quantifying this relationship: how do multiple feedings affect the
number, and/or, quality of sporozoites, and their transmission potential
into a vertebrate host? Recent studies have shown that additional blood
meals influence parasite growth, resulting in larger oocysts13,46, and an
accelerated invasion of sporozoites of the mosquito salivary glands
reducing the time potentially required for transmission16. Our work
suggests that the fitness of those early sporozoites should be low given
the reduced metabolic resources they acquired during their fast devel-
opment. Do parasites with different Tsp display differences in transmis-
sion potential? Measuring sporozoite numbers, and quality in infected
mosquitoes fed under different regimes is necessary to further under-
stand the effect of mosquito metabolic resources on Plasmodium
development. Additionally, given that malaria parasites exhibit adapta-
tion to their vertebrate hosts2,6,10, it seems plausible that they also show
phenotypic plasticity depending on the metabolic status of their mos-
quito-host: would they sense and modulate their sporogonic cycle in
response to the nutrients available in different mosquitoes?

Theoretically, extensions of the model will help to test hypotheses
that are difficult to study in an experimental or field setting. For
example, shifts in vector feeding schedules and life-spans can be
studied computationally to assess the effect of different mosquito
species on parasite transmission. Additionally, several genetic and
environmental factors have also been identified as determinants in
Plasmodium sporogony26,47, including the mean environmental
temperature48–50, genetic diversity of both the vector and the parasite51,

Fig. 3 | Including the effects of mosquito metabolism restraints the transmis-
sion benefits of short sporogonic cycles. Simulations of malaria transmission
assuming different sporogonic cycles (Tsp). aWemeasure the infection prevalence
in both hosts at steady-state, i.e., at t = 1,000 days, and b the number of spreader
and super-spreadermosquitoes in the population throughout the entire simulation
time. Note how Plasmodium transmission growswith shorter Tsp significantlymore
in the control simulations (purple) than in those including mosquito metabolism
(cyan) (p = 9 × 10−4 in humans and p = 1.6 × 10−3 in mosquitoes). Accordingly, the
number of spreader (p = 7.48 × 10−4) and super-spreader (p = 5.8 × 10−4) mosquitoes
were significantly larger in the control simulations. Difference between groups was
calculated with a two sided t-test comparing the slopes of linear regressions (lines
and shadedareas). ** and *** depict ap-value ≤0.01 andp-value ≤0.001, respectively.
Every dot represents one of N = 15 stochastic simulations.
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as well as nutritional status during larval stages47,52,53. How these pro-
cesses would interact together with the metabolic parasite-vector
competition presented here can be addressed in future extensions of
our model. Thus, our theoretical approach sets the basis for future
investigations on the vector-parasite pairs that favor transmission,
possibly revealing unexpected strategies parasites naturally evolve.

Methods
ODE model of resource allocation
We model the mobilization of nutrients after a blood meal with a
system of ordinary differential equations that consider three vector-
specific compartments (blood digested during a blood meal (B),
within-host energy reserves (R), and reproductive energy for devel-
oping eggs (E)), and two parasite-specific compartments (internal
energy resources for oocysts (O) and developing sporozoites (S))

(Fig. 1). The energy flow from one compartment to the other is acti-
vated with rectangular pulse wave functions, described by:

σðtÞ= 0, if t < τ & t � τ � niTσ > λ

1, otherwise :

�
ð1Þ

Here, a pulse starts after a delay of τ and lasts for a duration of λ. The
pulse is repeated with a period Tσ and will be repeated for NBM blood
meals, thus

PNBM
1 niTσ . For every process different values of τ, and λ

were chosen as described below. After the ingestion of a blood meal
σBM(t), the blood can be either digested at a rate δB, or its metabolic
energy can be mobilized to the mosquito reserves R after a period
τBM= 24 h. This blood-meal activates the signal for the steroid
hormone 20E synthesis in the ovaries βE(t). A proportion of the host
resources is then mobilized to the ovaries and is accumulated by

Fig. 4 | Mosquito metabolism shapes Plasmodium evolution. a Simulation pro-
tocol for evolutionary simulations. After 1000 days of `burn-in' period, we infect
20% of the human population with malaria parasites. We allow infection dynamics
to reach a steady state until 5000 days, where we switch on mutation. Simulations
end after 10,000 days. We compare the evolutionary patterns observed in our
original model (control, purple) to those emerging in the model including the
effects of metabolism (cyan). b Time course of infection prevalence. Note how
infection increases after mutation is turned on only in the control simulations.
c, e Time course of the sporogonic development Tsp. d, f Distribution of blood
meals acquired by individual mosquitoes during oocyst development. Every

column summarizes the blood meals of individual mosquitoes 100, 2000, 3000,
and 5000 days after turning on evolution, in control (upper row) and simulations
including vector metabolism (lower row). To test the effect of initial conditions we
run two sets of simulations: one with Tsp(0) = 13 (c, d) and another with Tsp(0) = 10
(e, f). Independent of the initial conditions, aminimal Tsp = 5 naturally evolves in the
control simulations, while mosquito metabolism maintains a long Tsp ≈ 12. Solid
lines in the time courses depict the mean, with shaded areas displaying standard
deviation. Bar plots show the mean, and error bars the standard deviation. Sum-
mary of N = 10 stochastic simulations.
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developing eggs (E). The remaining resources are invested into other
physiological processes, including immunity, physical activity, and
waste, at a rate δR. If a bloodmeal is infectedwith Plasmodium, oocysts
(O) grow by accumulating resources taken from the vector’s reserves

at a constant rate βP. Once mature, oocysts transfer their internal
energy into sporozoites (Sp) at a rate γ(t). The dynamics of βE(t) are
explicitly modeled by Eq. (7), where a and b represent the activation
and inhibition rate of reproductive investment, respectively. Periodic
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end of the evolutionary simulations (at t = 10,000 days). a We simulated two
additional mosquito populations with different age-dependent death rates by
changing the shape parameter (x) of the Gompertz distribution, resulting in
younger (x =0.18) and older (x =0.089) mosquitoes compared to our previous
simulations. b We also modified the slope of the Hill function describing the

mosquito-to-human transmission probability pM!HðNBMÞ=p0 +
nBM

nBM +h, effectively
modeling parasites with low (h = 2), intermediate (h = 1), or high (h =0.5) scaven-
ging strength. Note that the simulations ran with parameters x =0.16 and h = 1
correspond to the results depicted in Fig. 4. All simulations were started with a fast
initial sporogonic development (Tsp(0) = 10 days). Box plots show the median with
first and third quartile, whiskers depict min and max values. Summary of
N = 10 stochastic simulations.
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blood meals, the thereby induced resource allocation, and the blood
meal dependent signal for 20E activation occur with a period
Tσ = 7 days, durations λBM= 6 h, λR = 60h, and λβE

= 24h, and delays
of τBM = 6 h, τR = 30 h, and τβE

=6h, respectively. Similarly, the time for
oviposition is activated with a time delay τdE

=60h and lasts λE = 6 h.
The model is given as follows:

_B= σBMðtÞð1� BÞ � σRðtÞBRð1� RÞ � δBB ð2Þ

_R= σRðtÞBRð1� RÞ � cβE ðtÞREð1� EÞ � βPROð1�OÞ � δRR ð3Þ

_E = cβE ðtÞREð1� EÞ � σEðtÞδEE ð4Þ

_O=βPROð1�OÞ � γðtÞO ð5Þ

_S= γðtÞO ð6Þ

_βE = σβE
ðtÞað1� βE Þ � bβE ð7Þ

γðtÞ= 0, if t ≤Tsp

γ, otherwise:

�
ð8Þ

Note that this is a conceptual framework that models the metabolic
processes in the mosquito. Importantly, not all of the processes
described here can be measured experimentally. Therefore, most
parameter values have been chosen to qualitatively match empirical
data describing the temporal dynamics of 20E activation and
oviposition18, as well as infection dynamics typically observed during
Plasmodium infections. All parameters are fully described in Table 1.

Parameter sweeps. To test for the effect of different parameter
values, we performed several parameter sweeps, varying one para-
meter at a time in small intervals. We studied the effects of different
parasite strengths in allocating resources by changingβP from [0.0-0.1]
in 0.05 steps. The impact of the number of blood meals was tested by
running several simulations altering NBM from [1-5] days. Finally, we
simulated five different sporogony times Tsp ranging from [11 - 15] days
in 2 days intervals.

Fitness calculations. We define arbitrary fitness functions for eggs
and parasites. Here, reproductive fitness is defined as the sum of the
maximal energy accumulated during every bloodmeal (Eq. (9)), where
as parasite fitness is defined the maximal energy accumulated in the
sporozoites compartment (Eq. (10)). The differences in fitness ΔF(E)
(Eq. (11)) and ΔF(S) (Eq. (12)) are computed by subtracting the control
scenarios (i.e., simulations without parasite and with only one infected
bloodmeal for eggs and parasites, respectively) from the simulationof
interest.

FðEÞ=
XN�1

i =0

maxðEðτiÞÞ; with iTσ ≤ τi< ði+ 1ÞTσ ð9Þ

FðSÞ= maxðSðtÞÞ ð10Þ

ΔFðEÞ= FðEÞiBM � FðEÞBM ð11Þ

ΔFðSÞ= FðSÞN > 1 � FðSÞN = 1 ð12Þ

Individual-based model of malaria transmission
We develop an individual-based model consisting of three actors
(humans, female mosquitoes and parasites) and four types of events
(birth, growth, infection, recovery -in humans-, transmission, and
death). The basic time step of themodel is one day, duringwhich every
human host and vector is chosen in a randomorder and confronted to
one of the randomly chosen events. During infection, parasites are
embedded in every host, andwill be copied into a newhost upon every
transmission event. Humans and vectors age over time, i.e., their age is
updated after each time step. The cycle is repeated over several vector
generations. All parameters are fully described in Table 2. The fol-
lowing is a detailed description of individuals and events.

Mosquitoes. We consider both phases of the mosquito life cycle
and explicitly model larvae and adults. Individual larvae die at a tem-
perature dependent rate, described as a quadratic function:
δLðTÞ=aδT

2 � h2
δ + kδ . Larvaedevelop into adults only after a pupation

time that follows an exponential function: TPðTÞ= mt
1 + expðTht Þ + kt . After

this pupation time, we allow larvae to grow with a density-dependent
rate γðLÞ= 2�L=KLmγ, where KL is the carrying capacity of the assumed
aquatic habitat, and mγ the maximal daily growth rate. We consider
individual effects by assuming that every parameter j consists of
population and individual effects, as follows: θij =μje

ηij : Here μj is the
population parameter, and ηij ∼N ð0,ω2

j Þ is the randomeffect for every
individual larvae i. The larval parameters given in Table 2 were
obtained by fitting a mechanistic mathematical model to data of larva
development at 28∘C54. Of note, all rates (r) were converted into their
respective probability as described by p= 1� expð�rtÞ.

We allow female mosquitoes to seek a blood meal immediately
after emerging as adults, as previouslymodeled55. During their seeking
state, theybite a randomly chosenhumandependingon thenumberof

Table 1 | Model parameters of the resource allocation model

Parameter Value [Unit]

Blood meal parameters

Feeding interval Tσ 7 [days]

Duration of feeding λBM 6.00 [h]

Time delay of feeding τBM 6.00 [h]

Duration of 20E activation λβE 24.00 [h]

Rate of 20E activation a 0.5 [h−1]

Rate of 20E inhibition b 0.5 [h−1]

Host parameters

Duration of nutrient transport into the reserve compartment λR 60.00 [h]

Rate at which energy flows into physiological processes δR [5 × 10−4h−1]

Energy flow rate for egg development c 0.3 [h−1]

Degradation rate of reproductive energy δE 0.5 [h−1]

Duration of oviposition λE 6.00 [h]

Time delay of oviposition τdE
66 [h]

Parasite parameters

Energy flow rate for parasite development βP 0.045[h−1]

Rate of sporozoite development γ 0.1[h−1]

Sporogony time Tsp 11 [days]

Initial conditions

Blood meal B(0) 0 [AU]

Internal reserves R(0) 0.8 [AU]

20E activation βE(0) 0[AU]

Reproductive energy E(0) 0.1 [AU]

Energy of oocysts O(0) 0.01 [AU]

Energy of sporozoites S(0) 0 [AU]
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human hosts in the population, as follows: p0
b =pbð N3

H

N3
H +h3Þ, where pb is

themaximalbiting probability,NH is the number of humanhosts, andh
is the human population at which the probability is half maximal. After
a successful blood meal, every mosquito digests for a period of
approximately three days, after which it develops eggs. The number of
eggs developed per female mosquito NE follows a normal distribution
N ðμE ,σE Þ, as typically observed in our laboratory. We assume that not
all eggs survive, and model the effective probability of birth as a
density-dependent function b= b̂ð1� L=KLÞ, where b̂ is the maximal
birth probability, L is the number of existing larvae, and KL is the car-
rying capacity of the aquatic habitat. All surviving eggs contribute
immediately to the larvae population.

Mosquitoes die with an age-dependent death rate described with
a Gompertz distribution with shape x =0.16 and rate b =0.007. This
death rate function was obtained by fitting several distributions to
survival curves of mosquitoes reared at 28∘C in our laboratory. Note
that in our laboratory mosquitoes did not show different survival
profiles when infected, and thereforewe donot simulate any infection-
related survival cost.

Humans. We consider a homogeneous human population, in which
every human has a death rate δ = δH + δp,H, where δH = 1[year −1] is the
intrinsic death rate, and δp,H = 1x10−3 is the increase caused by the

parasitic infection (see below). Humans live on average one year.While
this is short, we do this to assure that sufficient susceptible individuals
are available and new infections can constantly occur. For simplicity,
we keep the human population constant, i.e., when an individual dies
due to background mortality, or infection, it will be immediately
replaced by a new susceptible individual.

Parasite. In ourmodel,Plasmodiumparasites areonly describedby the
duration of their sporogonic development Tsp ∼N ðμ= 13,σ =0:25Þ,
thus generating aheterogeneousparasite population. Parasitesmutate
upon every transmission event with a probability pm =0.5 by randomly
increasing or decreasing their Tsp by 0.5. We set an arbitrary minimal
value of Tsp = 5 days.

Infection dynamics. For simplicity, we do not model the individual
stages of parasite development within each host. Instead, we capture
infection dynamics with a classical “Susceptible-Exposed-Infectious-
Recovered-Susceptible” (SEIRS) model for humans, and an “Suscep-
tible-Exposed-Infectious” (SEI) model for mosquitoes. Susceptible
mosquitoes are exposed to the parasite with a probabilty pH→M when
feeding on an infectious human. Mosquitoes become infectious after
the parasite has completed its development, i.e., after a sporogonic
development time Tsp. Infectious vectors can transmit the parasite to
susceptible humans upon their next blood meal with a transmission
probability pM→H. Like in mosquitoes, exposed humans become
infectious after a development period TIP. During this period, their
death rate increases by δp,H, thereby modeling parasitemia. Infected
individuals recover from the infection with a probability pr. Humans
that fail to recover become chronically infected with the parasite, and
show lower transmission probability (0.1pH→M) and parasitemia
(0.001δp,H), effectively modeling asymptomatic carriers.

Mosquito metabolism
For simplicity, we include mosquito metabolism into the iBM by
assuming that the energy accumulated into the sporozoites is trans-
lated to the mosquito-to-human transmission probability pM→H.
Effectively, every parasite has an intrinsic basic probability of trans-
mission (p0 = 0.2) which grows after the acquisition of blood meals
during oocyst development (i.e., three days after ingestion until Tsp) as
described with a simple Hill function pM!H =p0 +

nBM
nBM + 1. Note that with

this description and our chosen parameters, a parasite requires nBM = 1
to obtain the same transmission probability as in our control iBM.
Similarly, the number of eggs developed per female will be dependent
on the parasite ‘strength’, given by the same pM→H, as follows:
N̂E =0:85NE � 0:4pM!H,whereNE is the number of eggs per batch, per
individual female as described above. All other agents, events, and
parameters are the same as in themodel excludingmetabolism (which
we refer throughout this manuscript as control).

Model initialization. Themodel was initializedwith 100 larvae and 100
adult females, each with a random age between 1–10 days. Similarly,
1000 human hosts were set at the start of the simulations. 20% of the
human population are initialized as asymptomatic carriers.

Life span calculations. We categorized mosquitoes in every simulated
population into four groups: uninfected, carriers (exposed mosquitoes
that died before becoming infectious), spreaders (infectiousmosquitoes
that caused one human infection), and super-spreaders (infectious
mosquitoes responsible for more than one human infection). We com-
pute the life span by recording the age (in days) at which mosquitoes
died, and calculated the median life span per category, per simulation.

Model assumptions
The purpose of our theoretical framework is to explore the role of
within-mosquito physiology on the evolutionary strategies of malaria

Table 2 | Model parameters of the individual-based model

Parameter Value [Unit]

Time step 1 [day]

Environment temperature T 28 [∘C]

Host parameters

Carrying capacity KH 1000 individuals

Death rate δH 1 [year−1]

Vector parameters

Carrying capacity of aquatic habitat KL 5540 individuals

Coefficients of larval death rate δL(T) = aT
2 −bT + c

apop; ηa 0.00288; 1.12

bpop; ηb 0.00663; 0.645

cpop; ηc 0.0381; 0.701

Coefficients of larval growth rate γðLÞ= 2�L=KLmγ

mγ,pop; ηmγ
1.19; 0.513

Coefficients of pupation time TPðTÞ= mt
1+ expðThtÞ + kt

mt,pop;ηmt
9.63; 0.104

ht,pop; ηht
0.0996; 0.0258

kt,pop : ηkt
2.95; 0.188

Mosquito birth probability 0.0355

Number of eggs per oviposition N ðμ =55,σ = 24:5Þ
Mosquito biting probability 0.9755

Mosquito hazard/death rate hðageÞ=bexpðx ageÞ x = 0.16,b = 0.007

Parasite parameters

Parasite incubation period in humans TIP N ðμ = 28,σ =0:25Þ28[day]−1

Parasite incubation period in mosquitoes Tsp N ðμ = 13,σ =0:25Þ[day]−1

Parasitemia in humans δp,H 0.001

Infection parameters

Transmission probability mosquito-to-human pM→H 0.7

Transmission probability human-to-mosquito pH→M 0.7

Recovery probability in humans pr 0.75

Initial conditions

Larva initial population L0 100

Mosquito initial population M0 100

Human initial population H0 1000
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parasites. Therefore, our models are necessarily an abstraction of
complex metabolic and transmission processes. Wherever possible,
parameters were obtained by quantifying data generated in our
laboratory, or adopted from the literature. In the individual-based
model, we prioritized parameter choices that resulted in realistic
infection dynamics. Therefore, the modeled human population is
homogeneous, and remains constant throughout the simulations.
Humans are assumed to have a short life span of one year. While
unrealistic,wedo this to prevent the infection fromsaturating, thereby
ensuring that sufficient susceptible individuals are available. For sim-
plicity, we model only one mosquito species, ignore climate season-
ality, and do not consider super-infection in either of the hosts. This
simplification allows us to focus on the role of mosquito metabolism
on malaria transmission and evolution.

The ODE model of resource allocation simulates the energy flows
induced by metabolic changes. Because there is currently no data
available of these dynamic processes, parameter values were chosen to
match the dynamics typically observed in the activation of 20E after a
blood meal18, and during parasite development. We assume that para-
sites scavenge resources at a constant rate βP proportionally to their
resources. As a result, less energy will be scavenged by the early-stage
oocysts compared to the late-stage ones. We also assume that the
energy scavenged by developing oocysts will be completely transferred
to sporozoites. While there is some experimental evidence that the
relationship between oocyst and sporozoite numbers saturates at large
parasite densities56, we do this to keep the model simple. Importantly,
we do not model parasite numbers, densities, or size, but only meta-
bolic energy. A high accumulation of energy could be interpreted as
eithermultiple small occysts, or few large ones. Similarly, a high amount
of energy accumulated by sporozoites could translate into large num-
bers, and/or quality. Accordingly, we intuitively assume that the meta-
bolic energy determines transmission probability in the evolutionary
individual-based model. Future experimental studies are imperative to
determine how the metabolic energy accumulated by oocysts would
affect transmission potential, and validate our model implications.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the Edmond
database under the link: https://doi.org/10.17617/3.41DUIB.

Code availability
The simulation framework for the study was developed in C++ and
incorporates the Boost library (version 16). For the analysis of the
simulated data, R (version 3.5) was utilized with the following packa-
ges: plyr, data.table, dplyr, tidyverse for data processing and ggplot2,
cowplot for data visualization. All relevant code for the model as well
as the accompanying scripts can be accessed under: https://gitlab.
mpcdf.mpg.de/vectorbiology/mosquito_metabolism/
resourceallocation_release. The code for the ODE model of resource
allocation was developed in R (version 3.5) with the additional packa-
ges: deSolve for solving ordinary differential equations, reshape and
viridis for data processing and visualization, respectively. The scripts
can be found at: https://gitlab.mpcdf.mpg.de/vectorbiology/
mosquito_metabolism/vectorbornemodel_release.
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