
Parallel and Distributed Exact Single-Source Shortest Paths with
Negative Edge Weights

Vikrant Ashvinkumar∗ Aaron Bernstein† Nairen Cao‡ Christoph Grunau§

Bernhard Haeupler¶ Yonggang Jiang‖ Danupon Nanongkai∗∗ Hsin Hao Su††

March 3, 2023

Abstract
This paper presents parallel and distributed algorithms for single-source shortest paths

when edges can have negative weights (negative-weight SSSP). We show a framework that
reduces negative-weight SSSP in either setting to no(1) calls to any SSSP algorithm that works
with a virtual source. More specifically, for a graph with m edges, n vertices, undirected hop-
diameter D, and polynomially bounded integer edge weights, we show randomized algorithms
for negative-weight SSSP with

• WSSSP (m,n)no(1) work and SSSSP (m,n)no(1) span, given access to an SSSP algorithm
with WSSSP (m,n) work and SSSSP (m,n) span in the parallel model, and

• TSSSP (n,D)no(1), given access to an SSSP algorithm that takes TSSSP (n,D) rounds in
CONGEST.

This work builds off the recent result of Bernstein, Nanongkai, Wulff-Nilsen [3], which gives a
near-linear time algorithm for negative-weight SSSP in the sequential setting.

Using current state-of-the-art SSSP algorithms yields randomized algorithms for negative-
weight SSSP with

• m1+o(1) work and n1/2+o(1) span in the parallel model, and
• (n2/5D2/5 +

√
n+D)no(1) rounds in CONGEST.

Up to a no(1) factor, these match the current best upper bounds for reachability [15, 5]. Con-
sequently, any improvement to negative-weight SSSP in these models beyond the no(1) factor
necessitates an improvement to the current best bounds for reachability.

Our main technical contribution is an efficient reduction for computing a low-diameter
decomposition (LDD) of directed graphs to computations of SSSP with a virtual source. Efficiently
computing an LDD has heretofore only been known for undirected graphs in both the parallel
and distributed models. The LDD is a crucial step of the algorithm in [3], and we think that its
applications to other problems in parallel and distributed models are far from being exhausted.

Other ingredients to our results include altering the recursion structure of the scaling algorithm
in [3] to surmount difficulties that arise in parallel and distributed models, and also an efficient
reduction for computing strongly connected components to computations of SSSP with a virtual
source in CONGEST. The latter result answers a question posed in [2] in the negative.
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1 Introduction

Single-source shortest paths (SSSP) is one one the most fundamental algorithmic graph problems
there is. Given a directed graph G = (V,E), an integer weight function w : E → Z, and a source
vertex s ∈ V , we want to compute the distance from s to v for all v ∈ V .

Efficient solutions to this problem are typically better understood in the regime where edge
weights are non-negative. Dijkstra’s algorithm, from the 50s, is one such solution which runs in
near-linear time but whose correctness holds under the restriction that inputs have non-negative
edge weights. The picture for single-source shortest paths with negative weights (negative-weight
SSSP) in the sequential setting, on the other hand, has up to very recently been a work in progress
towards finding a near-linear time algorithm. From the 50s, the classic Bellman-Ford algorithm gives
an O(mn) time algorithm 1 which either computes distances from s to v or reports a negative-weight
cycle. Goldberg’s algorithm [14], from the 90s, achieves a runtime 2 of Õ(m

√
n) using a scaling

technique. Slightly more recently, there have been several other algorithms [8, 21, 1] for the more
general problems of transshipment and min-cost flow using sophisticated continuous-optimization
methods, implying an algorithm for negative-weight SSSP that runs in near-linear time on moderately
dense graphs. It is only within the last year that the major breakthrough by Chen, Kyng, Liu,
Peng, Probst Gutenberg, and Sachdeva [7], using continuous-optimization methods, culminated
this series of works, which thus implies an O(m1+o(1)) time algorithm for negative-weight SSSP.
In a parallel and independent work, Bernstein, Nanongkai, Wulff-Nilsen [3] gave a Õ(m) time
algorithm for negative-weight SSSP that uses relatively simpler techniques. In this paper, we take
the exploration of negative-weight SSSP to parallel and distributed models of computation. Should
there be analogous results there?

In parallel models, much progress has been made with SSSP algorithms. Very recently, Rozhoň,
Haeupler, Martinsson, Grunau and Zuzic [19] and Cao and Fineman [4] show that SSSP with
polynomially bounded non-negative integer edge weights can be solved with Õ(m) work and n1/2+o(1)

depth in the parallel model. In contrast, the Bellman-Ford algorithm solves negative-weight SSSP
with O(mn) work and O(n) depth. Cao, Fineman and Russell [6] proposed an algorithm solving
negative-weight SSSP with Õ(m

√
n) work and n5/4+o(1) depth.

Similarly, in distributed models, Rozhoň et al. [19] and Cao and Fineman [4] show algorithms
for SSSP with non-negative integer edge weights that take Õ((n2/5+o(1)D2/5 +

√
n+D) 3 rounds.

On the negative-weight SSSP front, the Bellman-Ford algorithm takes O(n) rounds. The current
state-of-the-art by Forster, Goranci, Liu, Peng, Sun and Ye [11], which uses Laplacian solvers, gives
an Õ(m3/7+o(1)(n1/2D1/4 +D)) round algorithm for negative-weight SSSP.

There is a substantial gap between the best known upper bounds for SSSP and negative-weight
SSSP in these models and, in fact, the number of landmark algorithms for negative-weight SSSP
have been comparatively few. This begets the following question: Can we close the gap, and get
parallel and distributed algorithms for negative-weight SSSP that are nearly as efficient as the best
SSSP algorithms? This paper gives an answer in the affirmative. The main results of this paper are
as follows.

Theorem 1.1 (Parallel negative-weight SSSP, proved in Section 7). There is a randomized parallel
algorithm that, given an n-node m-edge directed graph with polynomially bounded integer edge weights,
solves the exact single-source shortest path problem with m1+o(1) work and n1/2+o(1) span, with high
probability.

1Here and throughout, we use n to denote the number of vertices, m to denote the number of edges of G.
2Here and throughout, we use the soft-O notation Õ to suppress polylogarithmic (in n) factors. Throughout the

paper, we assume the maximum weight edge (in absolute value) of G is polynomially bounded.
3Here and throughout, we use D to denote the undirected hop-diameter of G.

2



Theorem 1.2 (Distributed negative-weight SSSP, proved in Section 8.3). There is a distributed
randomized algorithm that, given an m-edge n-node directed graph with polynomially bounded integer
edge weights and undirected hop-diameter D, solves the exact single source shortest path problem
with O((n2/5+o(1)D2/5 +

√
n+D)no(1)) rounds of communication in the CONGEST model with high

probability.

A Research Agenda for Basic Algorithms Bernstein et al. [3] poses a research agenda of
designing simple (combinatorial) algorithms for fundamental graph problems, to catch up to the extent
possible with algorithms that rely on min-cost flow, whose state-of-the-art involves sophisticated
methods from continuous optimization. One of the main attractions of this line of research is the
belief that simple algorithms are more amenable to being ported across to different well-studied
models of computation. Our results provide support to this belief by giving an analog of the simple
negative-weight SSSP algorithm in parallel and CONGEST models.

1.1 Our Contributions

On top of algorithms for negative-weight SSSP, we provide several algorithms that may be of
independent interest, such as an efficient low-diameter decomposition for directed graphs, and
computing strongly connected components in distributed models of computation. These algorithms,
and the algorithms that directly address negative-weight SSSP, are actually general reductions to
SSSP (this includes Theorems 1.1 and 1.2 among others). One advantage of this approach is that
our results scale with SSSP; if there is any progress in the upper bounds to SSSP, progress to the
bounds in this paper immediately follow.

We first give the definition of the SSSP oracle that we make reductions to.

Definition 1.3 ((distG(s, v))v∈V ← ONN−SSSP (G = (V,E,w), s)). The non-negative single source
shortest path oracle ONN−SSSP takes inputs (i) A directed graph G = (V,E,w) with non-negative
polynomially bounded integer edge weights (ii) A vertex s ∈ V , and returns the distance from s to all
vertices in V .

Now, we provide the statement for the reduction from low-diameter decomposition to oracle
ONN−SSSP (G, s) (for more details, see Section 4).

Low Diameter Decomposition

Lemma 1.4 (Low-Diameter Decomposition, Algorithm 1). Let G = (V,E,w) be a directed graph
with a polynomially bounded weight function w : E → N and let d be a positive integer. There exists
a randomized algorithm LowDiameterDecomposition(G, d) with following guarantees:

• INPUT: an n-node m-edge, graph G = (V,E,w) with non-negative integer edge weight and a
positive integer d.

• OUTPUT: (proved in Section 4.2) a set of edges Erem ⊆ E satisfying:

– each SCC of the subgraph E − Erem has weak diameter at most d in G, i.e. if u, v are
two vertices in the same SCC, then distG(u, v) ≤ d and distG(v, u) ≤ d.

– for any e ∈ E, we have Pr[e ∈ Erem] = O
(
w(e) log2 n

d + 1
n8

)
• RUNNING TIME: The algorithm is randomized and takes Õ(1) calls to ONN−SSSP . More
specifically,
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– (Proved in Section 7) assuming there is a parallel algorithm answering ONN−SSSP in
W (m,n) work and S(m,n) span, then LowDiameterDecomposition(G, d) takes Õ(W (m,n))
work and Õ(S(m,n)) span with high probability.

– (Proved in Section 8.2) assuming there exists a CONGEST algorithm answering ONN−SSSPS

in T (n,D) rounds, then LowDiameterDecomposition(G, d) takes Õ(T (n,D) +
√
n+D)

rounds in the CONGEST model with high probability, where D is the undirected hop
diameter.

Remark In the CONGEST model, we are using ONN−SSSPS instead of ONN−SSSP . The main
difference is that ONN−SSSPS allows querying graph with virtual super source. See 8.3 for the precise
definition.

This result forms the basis for our improved SSSP algorithms. Using the parallel low-diameter
decomposition, we argue that careful modification of the algorithmic and analytic insights of Bernstein
et al.’s algorithm [3] suffices to obtain improvements for a parallel negative-weight SSSP algorithm.

Theorem 1.5 (Parallel SSSP reduction with negative edge-weight, proved in Section 7). Assuming
there is a parallel algorithm answering SSSP oracle ONN−SSSP in W (m,n) work and S(m,n) span,
then exists a randomized algorithm that solves single-source shortest-paths problem for directed n-node
graph G with polynomially bounded integer edge-weight with O(W (m,n)(log n)O(

√
logn)) work and

Õ(S(m,n)2
√

logn) span with high probability.

We also prove an analogous result in the CONGEST model.

Theorem 1.6 (Distributed SSSP reduction with negative edge-weight, proved in Section 8.3). In
the CONGEST model, assuming there is an algorithm answering SSSP oracle ONN−SSSPS in T (n,D)
rounds, then there exists a randomized algorithm that solves single-source shortest-paths problem for
directed n-node graph G with polynomially bounded integer edge-weights and undirected hop-diameter
D in O((T (n,D) +

√
n+D)(log n)O(

√
logn)) rounds with high probability.

Theorems 1.5 and 1.6 give us reductions from SSSP with negative integer edge-weights to SSSP
with non-negative integer edge-weight in the parallel and distributed model. Using the-state-of-art
non-negative SSSP ([19] and [4]) immediately gives Theorems 1.1 and 1.2.

SCC+Topsort

Our result for finding strongly connected components in the CONGEST model is as follows.

Lemma 1.7 (Reduction for SCC+Topsort in CONGEST). There is a CONGEST algorithm that,
given a directed graph G = (V,E), and assuming there is an algorithm answering SSSP oracle
ONN−SSSPS in T (n,D) rounds, outputs SCCs in topological order. More specifically, it outputs a
polynomially-bounded labelling (rv)v∈V such that, with high probability

1. ru = rv if and only if u and v are in the same strongly connected component;

2. when the SCC that u belongs to has an edge towards the SCC that v belongs to, ru > rv.

The algorithm takes Õ(T (n,D) +
√
n+D) rounds.

It is worth noting that a more careful examination gives a round complexity in terms of calls
to a reachability oracle, rather than an SSSP oracle. Incidentally, instantiating the oracle with the
current state-of-the-art SSSP algorithm ([19] and [4]) leads to a Õ

(
n1/2 +D + n2/5+o(1)D2/5

)
round

algorithm (Corollary 9.4), answering a question posed in [2] which asked if a lower bound of Ω̃(n)
rounds applies to the problem of finding SCCs. More on both points in Section 9.
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Technique Overview Broadly speaking, we port the algorithm of [3] into parallel and distributed
models of computation. The main difficulties in this are: (i) There being no known efficient algorithm
for computing an LDD in parallel and distributed models. The algorithm in [3] is fundamentally
sequential, and it is not clear how to sidestep this. (ii) It being unclear how the algorithm in [3]
without using Dijkstra’s algorithm. (iii) There being no efficient CONGEST algorithm for finding
strongly connected components of a DAG in topological order. We go into each point, in more detail,
in Section 2.

1.2 Organization

Section 2 contains a high-level overview of our results, which explain the key difficulties of bringing
over the result of [3] to parallel and distributed models, and some intuition for how these are
overcome. Section 3 covers terminology, notation, and some basic results we use; this may be skipped
and returned to as and when necessary. For details on the low-diameter decomposition reduction,
Section 4 covers the main ideas and Section 11 contains some of the omitted proofs. For details on
the negative-weight SSSP algorithm reduction, Section 5 covers the general framework, Section 6 in
the appendix contains the key technical details, while Sections 10 and 12 in the appendix contain
details and proofs related to simpler subroutines. For an implementation of either the low-diameter
decomposition or the negative-weight SSSP algorithm in the parallel or CONGEST model, see
Sections 7 and 8. Finally, for details on finding strongly connected components in CONGEST, along
with a topological ordering of the components, see Section 9.

2 High Level Overview

Our results follow the framework of [3], which provides a sequential algorithm for negative-weight
SSSP that takes Õ(m) time with high probability (and in expectation). The core difficulty in
bringing the sequential algorithm there to parallel and distributed models of computation lies in the
scaling subroutine ScaleDown, which we focus most of the efforts in this work towards. In this
section, we summarize ScaleDown and highlight the key areas of difficulty.

2.1 The Scaling Subroutine of [3]

The input to ScaleDown is a weighted directed graph whose weights are no lower than −2B, for
some non-negative B. The output of ScaleDown is a price function over vertices under which the
weights of edges are no lower than −B. The price function ScaleDown computes is the distance
from a virtual source s to every vertex v on GB, which is G with all negative-weight edges raised
by B. Thus for much of ScaleDown we will be thinking about how to make the edges of GB

non-negative without changing its shortest path structure. ScaleDown consists of four phases.

• Phase 0: Run a Low Diameter Decomposition on GB with negative-weight edges rounded
up to 0. This gives a set Erem of removed edges, and partitions the vertex set into strongly
connected components (SCCs) that can be topologically ordered after having removed Erem.

• Phase 1: Recursively call ScaleDown on the edges inside each SCC. This finds a price
function on vertices under which edges inside each SCC have non-negative weight, thus fixing
them.

• Phase 2: Fix DAG edges (i.e. the edges not in Erem, that connect one component to another).
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• Phase 3: Run epochs of Dijkstra’s Algorithm with Bellman-Ford iterations to fix the remaining
negative-weight edges, all of which are contained in Erem.

Observe that between Phases 1 to 3, all the edges are fixed. That is, the weight of edges in GB are
non-negative, and consequently the weights of edges in G are at least −B.

The key obstacles to porting ScaleDown to parallel and distributed models are as follows.

Obstacle 1: Low Diameter Decomposition

The work of Bernstein et al. [3] gives a sequential algorithm solving directed LDD in Õ(m) time.
Their algorithm runs in a recursive manner, described as follows.

• (Phase I) Categorize vertices as heavy or light. Heavy vertices have mutual distances O(d) and
we can ignore them; a light vertex has a small number of vertices with distance O(d) to it.

• (Phase II) Sequentially carve out balls with a light vertex as center and with random radius
(follows geometric distribution with mean value roughly d) where each ball becomes a recursive
instance and the edges on the ball’s boundary are added to Erem.

The key property to bound recursive depth is that each ball has size at most .9|V | since the center
is light. Finally, the algorithm recursively solves induced subgraphs G[Vi] for each subset Vi and
adds the result to Erem. Phase II is a highly sequential procedure that cannot be adapted to the
parallel or CONGEST model efficiently, since the number of balls can be as large as Θ(n) for small d,
which is considered a bad running time in both models. This is due to the fact that each ball only
has its size upper bounded by .9|V |, but not lower bounded.

To this end, we take a different approach. Instead of simply carving out balls one by one where
each ball only has size upper bounded by .9|V | but lower bounded by nothing, we use a designated
subroutine (Algorithm 2) to find a set A ⊆ V such that .1|V | ≤ |A| ≤ .9|V |. A is not necessarily a
ball anymore, but a union of balls. It is also guaranteed that an edge is included in A’s boundary
with small probability. In this way, we can recurse on two sets A, V \A thus avoiding inefficient
computations.

Obstacle 2: From Dijkstra’s Algorithm to Oracles

By Phase 3 in [3], the only remaining negative edges, which are all contained in Erem, are fixed by
computing distances from a dummy source s. While it seems like we are trying to solve negative-
weight SSSP all over again, we can make use of the fact that |Erem| and thus the number of negative
edges will be small in expectation. In particular, [3] presents the algorithm ElimNeg with running
time O(mη̂), where η̂ is the average number (over v ∈ V ) of negative edges on a shortest path from
s to v. The LDD of Phase 0 guarantees that η̂ is polylogarithmic in n, hence ElimNeg is efficient in
the sequential setting.

It is unclear how ElimNeg can be ported over to parallel and distributed models. In the
sequential setting, ElimNeg runs multiple epochs where each epoch is, loosely speaking, an execution
of Dijkstra’s algorithm followed by one iteration of the Bellman-Ford algorithm where, crucially,
each execution of Dijkstra’s algorithm does not pay for the whole graph. ElimNeg guarantees that
there is no more computation involving vertices v after the first η(v) epochs, where η(v) is the
number of negative edges on a shortest path from s to v. It then follows, roughly, that there are
O(
∑

v∈V η(v)) = O(mη̂) computations.
In parallel and distributed models, however, it is not clear how to ensure that v is involved in at

most η(v) computations. Even more, Dijkstra’s algorithm has the nice property that only vertices
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Phase 0
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Phase 2
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Phase 0

Phase 1

Phase 2

Phase 3

O(log n)

Figure 1: Recursion structure of ScaleDown in
[3].

Phase 0

Phase 1

Phase 2

Phase 3

Phase 0

Phase 1

Phase 2

Phase 3

Phase 0

Phase 1

Phase 2

Phase 3

O(log n)

O(log n) O(log n)

O(
√
log n)

Figure 2: Recursion structure of ScaleDown in
this paper.

whose distances have been updated are involved in computation. It is unclear how an SSSP oracle,
a blackbox that replaces Dijkstra’s algorithm, can be executed in a way that does not pay for the
whole graph each time it is called. We end up settling for a weaker algorithm than ElimNeg, where
each SSSP oracle call pays for the whole graph. Naively, this results in O(maxv η(v)) calls to the
oracle which is much too inefficient. While the LDD guarantees that η(v) is polylogarithmic in
expectation for all v, this does not hold with high probability; the maximum η(v) could be as high
as
√
n, resulting in

√
n calls (as opposed to no(1) calls) to the SSSP oracle. We instead truncate

the number of calls to no(1); in this way, we compute a distance estimate for every vertex: if the
shortest path from s to v has at most no(1) negative edges, we have the true distance in our hands,
and otherwise we have the distance of a shortest path using no more than no(1) negative edges which
is an overestimation.

To resolve this and turn our estimates into true distances, we run O(log n) independent copies
of LDD (more specifically, Phases 0 to 3). With high probability at least one of these estimates
coincides with the true distance, which is what we want. Computing the indpendent LDDs changes
the recursion structure of Scaledown, where we go from O(log n) invocations of linear recursion (see
Figure 1) to O(log n)O(

√
logn) = no(1) invocations of tree recursion (see Figure 2).

We note that this change in both the recursion structure and the parameters used to support it
is the key reason for the no(1) overhead over SSSP, and it is an interesting open question to reduce
this overhead to polylog(n).

Obstacle 3: SCC + Topological Sort in CONGEST.

The framework of Schudy [20] gives us an algorithm for SCC+Topsort in parallel models that uses
O(log2 n) calls to ONN−SSSP and yet, somewhat surprisingly, there has been no such algorithm
formally written for CONGEST.

Some care needs to be taken with bringing this idea into CONGEST. Namely, how can recursive
calls be orchestrated so as to achieve an efficient round complexity? The algorithm recurses into
induced subgraphs, which may have a much larger undirected hop-diameter than the base graph;
naively making calls toONN−SSSP on recursive instances consequently yields an inefficient distributed
algorithm. Nevertheless, with some work done , this idea can be brought into CONGEST.

We show how to overcome the above obstacles by using the Distributed Minor-Aggregation
Model (see Section 8), which is an abstraction that affords us a relatively detail-free description
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of SCC+Topsort, avoiding much of the low level work hinted at above. For further details, see
Section 9.

3 Definitions and Preliminaries

A weighted directed graph G is a triple (V,E,w) where w : E → R is a weight function. For a
weighted directed graph G, the number of vertices and edges are |V (G)| = n and |E(G)| = m,
respectively. We denote the set of negative edge by Eneg(G) = {e ∈ E | w(e) < 0}. For a subset
V ′ ⊂ V , we denote the induced graph on V ′ by G[V ′] and the induced edges on V ′ by E(V ′). For an
edge set E′ ⊆ E, when we treat E′ as a subgraph of G, we mean the graph ({u, v | (u, v) ∈ E′}, E′, w).
A path is a sequence of vertices joined by edges; sometimes we refer to the path by the sequence of
vertices and sometimes by the edges, depending on what is more convenient.

For a path Γ = 〈v0, v1, . . . , vk〉, the weight of Γ is given by w(Γ) =
∑k

i=1w(vi−1, vi), that
is, the sum of the weights of the edges on the path. For a pair of nodes u, v ∈ V , the shortest
path distance from u to v is the minimum length over all paths that start at u and end at v.
We use distG(u, v) to denote this shortest path distance with respect to the graph G. When the
graph G is clear in the context, we simply write dist(u, v). If there is no u-to-v path, then we
define dist(u, v) = +∞. Given a directed graph G = (V,E,w), a vertex s ∈ V and d ∈ N, we
define BallinG(s, d) = {v | distG(v, s) ≤ d} and Ballout

G (s, d) = {v | distG(s, v) ≤ d} be the ball within
distance d. For a given graph G = (V,E,w) set S ⊆ V , we define δ−(S) = {(u, v) ∈ E | u 6∈ S, v ∈ S}
and δ+(S) = {(u, v) ∈ E | u ∈ S, v 6∈ S} be the edge set Crossing S .

When we say that an algorithm achieves some performance O(f(n)) with high probability, we
mean the following: for any particular choice of constant c > 0, with probability at least 1− 1/nc

the algorithm achieves performance O(f(n)).

Dependence on Win Throughout the paper, we will assume the maximum weight edge (in
absolute value), Win, is polynomially bounded and ignore the logWin term throughout the paper.
Based on the following theorem, we only have one logWin factor. The proof is deferred to section
12.

Theorem 3.1. In the distributed or parallel model, if there is an algorithm solving exact SSSP with
polynomially bounded negative integer edge weight with runtime T (m,n)(work, span, or rounds), then
there exists an algorithm solving exact SSSP with edge weight from {−Win,−(Win−1), ..., 0, 1, ...,Win−
1,Win} with runtime Õ(T (m,n) logWin).

CONGEST model. Suppose the communication happens in the network G = (V,E). In the
CONGEST model, time is divided into discrete time slots, where each slot is called a round. Through-
out the paper, we always use n to denote the number of vertices in our distributed network, i.e., |V |.
In each round, each vertex in V can send an O(log n) bit message to each of its neighbors. At the
end of each round, vertices can do arbitrary local computations. A CONGEST algorithm initially
specifies the input for each vertex, after several rounds, all vertices terminate and generate output.
The time complexity of a CONGEST algorithm is measured by the number of rounds.

Distributed inputs and outputs. Since the inputs and outputs to the distributed network
should be specified for each vertex, we must be careful when we say something is given as input or
output. Here we make some assumptions. For the network G = (V,E), we say a subset of vertices
(or a single vertex) V ′ ⊆ V is the input or output if every vertex is given the information about
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whether it is in V ′. We say a subgraph H (a subset of edges, for example, paths or circles) is the
input or output if every vertex knows the edges in H adjacent to it. We say a number is an input
or output, we normally mean the number is the input or output of every vertex unless otherwise
specified.

Distributed directed single source shortest path problem. In this problem, each edge e in
the network G = (V,E) is assigned an integer weight w(e) and a direction, which defines a weighted
directed graph G′ = (V,E,w). A source node s is specified. In CONGEST model, the inputs are (i)
each node knows the weights and directions of all its incident edges, (ii) each node knows whether it
is s or not. The goal is to let every node v output distG′(s, v).

3.1 Definitions from [3].

The following two definitions are taken from [3] and are heavily used in Section 6.

Definition 3.2 (Gs, ws, GB, wB, GBs , wBs ). [Definition 2.3 of [3]]
Given any graph G = (V,E,w), we let Gs = (V ∪ {s}, E ∪ {(s, v) : v ∈ V }, ws) refer to the

graph G with a dummy source s added, where there is an edge of weight 0 from s to v for every
v ∈ V and no edges into s. Note that Gs has a negative-weight cycle if and only if G does and that
distGs(s, v) = minu∈V distG(u, v).
For any integer B, let GB = (V,E,wB) denote the graph obtained by adding B to all negative edge
weights in G, i.e., wB(e) = w(e) + B for all e ∈ Eneg(G) and wB(e) = w(e) for e ∈ E \ Eneg(G).
Note that (GB)s = (Gs)

B so we can simply write GBs = (V ∪ {s}, E ∪ {(s, v) : v ∈ V }, wBs ).

Definition 3.3 (ηG(v), PG(v)). [Definition 2.4 of [3]] For any graph G = (V,E,w), let Gs and s
be as in Definition 3.2. Define

µG(v) :=

{
∞ if distGs(s, v) = −∞
min{|Eneg(G) ∩ P | : P is a shortest sv-path in Gs}; otherwise.

Let η(G) = maxv∈V ηG(v). When distG(s, v) 6= −∞, let PG(v) be a shortest sv-path on Gs such
that

|Eneg(G) ∩ PG(v)| = µG(v).

When the context is clear, we drop the subscripts.

The following definitions and lemmas about price functions are standard in the literature, and
can all be found in [3]. Price functions were first introduced by Johnson [16] and heavily used since
then.

Definition 3.4 (Definition 2.5 of [3]). Consider a graph G = (V,E,w) and let φ be any function:
V 7→ Z. Then, we define wφ to be the weight function wφ(u, v) = w(u, v) + φ(u) − φ(v) and we
define Gφ = (V,E,wφ). We will refer to φ as a price function on V . Note that (Gφ)ψ = Gφ+ψ.

Definition 3.5 (Definition 2.6 of [3]). We say that two graphs G = (V,E,w) and G′ = (V,E,w′)
are equivalent if (1) any shortest path in G is also a shortest path in G′ and vice-versa and (2) G
contains a negative-weight cycle if and only if G′ does.

Lemma 3.6 (Lemma 2.7 of [3]). Consider any graph G = (V,E,w) and price function φ. For
any pair u, v ∈ V we have distGφ(u, v) = distG(u, v) + φ(u) − φ(v), and for any cycle C we have
w(C) = wφ(C). As a result, G and Gφ are equivalent. Finally, if G = (V,E,w) and G′ = (V,E,w′)
and w′ = cw for some positive c, then G and G′ are equivalent.
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Lemma 3.7 (Lemma 2.8 of [3]). Let G = (V,E) be a directed graph with no negative-weight cycle
and let S be the dummy source in Gs. Let φ(v) = distGs(s, v) for all v ∈ V . Then, all edge weights
in Gφ are non-negative.

4 Low Diameter Decomposition

In this section, we provide the low diameter decomposition (LDD) algorithm on non-negative
weighted directed graphs (Algorithm 1).

Organization. In Section 4.1, we give a detailed overview of our algorithm. In Section 4.2, we
describe Algorithm 1 LowDiameterDecomposition and its analysis. Its most important subroutine
is Algorithm 2 FindBalancedSet, which is described in Section 4.3.

4.1 Algorithm Overview

The algorithm contains two phases.

Phase 1: mark vertices as light or heavy. This phase is identical to the sequential algorithm
introduced in [3]. After this phase, each vertex v will get one of the following three marks: in-light, out-
light, heavy. It is guaranteed that w.h.p., if a vertex v is marked as (i) in-light, then |BallinG(v, d/4)| ≤
.7|V |, (ii) out-light, then |Ballout

G (v, d/4)| ≤ .7|V |, (iii) heavy, then |BallinG(v, d/4)| > .5|V | and
|BallinG(v, d/4)| > .5|V |. See Algorithm 1 Phase 1 for how to get the marks, and Claim 4.2 for the
proof of the guarantees.

Phase 2: creates sub-problems with small sizes. We denote the set of in-light vertices by
Vin, the set of out-light vertices by Vout, and the set of heavy vertices by Vheavy. We first apply
subroutine FindBalancedSet (Algorithm 2) on Vin, Vout. FindBalancedSet on Vin (or Vout) will
create a random set Ain (or Aout) having the following properties:

1. (Light boundary) It is guaranteed that each edge e is included in δ−(Ain) (or δ+(Aout)) with
probability O(w(e) log n/d). Note that this differs from Lemma 1.4 by a log n factor.

2. (Balanced) For ∗ ∈ {in, out}, we have (i) |A∗| ≤ .9|V |, (ii) |A∗| ≥ .1|V | or V∗ ⊆ A∗. In other
words, the only case that A∗ is not balanced (too small) is that V∗ is completely contained in
A∗.

We now go over the LDD guarantees for either case pertaining to the Balanced property of Phase 2.
Case 1: Ain or Aout is balanced. For convenience, we only consider the case when Ain is

balanced, i.e. .1|V | ≤ |Ain| ≤ .9|V |. The case where Aout is balanced is similar. In this case, we recur-
sively callErem1 ← LowDiameterDecomposition(G[Ain], d) andErem2 ← LowDiameterDecomposition(G[V \Ain], d),
and return δ−(Ain) ∪ Erem1 ∪ Erem2 as Erem. Now, we verify the output guarantees.

1. (Time cost) Since each recursion layer decreases the size of the graph by a constant factor, the
depth of the recursion tree is bounded by O(log n).

2. (Low diameter) Consider an SCC C of the subgraph E − Erem. Since δ−(Ain) ⊆ Erem, it
must be the case that C ⊆ Ain or C ⊆ V \Ain. In both cases, C is included in a recursive call.
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3. (Erem guarantee) Each edge e is included in δ−(Ain) with probability O(w(e) log n/d). Each
edge e can also be included in the returned edge set of a recursive call. The depth of the
recursion tree is bounded by O(log n), therefore, an edge is included in Erem with probability
O(w(e) log2 n/d).

Case 2: both Ain, Aout are not balanced. In this case, we have Vin ⊆ Ain, Vout ⊆ Aout. We
callErem1 ← LowDiameterDecomposition(G[Ain], d), Erem2 ← LowDiameterDecomposition(G[Aout\Ain], d),
then return δ−(Ain) ∪ δ+(Aout) ∪ Erem1 ∪ Erem2 as Erem. Now we verify the output guarantees.

1. (Time cost) Notice that |Ain ∪Aout| ≤ .2|V |, thus, each recursion layer decreases the size of
the graph by a constant factor; the depth of the recursion tree is bounded by O(log n).

2. (Low diameter) Consider an SCC C of the subgraph E−Erem. Since δ−(Ain), δ+(Aout) ⊆ Erem,
it must be the case that C ⊆ Ain or C ⊆ Aout\Ain or C ⊆ V \(Ain ∪Aout) ⊆ Vheavy. In both
the first two cases, C is included in a recursive call. In the third case, remember that each
vertex v ∈ Vheavy has the property that |BallinG(v, d/4)| > .5|V | and |Ballout

G (v, d/4)| > .5|V |.
Thus, any two vertices in Vheavy have mutual distance at most d/2 and so C has weak diameter
at most d.

3. (Erem guarantee) Each edge e is included in δ−(Ain) or δ+(Aout) with probabilityO(w(e) log n/d).
Each edge e can also be included in the returned edge set of a recursive call. The depth of the
recursion tree is bounded by O(log n), therefore, an edge is included in Erem with probability
O(w(e) log2 n/d).

Overview of FindBalancedSet. Remember that FindBalancedSet takes Vin or Vout as input
and outputs a set Ain or Aout that satisfies properties light boundary and balanced described above.
For convenience, we only consider the case when Vin is the input. Write Vin = {v1, v2, ..., v`}. The
algorithm is simple and contains two steps.

Step 1. For each i ∈ [`], sample an integer di following a certain geometric distribution. The
detailed definition is given by Definition 4.6. For now, we can think of the distribution in
the following way: suppose a player is repeating identical independent trials, where each trial
succeeds with probability Θ( logn

d ), di is the number of failed trails before the first success.

Step 2. Find the smallest i ∈ [`] such that
∣∣∪j≤i BallinG(vj , dj)

∣∣ > 0.1|V |, denoted as k. If k does
not exist, i.e.

∣∣∪j∈[`] BallinG(vj , dj)
∣∣ ≤ 0.1|V |, set k = `. Return ∪j≤k BallinG(vj , dj) as A.

Property balanced. According to the definition of di, one can show that di < d/4 w.h.p., which
implies |BallinG(vi, di)| ≤ .7|V |. Since k is the smallest integer such that

∣∣∪j≤k BallinG(vj , dj)
∣∣ > 0.1|V |,

it must be the case
∣∣∪j≤k BallinG(vj , dj)

∣∣ < 0.8|V |. Moreover, if
∣∣∪j≤k BallinG(vj , dj)

∣∣ > 0.1|V | is not
true, then k = ` and Vin ⊆ Ain.

Property light boundary. This is the most technical part and we will try to give the intuition
of the proof.

Notice that the only randomness of FindBalancedSet comes from d1, d2, ..., d`. For convenience,
write d = (d1, d2, ..., d`). Since δ−(A) only depends on d, we may define δ−(A)d as the edge set
δ−(A) generated by the algorithm with d as the randomness.

We will describe another algorithm that, given d = (d1, d2, ..., d`), outputs an edge set Ed, such
that

1. δ−(A)d ⊆ Ed holds for any d.
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2. An edge e is included in Ed with probability O(w(e) log n/d).

(The algorithm to generate Ed) Initially set Ed = ∅. For iterations i = 1, 2, ..., `, do

• Mark all edges (u, v) with u, v ∈ BallinG(vi, di) as "invulnerable", and add all edges in
δ−(BallinG(vi, di)) that are not "invulnerable" to Ed.

We can show δ−(A) ⊆ Ed is always true: remember that A = ∪j≤k BallinG(vj , dj). Any edge in
δ−(A) is not "invulnerable" before the end of the k-th iteration; any edge in δ−(A) is also on the
boundary of some Bj for j ≤ k, which means it has already been added to Ed before the end of the
k-th iteration.

The last thing is to show that an edge e is included in Ed with probability O(w(e) log n/d).
To this end, consider the following alternative explanation of the procedure when we do the i-th
iteration: vi gradually grows the radius of the ball centered on vi, each round increases the radius by
1, and stops with probability Θ(log n/d). This is exactly how di is defined. Observe that each edge
(u, v) will be included in Ed if and only if the first vi that grows its ball to reach v failed to reach u
(if it reached u, then this edge is marked as "invulnerable" and will never be added to Ed). This
happens with probability Θ(w(e) · log n/d).

4.2 Low Diameter Decomposition

Remark 4.1. Throughout this section, we use n to denote a global variable which always refers to
the size of the graph in which we call low diameter decomposition. Introducing the parameter n
ensures that in the analysis "with high probability" is in terms of n. In addition, we always use c to
denote a sufficiently large constant.

Proof of Lemma 1.4 (correctness). One can verify that each recursion will decrease the size of the
graph by at least 1. Therefore, the algorithm will terminate.

We use induction on the size of the input graph G to show that the following statement is true,
thus proving the lemma.

Induction hypothesis. The output of Algorithm 1 satisfies

1. each SCC of the subgraph E − Erem has weak diameter at most d in G, i.e. if u, v are two
vertices in the same SCC, then distG(u, v) ≤ d and distG(v, u) ≤ d.

2. for any e ∈ E, we have Pr[e ∈ Erem] = c3w(e) log |V | logn
d + |V |

n9 .

Base case. When G contains 0 vertices, the algorithm returns Erem = ∅, the induction hypothesis
holds.

Induction. We first prove (2). There are two possibilities forErem: either Erem ⊆ Eremin

⋃
Eremout

⋃
Erem1

⋃
Erem2

or Erem = E. According to Lemma 4.8, each edge e is included in Eremin or Eremout with probability
2c2w(e) logn

d .
We first need the following claims to bound the size of the recursive call. The proofs of these

claims are deferred to Section 11.

Claim 4.2. With high probability in n, for any v ∈ Vin, we have |BallinG(v, d/4)| ≤ .7|V |; for any v ∈
Vout, we have |Ballout

G (v, d/4)| ≤ .7|V |; for any v ∈ V \(Vout∪Vin), we have |BallinG(v, d/4)|, |Ballout
G (v, d/4)| >

.5|V |.
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Algorithm 1: Erem ← LowDiameterDecomposition(G, d)

Input: Non-negative weighted directed graph G = (V,E,w), an integer d.
Output: A random set of edges Erem ⊆ E. (See Lemma 1.4 for the properties of the

output.)

1 If G is an empty graph, return ∅;
2 Let n and c be defined as in Remark 4.1;
// Phase 1: mark vertices as light or heavy

3 Sample dc log ne vertices in V uniformly at random, denoted as S;
4 For each v ∈ S, use ONN−SSSP (G, v) to find BallinG(v, d/4) and Ballout

G (v, d/4);
5 For each v ∈ V , compute BallinG(v, d/4)

⋂
S and Ballout

G (v, d/4)
⋂
S using Line 4;

6 foreach v ∈ V do
7 If |BallinG(v, d/4)

⋂
S| ≤ .6|S|, mark v in-light // whp |BallinG(v, d/4)| ≤ .7|V (G)|

8 Else if |Ballout
G (v, d/4)

⋂
S| ≤ .6|S|, mark v out-light// whp |Ballout

G (v, d/4)| ≤ .7|V (G)|
9 Else mark v heavy // whp |BallinG(v,D/4)| > .5|V (G)| and |Ballout

G (v,D/4)| > .5|V (G)|

// Phase 2: creates sub-problems with small sizes
10 Denote the set of in-light vertices by Vin, the set of out-light vertices by Vout;
11 Ain ← FindBalancedSet(G,Vin, d, in), Eremin ← δ−(Ain);
12 Aout ← FindBalancedSet(G,Vout, d, out), Eremout ← δ+(Aout);

// Case 1: One of Ain, Aout is balanced.
13 if A∗ (∗ can be in or out) has size between .1|V | and .9|V | then
14 Erem1 ← LowDiameterDecomposition(G[A∗], d);
15 Erem2 ← LowDiameterDecomposition(G[V \A∗], d);
16 return Erem∗

⋃
Erem1

⋃
Erem2 ;

// Clean up: Check that V \(Ain
⋃
Aout) have small weak diameter.

17 Pick an arbitrary vertex u ∈ V \(Ain ∪Aout). Use ONN−SSSP (G, u) to find
BallinG(u, d/2),Ballout

G (u, d/2);
18 if V \(Ain ∪Aout) 6⊆ BallinG(u, d/2)

⋂
Ballout

G (u, d/2) or |Ain ∪Aout| ≥ .5|V | then
19 return E

// Case 2: both Ain, Aout are small.
20 Erem1 ← LowDiameterDecomposition(G[Ain], d);
21 Erem2 ← LowDiameterDecomposition(G[Aout\Ain], d);
22 return Eremin

⋃
Eremout

⋃
Erem1

⋃
Erem2 ;
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Claim 4.3. With high probability in n, we have |Ain|, |Aout| ≤ 0.9|V |.

The following claim shows that Erem = E happens with a small probability.

Claim 4.4. With high probability in n, line 19 is not executed.

Now we are ready to compute Pr[e ∈ Erem]. Notice that each edge can be included in at most
1 recursive call. The following inequality bounds the total probability of an edge being in Erem.
The first term is according to the induction hypothesis, the second term is the probability of being
included in Erem1 , Erem2 , the last term is the small failing probability of Claim 4.3, and the small
failing probability of Claim 4.4.(

c3w(e) log(0.9|V |) log n

d
+

0.9|V |
n9

)
+

2c2w(e) log n

d
+

1

n9
≤ c3w(e) log(|V |) log n

d
+
|V |
n9

for sufficiently large c.
Then we prove (1). Consider an SCC C of the subgraph E − Erem. If the algorithm returns by

line 16, since δ−(Ain) ⊆ Erem, it must be the case that C ⊆ Ain or C ⊆ V \Ain. In both cases, C is
included in a recursive call and C has small weak diameter in the induced subgraph according to the
induction hypothesis, which also holds in the original graph. If the algorithm return by line 19, then
each SCC is a single node. If the algorithm returns by line 22, since δ−(Ain), δ+(Aout) ⊆ Erem, it
must be the case that C ⊆ Ain or C ⊆ Aout\Ain or C ⊆ V \(Ain ∪Aout) ⊆ Vheavy. In both the first
two cases, C is included in a recursive call. In the third case, remember that each vertex v ∈ Vheavy
has the property that |BallinG(v, d/4)| > .5|V | and |Ballout

G (v, d/4)| > .5|V |. Thus, any two vertices
in Vheavy have mutual distance at most d/2, C has weak diameter at most d.

In order to bound the number of oracle calls, we use the following lemma to bound the depth of
recursion.

Lemma 4.5. The recursion depth of LowDiameterDecomposition(G = (V,E), d) (Algorithm 1) is
O(log |V |). Any recursion call is on an induced subgraph of G, and any two recursion calls in the
same recursion layer are on vertex-disjoint induced subgraphs.

Proof of Lemma 4.5. Consider an execution LowDiameterDecomposition(G[V ′], d). If the algo-
rithm enters line 14, then we know |A∗| ≤ .9|V ′| and |V \A∗| ≤ .9|V ′|. If the algorithm enters line 20,
then we konw that |Ain ∪ Aout| < .5|V ′|. In other words, the maximum number of vertices in all
recursion calls in the next layer is at most 0.9 times the size of the previous layer. Thus, recursion
ends at the O(log n)-th layer.

One can verify that each LowDiameterDecomposition(G, d) generates two recursive calls on
subgraphs induced by either A∗, V \A∗ or Ain, Aout\Ain, where each pair is trivially vertex disjoint.
Thus, any two recursion calls in the same recursion layer are on vertex-disjoint induced subgraphs.

The running time of Lemma 1.4 is proved in Sections 7 and 8.

4.3 Find Balanced Set

Definition 4.6 (Truncated geometric distribution). We say x follows the geometric distribution
with parameter p ∈ (0, 1) truncated at t ∈ N, denoted by x ∼ GE[p]≤l, if x ∈ N, x ≤ t and
Pr[x = k] = (1− p)kp · 1

1−(1−p)t+1 .
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Algorithm 2: A← FindBalancedSet(G,V ′, d, ∗)
Input: Non-negative weighted directed graph G = (V,E,w), a vertex set V ′ ⊆ V and an

integer d satisfying |Ball*G(v, d/4)| ≤ .7|V | for any v ∈ V ′.
Output: A set of vertices A ⊆ V satisfying Lemma 4.8.

1 Suppose V ′ = {v1, v2, ..., v`}. Each vertex vi samples di ∼ GE[min((c log n)/d, 1)]≤bd/4c
(see Definition 4.6) ;

2 Find the smallest i ∈ [`] such that
∣∣∪j≤i Ball*G(vj , dj)

∣∣ > 0.1|V |, denoted as k. If k does not
exist, i.e.

∣∣∪j∈[`] Ball*G(vj , dj)
∣∣ ≤ 0.1|V |, set k = `. (See Remark 4.7 for implementation);

3 return ∪j≤k Ball*G(vj , dj), ;

Remark 4.7. Line 2 can be implemented in the following way by calling O(log n) times of ONN−SSSP .
Note that the function f(i) =

∣∣∪j≤i Ball*G(vj , dj)
∣∣ is an increasing function. To find the smallest

i ∈ [`] such that f(i) > 0.1|V |, we can use binary search, which requires O(log n) queries to
the value of f(i). To compute f(i), for simplicity, we assume the input graph is Ain. Let G′ =
(V ∪ {s}, E ∪ {(vj , s) | j ≤ i}, w ∪ w′) where w′((vj , s)) = d− dj , then we call ONN−SSSP (G′, s) to
compute f(i) and one can verify that f(i) = |BallinG(s, d)| − 1.

Lemma 4.8. If the input of Algorithm 2 satisfies |Ball*G(v, d/4)| ≤ .7|V | for any v ∈ V ′, then the
outputs satisfy

1. for any e ∈ E, we have Pr[e ∈ Erem] ≤ c2w(e) logn
d ,

2. either |A| > 0.1|V |, or V ′ ⊆ A,

3. |A| ≤ .9|V |,

The proof is deferred to Section 11.

5 The Framework

This section is dedicated to describe the guarantees of the subroutines used in our negative-weight
SSSP algorithm; the formal proofs are deferred to different sections.

5.1 Basic Subroutines

The algorithm in [3] finds SCCs, which are recursed into. Moreover, to handle edges which are not
fixed through recursive calls, the SCCs need to be found in a topological order. For our results, it
will be useful to have a version of this algorithm that can be stated in terms of calls to ONN−SSSP .

In the parallel model, we find a solution in the framework of Schudy [20] which, with a small
modification, gives us SCCs in order by making O((log n)2) calls to ONN−SSSP . The Distributed
Minor-Aggregation Model (more on this in Section 8) provides an abstraction which allows us to
easily port this framework into the CONGEST model. The algorithm for either model is spelled
out in Section 9; its output is a labelling of vertices (rv)v∈V , which corresponds to which SCC they
belong to and, even more, a topological ordering of the SCCs.

Lemma 5.1 (SCC+Topsort). Given a directed graph G = (V,E), Algorithm 4 outputs a polynomially-
bounded labelling (rv)v∈V such that, with high probability

1. ru = rv if and only if u and v are in the same strongly connected component;
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2. when the SCC that u belongs to has an edge towards the SCC that v belongs to, ru > rv.

Moreover, Algorithm 4 performs O(log2 n) oracle calls to the non-negative weight distance oracle
ONN−SSSP .

We defer a proof of Lemma 5.1 to Section 9. The labelling (rv)v∈V allows us to efficiently find
SCCs and thus recursive instances of ScaleDown. Additionally, it allows us to easily compute a
price ψ such that the edges connecting different SCCs have a non-negative weight in Gψ. The next
subroutine formalizes this.

Lemma 5.2 (FixDAGEdges). Let G = (V,E,w) be a directed graph with polynomially-bounded
integer weights, where for all (u, v) ∈ E where u and v are in the same strongly connected component,
w(u, v) ≥ 0. Let (rv)v∈V be a polynomially-bounded labelling which respects a topological ordering
(see Lemma 5.1) of SCCs of G. Given G and (rv)v∈V , Algorithm 5 outputs a polynomially bounded
price function ψ : V → Z such that wψ(u, v) ≥ 0 for all (u, v) ∈ E. Algorithm 5 makes no oracle
calls.

We defer a statement of Algorithm 5 and a proof of Lemma 5.2 to Section 10.
The algorithm EstDist is used in the third step of the recursive scaling procedure ScaleDown.

Lemma 5.3 (EstDist). Let G = (V,E,w) be a directed graph with polynomially-bounded integer
weights, s ∈ V and h ∈ N. Assume that distG(s, v) <∞ for all v ∈ V . Given G, s and h as input,
Algorithm 6 outputs a distance estimate d̃ : V 7→ Z such that for every v ∈ V , d̃(v) ≥ distG(s, v) and
d̃(v) = distG(s, v) if there exists a shortest path connecting s and v that contains at most h negative
edges. Moreover, Algorithm 6 performs h+ 1 oracle calls to the non-negative weight distance oracle
ONN−SSSP .

Proof Sketch. We only discuss the high-level ideas; the actual algorithm is slightly messier. The
algorithm maintains a distance estimate d(v) ≥ distG(s, v) for each node v ∈ V and updates this
estimate in each of the h iterations. At the beginning of each iteration, the distance estimate is
updated by running a single iteration of Bellman-Ford. Afterwards, the distance estimate is updated
by setting d(v) = distHi(s, v) where we obtain Hi from the input graph as follows: First, set the
weight of all negative edges to 0. Second, for each vertex v, add an edge from s to v and set its
weight to the distance estimate d(v). We use ONN−SSSP to compute distHi(s, v). This requires
however that d(v) ≥ 0, as otherwise Hi has negative weight edges. This technicality can be handled
by a small preprocessing step right at the beginning which at the beginning adds an additive B to
each edge (s, v) for a sufficiently large B. After iteration i, the guarantee of the distance estimate is
that d(v) = distG(s, v) if there exists a shortest sv-path using at most i edges.

Algorithm 6 and the proof of Lemma 5.3 can be found in Section 12.

5.2 The Interface of the Two Main Algorithms

The algorithm SPMain is a simple outer shell which calls the recursive scaling procedure ScaleDown
log n times. We take SPMain with essentially no modifications from [3]. The algorithm along with
its analysis can be found in Section 12.

Theorem 5.4 (SPMain). Let Gin = (V,E,win) be a directed graph with polynomially bounded
integer edge weights and sin ∈ V . Algorithm 7 takes as input Gin and sin and has the following
guarantee:
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1. If Gin has a negative-weight cycle, then Algorithm 7 outputs ERROR,

2. If Gin has no negative-weight cycle, then Algorithm 7 computes distG(sin, v) for every node
v ∈ V with high probability and otherwise it outputs ERROR.

Algorithm 7 invokes the non-negative weight SSSP oracle ONN−SSSP no(1) times.

While Theorem 5.4 does outputs ERROR when there is a negative-weight cycle, there is a
blackbox reduction in [3] (see Section 7 there) that extends Algorithm 7 into a Las Vegas algorithm
that reports a negative-weight cycle (instead of outputting ERROR).

Finally, the key technical procedure is the recursive scaling algorithm ScaleDown. The input-
output guarantees of ScaleDown are essentially the same as for the corresponding procedure in [3]
(Theorem 3.5). Our recursive structure is however different compared to theirs, as discussed in the
introduction.

Theorem 5.5 (ScaleDown). Let G = (V,E,w) be a weighted directed graph, ∆ ≤ n and B ∈ N.
The input has to satisfy that w(e) ≥ −2B for all e ∈ E. If the graph G does not contain a negative
cycle, then the input must also satisfy η(GB) ≤ ∆; that is, for every v ∈ V there is a shortest sv-path
in GBs with at most ∆ negative edges (Definitions 3.2 and 3.3).
Then, ScaleDown(G,∆, B) returns a polynomially bounded potential φ such that if G does not
contain a negative cycle, then wφ(e) ≥ −B for all e ∈ E, with high probability. ScaleDown(G,∆, B)

calls the non-negative SSSP oracle ONN−SSSP 2O(
√

logn log logn) times.

References

[1] Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. Circulation control for faster minimum
cost flow in unit-capacity graphs. In Sandy Irani, editor, 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 93–104. IEEE, 2020. doi: 10.1109/FOCS46700.2020.00018. URL https://doi.org/10.
1109/FOCS46700.2020.00018.

[2] Aaron Bernstein and Danupon Nanongkai. Distributed exact weighted all-pairs shortest paths
in near-linear time. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pages 334–342, 2019.

[3] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight single-source
shortest paths in almost-linear time. arXiv preprint arXiv:2203.03456, 2022.

[4] Nairen Cao and Jeremy Fineman. Parallel exact shortest paths in almost linear work and square
root depth. In SODA. SIAM, 2023.

[5] Nairen Cao, Jeremy T. Fineman, and Katina Russell. Brief announcement: An improved
distributed approximate single source shortest paths algorithm. In Proceedings of the 2021
ACM Symposium on Principles of Distributed Computing, PODC’21, page 493–496, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450385480. doi:
10.1145/3465084.3467945. URL https://doi.org/10.1145/3465084.3467945.

[6] Nairen Cao, Jeremy T. Fineman, and Katina Russell. Parallel shortest paths with negative
edge weights. In Proceedings of the 34th ACM Symposium on Parallelism in Algorithms

17

https://doi.org/10.1109/FOCS46700.2020.00018
https://doi.org/10.1109/FOCS46700.2020.00018
https://doi.org/10.1145/3465084.3467945


and Architectures, SPAA ’22, page 177–190, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450391467. doi: 10.1145/3490148.3538583. URL https:
//doi.org/10.1145/3490148.3538583.

[7] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 2022 IEEE 63rd
Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623, 2022. doi:
10.1109/FOCS54457.2022.00064.

[8] Michael B. Cohen, Aleksander Mądry, Piotr Sankowski, and Adrian Vladu. Negative-weight
shortest paths and unit capacity minimum cost flow in Õ(m10/7 logw ) time: (extended abstract).
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’17, page 752–771, USA, 2017. Society for Industrial and Applied Mathematics.

[9] Don Coppersmith, Lisa Fleischer, Bruce Hendrickson, and Ali Pinar. A divide-and-conquer
algorithm for identifying strongly connected components. 2003.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press, Cambridge, MA, USA, 2nd edition, 2001. ISBN 0-262-03293-7,
9780262032933.

[11] Sebastian Forster, Gramoz Goranci, Yang P. Liu, Richard Peng, Xiaorui Sun, and Mingquan
Ye. Minor sparsifiers and the distributed laplacian paradigm. In 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS), pages 989–999, 2022. doi: 10.1109/
FOCS52979.2021.00099.

[12] Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
low-congestion shortcuts, mst, and min-cut. In SODA, pages 202–219. SIAM, 2016.

[13] Mohsen Ghaffari and Goran Zuzic. Universally-optimal distributed exact min-cut. In PODC,
pages 281–291. ACM, 2022.

[14] Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal on
Computing, 24(3):494–504, 1995. doi: 10.1137/S0097539792231179. URL https://doi.org/10.
1137/S0097539792231179.

[15] Arun Jambulapati, Yang P Liu, and Aaron Sidford. Parallel reachability in almost linear work
and square root depth. In 2019 IEEE 60th Annual Symposium on Foundations of Computer
Science (FOCS), pages 1664–1686. IEEE, 2019.

[16] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. ACM, 24
(1):1–13, jan 1977. ISSN 0004-5411. doi: 10.1145/321992.321993. URL https://doi.org/10.
1145/321992.321993.

[17] Philip N Klein and Sairam Subramanian. A randomized parallel algorithm for single-source
shortest paths. Journal of Algorithms, 25(2):205 – 220, 1997. ISSN 0196-6774. doi: https:
//doi.org/10.1006/jagm.1997.0888. URL http://www.sciencedirect.com/science/article/
pii/S0196677497908889.

[18] Václav Rozhon, Bernhard Haeupler, Anders Martinsson, Christoph Grunau, and Goran Zuzic.
Parallel breadth-first search and exact shortest paths and stronger notions for approximate
distances. CoRR, abs/2210.16351, 2022.

18

https://doi.org/10.1145/3490148.3538583
https://doi.org/10.1145/3490148.3538583
https://doi.org/10.1137/S0097539792231179
https://doi.org/10.1137/S0097539792231179
https://doi.org/10.1145/321992.321993
https://doi.org/10.1145/321992.321993
http://www.sciencedirect.com/science/article/pii/S0196677497908889
http://www.sciencedirect.com/science/article/pii/S0196677497908889


[19] Václav Rozhoň, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li. Undirected
(1 + ε)-shortest paths via minor-aggregates: Near-optimal deterministic parallel distributed
algorithms, 2022.

[20] Warren Schudy. Finding strongly connected components in parallel using o (log2 n) reachability
queries. In Proceedings of the twentieth annual symposium on Parallelism in algorithms and
architectures, pages 146–151, 2008.

[21] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak,
Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately
dense graphs. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 919–930. IEEE, 2020. doi:
10.1109/FOCS46700.2020.00090. URL https://doi.org/10.1109/FOCS46700.2020.00090.

Appendix

6 Algorithm ScaleDown (Theorem 5.5)

This section is dedicated to prove Theorem 5.5. We start with giving a high-level overview of
Algorithm 3.

6.1 Overview

For the discussion below, assume that G does not contain a negative weight cycle. Algorithm 3
computes a potential φ satisfying φ(v) = distGBs (s, v) for every vertex v ∈ V , with high probability.
If indeed φ(v) = distGBs (s, v) for every vertex v ∈ V , then Lemma 3.7 implies that GBφ contains no
negative weight edges, which then directly implies wφ(e) ≥ −B for every edge e ∈ E, as promised in
Theorem 5.5.

The base case ∆ ≤ 2
√

logn is simple. Recall that the input has to satisfy η(GB) ≤ ∆. Therefore, for
each vertex v ∈ V , there exists a shortest sv-path in GBs using at most ∆ ≤ 2

√
logn negative edges. We

can therefore directly compute distGBs (s, v) for every vertex v ∈ V by calling EstDist(GBs , s, 2
√

logn),
which itself uses the nonnegative shortest path oracle ONN−SSSP O(2

√
logn) times.

Next, consider the case that ∆ > 2
√

logn. Algorithm 3 runs in 10 log(n) iterations. In each
iteration i, a distance estimate d̃(i) is computed. The distance estimate satisfies that d̃(i)(v) ≥
distGBs (s, v) for every vertex v ∈ V and d̃(i)(v) = distGBs (s, v) with probability at least 1/2. Therefore,
d̃(i)(v) = distGBs (s, v) for some i with probability at least 1 − (1/2)10 logn = 1 − n−10. We next
discuss what happens in iteration i. In Phase 0, we compute a low-diameter decomposition of GB≥0 by
invoking Erem ← LowDiameterDecomposition(GB≥0, b∆/2

√
logncB) and then V1, V2, . . .← SCC +

TopSort(GB \ Erem); the decomposition guarantees that each Vj has weak diameter b∆/2
√

logncB
in G. In phase 1, we recursively call ScaleDown(H, b∆/2

√
lognc, B), where H is the union of all the

subgraphs G[Vj ] induced by SCCs. As a result, we get a price function φ1 such that wBφ1(e) ≥ 0 for
every edge e ∈ E(H), with high probability. Lemma 6.4 shows that η(HB) ≤ b∆/2

√
lognc, which is

needed to perform the recursive call. The proof of Lemma 6.4 uses the fact that the weak diameter
of each SCC in G is b∆/2

√
logncB. Next, in phase 2 we make all remaining edges in GB \ Erem

non-negative. Observe that the edges inside each SCC Vj are non-negative from phase 1, with high
probability, and so the remaining negative edges will be among those connecting one SCC to another.
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Algorithm 3: Algorithm for ScaleDown(G = (V,E,w),∆, B)

1 if ∆ ≤ 2
√

logn then
2 d̃← EstDist(GBs , s, 2

√
logn)

3 φ← rem(d̃, s) // φ is the same as d̃ except that the entry for s is deleted
4 return φ

5 Let GB≥0 := (V,E,wB≥0) where wB≥0(e) := max{0, wB(e)} for all e ∈ E
6 for i = 1, . . . , 10 log(n) do
7 // Phase 0: Decompose V to SCCs V1, V2, . . . with weak diameter b∆/2

√
logncB in G

8 Erem ← LowDiameterDecomposition
(
GB≥0, b∆/2

√
logncB

)
9 (rv)v∈V ← SCC+Topsort((V,E \ Erem))

10 Denote the SCCs (found using (rv)v∈V ) of GB\Erem with V1, V2, ...
11 // (Lemma 6.3) If η(GB) ≤ ∆, then for all v ∈ Vi,

E[|PGB (v) ∩ Erem|] = O(log2(n)2
√

logn).
12 // Phase 1: Make edges inside the SCCs GB[Vi] non-negative (with high probability)
13 Let H = ∪jG[Vj ]

14 // (Lemma 6.4) If G has no negative-weight cycle, then η(HB) ≤ b∆/2
√

lognc.
φ1 ← ScaleDown

(
H, b∆/2

√
lognc, B

)
15 // Phase 2: Make all edges in GB \ Erem non-negative (with high probability)
16 ψ2 ← FixDAGEdges(GBφ1 \ E

rem, r)

17 φ2 ← φ1 + ψ2

18 // Phase 3: For each node v ∈ V , d̃(i)(v) = distGBs (s, v) with probability at least 1/2
φ′2 ← add(φ2, (s, 0)) // φ′2 is the same as φ2 but we additionally define φ′2(s) = 0

19 d̃3 ← EstDist((GBs )φ′2 , s, h) for h = O(log2(n)2
√

logn) being sufficiently large
20 d̃(i) := rem(d̃3, s) + φ2 // d̃(i)(v) = distGBs (s, v) with probability at least 1/2

21 Let φ = mini=1,...,10 log(n) d̃
(i)

// φ(v) = distGBs (s, v) with probability at least 1− n−10

22 return φ
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FixDAGEdges gives, with high probability, a price function ψ2 such that wBφ1+ψ2
(e) ≥ 0 for every

edge e ∈ E\Erem (Lemma 6.6). After step 2, and assuming that the recursive call in step 1 succeeded,
which we will expand on in the discussion below, all remaining negative edges in GBφ2 are contained in
Erem. Using this fact together with E[|PGB (v) ∩Erem|] = O(log2(n)2

√
logn) (Lemma 6.3), one can

show that with probability at least 1/2 the number of negative edges on the path PGB (v) in (GBs )φ′2
is at most h for a sufficiently large h = O(log2(n)2

√
logn), which we will assume in the discussion

below. As GBs and (GBs )φ′2 are equivalent (Lemma 3.6), PGB (v) is also a shortest sv-path in (GBs )φ′2
and therefore has length dist(GBs )φ′2

(s, v). As PGB (v) has at most h negative edges in (GBs )φ′2 , setting

d̃3 ← EstDist((GBs )φ′2 , s, h) guarantees that d̃3(v) = dist(GBs )φ′2
(s, v) = distGBs (s, v)+φ′2(s)−φ′2(v) =

distGBs (s, v)− φ2(v) and therefore d̃(i)(v)← d̃3(v) + φ2(v) = distGBs (s, v), as needed.
Note that the algorithm recursively calls itself O(log n) times in total, each time with parameter

∆rec = b∆/2
√

lognc. As ∆ ≤ n, the recursion depth is O(
√

log n) and thus the total number
of recursive invocations is O(log n)O(

√
logn) = 2O(

√
logn log logn). Ignoring the recursive calls, the

nonnegative SSSP oracle ONN−SSSP is called O(2
√

logn) times and therefore the total number of
invocations to ONN−SSSP is 2O(

√
logn log logn)O(2

√
logn) = 2O(

√
logn log logn), as desired.

6.2 Analysis

We now give a formal proof of Theorem 5.5, which we restate below for convenience.

Theorem 5.5 (ScaleDown). Let G = (V,E,w) be a weighted directed graph, ∆ ≤ n and B ∈ N.
The input has to satisfy that w(e) ≥ −2B for all e ∈ E. If the graph G does not contain a negative
cycle, then the input must also satisfy η(GB) ≤ ∆; that is, for every v ∈ V there is a shortest sv-path
in GBs with at most ∆ negative edges (Definitions 3.2 and 3.3).
Then, ScaleDown(G,∆, B) returns a polynomially bounded potential φ such that if G does not
contain a negative cycle, then wφ(e) ≥ −B for all e ∈ E, with high probability. ScaleDown(G,∆, B)

calls the non-negative SSSP oracle ONN−SSSP 2O(
√

logn log logn) times.

Proof. It directly follows from Lemma 6.1 and Lemma 6.8 that φ satisfies the conditions stated in
Theorem 5.5. It remains to show that the negative-weight shortest path oracle ONN−SSSP is called
2O(
√

logn log logn) times in total. We first upper bound the total number of recursive invocations of
ScaleDown. As ∆ ≤ n, the recursion depth is upper bounded by O(

√
log n). As ScaleDown

recursively calls itself O(log n) times, the total number of calls is upper bounded by log(n)O(
√

logn) =
2O(
√

logn log logn). Next, we show that in a single call the total number of invocations to ONN−SSSP is
upper bounded by 2O(

√
logn). The low-diameter decomposition algorithm calls ONN−SSSP poly(log n)

times. The same holds for SCC+Topsort and FixDAGEdges. Finally, in the base case EstDist makes
O(2

√
logn) calls to ONN−SSSP and in phase 3 it makes O(log2(n)2

√
logn) = 2O(

√
logn) calls. Hence,

the total number of calls to ONN−SSSP is indeed upper bounded by 2O(
√

logn log logn).

Lemma 6.1. If ∆ ≤ 2
√

logn and G does not contain a negative weight cycle, then wGφ(e) ≥ −B for
every e ∈ E and φ is polynomially bounded.

Proof. It follows from the output guarantees of Lemma 5.3 that φ(v) = d̃(v) = distGBs (s, v) for every
v ∈ V . Therefore, Lemma 3.7 implies that for every e ∈ E, wGBφ (e) ≥ 0 and therefore wGφ(e) ≥ −B,
as desired.

The following lemma comes from Bernstein et al. [3].
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Lemma 6.2 (Lemma 4.3 of Bernstein et al. [3]). For every j and every u, v ∈ Vj, distG(u, v) ≤
b∆/2

√
logncB.

Lemma 6.3 (Lemma 4.4 of Bernstein et al. [3]). If η(GB) ≤ ∆, then for every v ∈ V , E[|PGB (v) ∩
Erem|] = O(log2(n)2

√
logn).

Lemma 6.4 (Lemma 4.5 of Bernstein et al. [3]). If G has no negative cycle, then η(HB) ≤
b∆/2

√
lognc.

During phase 1, we perform the recursive call ScaleDown(H, b∆/2
√

lognc, B). Lemma 6.4 implies
the input satisfies the requirements of Theorem 5.5. Hence, we can assume by induction (because of
the base case proven in Lemma 6.1) that ScaleDown (Theorem 5.5) outputs a price function φ1

satisfying the following:

Corollary 6.5. If G has no negative-weight cycle, then all edges in GBφ1 [Vj ] are non-negative for
every j, with high probability.

Phase 2: Make all edges in GB \ Erem non-negative, with high probability

Lemma 6.6. Assume that G has no negative-weight cycle. Also, assume that all edge weights in
GBφ1 [Vj ] are non-negative and polynomially bounded for every j, which happens with high probability.
Then, all edge weights in GBφ2 \E

rem are non-negative and polynomially bounded with high probability.

Proof. ScaleDown calls Ψ2 ← FixDAGEdges(GBφ1 \E
rem, r). As we assume that all edge weights

in GBφ1 [Vj ] are polynomially bounded for every j, it follows that for every (u, v) ∈ E \ Erem that
wGBφ1

(u, v) ≥ 0, which is the first input condition of FixDAGEdges according to Lemma 5.2. The
second condition is that (rv)v∈V is a polynomially-bounded labelling which respects a topological
ordering of SCCs of GBφ1 \E

rem. It follows from setting (rv)v∈V ← SCC + Topsort((V,E \Erem))
and the output guarantees of Lemma 5.1 that this condition is satisfied with high probability. If this
condition is indeed satisfied, then the output guarantee of FixDAGEdges in Lemma 5.2 gives that
all edge weights in (GBφ1 \ E

rem)Ψ2 = GBφ2 \ E
rem are non-negative and polynomially bounded, as

desired.

Phase 3: Compute distGBs (s, v) for every v with probability at least one half

Lemma 6.7. For every v ∈ V , it holds that d̃(i)(v) ≥ distGBs (s, v). Moreover, if G does not contain
a negative cycle, then d̃(i)(v) = distGBs (s, v) with probability at least 1/2.

Proof. For every v ∈ V , we have

d̃(i)(v) = d̃3(v) + φ2(v)

≥ dist(GBs )φ′2
(s, v) + φ2(v) Lemma 5.3

= distGBs (s, v) + φ′2(s)− φ′2(v) + φ2(v)

= distGBs (s, v),

which shows the first part of Lemma 6.7. Moreover, the calculations above also imply that if
d̃3(v) = dist(GBs )φ′2

(s, v), then d̃(i)(v) = distGBs (s,v). We next show that if G does not contain a
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negative weight cycle, then d̃3(v) = dist(GBs )φ′2
(s, v) with probability at least 1/2, which then shows

the second part of Lemma 6.7.
According to Lemma 5.3, d̃3(v) = dist(GBs )φ′2

(s, v) if there exists a shortest path connecting s

and v in (GBs )φ′2 with at most h negative edges.
Recall that PGB (v) is a shortest sv-path in GBs . As GBs and (GBs )φ′2 are equivalent according to

Lemma 3.6, this implies that PGB(v) is also a shortest sv-path in (GBs )φ′2 . It therefore suffices to
show that PGB (v) has at most h negative edges in (GBs )φ′2 with probability at least 1/2. Combining
Corollary 6.5 and Lemma 6.6, we get that with high probability Eneg(GBφ2) ⊆ Erem, i.e. each
negative edge in GBφ2 is contained in Erem, with high probability. Therefore, each negative edge
in (GBs )φ′2 is either in Erem or an outgoing edge from s, with high probability. The path PGB(v)

contains exactly one outgoing edge from s. Therefore, if Eneg(GBφ2) ⊆ Erem and |PGB (v) ∩ Erem| ≤
h − 1, then PGB(v) contains at most h negative edges. In Lemma 6.3, we have shown that
E[|PGB(v) ∩ Erem|] = O(log2(n)2

√
logn). Therefore, for h = O(log2(n)2

√
logn) being sufficiently

large, it holds that h − 1 ≥ 3E[|PGB(v) ∩ Erem|] and therefore a simple Markov bound implies
Pr[|PGB (v) ∩ Erem| ≥ h− 1] ≤ 1/3.

Thus, we get

Pr[d̃3(v) 6= dist(GBs )φ′2
(s, v)] ≤ Pr[Eneg(GBφ2) 6⊆ Erem] + Pr[|PGB (v) ∩ Erem| ≥ h− 1] ≤ 0.5,

as desired.

Lemma 6.8. If ∆ > 2
√

logn and G does not contain a negative weight cycle, then wGφ(e) ≥ −B for
every e ∈ E and φ is polynomially bounded.

Proof. Lemma 6.7 together with setting φ = mini=1,...,10 log(n) d̃
(i) implies that φ(v) = distGBs (s, v)

for every v ∈ V with high probability. If that’s indeed the case, then Lemma 3.7 implies that for
every e ∈ E, wGBφ (e) ≥ 0 and therefore wGφ(e) ≥ −B, as desired.

7 Implementation in parallel model

We now discuss each of the main steps for the parallel version.

Model We consider the work-span model [10], where the work is defined as the total number of
instructions executed across all processors, and the span is the length of the critical path (i.e., the
length of the longest chain of sequential dependencies). Our algorithm is naturally parallelized.

Oracle Implementation Note that the oracle ONN−SSSP (G, x) have a super source, we can add
source s and O(n) edges to G, and any parallel SSSP algorithm can answer ONN−SSSP (G, x). Very
recently, Rozhoň et al. [18] and Cao and Fineman [4] showed that

Theorem 7.1. There exists a randomized parallel algorithm that solves SSSP with polynomially
bounded non-negative integer edge weight in Õ(m) work and n1/2+o(1) span with high probability.
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Low diameter decomposition (Proof of lemma 1.4 parallel running time). In Phase 1,
we sample Õ(1) nodes and call ONN−SSSP for sampling nodes. In Phase 2, FindBalancedSet calls
ONN−SSSP (G, s) Õ(1) times. Finally, we will recurse the whole process on the subproblem. Based
on Lemma 4.5, in each level of recursion, each node will be only in one subproblem and the recursion
depth is at most Õ(1). Combining them gives us the lemma 1.4.

Proof of Theorem 1.5 Based on Lemma 1.4, the low diameter decomposition calls ONN−SSSP
Õ(1) times. Then we can use schudy’s algorithm [20] to compute the topological ordering with
respect to SCC. Schudy’s algorithm makes Õ(1) calls to reachability oracle, which can be answered
by ONN−SSSP . In Phase 3, we have to run Bellman-Ford and call ONN−SSSP O(2

√
logn) times.

Each ScaleDown calls ONN−SSSP O(2
√

logn) times. Note that when we recurse ScaleDown
on the new graph, the graph contains at most O(m) edges and O(n) vertex, so each subproblem
calls ONN−SSSP at most O(2

√
logn) times. Each ScaleDown calls O(log n) subproblem and the

recursion depth is at most O(
√

log n). In total, ScaleDown calls ONN−SSSP 2
√

logn× (log n)
√

logn

times, and so it takes W (m,n)(log n)
√

logn work. For the span, although we need to run Phase 0
- Phase 3 log n times, we can run them simultaneously, and it only takes S(m,n)2

√
logn span for

each level of recursion. The recursion depth is O(
√

log n). Therefore, the span of ScaleDown is
O(S(m,n)2

√
logn). To solve SSSP with negative edge weight, we can repeat SPmain Õ(1) times,

which gives us Theorem 1.5.

Proof of Theorem 1.1 Combining Theorem 1.5 and Theorem 7.1 gives us Theorem 1.1.

8 Implementation in CONGEST Model

8.1 Preliminaries

Distributed Minor-Aggregation Model. For ease of explanation, we will work in the Dis-
tributed Minor-Aggregation Model, which was first formally defined in [13]. In their definition, there
are three operations in each round. (i) (Contraction step) Specify an edge set to contract the graph,
where each vertex after contraction is called a super node and represents a connected vertex set in the
original graph. (ii) (Consensus step) Each node on the original graph computes an Õ(1)-bits value,
and every vertex in a super node learns the aggregation (which can be, for example, +,min,max) of
all the values inside the vertex set represented by the super node. (iii) (Aggregation step) This step
in the original paper can be simulated by one CONGEST round and one consensus step, and so we
omit this step in our definition and treat consensus step as aggregation step. The precise definition
of the Distributed Minor-Aggregation Model we work in is as follows.

Definition 8.1 (Distributed Minor-Aggregation Model). Given a network G = (V,E), each node is
an individual computational unit (has its own processor and memory space), and initially receives
some individual inputs. Each round of this framework contains the following three operations.

1. Contraction step. Each node v computes a Õ(1)-bits value av. Each edge (u, v) is marked
with ce ∈ {⊥,>} based on au, av. Contracting all edges with ce = > and self-loops removed to
get the minor graph G′ = (V ′, E′). We also treat each node S ∈ V ′ as a vertex set S ⊆ V .

2. Aggregation step. Each node v ∈ V computes a Õ(1)-bits value xv. For every S ∈ V ′, each
u ∈ S gets the value ⊕v∈Sxv where ⊕ is an operator satisfying commutative and associative
laws, like sum, min, max.
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It is known that each round of the Distributed Minor-Aggregation Model can be simulated in
the CONGEST model efficiently.

Theorem 8.2 (Theorem 17 in [13]). Each round of the Distributed Minor-Aggregation Model can be
simulated in the CONGEST model in Õ(

√
n+D) rounds.

Theorem 17 in [13] also gives some results which show faster simulation when the graph is planar
or has small shortcut quality (defined in [12]). But since we need to use single source shortest path
(SSSP) oracle, and there are no better algorithm for SSSP for planar graph or for small shortcut
quality graph, we omit these. However, if in the future a faster algorithm for SSSP in planar graph
or small shortcut quality graph is discovered, our running time will also be improved in these graphs
accordingly.

Definition of ONN−SSSPS . There is a challenge when we call ONN−SSSP in CONGEST model.
For example, Remark 4.7 is one of the places where we call ONN−SSSP , but one can notice that we
call ONN−SSSP on a graph with a super source s connecting to many vertices in our communication
network. Running SSSP in this new graph cannot be trivially simulated by CONGEST algorithm in
the original network, since the new edges cannot transfer information in the original graph. Thus,
we define the following oracle which allows the SSSP to start with a super source.

Definition 8.3. The oracle ONN−SSSPS (G,S, x) has inputs (i) G = (V,E,w) is a directed graph
with polynomially bounded weighted function w : E → N, (ii) S ⊆ V specifies the vertices that
the super source is connected to, (iii) x : S → N specifies the weight of edges from the super
source to each vertex in S. ONN−SSSPS (G,S, x) returns a distance vector (dv)v∈V defined as follows.
Let G′ = (V ∪ {s}, E ∪ {(s, v) | v ∈ S}, w ∪ w′) where w′((s, v)) = x(v) for each v ∈ S, then
dv = distG′(s, v).

The following theorem is from Rozhoň et al. [18].

Theorem 8.4 (Collary 1.9 of Rozhoň et al. [18]). There exists a randomized distributed algorithm that
solves SSSP with non-negative polynomial bounded integer edge weight in Õ

(
n1/2 +D + n2/5+o(1)D2/5

)
rounds, where D denotes the undirected hop-diameter, and works with high probability.

Using Theorem 8.4, we can answer ONN−SSSPS (G,S, x) in Õ
(
n1/2 +D + n2/5+o(1)D2/5

)
rounds.

The only difficulty comes from the fact we have a virtual source for ONN−SSSPS . In Rozhoň et
al. [18], first, they construct a new graph Ĝ by adding another virtual source to the input graph.
Then they reduce the exact SSSP to approximate SSSP on the graph with one virtual source. Note
that in our case, we add the virtual source to graph G′, where G′ is the graph defined in 8.3 and
already has one virtual source. Fortunately, after adding another virtual source to G′, our Ĝ can
have only one virtual source by combining edges going through s. The exact SSSP is still reduced to
the approximate SSSP on the graph with one virtual source. This gives us the following theorem,

Theorem 8.5. There exists a randomized distributed algorithm answering ONN−SSSPS in
Õ
(
n1/2 +D + n2/5+o(1)D2/5

)
rounds, where D denotes the undirected hop-diameter, and works with

high probability.

8.2 Implementation of Low Diameter Decomposition.

We will prove the following corollary, which reveals the Distributed Minor-Aggregation Model
implementation of Algorithm 1.
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Corollary 8.6. There is an algorithm given a directed polynomial bounded positive integer weighted
graph G = (V,E,w), computes a low diameter decomposition (as described in Lemma 1.4) within
Õ(1) rounds in the Distributed Minor-Aggregation Model, Õ(1) rounds in the CONGEST model and
Õ(1) times of ONN−SSSPS calls.

Proof. The algorithm contains O(log n) recursive layers. We will consider implementing recursive
instances in each layer simultaneously, in Õ(1) rounds in Distributed Minor-Aggregation Model and
Õ(1) times of ONN−SSSPS calls. To avoid confusion, we always use G to denote the original graph
that we want to do low diameter decomposition on.

We first consider Phase 1. Suppose in this layer, the recursive instances are on vertex sets
V1, V2, ..., V`. We first contract all edges (u, v) with both end points in the same set u, v ∈ Vi (we
will guarantee later that each vertex set Vi is connected). In this way, each Vi becomes a node in the
minor graph. To sample dc log ne vertices, each vertex uniformly at random samples an integer in
[n2], then use binary search to find the threshold t where there are exactly dc log ne vertices that
have sampled integer greater than k. Counting the number of vertices that have sampled integers
greater than k can be done by one aggregation step in each Vi. It might be the case that there
is no such threshold k (several vertices get the same sample integer), in which case we re-run the
procedure. Now each vertex knows whether it is in S or not. Other lines of phase 1 can be done by
O(1) times of calling to ONN−SSSPS inside each G[Vi]. We claim that one ONN−SSSPS on G suffices
to simulate ` calls to ONN−SSSPS on each of G[Vi]: simply setting the weight of edges inside each
G[Vi] to be the corresponding weight of edges determined by ONN−SSSPS , other edges to have infinite
(large enough) weight, and the source set is the combination of all the source set in each Vi. In this
way, any path crossing different Vi cannot be the shortest path, thus, the distances are correctly
computed for each G[Vi].

Then we consider Phase 2. First, we need to show the implementation of FindBalancedSet
(Algorithm 2). Similar to the implementation about, for each Vi, we can get the arbitrary order
v1, ..., v` by sampling from [n2] for each vertex, and the set {v1, v2, ..., vi} can be found by binary
search the threshold k where there are exactly i vertices that has sampled integer greater than k.
Another part of FindBalancedSet is O(log n) calls to ONN−SSSPS inside each Vi. We already showed
how to implement this by Õ(1) times of ONN−SSSPS calling on G. After two calls to FindBalancedSet,
each node knows whether it is in Ain, Aout or not.

For case 1, we first need to count the size |Ain|, |Aout|, which can be done by one aggregation step.
To do the recursive call, we will contract edges inside induced subgraph G[A∗], G[V \A∗]. Notice
that after contracting these edges, there are not necessarily two recursive instances in the next layer:
V \A∗ could be unconnected, which means several instances will be created. However, one can verify
that this does not affect the outcome of our algorithm, as long as each edge in Erem is included in
one of the recursive instances or Erem∗ , and each SCC is completely included in one of the recursive
instances.

For "clean up", the arbitrary vertex u can be picked by one aggregation step, BallinG(u, d/2),Ballout
G (u, d/2)

can be found by one ONN−SSSPS call on G, other vertex sets sizes computation can be done by
aggregation steps.

For case 2, to do the recursive call, we will contract edges inside induced subgraphG[Ain], G[Aout\Ain].
The same problem happens: Aout\Ain does not necessarily be connected. We can recurse on each
connected component of Aout\Ain which will not affect the output, as we have already argued
above.

Proof of Lemma 1.4 CONGEST Running Time. It can be proved by combining Corollary 8.6 and The-
orem 8.2.
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By combining Theorem 8.5, we can get the following corollary.

Corollary 8.7. There is a CONGEST algorithm given a directed graph G = (V,E,w) with polynomi-
ally bounded non-negative weights, computes a low diameter decomposition (as described in Lemma 1.4)
within Õ

(
n1/2 +D + n2/5+o(1)D2/5

)
rounds.

8.3 Implementation of Main Algorithm

Now that we have all the pieces, we are ready to give an implementation of Algorithm 7 in the
Distributed Minor-Aggregation Model.

Corollary 8.8. Let G = (V,E,w) be a weighted directed graph with polynomially bounded weights,
and s ∈ V . There is an algorithm in the Distributed Minor-Aggregation Model that takes G and s
such that

1. If G has a negative-weight cycle, then all vertices output ERROR.

2. If G has no negative-weight cycle, then every vertex v knows dG(s, v).

The algorithms takes (log n)O(
√

logn) Distributed Minor-Aggregation Model rounds, and makes
(log n)O(

√
logn) calls to ONN−SSSPS .

Proof. We implement Algorithm 7 in the Distributed Minor-Aggregation Model. Lines 1 and 9 are
implemented by contracting the whole graph into one super node and an aggregation step. Line 11
makes one call to ONN−SSSPS . It remains to show how ScaleDown, executed in line 5, is implemented
in the Distributed Minor-Aggregation Model.

ScaleDown. We implement Algorithm 3 in the Distributed Minor-Aggregation Model. First,
observe that subroutine calls on subgraphs (denoted here with G′) of G in lines 9 and 14 can use
G as the communication network and hence we can measure the complexity of every line as if run
on an n vertex D hop-diameter graph. Distributed Minor-Aggregation Model rounds on G′ can be
straightforwardly simulated by G, and ONN−SSSPS calls on G′ can be run using G by setting the
weights of edges in E(G) \ E(G′) to be a sufficiently high polynomial in n (which precludes them
from being part of any shortest path).

Oracle calls in ScaleDown. The number of calls to ONN−SSSPS follows directly from
Theorem 5.5. It remains to bound the number of Distributed Minor-Aggregation Model rounds.

Distributed Minor-Aggregation Model rounds in ScaleDown. The base case, when
∆ ≤ 2

√
logn, only uses calls to ONN−SSSPS and makes up zero rounds. Let us hence focus on

implementing just one iteration of the loop (line 6). If we can show that this takes Õ(1) rounds, we
are done since across all recursive instances there are (log n)O(

√
logn) iterations.

Computation of LowDiameterDecomposition (i.e. Erem) takes Õ(1) rounds, by Corollary 8.6.
Similarly, computation of SCC+Topsort (i.e. (rv)v∈V ) takes Õ(1) rounds, by Corollary 9.3. Compu-
tation of FixDAGEdges (i.e. ψ2) takes exactly 1 round in the Distributed Minor-Aggregation Model
by Corollary 10.2. The remaining lines of the algorithm are all internal computations within vertices,
or calls to ONN−SSSPS , and have no bearing on the number of Distributed Minor-Aggregation Model
rounds. In all, one iteration consequently takes Õ(1) rounds.

To tie things up, one iteration of ScaleDown takes Õ(1) rounds, there are (log n)O(
√

logn) iter-
ations, and O(log n) calls to ScaleDown from which the number of Distributed Minor-Aggregation
Model rounds is (log n)O(

√
logn).

Proof of Theorem 1.6. This follows immediately from Corollary 8.8 and Theorem 8.2 to down-compile
the (log n)O(

√
logn) Distributed Minor-Aggregation Model rounds into (

√
n + D)(log n)O(

√
logn)

CONGEST rounds.
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Proof of Theorem 1.2. This follows from Theorem 1.6 and instantiating ONN−SSSPS with the algo-
rithm in Theorem 8.5.

9 SCC + Topological Sort

We adapt the parallel framework of Schudy [20] for finding strongly connected components (SCCs) in
a topological order to CONGEST. This framework finds SCCs using O(log2 n) calls to ONN−SSSPS .

At a high level, the framework is based on that of Coppersmith et al. [9]; pick a random vertex vp,
which identifies an SCC (all vertices that reach and can be reached from vp), and three topologically
orderable recursive instances (the remaining vertices which (i) can reach vp, (ii) are reachable from
vp, (iii) can neither reach nor are reachable from vp). The snag here is that the recursive instances
may be large, and consequently the algorithm is inefficient in the worst case. Schudy [20] fixes this by
employing a more careful selection of recursive instances which shrink by a constant multiplicative
factor (hence the algorithm has a logarithmic recursion depth) and still satisfy topological orderability
(hence the algorithm is correct).

Algorithm 4 gives a model-independent overview of the framework, with the addition of a labelling
(rv)v∈V which identifies the SCC to which the vertices belong ([20] instead outputs the SCCs as a
topologically sorted list). To help with assigning a valid labelling, our algorithm takes in two more
arguments, ` and N . Intuitively, ` and N are used to define a valid range of labels that may be
assigned to the SCCs of a recursive instance. ` is roughly the total number of vertices that are
in preceding recursive instances, and N is the number of vertices in G, the graph in the top-level
recursive instance. These together define the range from ` to ` plus the number of vertices in the
recursive instances, dilated by a factor of N2 so that different SCCs get different labels with high
probability.

Before we show an efficient implementation of Algorithm 4 in the Distributed Minor-Aggregation
Model, we need two results from [20]. The first asserts its correctness, and the second asserts its
efficiency.

Proposition 9.1 (Paraphrasing Claim 5 and Lemma 7 in [20]). R1, R2, R3, R4, R5 (discovered in
Algorithm 4) partition V , and there are no edges going from one set to a lower numbered set.

Proposition 9.2 (Paraphrasing Lemmas 8 and 9, Section 5.2 in [20]). The recursion depth of
Algorithm 4 is O(log n) with high probability.

Proof of Lemma 5.1. Correctness of Algorithm 4 follows from observing that for any recursive
instance, the labels assigned to its vertices are in the range [` ·N2, (`+ n− 1) ·N2] which is disjoint
from and ordered with the ranges of other recursive instances in the same level by Proposition 9.1.

The number of calls to ONN−SSSP (more precisely, ONN−SSSPS ) being O(log2 n) follows from
Proposition 9.2 (we can cut off the algorithm and output Fail if the recursion depth is too large),
and there being O(log n) calls to ONN−SSSPS in each recursive layer (we can run all executions of
line 2 in one recursive layer simultaneously).

9.1 SCC + Topological Sort in CONGEST

We are now ready to restate Algorithm 4 in the Distributed Minor-Aggregation Model, but with
one crucial difference in our implementation. Let CC(G[S]) denote the connected components of
G[S], listed in any order. Where Algorithm 4 recurses into G[R1], G[R2], G[R3], G[R4], G[R5] (in
order), our implementation recurses into CC(G[R1]),CC(G[R2]),CC(G[R3]),CC(G[R4]),CC(G[R5])
(in order). That is, one recursive call is made for each connected component. This way, recursive
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Algorithm 4: (rv)v∈V ← SCC+Topsort (G = (V,E), `,N)

Input:

• Directed Graph G = (V,E). Internally, we treat G as a weighted graph with edge weights all
0. Accordingly, Ballout

G (v, 0) contains all vertices that v can reach and BallinG(v, 0) contains all
vertices that can reach v.

• Integers `,N , which bound rv. Think of N as the number of vertices of the graph at the top
layer of recursion.

Output: Ordering (rv)v∈V of vertices such that

• with high probability, ru = rv if and only iff u and v are in the same SCC;

• ru > rv when (u, v) ∈ E and u and v belong to different SCCs;

• ` ·N2 ≤ rv ≤ (`+ n− 1) ·N2.

1 Let v1, v2, ..., vn be a uniformly random permutation of all vertices in V ;
2 For i ∈ [n], define Si = ∪j≤i Ballout

G (vj , 0), i.e., all the vertices that are reachable from
v1, ..., vi. Let p ∈ [n] be the smallest index such that the induced subgraph G[Sp] = (Sp, Ep)
satisfies |Sp|+ |Ep| ≥ n+m

2 (we can efficiently find p using a binary search, where each
iteration makes one call to ONN−SSSPS with the virtual source attached to v1, v2, . . . , vi by
0 weight edges);

3 Let A← Sp−1, B ← Ballout
G (vp, 0), C ← BallinG(vp, 0) ∩ Ballout

G (vp, 0);
4 Let R1 ← V \(A ∪B), R2 ← A \B, R3 ← C, R4 ← B \ (A ∪ C), R5 ← (A ∩B) \ C;
// Base case.

5 If |C| = |V |, let r be an integer drawn uniformly at random from [` ·N2, (`+ n− 1) ·N2] and
set (rv)v∈V ← r. Return (rv)v∈V ;

// Recursion.
6 Let (rv)v∈R1 ← SCC + Topsort(G[R1], `+

∑5
j=2 |Rj |, N);

7 Let (rv)v∈R2 ← SCC + Topsort(G[R2], `+
∑5

j=3 |Rj |, N);
8 Let (rv)v∈R3 ← SCC + Topsort(G[R3], `+

∑5
j=4 |Rj |, N);

9 Let (rv)v∈R4 ← SCC + Topsort(G[R4], `+ |R5|, N);
10 Let (rv)v∈R5 ← SCC + Topsort(G[R5], `,N);

11 Return (rv)v∈V ;

29



instances in our implementation can correspond with connected subgraphs and, thus, super nodes in
the Distributed Minor-Aggregation Model.

Corollary 9.3. There is an algorithm on a directed graph G = (V,E) which computes, with high
probability, a ranking (rv)v∈V of vertices such that,

• ru = rv if and only if u and v are in the same strongly connected component of G;

• if u ∈ S and v ∈ T , where S and T are different strongly connected components of G, and
there is an edge from S to T , then ru > rv.

This algorithm takes Õ(1) rounds in the Distributed Minor-Aggregation Model and makes Õ(1) calls
to ONN−SSSPS .

Proof. We describe Algorithm 4 using Distributed Minor-Aggregation Model steps. Let us focus on
the implementation of one layer of recursion. Let G[V1], G[V2], . . . , G[Vk] be the recursive instances
in this layer, listed in order. For now, suppose for all i ∈ [k] that G[Vi] is connected.

We contract all edges with both endpoints in the same recursive instance to get a graph of super
nodes. Let us now refine our focus to a particular super node Vi at this layer of recursion. We
subscript names in Algorithm 4 with i to make this clear.

Line 1. Each vertex independently samples a uniform random number in [n3
i ]. Using a simple

first moment method, it can be seen that with high probability no two vertices in Vi sample the
same number, which induces a uniformly random ordering of the vertices in Vi.

Line 2. We can then find pi via binary searching over [n3
i ], with each iteration making a call

to ONN−SSSPS (G,∪iSi, 0) where Si is the set of all vertices in Vi whose number is less than their
respective binary search threshold. The binary searches in super nodes are independent of each
other, but they coordinate one call to ONN−SSSPS to execute a threshold-check (see Remark 4.7 for
a similar example). Edges joining different super nodes are taken to have infinite weight on this call
to ONN−SSSPS . The number of vertices plus edges of the graph induced by reachable vertices can be
computed using an aggregation step.

Lines 3, 5, and 4. Next, the sets Ai, Bi, Ci can be found with three calls to ONN−SSSPS

(making sure to reverse edge directions for Ci). Now every vertex will know its membership in
(R1)i, (R2)i, (R3)i, (R4)i, (R5)i which partition Vi. Use an aggregation step to find |(Rj)i|, and set
the ranks of all vertices to r if only |(R3)i| > 0; the random integer r can be sampled by using an
aggregation step to elect a leader, having the leader sample r, and using another aggregation step to
broadcast r.

Lines 6 onwards. Recall that in this implementation, recursive instances of the next layer are
connected components CC(G[(Rj)i]) of G[(Rj)i]. Each connected component of G[(Rj)i] sets its
` parameter as if it were in the recursive instance G[(Rj)i] (so there will only be five different `
parameters branching off from G[Vi], even if there are much more than five connected components).
The ` parameters can be found using the already computed values of |(Rj)i|.

Uncontract all super nodes and recurse down into the next layer.
Correctness. By observing that each label is taken uniformly at random from an interval of

length at least |V |2, SCC labels are distinct with high probability (one may again use a first moment
method to see this).

If S and T are SCCs with an edge from S to T , there must be a first time in the recursion
that they are separated. That is, S ⊆ Ri∗ and T ⊆ Rj∗ for i∗ < j∗ (the inequality comes from
Proposition 9.1) on some level of the recursion. Denote the ` parameters for G[Ri∗ ] and G[Rj∗ ]
with `Ri∗ and `Rj∗ respectively. Then one can see that the intervals [`Ri∗ , `Ri∗ + |Ri∗ | − 1] and
[`Rj∗ , `Rj∗ + |Rj∗ | − 1] are disjoint and `Ri∗ > `Rj∗ . Thus, ru > rv for u ∈ S and v ∈ T .
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Complexity. By Proposition 9.2, Algorithm 4 has O(log n) levels of recursion with high
probability. Vertices can halt and output Fail after Θ(log n) levels of recursion, and so this
algorithm succeeds with high probability using Õ(1) rounds of the Distributed Minor-Aggregation
Model. Each layer of recursion involves O(log n) calls to ONN−SSSPS , running the binary searches
together, and hence in total there are Õ(1) calls.

Before concluding this section, it is worth noting that we may instead use an oracle for Reachability
with a virtual source, instead of ONN−SSSPS which we use here for clarity and convenience. Recursive
calls to Algorithm 4 on subgraphs G′ ⊆ G are currently made by setting weights of edges to 0 or 1
in accordance with the edge being present or not present in the subgraph; this way, the top-level
graph G is used as the communication network throughout and hence the round complexity remains
in terms of n and D. With reachability, we can continue to use G as the communication network by
simulating SCC+Topsort on G′ with a copy of V (G′) where every vertex in V (G′) is connected to
its copy, and every edge in E(G) \ E(G′) is in the copy of V (G′). Suffice to say, the construction
shows that reachability in a subgraph G′ ⊆ G is as hard as reachability in a graph G.

To conclude this section, we complete the proofs for Lemma 1.7 and Corollary 9.4, which we
restate here for convenience.

Lemma 1.7 (Reduction for SCC+Topsort in CONGEST). There is a CONGEST algorithm that,
given a directed graph G = (V,E), and assuming there is an algorithm answering SSSP oracle
ONN−SSSPS in T (n,D) rounds, outputs SCCs in topological order. More specifically, it outputs a
polynomially-bounded labelling (rv)v∈V such that, with high probability

1. ru = rv if and only if u and v are in the same strongly connected component;

2. when the SCC that u belongs to has an edge towards the SCC that v belongs to, ru > rv.

The algorithm takes Õ(T (n,D) +
√
n+D) rounds.

Proof. This follows immediately from Corollary 9.3 and Theorem 8.2.

Corollary 9.4. There is a CONGEST algorithm that, given a directed graph G = (V,E), outputs
SCCs in topological order (same conditions as Lemma 1.7) within Õ

(
n1/2 +D + n2/5+o(1)D2/5

)
rounds.

Proof. This follows immediately from Lemma 1.7 and Theorem 8.5.

10 FixDAGEdges Implementation

This section goes over FixDAGEdges and a proof of Lemma 5.2. The high level idea of FixDAGEdges
is very simple. Let G = (V,E,w) be a directed graph where edges contained in SCCs have
non-negative weights, and let (rv)v∈V be a labelling of vertices such that

1. ru = rv if and only if u and v are in the same strongly connected component;

2. when the SCC that u belongs to has an edge towards the SCC that v belongs to, ru > rv.

Finally, let −B be the smallest (i.e. most negative) weight in G. Then, we simply add a price ψ(v)
of B · rv to every vertex. Algorithm 5 formalizes this idea.

Lemma 5.2, which we restate here for convenience, asserts the correctness of Algorithm 5.
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Algorithm 5: ψ(·)← FixDAGEdges(G = (V,E,w), (rv)v∈V )

Input:

• A weighted directed Graph G = (V,E,w) where edges contained in SCCs have non-negative
weights.

• A labelling (rv)v∈V respecting a topological order of SCCs of G.

Output: Price function ψ such that Gψ has non-negative weights.

1 −B ← min(0,mine∈E(w(e)));
2 For each v ∈ V , let ψ(v)← B · rv;
3 Return ψ;

Lemma 5.2 (FixDAGEdges). Let G = (V,E,w) be a directed graph with polynomially-bounded
integer weights, where for all (u, v) ∈ E where u and v are in the same strongly connected component,
w(u, v) ≥ 0. Let (rv)v∈V be a polynomially-bounded labelling which respects a topological ordering
(see Lemma 5.1) of SCCs of G. Given G and (rv)v∈V , Algorithm 5 outputs a polynomially bounded
price function ψ : V → Z such that wψ(u, v) ≥ 0 for all (u, v) ∈ E. Algorithm 5 makes no oracle
calls.

Proof. Suppose (u, v) ∈ E is an edge contained in an SCC. Then wψ(u, v) = w(u, v) ≥ 0 since
w(u, v) ≥ 0 and ru = rv.

Suppose, on the other hand, (u, v) ∈ E is an edge such u and v are in different SCCs. Then
wψ(u, v) ≥ B · (ru − rv − 1) ≥ 0 since w(u, v) ≥ −B and ru > rv.

Finally, it is clear that Algorithm 5 does not make any call to ONN−SSSP .

We now show that there are efficient implementations of Algorithm 5 in both parallel and
distributed models.

Parallel Implementation A direct implementation of Algorithm 5 in the parallel model gives
the following corollary.

Corollary 10.1. Let G = (V,E,w) be a directed graph with polynomially-bounded integer weights,
where for all (u, v) ∈ E where u and v are in the same strongly connected component, w(u, v) ≥ 0.
Let (rv)v∈V be a polynomially-bounded labelling which respects a topological ordering (see Lemma 5.1)
of SCCs of G. Given G and (rv)v∈V , there is an algorithm that outputs a price function ψ : V → Z
such that wψ(u, v) ≥ 0 for all (u, v) ∈ E with O(m) work and O(1) span.

Distributed Implementation Algorithm 5 takes one round in the Distributed Minor-Aggregation
Model: contract the whole graph and use a consensus step to compute the minimum weight edge.
Then each vertex updates their price. This leads to the following corollary.

Corollary 10.2. Let G = (V,E,w) be a directed graph with polynomially-bounded integer weights,
where for all (u, v) ∈ E where u and v are in the same strongly connected component, w(u, v) ≥ 0.
Let (rv)v∈V be a polynomially-bounded labelling which respects a topological ordering (see Lemma 5.1)
of SCCs of G. Given G and (rv)v∈V , there is an algorithm in the Distributed Minor-Aggregation
Model that outputs a price function ψ : V → Z such that wψ(u, v) ≥ 0 for all (u, v) ∈ E in one
round.
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11 Missing Proofs of Low Diameter Decomposition

The following proofs are for the claims used in Section 4.2.

Proof of Claim 4.2. Notice that S contains dc log ne vertices sampled uniformly at random. If a
vertex v with |BallinG(v, d/4)| > .7|V | is included in Vin, that means |BallinG(v, d/4)

⋂
S| ≤ .6|S|.

However, the expectation of the number of vertices in BallinG(v, d/4)
⋂
S is at least .7|S| since S is

uniformly sampled. Using a simple Chernoff bound, by taking c sufficiently large, the event does not
happen with high probability. The same arguments hold for vertices in Vin, V \(Vout ∪ Vin).

Proof of Claim 4.3. According to Lemma 4.8, we just need to prove that with high probability in n,
for any v ∈ Vout, we have |BallinG(v, d/4)| ≤ .7|V | and for any v ∈ Vin, we have |Ballout

G (v, d/4)| ≤
.7|V |. This can be deduced by Claim 4.2.

Proof of Claim 4.4. If line 19 is executed, then both Ain, Aout has size not between .1|V | and .9|V |
(algorithm does not return in line 16) and either we have V \(Ain∪Aout) 6⊆ BallinG(u, d/2)

⋂
Ballout

G (u),
or we have |Ain ∪ Aout| ≥ .5|V |. According to Claim 4.3, with high probability in n, we have
|Ain|, |Aout| ≤ .1|V |, which means |Ain ∪ Aout| < .5|V |. According to Lemma 4.8 item (2), we
have Vin ⊆ Ain, Vout ⊆ Aout. Thus, V \(Ain ∪ Aout) ⊆ V \(Vin ∪ Vout). According to 4.2, with high
probability in n, for any two vertices u, v ∈ V \(Vout ∪ Vin), we know both u and v can reach and
can be reached by at least .5|V | vertices within distance d/4. Therefore, u and v can reach each
other within distance d/2, which means V \(Ain ∪Aout) ⊆ BallinG(u, d/2)

⋂
Ballout

G (u).

The following proof is for the missing part in Section 4.3.

Proof of Lemma 4.8. We first prove (1). If p = 1, then d < c log n, which means cw(e) logn
d ≥ 1

as long as w(e) > 0. In this case, any edge e with non-zero weight satisties 1. Also notice that
zero-weight edges will never be added to Erem. In the following arguments we only consider the case
when p < 1.

For each node u ∈ V , let Iu denote the smallest i such that u ∈ B+
di

(vi). If such i does not exist,
let Iu = `+ 1. Consider an edge e = (u, v). If e ∈ Erem, we first argue that Iu < Iv: according to the
algorithm description, there must exists k ∈ [`] such that u ∈ ∪j≤kB+

dj
(vj), in which case we have

Iu ≤ k and Iv > k. Thus, Iu < Iv must hold. Now we focus on bounding the probability of Iu < Iv.
Denote event Ai as di − w(e) < dist(vi, u) ≤ di We have

Pr[Iu < Iv] ≤
∑
i∈[`]

Pr[Ai, Iu = i] =
∑

i∈[`],Pr[Iu=i]6=0

Pr[Iu = i] ·Pr[Ai | Iu = i]

Explanation: If Iu < Iv ≤ ` + 1, then Iu = i must happen for some i ∈ [`], which means
dist(vi, u) ≤ di. If dist(vi, u) ≤ di − w(e), since (u, v) is an edge with weight w(e), we have
dist(vi, v) ≤ di, contradicting the fact that Iu < Iv. Thus, Ai must happen.

For each i with dist(vi, u) ≥ d/8, we claim that Pr[Iu = i] ≤ 1
n9 . That is because Iu = i implies

di ≥ dist(vi, u) ≥ d/8. Remember that di ∼ GE[(c log n)/d]≤d/4, which means Pr[di ≥ d/8] ≤ 1
n9 ,

for sufficiently large c. Therefore, we can write

Pr[Iu < Iv] ≤
∑

i∈[`],Pr[Iu=i] 6=0,dist(vi,u)<d/8

Pr[Iu = i] ·Pr[Ai | Iu = i] +
1

n8

In what follows, we will provePr[Ai | Iu = i] ≤ 2pw(e) for any i ∈ [`],Pr[Iu = i] 6= 0, dist(vi, u) <
d/8.
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Let S contain all the tuples d = (d′1, d
′
2, ..., d

′
i−1) such that Pr[d1 = d′1, d2 = d′2, ..., di−1 = d′i−1] 6=

0 and u 6∈ ∪j≤i−1B
+
d′j

(vj). One can see that if Iu = i happens, then d1, ..., di−1 must get value d for
some d ∈ S. Denote this event as Dd. Thus, we have

Pr[Ai | Iu = i] =
∑
d∈S

Pr[Dd, Ai | Iu = i] =
∑
d∈S

Pr[Dd | Iu = i] ·Pr[Ai | Iu = i,Dd]

We will bound the probability Pr[Ai | Iu = i,Dd] for any d and for any i ∈ [`],Pr[Iu = i] 6=
0, dist(vi, u) < d/8. Notice that event Iu = i,Dd is equivalent to event dist(vi, u) ≤ di, Dd. Thus,
we get

Pr[Ai | Iu = i,Dd] = Pr[Ai | dist(vi, u) ≤ di, Dd] =
Pr[di − w(e) < dist(vi, u) ≤ di | Dd]

Pr[dist(vi, u) ≤ di | Dd]

Notice that Dd is independent of the random variable di, thus, the above term equals to

Pr[di − w(e) < dist(vi, u) ≤ di]
Pr[dist(vi, u) ≤ di]

Remember that i is an index such that Pr[Iu = i] 6= 0, which means dist(vi, u) ≤ bd/4c
(otherwise, since di is a geometric distribution truncated at bd/4c, it is impossible that Iu = i). Thus,
the above term is at most∑

k∈[dist(vi,u),dist(vi,u)+w(e)] Pr[di = k]∑
k≥dist(vi,u) Pr[di = k]

≤ w(e) · (1− p)dist(vi,u) · p
(1− p)dist(vi,u) − (1− p)bd/4c+1

=
w(e)p

1− (1− p)bd/4c+1−dist(vi,u)
≤ 2w(e)p

By combining everything together, we get

Pr[(u, v) ∈ Erem] ≤ Pr[Iu < Iv] ≤ 2w(e)p+
1

n8
≤ 3w(e)p ≤ c2w(e) log n

d

Then we prove (2). Recall that k is the smallest i ∈ [`] such that
∣∣∪j≤i Ball*G(vj , dj)

∣∣ > 0.1|V | if
such i exists, in which case we have |A| > 0.1|V |; or we set k = `, in which case we have V ′ ⊆ A.

Then we prove (3). We can see that di ≤ d holds for any i ∈ [`]. According to the input
guarantee, we have |B+

di
(vi)| ≤ .7|V | for any i ∈ [`]. Since we have

∣∣∪j<k Ball*G(vj , dj)
∣∣ ≤ 0.1|V | and

|B+
dk

(vk)| ≤ .7|V |, we have |A| ≤ 0.1|V |+ 0.7|V | ≤ .9|V |.

12 Other Missing Proofs

Proof of Theorem 3.1

Proof. • When we reduce the negative weight edges, we can use the scaling framework of
Goldberg [14] to bound the negative edge weight at the expense of an extra logWin factor.
See section 3 in [14] for detail.

• Once the graph contains only non-negative edge weight, we can use the scaling framework
of Klein and Subramanian [17] to bound the positive edge weight at the expense of an extra
logWin factor. See Lemma 4.1 in [17] for detail.
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Proof of Lemma 5.3

This section is dedicated to proving Lemma 5.3, which we restate here for convenience.

Lemma 5.3 (EstDist). Let G = (V,E,w) be a directed graph with polynomially-bounded integer
weights, s ∈ V and h ∈ N. Assume that distG(s, v) <∞ for all v ∈ V . Given G, s and h as input,
Algorithm 6 outputs a distance estimate d̃ : V 7→ Z such that for every v ∈ V , d̃(v) ≥ distG(s, v) and
d̃(v) = distG(s, v) if there exists a shortest path connecting s and v that contains at most h negative
edges. Moreover, Algorithm 6 performs h+ 1 oracle calls to the non-negative weight distance oracle
ONN−SSSP .

Proof. First, Claim 12.2 verifies that we only give graphs with non-negative weight edges to the
distance oracle ONN−SSSP .

By using induction, we first show that for every i ∈ {0, 1, . . . , h} and v ∈ V \ {s}, it holds that
d̃i(v) ≥ distH(s, v). The base case i = 0 trivially follows. Now, consider some i ∈ {1, 2, . . . , h}.
Assume that d̃i−1(v) ≥ distH(s, v) for every v ∈ V \ {s}. By using triangle inequality, we therefore
get

d̃
(1)
i (v) = min(d̃i−1(v), min

u∈V \{s} : (u,v)∈E
d̃i−1(u) + w(u, v))

≥ min(distH(s, v), min
u∈V : (u,v)∈E

distH(s, u) + w(u, v)) ≥ distH(s, v)

for every v ∈ V \ {s}. Thus, it directly follows from the way Hi is constructed that

d̃i(v) = distHi(s, v) ≥ distH(s, v),

as needed.
In particular, we get for every v ∈ V \ {s} that

d̃(v) = d̃h(v)−B ≥ distH(s, v)−B ≥ distG(s, v),

as needed. Also, it trivially follows that d̃(s) = 0 ≥ distG(s, s).
Next, let v ∈ V \ {s} be a node such that there exists a shortest path P connecting s and v with

at most h negative edges in G. By Claim 12.1, P is also a shortest path connecting s and v in H. We
show that d̃h(v) = distH(s, v). To do so, let u be a node contained in P such that there are at most
i negative edges between s and u on the path P in H. We show that this implies d̃i(u) = distH(s, u)
by induction on i. The base case i = 0 trivially follows from the way we obtain H0 from H.

Next, consider some fixed i ∈ {1, 2, . . . , h} and assume that it holds for i− 1. Let u be a node
contained in P such that there are at most i negative edges between s and u on the path P in H. If
the number of negative edges is strictly less than i, then by induction we get d̃i−1(u) = distH(s, u)

and therefore also d̃i(u) ≤ d̃(1)
i (u) ≤ d̃i−1(u) ≤ distH(s, u). Now, assume that the number of negative

edges is exactly i. Let e = (x, y) be the i-th negative edge on the path P in H, i.e., the last negative
edge before u. In particular, the number of negative edges on the path P until x is strictly less than
i, and therefore we can use the induction hypothesis to conclude that d̃i−1(x) = distH(s, x). As P is
a shortest path in H, it holds that

d̃
(1)
i (y) ≤ d̃i−1(x) + w(x, y) = distH(s, y).

As (x, y) is the last negative edge on the path P before u, the whole path segment from y to u
only consists of nonnegative edges and is therefore present in the graph Hi. As P is a shortest path
in H, the segment has a length of distH(s, u)− distH(s, y). Therefore, we get
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dHi(u) ≤ d̃(1)
i (y) + (distH(s, u)− distH(s, y)) = distH(s, u).

As we have shown above that d̃i(u) ≥ distH(s, u), we therefore get d̃i(u) = distH(s, u), which
finishes the induction.

In particular, for every v ∈ V \ {s} such that there exists a shortest path P connecting s and v
with at most h negative edges in G, we get that

d̃(v) = d̃h(v)−B = distH(s, v)−B = distG(s, v),

where the last equality follows from Claim 12.1.
Finally, Algorithm 6 indeed calls the oracle ONN−SSSP h+ 1 times, which finishes the proof.

Claim 12.1. For each vertex v ∈ V \ {s} with distG(s, v) > −∞, it holds that distG(s, v) =
distH(s, v)−B.

Proof. Consider some vertex v ∈ V \ {s} with distG(s, v) > −∞. As we additionally assume that
distG(s, v) < ∞, there is a shortest path P from s to v in G of length distG(s, v). This path P
has exactly one outgoing edge from s and therefore is of length distG(s, v) + B in H. Therefore,
distH(s, v) ≤ distG(s, v) +B. On the other hand, any sv-path in H has at least one outgoing edge
from s and therefore the weight of this path in G is at least smaller by an additive B. Hence,
distG(s, v) = distH(s, v)−B, as needed.

Claim 12.2. For every i ∈ {0, 1, . . . , h}, Hi only contains non-negative weight edges.

Proof. We first prove by induction that for every i ∈ {0, 1, . . . , h},

min
v∈V \{s}

d̃i(v) ≥ max(0,−(h− i) min
e∈E

w(e)) ≥ 0.

We start with the base case i = 0. From the way H0 is defined, it follows that

min
v∈V \{s}

d̃0(v) ≥ min
e∈E

w(e)+B = min
e∈E

w(e)+max(0,−(h+1)·min
e∈E

w(e)) ≥ max(0,−(h−0)·min
e∈E

w(e)).

Now, consider some fixed i ∈ {1, 2, . . . , h} and assume that it holds for i− 1. From the way d̃(1)
i

and Hi are defined and the induction hypothesis, we get

min
v∈V \{s}

d̃i(v) ≥ min
v∈V \{s}

d̃
(1)
i (v) ≥ min

v∈V \{s}
d̃i−1(v) + min(0,min

e∈E
w(e))

≥ max(0,−(h− (i− 1)) ·min
e∈E

w(e)) + min(0,min
e∈E

w(e)) = max(0,−(h− i) ·min
e∈E

w(e)),

which finishes the induction. In particular, for every i ∈ {1, . . . , h},

min
v∈V \{s}

d̃
(1)
i (v) ≥ max(0,−(h− i) ·min

e∈E
w(e)) ≥ 0

and therefore Hi only contains non-negative weight edges, as needed.

36



Algorithm 6: Algorithm for EstDist(G = (V,E,w), s, h)

1 Let H be the graph we obtain from G by adding B := max(0,−(h+ 1) ·mine∈E w(e)) to the
weight of each outgoing edge from s.

2 Let H0 be the graph we obtain from H by making all negative weight edges to be zero weight.
3 d̃0 ← ONN−SSSP (H0, s)
4 for i = 1, 2, . . . , h do
5 d̃

(1)
i (v)← min(d̃i−1(v),minu∈V \{s} : (u,v)∈E d̃i−1(u) + w(u, v)) for every v ∈ V

6 Let Hi be the graph we obtain from H by making all negative-weight edges zero weight.
Then, for every vertex v ∈ V \ {s}, add one edge from s to v with weight d̃(1)

i (v).
7 d̃i ← ONN−SSSP (Hi, s)

8 d̃(v)← d̃h(v)−B for every v ∈ V \ {s}
9 d̃(s)← 0

10 return d̃

Proof of Theorem 5.4

This subsection is dedicated to prove Theorem 5.4, which we restate here for convenience. We note
that Algorithm 7 is essentially the same algorithm as Algorithm 2 in [3], modulo some very small
technicalities.

Theorem 5.4 (SPMain). Let Gin = (V,E,win) be a directed graph with polynomially bounded
integer edge weights and sin ∈ V . Algorithm 7 takes as input Gin and sin and has the following
guarantee:

1. If Gin has a negative-weight cycle, then Algorithm 7 outputs ERROR,

2. If Gin has no negative-weight cycle, then Algorithm 7 computes distG(sin, v) for every node
v ∈ V with high probability and otherwise it outputs ERROR.

Algorithm 7 invokes the non-negative weight SSSP oracle ONN−SSSP no(1) times.

Proof. First, consider the case that Gin has a negative-weight cycle. As we obtain Ḡ from Gin
by multiplying each edge weight by 2n, this implies that there exists a cycle with weight at most
−2n in Ḡ. Together with Lemma 3.6, this implies that Ḡφt also contains a cycle with weight at
most −2n. Thus, there exists an edge in Ḡφt with weight at most −2 and this edge has a negative
weight in G∗. Therefore, Algorithm 7 indeed outputs ERROR. Next, assume that Gin does not
contain a negative-weight cycle. Then, according to Claim 12.4, the graph G∗ does not contain a
negative-weight edge with high probability. If that’s indeed the case, then the algorithm computes
distGin(s, v) for every node v ∈ V according to Claim 12.3, as desired. It remains to discuss the
number of oracle call invocations. As we assume that the edge weights are polynomially bounded,
Algorithm 7 invokes ScaleDown O(log n) times. Each invocation calls the non-negative weight
distance oracle ONN−SSSP no(1) times according to Theorem 5.5. Therefore, the total number of
oracle invocations is indeed no(1), which finishes the proof.

Claim 12.3. Assume that G∗ has non-negative weights. Then, din(v) = distGin(sin, v) for every
vertex v ∈ V .
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Algorithm 7: Algorithm for SPMain(Gin = (V,E,win), sin)

1 w̄(e)← win(e) · 2n for all e ∈ E, Ḡ← (V,E, w̄), B ← −mine∈E w̄(e).
2 Round B up to nearest power of 2
3 φ0(v) = 0 for all v ∈ V
4 for i = 1 to t := log2(B) do
5 ψi ← ScaleDown((Ḡ)φi−1

,∆ := n,B/2i)
6 // Claim 12.4: wφi(e) ≥ −B/2i for all e ∈ E w.h.p. if G does not contain a negative weight cycle

φi ← φi−1 + ψi
7 G∗ ← (V,E,w∗) where w∗(e)← w̄φt(e) + 1 for all e ∈ E
8 // Observe: If Gin does not contain a negative-weight cycle, then w.h.p. G∗ in above line

has only strictly positive weights
9 if G∗ contains a negative-weight edge then

10 return ERROR
11 d∗ ← ONN−SSSP (G∗, sin)
12 din(v)← b(d∗(v)− φt(sin) + φt(v))/(2n)c for all v ∈ V
13 return din

Proof. We have

din(v) = b(d∗(v)− φt(sin) + φt(v))/(2n)c
= b(distG∗(sin, v)− φt(sin) + φt(v))/(2n)c d∗(v) = distG∗(sin, v)

≥ b(distḠφt (sin, v)− φt(sin) + φt(v))/(2n)c w∗(e) ≥ w̄φt(e) for all e ∈ E

= bdistḠ(sin, v)/(2n)c Lemma 3.6
= bdistGin(sin, v)c = distGin(sin, v)

and similarly,

din(v) = b(distG∗(sin, v)− φt(sin) + φt(v))/(2n)c
≤ b(distḠφt (sin, v) + n− φt(sin) + φt(v))/(2n)c

= b(distḠ(sin, v) + n)/(2n)c
= bdistGin(sin, v) + 1/2c = distGin(sin, v).

Claim 12.4. Assume that Gin does not contain a negative-weight cycle. Then, the following holds
with high probability: For all e ∈ E and i ∈ [0, t := log2(B)] we have that w̄i is integral and that
w̄i(e) ≥ −B/2i for all e ∈ E. In particular, w̄t(e) ≥ −1 for all e ∈ E and therefore the graph G∗

has non-negative weights.

Proof. We prove the claim by induction on i. The base case i = 0 directly follows from the
way B is defined. Now, assume by induction that the claim holds for Ḡφi−1

. The call to
ScaleDown(Ḡφi−1

,∆ := n,B/2i) satisfies the necessary input properties (see Theorem 5.5) and in
particular Ḡφi−1

does not contain a negative-weight cycle.
Thus, by the output guarantee of ScaleDown we have that (w̄φi−1

)ψi(e) ≥ (B/2i−1)/2 = B/2i.
The claim follows because as noted in Definition 3.4, (w̄φi−1

)ψi = w̄φi−1+ψi = w̄φi .
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