
ar
X

iv
:1

10
2.

29
06

v2
 [

cs
.D

C
]

 1
5

O
ct

 2
01

1

A tight unconditional lower bound on distributed random walk

computation

Danupon Nanongkai∗ Atish Das Sarma† Gopal Pandurangan‡

November 21, 2021

Abstract

We consider the problem of performing a random walk in a distributed network. Given
bandwidth constraints, the goal of the problem is to minimize the number of rounds required to
obtain a random walk sample. Das Sarma et al. [PODC’10] show that a random walk of length
ℓ on a network of diameter D can be performed in Õ(

√
ℓD + D) time. A major question left

open is whether there exists a faster algorithm, especially whether the multiplication of
√
ℓ and√

D is necessary.
In this paper, we show a tight unconditional lower bound on the time complexity of dis-

tributed random walk computation. Specifically, we show that for any n, D, and D ≤ ℓ ≤
(n/(D3 logn))1/4, performing a random walk of length Θ(ℓ) on an n-node network of diameter D
requires Ω(

√
ℓD+D) time. This bound is unconditional, i.e., it holds for any (possibly random-

ized) algorithm. To the best of our knowledge, this is the first lower bound that the diameter
plays a role of multiplicative factor. Our bound shows that the algorithm of Das Sarma et al. is
time optimal.

Our proof technique introduces a new connection between bounded-round communication
complexity and distributed algorithm lower bounds with D as a trade-off parameter, strength-
ening the previous study by Das Sarma et al. [STOC’11]. In particular, we make use of the
bounded-round communication complexity of the pointer chasing problem. Our technique can
be of independent interest and may be useful in showing non-trivial lower bounds on the com-
plexity of other fundamental distributed computing problems.

Keywords: Random walks, Distributed algorithms, Lower bounds, Communication complexity.

1 Introduction

The random walk plays a central role in computer science, spanning a wide range of areas in both
theory and practice. The focus of this paper is on performing a random walk in distributed networks,
in particular, decentralized algorithms for performing a random walk in arbitrary networks. The
random walk is used as an integral subroutine in a wide variety of network applications ranging
from token management [19, 4, 8], small-world routing [21], search [31, 1, 7, 18, 27], information
propagation and gathering [5, 20], network topology construction [18, 24, 25], expander testing [12],

∗The University of Vienna, Vienna, Austria. E-mail: danupon@cc.gatech.edu. Part of this work done while at
Georgia Institute of Technology.

†Google Research, Google Inc., Mountain View, USA. E-mail: dassarma@google.com.
‡Division of Mathematical Sciences, Nanyang Technological University, Singapore 637371 and Department of Com-

puter Science, Brown University, Providence, RI 02912, USA. E-mail: gopalpandurangan@gmail.com. Supported in
part by NSF grant CCF-1023166 and by a grant from the United States-Israel Binational Science Foundation (BSF).

1

http://arxiv.org/abs/1102.2906v2
danupon@cc.gatech.edu
dassarma@google.com
gopalpandurangan@gmail.com

constructing random spanning trees [6, 3, 2], distributed construction of expander networks [24],
and peer-to-peer membership management [16, 32]. For more applications of random walks to
distributed networks, see e.g. [11]. Motivated by the wide applicability of the random walk, [10, 11]
consider the running time of performing a random walk on the synchronous distributed model. We
now explain the model and problems before describing previous work and our results.

1.1 Distributed Computing Model

Consider a synchronous network of processors with unbounded computational power. The network
is modeled by an undirected connected n-node multi-graph, where nodes model the processors and
edges model the links between the processors. The processors (henceforth, nodes) communicate by
exchanging messages via the links (henceforth, edges). The nodes have limited global knowledge, in
particular, each of them has its own local perspective of the network (a.k.a graph), which is confined
to its immediate neighborhood.

There are several measures to analyze the performance of algorithms on this model, a fun-
damental one being the running time, defined as the worst-case number of rounds of distributed
communication. This measure naturally gives rise to a complexity measure of problems, called the
time complexity. On each round at most O(log n) bits can be sent through each edge in each di-
rection. This is a standard model of distributed computation known as the CONGEST model [29]
and has been attracting a lot of research attention during last two decades (e.g., see [29] and the
references therein). We note that our result also holds on the CONGEST (B) model, where on
each round at most B bits can be sent through each edge in each direction (see the remark after
Theorem 1.1). We ignore this parameter to make the proofs and theorem statements simpler.

1.2 Problems

The basic problem is computing a random walk where destination outputs source, defined as follows.
We are given a network G = (V,E) and a source node s ∈ V . The goal is to devise a distributed
algorithm such that, in the end, some node v outputs the ID of s, where v is a destination node
picked according to the probability that it is the destination of a random walk of length ℓ starting
at s. We assume the standard random walk where, in each step, an edge is taken from the current
node v with probability proportional to 1/d(v) where d(v) is the degree of v. Our goal is to output
a true random sample from the ℓ-walk distribution starting from s.

For clarity, observe that the following naive algorithm solves the above problem in O(ℓ) rounds.
The walk of length ℓ is performed by sending a token for ℓ steps, picking a random neighbor in
each step. Then, the destination node v of this walk outputs the ID of s. The main objective
of distributed random walk problem is to perform such sampling with significantly less number of
rounds, i.e., in time that is sublinear in ℓ. On the other hand, we note that it can take too much time
(as much as Θ(|E|+D) time) in the CONGEST model to collect all the topological information at
the source node (and then computing the walk locally).

The following variations were also previously considered.

1. Computing a random walk where source outputs destination: The problem is almost the same
as above except that, in the end, the source has to output the ID of the destination. This
version is useful in nodes learning the topology of their surrounding networks and related
applications such as a decentralized algorithm for estimating the mixing time [11].

2. Computing a random walk where nodes know their positions: Instead of outputting the ID of
source or destination, we want each node to know its position(s) in the random walk. That
is, if v1, v2, ..., vℓ (where v1 = s) is the result random walk starting at s, we want each node vj

2

in the walk to know the number j at the end of the process. This version is used to construct
a random spanning tree in [11].

1.3 Previous work and our result

A key purpose of the random walk in many network applications is to perform node sampling. While
the sampling requirements in different applications vary, whenever a true sample is required from
a random walk of certain steps, typically all applications perform the walk naively — by simply
passing a token from one node to its neighbor: thus to perform a random walk of length ℓ takes
time linear in ℓ. Das Sarma et al. [10] showed this is not a time-optimal strategy and the running
time can be made sublinear in ℓ, i.e., performing a random walk of length ℓ on an n-node network
of diameter D can be done in Õ(ℓ2/3D1/3) time where Õ hides polylog n. Subsequently, Das Sarma
et al. [11] improved this bound to Õ(

√
ℓD +D) which holds for all three versions of the problem.

There are two key motivations for obtaining sublinear time bounds. The first is that in many
algorithmic applications, walks of length significantly greater than the network diameter are needed.
For example, this is necessary in two applications presented in [11], namely distributed computation
of a random spanning tree (RST) and computation of mixing time. More generally, many real-
world communication networks (e.g., ad hoc networks and peer-to-peer networks) have relatively
small diameter, and random walks of length at least the diameter are usually performed for many
sampling applications, i.e., ℓ >> D.

The second motivation is understanding the time complexity of distributed random walks. Ran-
dom walk is essentially a global problem which requires the algorithm to “traverse” the entire
network. Classical “global” problems include the minimum spanning tree, shortest path etc. Net-
work diameter is an inherent lower bound for such problems. Problems of this type raise the basic
question whether n (or ℓ as the case here) time is essential or is the network diameter D, the inherent
parameter. As pointed out in the seminal work of [17], in the latter case, it would be desirable to
design algorithms that have a better complexity for graphs with low diameter. While both upper
and lower bounds of time complexity of many “global” problems are known (see, e.g., [9]), the status
of the random walk problem is still wide open.

A preliminary attempt to show a random walk lower bound is presented in [11]. They consider
a restricted class of algorithms, where each message sent between nodes must be in the form of
an interval of numbers. Moreover, a node is allowed to send a number or an interval containing it
only after it receives such number. For this very restricted class of algorithms, a lower bound of
Ω(

√
ℓ+D) is shown [11] for the version where every node must know their positions in the end of

the computation. While this lower bound shows a potential limitation of random walk algorithms,
it has many weaknesses. First, it does not employ an information theoretic argument and thus does
not hold for all types of algorithm. Instead, it assumes that the algorithms must send messages
as intervals and thus holds only for a small class of algorithms, which does not even cover all
deterministic algorithms. Second, the lower bound holds only for the version where nodes know
their position(s), thereby leaving lower bounds for the other two random walk versions completely
open. More importantly, there is still a gap of

√
D between lower and upper bounds, leaving a

question whether there is a faster algorithm.
Motivated by these applications, past results, and open problems, we consider the problem of

finding lower bounds for random walk computation. In this work, we show an unconditional lower
bound of Ω(

√
ℓD+D) for all three versions of the random walk computation problem. This means

that the algorithm in [11] is optimal for all three variations. In particular, we show the following
theorem.

Theorem 1.1. For any n, D and ℓ such that D ≤ ℓ ≤ (n/(D3 log n))1/4, there exists a family of
n-node networks of diameter D such that performing a random walk (any of the three versions) of

3

length Θ(ℓ) on these networks requires Ω(
√
ℓD +D) rounds.

We note that our lower bound of Ω(
√
ℓD+D) also holds for the general CONGEST (B) model,

where each edge has bandwidth B instead of O(log n), as long as ℓ ≤ (n/(D3B))1/4. Moreover, one
can also show a lower bound on simple graphs by subdividing edges in the network used in the proof
and double the value of ℓ.

1.4 Techniques and proof overview

Our main approach relies on enhancing the connection between communication complexity and dis-
tributed algorithm lower bounds first studied in [9]. It has been shown in [9] that a fast distributed
algorithm for computing a function can be converted into a two-party communication protocol with
small message complexity to compute the same function. In other words, the communication com-
plexity lower bounds implies the time complexity lower bounds of distributed algorithms. This result
is then used to prove lower bounds on many verification problems. (In the verification problems,
we are given H, a subgraph of the network G, where each vertex of G knows which edges incident
on it are in H. We would like to verify whether H has some properties, e.g., if it is a tree or if it
is connected.) The lower bounds of verification problems are then used to prove lower bounds of
approximation algorithms for many graph problems. Their work, however, does not make progress
on achieving any unconditional lower bound on the random walk problem.

Further, while this approach has been successfully used to show lower bounds for several problems
in terms of network size (i.e., n), it is not clear how to apply them to random walk computation.
All the lower bounds previously shown are for optimization problems for well-defined metrics - for
e.g. computing a minimum spanning tree. Random walk computation, on the other hand, is not
deterministic; the input requires parameters such as the length of the walk ℓ and even if the source
node and ℓ are fixed, the solution (i.e. the walk) is not uniquely determined. While even other
problems, such as MST, can have multiple solutions, for optimization problems, verification is well-
defined. It is not clear what it even means to verify whether a random walk is correct. For this
reason, proving a lower bound of random walk computation through verification problems seems
impossible.

Additionally, in terms of the theoretical bound we obtain, a key difficulty in our result is to
introduce the graph parameter diameter (i.e., D) into the lower bound multiplied by ℓ. A crucial
shortcoming in extending previous work in this regard is that the relationship between communica-
tion complexity and distributed computing shown in [9] does not depend on the network diameter D
at all. In fact, such a relationship might not exist since the result in [9] is tight for some functions.

To overcome these obstacles, we consider a variation of communication complexity called r-round
two-party communication complexity, which has been successfully used in, e.g., circuit complexity
and data stream computation (see, e.g., [15, 28]). We obtain a new connection showing that a fast
distributed algorithm for computing a function can be converted to a two-party communication
protocol with a small message complexity and number of rounds to compute the same function.
Moreover, the larger the network diameter is, the smaller the number of rounds will be. To obtain
this result one need to deal with a more involved proof; for example, the new proof does not seem
to work for the networks previously considered [9, 14, 22, 26, 30] and thus we need to introduce a
new network called G(Γ, κ,Λ) (which is essentially an extension of the network F 2

m in [30]). This
result and related definitions are stated and proved in Section 2.

A particular communication complexity result that we will use is that of Nisan and Wigder-
son [28] for the r-round pointer chasing problem. Using the connection established in Section 2, we
derive a lower bound of any distributed algorithms for solving the pointer chasing problem on a
distributed network. This result is in Section 3.

4

Finally, we prove Theorem 1.1 from the lower bound result in Section 3. The main idea, which
was also used in [11], is to construct a network that has the same structure as G(Γ, κ,Λ) (thus has
the same diameter and number of nodes) but different edge capacities (depending on the input) so
that a random walk follows a desired path (which is unknown) with high probability. This proof is
in Section 4.

2 From bounded-round communication complexity to distributed

algorithm lower bounds

Consider the following problem. There are two parties that have unbounded computational power.
Each party receives a b-bit string, for some integer b ≥ 1, denoted by x̄ and ȳ in {0, 1}b. They both
want to together compute f(x̄, ȳ) for some function f : {0, 1}b × {0, 1}b → R. At the end of the
computation, the party receiving ȳ has to output the value of f(x̄, ȳ). We consider two models of
communication.

• r-round direct communication: This is a variant of the standard model in communication
complexity (see [28] and references therein). Two parties can communicate via a bidirectional
edge of unlimited bandwidth. We call the party receiving x̄ Alice, and the other party Bob.
Two parties communicate in rounds where each round Alice sends a message (of any size) to
Bob followed by Bob sending a message to Alice.

• Communication through network G(Γ, κ,Λ): Two parties are distinct nodes in a distributed
network G(Γ, κ,Λ), for some integers Γ and Λ and real κ; all networks in G(Γ, κ,Λ) have
Θ(κΓΛκ) nodes and a diameter of Θ(κΛ). (This network is described below.) We denote the
nodes receiving x̄ and ȳ by s and t, respectively.

We consider the public coin randomized algorithms under both models. In particular, we assume
that all parties (Alice and Bob in the first model and all nodes in G(Γ, κ,Λ) in the second model)
share a random bit string of infinite length. For any ǫ ≥ 0, we say that a randomized algorithm
A is ǫ-error if for any input, it outputs the correct answer with probability at least 1 − ǫ, where
the probability is over all possible random bit strings. In the first model, we focus on the message
complexity, i.e., the total number of bits exchanged between Alice and Bob, denoted by Rr−cc−pub

ǫ (f).

In the second model, we focus on the running time, denoted by R
G(Γ,κ,Λ),s,t
ǫ (f).

Before we describe G(Γ, κ,Λ) in detail, we note the following characteristics which will be used
in later sections. An essential part of G(Γ, κ,Λ) consists of Γ paths, denoted by P1, . . . ,PΓ and
nodes s and t (see Fig. 2). Every edge induced by this subgraph has infinitely many copies (in other
words, infinite capacity). (We let some edges to have infinitely many copies so that we will have
a freedom to specify the number of copies later on when we prove Theorem 1.1 in Section 4. The
leftmost and rightmost nodes of each path are adjacent to s and t respectively. Ending nodes on the
same side of the path (i.e., leftmost or rightmost nodes) are adjacent to each other. The following
properties of G(Γ, κ,Λ) follow from the construction of G(Γ, κ,Λ) described in Section 2.2.

Lemma 2.1. For any Γ ≥ 1, κ ≥ 1 and Λ ≥ 2, network G(Γ, κ,Λ) has Θ(ΓκΛκ) nodes. Each of
its path Pi has Θ(κΛκ) nodes. Its diameter is Θ(κΛ).

Proof. It follows from the construction of G(Γ, κ,Λ) in Section 2.2 that the number of nodes in each

path Pi is
∑⌈κ⌉Λ⌊κ⌋

j=−⌈κ⌉Λ⌊κ⌋ φ
′
j = Θ(κΛκ) (cf. Eq. (3)). Since there are Γ paths, the number of nodes in

all paths is Θ(ΓκΛκ). Each highway Hi has 2⌈κ⌉Λi+1 nodes. Therefore, there are
∑⌊κ⌋

i=1(2⌈κ⌉Λi+1)

5

nodes in the highways. For Λ ≥ 2, the last quantity is Θ(⌈κ⌉Λ⌊κ⌋). Hence, the total number of
nodes is Θ(ΓκΛκ).

To analyze the diameter of G(Γ, κ,Λ), observe that each node on any path Pi can reach a node
in highway H⌊κ⌋ by traveling through O(κΛ) nodes in Pi. Moreover, any node in highway Hi can
reach a node in highway Hi−1 by traveling trough O(Λ) nodes in Hi. Finally, there are O(κΛ) nodes
in H1. Therefore, every node can reach any other node in O(κΛ) steps by traveling through H1.
Note that this upper bound is tight since the distance between s and t is Ω(κΛ).

The rest of this section is devoted to prove Theorem 2.3 which strengthens Theorem 3.1 in [9].
Recall that Theorem 3.1 in [9] states that if there is a fast ǫ-error algorithm for computing function
f on any network G(Γ, κ,Λ), then there is a fast ǫ-error algorithm for Alice and Bob to compute f ,
as follows1.

Theorem 2.2 (Theorem 3.1 in [9]). Consider any integers Γ ≥ 1, Λ ≥ 2, real κ ≥ 1 and function

f : {0, 1}b × {0, 1}b → R. Let r = R
G(Γ,κ,Λ),s,t
ǫ (f). For any b, if r ≤ κΛκ then f can be computed

by a direct communication protocol using at most (2κ log n)r communication bits in total. In other
words,

R∞−cc−pub
ǫ (f) ≤ (2κ log n)RG(Γ,κ,Λ),s,t

ǫ (f) .

The theorem above does not try to optimize number of rounds used by direct communication pro-

tocols. In fact, a closer look into the proof of Theorem 3.1 in [9] reveals that Θ̃((2κ log n)R
G(Γ,κ,Λ),s,t
ǫ (f))

rounds of communication are used.
Theorem 2.3 stated below strengthens the above theorem by making sure that the number of

rounds needed in the direct communication is small. In particular, it says that if there is a fast
ǫ-error algorithm for computing function f on any network G(Γ, κ,Λ), then there is a fast bounded-
round ǫ-error algorithm for Alice and Bob to compute f . More importantly, the number of rounds
depends on the diameter of G(Γ, κ,Λ) (which is Θ(κΛ)), i.e., the larger the network diameter, the
smaller the number of rounds.

Theorem 2.3. Consider any integers Γ ≥ 1, Λ ≥ 2, real κ ≥ 1 and function f : {0, 1}b×{0, 1}b → R.

Let r = R
G(Γ,κ,Λ),s,t
ǫ (f). For any b, if r ≤ κΛκ then f can be computed by a 8r

κΛ-round direct
communication protocol using at most (2κ log n)r communication bits in total. In other words,

R
8R

G(Γ,κ,Λ),s,t
ǫ (f)

κΛ
−cc−pub

ǫ (f) ≤ (2κ log n)RG(Γ,κ,Λ),s,t
ǫ (f) .

2.1 Preliminary: the network F (Γ, κ,Λ)

Before we describe the construction of G(Γ, κ,Λ), we first describe a network called F (Γ, κ,Λ) which
is a slight modification of the network FK

m introduced in [30]. In the next section, we show how we
modify F (Γ, κ,Λ) to obtain G(Γ, κ,Λ).

G(Γ, κ,Λ) has three parameters, a real κ ≥ 1 and two integers Γ ≥ 1 and Λ ≥ 2.2 The two basic
units in the construction of F (Γ, κ,Λ) are highways and paths.

1Note that Theorem 3.1 in [9] is in fact stated on a graph different from G(Γ, κ,Λ) but its proof can be easily
adapted to prove Theorem 2.2.

2Note that we could restrict κ to be an integer here since F (Γ, κ,Λ) = F (Γ, κ′,Λ) for any Λ, Γ, κ and κ′ such that
⌊κ⌋ = ⌊κ′⌋. However, we will need κ to be a real when we define G(Γ, κ,Λ) so we allow it to be a real here as well to
avoid confusion.

6

PSfrag replacements

H1

H2

P1

P2

PΓ

v
1 −

1
2
,
1

v1
−12,2

v1
−∞

v
2 −

1
2
,
1

v2
−12,2

v2
−∞

v
Γ −

1
2
,
1

vΓ
−12,2

vΓ
−∞

v1
12,2

v2
12,2

vΓ
12,2

v
1 1
2
,
1

v
2 1
2
,
1

v
Γ 1
2
,
1

v1
∞

vΓ
∞

s t

h1
−12 h1

−10 h1
−2

h1
0 h1

2
h1
10 h1

12

h2
−12

h2
−11 h2

−10
h2
−9 h2

−2
h2
−1 h2

0
h2
1 h2

2
h2
9 h2

10
h2
11 h2

12

S9,1

S7,1

S
−9,5

S
−9,4

Mτ+1(h1
−10, h

1
−8)

Mτ+1(h2
−10, h

2
−9)

Figure 1: An example of F (Γ, κ,Λ) where Λ = 2 and 2 ≤ κ < 3.

Highways. There are ⌊κ⌋ highways, denoted by H1, H2, . . ., H⌊κ⌋. The highway Hi is a path of
2⌈κ⌉Λi + 1 nodes, i.e.,

V (Hi) = {hi0, hi±Λ⌊κ⌋−i , h
i
±2Λ⌊κ⌋−i , h

i
±3Λ⌊κ⌋−i , . . . , h

i
±⌈κ⌉ΛiΛ⌊κ⌋−i}

E(Hi) = {(hi
−(j+1)Λ⌊κ⌋−i , h

i
−jΛ⌊κ⌋−i), (h

i
jΛ⌊κ⌋−i , h

i
(j+1)Λ⌊κ⌋−i) | 0 ≤ j < ⌈κ⌉Λi} .

We connect the highways by adding edges between nodes of the same subscripts, i.e., for any
0 < i ≤ ⌊κ⌋ and −⌈κ⌉Λi ≤ j ≤ ⌈κ⌉Λi, there is an edge between hi

jΛ⌊κ⌋−i and hi+1
jΛ⌊κ⌋−i.

For any j 6= 0, let

φj = 1 if j = 0, and φ′
j = Λ otherwise. (1)

We use φ′
j to specify the number of nodes in the paths (defined next), i.e., each path will have

∑⌈κ⌉Λ⌊κ⌋

j=−⌈κ⌉Λ⌊κ⌋ φ
′
j nodes. Note that

⌈κ⌉Λ⌊κ⌋
∑

j=−⌈κ⌉Λ⌊κ⌋

φ′
j = (2⌈κ⌉Λ⌊κ⌋ + 1)Λ = Θ(κΛ⌊κ⌋+1). (2)

Paths. There are Γ paths, denoted by P1,P2, . . . ,PΓ. To construct each path, we first construct

its subpaths as follows. For each node h
⌊κ⌋
j in H⌊κ⌋ and any 0 < i ≤ Γ, we create a subpath of Pi,

denoted by Pi
j , having φ′

j nodes. Denote nodes in Pi
j in order by vij,1, v

i
j,2, . . . , v

i
j,φ′

j
. We connect these

paths together to form Pi
j , i.e., for any j ≥ 0, we create edges (vij,φ′

j
, vij+1,1) and (vi−j,φ′

−j
, vi−(j+1),1).

Let
vi−∞ = vi

−⌈κ⌉Λ⌊κ⌋,φ′

−⌈κ⌉Λ⌊κ⌋
and vi∞ = vi

⌈κ⌉Λ⌊κ⌋,φ′

⌈κ⌉Λ⌊κ⌋
.

These two nodes can be thought of as the leftmost and rightmost nodes of path Pi. We connect the
paths together by adding edges between the leftmost (rightmost, respectively) nodes in the paths,
i.e., for any i and i′, we add edges (vi−∞, vi

′

−∞) ((vi∞, vi
′

∞), respectively).

We connect the highways and paths by adding an edge from each node h
⌊κ⌋
j to vij,1. We also

create nodes s and t and connect s (t, respectively) to all nodes vi−∞ (vi∞, respectively). See Fig. 1
for an example.

7

PSfrag replacements

H1

H2

P1

P2

PΓ

v
1 −

1
2
,
1

v
1 −

1
2
,
2

v1
−∞

v
2 −

1
2
,
1

v
2 −

1
2
,
2

v2
−∞

v
Γ −

1
2
,
1

v
Γ −

1
2
,
2

vΓ
−∞

v
1 1
2
,
2

v
2 1
2
,
2

v
Γ 1
2
,
2

v
1 1
2
,
1

v
2 1
2
,
1

v
Γ 1
2
,
1

v1
∞

vΓ
∞

s t

h1
−12 h1

−10 h1
−2 h1

0
h1
2

h1
10 h1

12

h2
−12

h2
−11 h2

−10
h2
−9 h2

−2
h2
−1 h2

0
h2
1 h2

2
h2
9 h2

10
h2
11 h2

12

S9,1

S7,1

S
−9,5

S
−9,4

Mτ+1(h1
−10, h

1
−8)

Mτ+1(h2
−10, h

2
−9)

Figure 2: An example of G(Γ, κ,Λ) where κ = 2.5 and Λ = 2. The dashed edges (in red) have one copy while other
edges have infinitely many copies. Note that φ′

10 = 4 and thus there are 4 nodes in each subpath Pi
10, for all i. Note

also that φ′
10 is less than φ10 which is 6.

2.2 Description of G(Γ, κ,Λ)

We now modify F (Γ, κ,Λ) to obtain G(Γ, κ,Λ). Again, G(Γ, κ,Λ) has three parameters, a real
κ ≥ 1 and two integers Γ ≥ 1 and Λ ≥ 2. The two basic units in the construction of G(Γ, κ,Λ)
are highways and paths. The highways are defined in exactly the same way as before. The main
modification is the definition of φ′ (cf. Eq. (1)) which affects the number of nodes in the subpaths
Pi
j of each path Pi.

Definition of φ′. First, for a technical reason in the proof of Theorem 2.3, we need φ′
j to be small

when |j| is small. Thus, we define the following notation φ. For any j, define

φj =

⌊ |j|
Λ⌊κ⌋−1

⌋

+ 1 .

Note that φj can be viewed as the number of nodes in H1 with subscripts between 0 and j, i.e.,

φj =

{

|{h1j′ | 0 ≤ j′ ≤ j}| if j ≥ 0

|{h1j′ | j ≤ j′ ≤ 0}| if j < 0 .

We now define φ′ as follows. For any j ≥ 0, let

φ′
j = φ′

−j = min

φj ,max(1, ⌈⌈κ⌉Λκ⌉ −
∑

j′>j

φj′)

.

The reason we define φ′ this way is that we use it to specify the number of nodes in the paths
(as described in the previous section) and we want to be able to control this number precisely. In
particular, while each path Pi in F (Γ, κ,Λ) has Θ(κΛ⌊κ⌋+1) nodes (cf. Eq. (2)), the number of nodes
in each path in G(Γ, κ,Λ) is

⌈κ⌉Λ⌊κ⌋
∑

j=−⌈κ⌉Λ⌊κ⌋

φ′
j = Θ(κΛκ). (3)

We need this precision so that we can deal with any value of ℓ when we prove Theorem 1.1 in
Section 4.

8

Finally, we make infinite copies of every edge except highway edges, i.e., those in ∪⌊κ⌋
i=1E(Hi). (In

other words, we make them have infinite capacity). As mentioned earlier, we do this so that we will
have a freedom to specify the number of copies later on when we prove Theorem 1.1 in Section 4.
Observe that if Theorem 2.3 then it also holds when we set the numbers of edge copies in G(Γ, κ,Λ)
to some specific numbers. Fig. 2 shows an example of G(Γ, κ,Λ).

2.3 Terminologies

For any numbers i, j, i′, and j′, we say that (i′, j′) ≥ (i, j) if i′ > i or (i′ = i and j′ ≥ j). For any
−⌈κ⌉Λ⌊κ⌋ ≤ i ≤ ⌈κ⌉Λ⌊κ⌋ and 1 ≤ j ≤ φ′

i, define the (i, j)-set as

Si,j =

{

{hxi′ | 1 ≤ x ≤ κ, i′ ≤ i} ∪ {vxi′,j′ | 1 ≤ x ≤ Γ, (i, j) ≥ (i′, j′)} ∪ {s} if i ≥ 0

{hxi′ | 1 ≤ x ≤ κ, i′ ≥ i} ∪ {vxi′,j′ | 1 ≤ x ≤ Γ, (−i, j) ≥ (−i′, j′)} ∪ {r} if i < 0 .

See Fig. 3 for an example. For convenience, for any i > 0, let

Si,0 = Si−1,φ′
i−1

and S−i,0 = S−(i−1),φ′
−(i−1)

,

and, for any j, let

S⌈κ⌉Λ⌊κ⌋+1,j = S⌈κ⌉Λ⌊κ⌋,φ′

⌈κ⌉Λ⌊κ⌋
and S−⌈κ⌉Λ⌊κ⌋−1,j = S−⌈κ⌉Λ⌊κ⌋,φ′

−⌈κ⌉Λ⌊κ⌋
.

Let A be any deterministic distributed algorithm run on G(Γ, κ,Λ) for computing a function f .
Fix any input strings x̄ and ȳ given to s and t respectively. Let ϕA(x̄, ȳ) denote the execution of
A on x̄ and ȳ. Denote the state of the node v at the end of time τ during the execution ϕA(x̄, ȳ)
by σA(v, τ, x̄, ȳ). Let σA(v, 0, x̄, ȳ) be the state of the node v before the execution ϕA(x̄, ȳ) begins.
Note that σA(v, 0, x̄, ȳ) is independent of the input if v /∈ {s, t}, depends only on x̄ if v = s and
depends only on ȳ if v = t. Moreover, in two different executions ϕA(x̄, ȳ) and ϕA(x̄

′, ȳ′), a node
reaches the same state at time τ (i.e., σA(v, τ, x̄, ȳ) = σA(v, τ, x̄

′, ȳ′)) if and only if it receives the
same sequence of messages on each of its incoming links.

For a given set of nodes U = {v1, . . . , vℓ} ⊆ V , a configuration

CA(U, τ, x̄, ȳ) =< σA(v1, τ, x̄, ȳ), . . . , σA(vℓ, τ, x̄, ȳ) >

is a vector of the states of the nodes of U at the end of time τ of the execution ϕA(x̄, ȳ). From
now on, to simplify notations, when A, x̄ and ȳ are clear from the context, we use Cτ

i,j to denote
CA(Si,j, τ, x̄, ȳ).

2.4 Proof of Theorem 2.3

Let G = G(Γ, κ,Λ). Let f be the function in the theorem statement. Let Aǫ be any ǫ-error
distributed algorithm for computing f on G. Fix a random string r̄ used by Aǫ (shared by all nodes
in G) and consider the deterministic algorithm A run on the input of Aǫ and the fixed random
string r̄. Let TA be the worst case running time of algorithm A (over all inputs). We only consider
TA ≤ κΛκ, as assumed in the theorem statement. We show that Alice and Bob, when given r̄ as the
public random string, can simulate A using (2κ log n)TA communication bits in 8TA/(κΛ) rounds,
as follows. (We provide an example in the end of this section.)

9

PSfrag replacements

H1

H2

P1

P2

PΓ

v
1 −

1
1
,
4

v
1 −

1
1
,
5

S1,1

v
2 −

1
1
,
4

v
2 −

1
1
,
5

v2
−∞

v
Γ −

1
1
,
4

v
Γ −

1
1
,
5

vΓ
−∞

v
1 1
1
,
1

v
2 1
1
,
1

v
Γ 1
1
,
1

v
1 9
,
1

v
2 9
,
1

v
Γ 9
,
1

S
−11,0 = S

−10,4

vΓ
∞

s t

h1
−12 h1

−10 h1
−2 h1

0
h1
2

h1
10 h1

12

h2
−12

h2
−11 h2

−10
h2
−9 h2

−2
h2
−1 h2

0
h2
1 h2

2
h2
9 h2

10
h2
11 h2

12

S11,1

S9,1
S
−11,6

S
−11,5

M8(h1
−12, h

1
−10)

M8(h2
−12, h

2
−11)

Figure 3: An example of round 11 in the proof of Theorem 2.3 (see detail in Example 2.6).

Rounds, Phases, and Iterations. For convenience, we will name the rounds backward, i.e.,
Alice and Bob start at round ⌈κ⌉Λ⌊κ⌋ and proceed to round ⌈κ⌉Λ⌊κ⌋ − 1, ⌈κ⌉Λ⌊κ⌋ − 2, and so on.
Each round is divided into two phases, i.e., when Alice sends messages and Bob sends messages
(recall that Alice sends messages first in each iteration). Each phase of round r is divided into φ′

r

iterations. Each iteration simulates one round of algorithm A. We call the ith iteration of round r
when Alice (Bob, respectively) sends messages the iteration Ir,A,i (Ir,B,i, respectively). Therefore,
in each round r we have the following order of iterations: Ir,A,1, Ir,A,2, . . ., Ir,A,φ′

r
, Ir,B,1, . . ., Ir,B,φ′

r
.

For convenience, we refer to the time before communication begins as round ⌈κ⌉Λ⌊κ⌋ + 1 and let
Ir,A,0 = Ir+1,A,φ′

r+1
and Ir,B,0 = Ir+1,B,φ′

r+1
.

Our goal is to simulate one round of algorithm A per iteration. That is, after iteration Ir,B,i

finishes, we will finish the (
∑⌈κ⌉Λ⌊κ⌋

r′=r+1 φ′
r′ + i)th round of algorithm A. Specifically, we let

tr =

⌈κ⌉Λ⌊κ⌋
∑

r′=r+1

φ′
r′

and our goal is to construct a protocol with properties as in the following lemma.

Lemma 2.4. There exists a protocol such that there are at most κ log n bits sent in each iteration
and satisfies the following properties. For any r ≥ 0 and 0 ≤ i ≤ φ′

r,

1. after Ir,A,i finishes, Alice and Bob know Ctr+i
r−iΛ⌊κ⌋−1,1

and Ctr+i
−r,φ′

−r−i, respectively, and

2. after Ir,B,i finishes, Alice and Bob know Ctr+i
r,φ′

r−i and Ctr+i
−r+iΛ⌊κ⌋−1,1

, respectively.

Proof. We first argue that the properties hold for iteration I⌈κ⌉Λ⌊κ⌋+1,A,0, i.e., before Alice and Bob

starts communicating. After round r = ⌈κ⌉Λ⌊κ⌋ starts, Alice can compute C0
r+1,0 = C0

r+1,1 = C0
r,φ′

r

which contains the states of all nodes in G(Γ, κ,Λ) except t. She can do this because every node
except s and t has the same state regardless of the input and the state of s depends only on her
input string x̄. Similarly, Bob can compute C0

−(r+1),0 = C0
−(r+1),1 = C0

r,φ′
r
which depends only on

his input ȳ.
Now we show that, if the lemma holds for any iteration Ir,A,i−1 then it also holds for iteration

Ir,A,i as well. Specifically, we show that if Alice and Bob know Ctr+i−1
r−(i−1)Λ⌊κ⌋−1,1

and Ctr+i−1
−r,φ′

−r−(i−1),

respectively, then they will know Ctr+i
r−iΛ⌊κ⌋−1,1

and Ctr+i
−r,φ′

−r−i
, respectively, after Alice sends at most

κ log n messages.

10

First we show that Alice can compute Ctr+i
r−iΛ⌊κ⌋−1,1

without receiving any message from Bob.

Recall that Alice can compute Ctr+i
r−iΛ⌊κ⌋−1,1

if she knows

• Ctr+i−1
r−iΛ⌊κ⌋−1,1

, and

• all messages sent to all nodes in Sr−iΛ⌊κ⌋−1,1 at time tr + i of algorithm A.

By assumption, Alice knows Ctr+i−1
r−(i−1)Λ⌊κ⌋−1,1

which implies that she knows Ctr+i−1
r−iΛ⌊κ⌋−1,1

since

Sr−iΛ⌊κ⌋−1,1 ⊆ Sr−(i−1)Λ⌊κ⌋−1,1 .

Moreover, observe that all neighbors of all nodes in Sr−iΛ⌊κ⌋−1,1 are in Sr−(i−1)Λ⌊κ⌋−1,1. Thus, Alice
can compute all messages sent to all nodes in Sr−iΛ⌊κ⌋−1,1 at time tr + i of algorithm A. Therefore,

Alice can compute Ctr+i
r+iΛ⌊κ⌋−1,1

without receiving any message from Bob.

Now we show that Bob can compute Ctr+i
−r,φ′

−r−i
by receiving at most κ log n bits from Alice and

use the knowledge of Ctr+i−1
−r,φ′

−r−i+1
. Note that Bob can compute Ctr+i

−r,φ′
−r−i

if he knows

• Ctr+i−1
−r,φ′

−r−i
, and

• all messages sent to all nodes in S−r,φ′
−r−i at time tr + i of algorithm A.

By assumption, Bob knows Ctr+i−1
−r,φ′

−r−i+1
which implies that he knows Ctr+i−1

−r,φ′
−r−i

since S−r,φ′
−r−i ⊆

S−r,φ′
−r−i+1. Moreover, observe that all neighbors of all nodes in S−r,φ′

−r−i are in S−r,φ′
−r−i+1, except

h
⌊κ⌋
−(r+1), h

⌊κ⌋−1
−(⌊r/Λ⌋+1), . . . , h

⌊κ⌋−i
−(⌊r/Λi⌋+1)

, . . . , h1
−(⌊r/Λ⌊κ⌋−1⌋+1)

.

In other words, Bob can compute all messages sent to all nodes in S−r,φ′
−r−i at time tr + i except

M tr+i(h
⌊κ⌋
−(r+1), h

⌊κ⌋
−r), . . . ,M

tr+i(h
⌊κ⌋−i
−(⌊r/Λi⌋+1)

, h
⌊κ⌋−i
−⌊r/Λi⌋

), . . . ,M tr+i(h1
−(⌊r/Λ⌊κ⌋−1⌋+1)

, h1
−(⌊r/Λ⌊κ⌋−1⌋

)

where M tr+i(u, v) is the message sent from u to v at time tr + i of algorithm A. Observe further
that Alice can compute these messages because she knows Ctr+i−1

r−(i−1)Λ⌊κ⌋−1,1
which contains the states

of

h
⌊κ⌋
−(r+1), . . . , h

⌊κ⌋−i
−(⌊r/Λi⌋+1)

, . . . , h1
−(⌊r/Λ⌊κ⌋−1⌋+1)

at time tr + i− 1. (In particular, Ctr+i−1
r−(i−1)Λ⌊κ⌋−1,1

is a superset of Ctr+i−1
0,1 which contains the states

of h
⌊κ⌋
−(r+1), . . ., h

1
−(⌊r/Λ⌊κ⌋−1⌋+1)

.) So, Alice can send these messages to Bob and Bob can compute

Ctr+i
−r,φ′

−r−i
at the end of the iteration. Each of these messages contains at most log n bits since each

of them corresponds to a message sent on one edge. Therefore, Alice sends at most κ log n bits to
Bob in total. This shows the first property.

After Alice finishes sending messages, the two parties will switch their roles and a similar protocol
can be used to show that the second property, i.e., if the lemma holds for any iteration Ir,B,i−1

then it also holds for iteration Ir,B,i as well. That is, if Alice and Bob know Ctr+i−1
r,φ′

r−(i−1) and

Ctr+i−1
−r+(i−1)Λ⌊κ⌋−1,1

, respectively, then Bob can send κ log n bits to Alice so that they can compute

Ctr+i
r,φ′

r−i and Ctr+i
−r+iΛ⌊κ⌋−1,1

, respectively.

11

Let P be the protocol as in Lemma 2.4. Alice and Bob will run protocol P until round r′, where
r′ is the largest number such that tr′ +φ′

r′ ≥ TA. Lemma 2.4 implies that after iteration Ir′,B,TA−tr′
,

Bob knows
C

t−r′+TA−tr′

−r′,φ′
−r′

−TA+tr′
= CTA

−r′,φ′
−r′

−TA+tr′

(note that φ′
−r′ − TA + tr′ ≥ 0). In particular, Bob knows the state of node t at time TA, i.e., he

knows σA(t, TA, x̄, ȳ). Thus, Bob can output the output of A which is output from t.
Since Aǫ is ǫ-error, the probability (over all possible shared random strings) that A outputs the

correct value of f(x̄, ȳ) is at least 1 − ǫ. Therefore, the communication protocol run by Alice and
Bob is ǫ-error as well. The number of rounds is bounded as in the following claim.

Claim 2.5. If algorithm A finishes in time TA ≤ ⌈κ⌉Λκ then r′ > ⌈κ⌉Λκ − 8TA/(⌈κ⌉Λ). In other
words, the number of rounds Alice and Bob need to simulate A is 8TA/(⌈κ⌉Λ)

Proof. Let R∗ = 8TA/(⌈κ⌉Λ) and let r∗ = Λ⌊κ⌋ −R∗ +1. Assume for the sake of contradiction that
Alice and Bob need more than R∗ rounds. This means that r′ < r∗. Alice and Bob requiring more
than R∗ rounds implies that

⌈κ⌉Λ⌊κ⌋
∑

r=r∗

φ′
r = tr∗ + φ′

r∗ < TA ≤ ⌈κ⌉Λκ . (4)

It follows that for any r ≥ r∗,

φ′
r = min

(

φ(hk
′

r),max(1, ⌈⌈κ⌉Λκ⌉ −
∑

r′>r

φr′)

)

(5)

= φr (6)

=
⌊ r

Λ⌊κ⌋−1

⌋

+ 1 (7)

where Eq. (5) follows from the definition of φ′
r, Eq. (6) is because

∑

r≥r∗ φ
′
r < ⌈κ⌉Λκ, and Eq. (7)

is by the definition of φr. Therefore, the total number of steps that can be simulated by Alice and
Bob up to round r∗ is

⌈κ⌉Λ⌊κ⌋
∑

r=r∗

φ′
r =

⌈κ⌉Λ⌊κ⌋
∑

r=r∗

(⌊ r

Λ⌊κ⌋−1

⌋

+ 1
)

≥ Λ⌊κ⌋−1

⌊R∗/Λ⌊κ⌋−1⌋
∑

i=1

(⌈κ⌉Λ − i)

≥ Λ⌊κ⌋−1 · ⌊R
∗/Λ⌊κ⌋−1⌋(⌈κ⌉Λ − 1)

2

≥ R∗⌈κ⌉Λ
8

≥ TA

contradicting Eq. (4).

Since there are at most κ log n bits sent in each iteration and Alice and Bob runs P for TA

iterations, the total number of bits exchanged is at most (2κ log n)TA. This completes the proof of
Theorem 2.3.

12

Example 2.6. Fig. 3 shows an example of the protocol we use above. Before iteration I11,A,1 begins,
Alice and Bob know C7

11,1 and C7
−11,5, respectively (since Alice and Bob already simulated A for

φ′
12 = 7 steps in round 12). Then, Alice computes and sends M8(h2−12, h

2
−11) and M8(h1−12, h

1
−10)

to Bob. Alice and Bob then compute C8
11,1 and C8

−11,6, respectively, at the end of iteration I11,A,1.
After they repeat this process for five more times, i.e. Alice sends

M9(h2−12, h
2
−11),M

10(h2−12, h
2
−11), . . . ,M

13(h2−12, h
2
−11), and

M9(h1−12, h
1
−10),M

10(h1−12, h
1
−10), . . . ,M

13(h1−12, h
1
−10) ,

Bob will be able to compute C13
−11,0 = C13

−10,4. Note that Alice is able to compute C8
9,1, C

9
7,1, . . ., C

12
1,1

without receiving any messages from Bob so she can compute and send the previously mentioned
messages to Bob.

3 The pointer chasing problem

In this section, we define the pointer chasing problem and prove its lower bound (Lemma 3.2) which
will be used to prove Theorem 1.1 in the next section.

Informally, the r-round pointer chasing problem has parameters r and m and there are two
players, which could be Alice and Bob or nodes s and t, who receive functions fA : [m] → [m] and
fB : [m] → [m], respectively. The goal is to compute a function starting from 1 and alternatively
applying fA and fB for r times each, i.e., compute fB(. . . fA(fB(fA))) where fA and fB appear r
times each. To be precise, let Fm be the set of functions f : [m] → [m]. For any i ≥ 0 define
gi : Fm ×Fm → [m] inductively as

g0(fA, fB) = 1 and

gi(fA, fB)

{

fA(g
i−1(fA, fB)) if i > 0 and i is odd,

fB(g
i−1(fA, fB)) if i > 0 and i is even.

Also define function pc
i,m(fA, fB) = g2i(fA, fB). The goal of the r-round pointer chasing problem

is to compute pc
r,m(fA, fB).

Observe that if Alice and Bob can communicate for r rounds then they can compute pc
r,m

naively by exchanging O(r logm) bits. Interestingly, Nisan and Wigderson [28] show that if Alice
and Bob are allowed only r− 1 rounds then they essentially cannot do anything better than having
Alice sent everything she knows to Bob.3

Theorem 3.1. [28] R
(r−1)−cc−pub
1/3 (pcr,m) = Ω(m/r2 − r logm).

The pointer chasing problem on G(Γ, κ,Λ). We now consider the pointer chasing problem on
network G(Γ, κ,Λ) where s and t receive fA and fB respectively. The following lemma follows from
Theorem 2.3 and 3.1.

Lemma 3.2. For any κ, Γ, Λ ≥ 2, m ≥ κ2Λ4κ log n, 16Λκ−1 ≥ r > 8Λκ−1, R
G(Γ,κ,Λ),s,t
1/3 (pcr,m) =

Ω(κΛκ).

3In fact this holds even when Alice and Bob are allowed r rounds but Alice cannot send a message in the first
round.

13

Proof. Let r = R
G(Γ,κ,Λ),s,t
1/3 (pcr,m). If r > κΛκ then we are done so we assume that r ≤ κΛκ. Thus,

r ≥
R

8R
G(Γ,κ,Λ),s,t
1/3

(pc
r,m

)

κΛ
−cc−pub

1/3 (pcr,m)

(2κ log n)
(8)

≥
R

8κΛκ

κΛ
−cc−pub

1/3 (pcr,m)

(2κ log n)
(9)

= Ω(
(m(8Λκ−1)−2 − 8Λκ−1 logm)

(κ log n)
) (10)

= Ω(κΛκ) (11)

where Eq. (8) is by Theorem 2.3 and the fact that r ≤ κΛκ, Eq. (9) uses the fact that the commu-

nication does not increase when we allow more rounds and R
G(Γ,κ,Λ),s,t
1/3 (pcr,m) ≤ κΛκ, Eq. (10)

follows from Theorem 3.1 with the fact that 16Λκ−1 ≥ r > 8Λκ−1 and Eq. (11) is because
m ≥ κ2Λ4κ log n.

4 Proof of the main theorem

In this section, we prove Theorem 1.1. An Ω(D) lower bound has already been shown (and is fairly
straightforward) in [10]; so we focus on showing the Ω(

√
ℓD) lower bound. Moreover, we will prove

the theorem only for the version where destination outputs source. This is because we can convert
algorithms for the other two version to solve this version by adding O(D) rounds. To see this,
observe that once the source outputs the ID of the destination, we can take additional O(D) rounds
to send the ID of the source to the destination. Similarly, if nodes know their positions, the node
with position ℓ can output the source’s ID by taking additional O(D) rounds to request for the
source’s ID. Theorem 1.1, for the case where destination outputs source, follows from the following
lemma.

Lemma 4.1. For any real κ ≥ 1 and integers Λ ≥ 2, and Γ ≥ 32κ2Λ6κ−1 log n, there exists a family
of networks H such that any network H ∈ H has Θ(κΓΛκ) nodes and diameter D = Θ(κΛ), and any
algorithm for computing the destination of a random walk of length ℓ = Θ(Λ2κ−1) requires Ω(

√
ℓD)

time on some network H ∈ H.

Proof. We show how to compute pc
r,m on G = G(Γ, κ,Λ) by reducing the problem to the problem

of sampling a random walk destination in some network HfA,fB , obtained by restrict the number
of copies of some edges in G, depending on input functions fA and fB. We let H be the family of
network HfA,fB over all input functions. Note that for any input functions, an algorithm on HfA,fB

can be run on G with the same running time since every edge in G has more capacity than its
counterpart in HfA,fB .

Let r = 16Λκ−1 and m = κ2Λ5κ log n. Note that 2rm ≤ Γ. For any i ≤ r and j ≤ m, let

Si,j = P2(i−1)m+j and T i,j = P2(i−1)m+m+j .

That is, S1,1 = P1, . . ., S1,m = Pm, T 1,1 = Pm+1, . . ., T 1,m = P2m, S2,1 = P2m+1, . . ., T r,m = P2rm.
Let L be the number of nodes in each path. Note that L = Θ(κΛκ) by Lemma 2.1. Denote the

nodes in Si,j from left to right by si,j1 , . . . , si,jL . (Thus, si,j1 = v
2(i−1)m+j
−∞ and si,jL = v

2(i−1)m+j
∞ .)

Also denote the nodes in T i,j from right to left by ti,j1 , . . . , ti,jL . (Thus, ti,j1 = v
2(i−1)m+m+j
∞ and

14

ti,jL = v
2(i−1)m+m+j
−∞ .) Note that for any i and j, si,j1 and ti,jL are adjacent to s while si,jL and ti,j1 are

adjacent to t.
Now we construct HfA,fB . For simplicity, we fix input functions fA and fB and denote HfA,fB

simply by H. To get H we let every edge in G have one copy (thus with capacity O(log n)), except
the following edges. For any i ≤ r, j ≤ m, and x < L, we have (6Γℓ)2(i−1)L+x copies of edges
between nodes si,jx and si,jx+1 and (6Γℓ)2(i−1)L+L+x copies of edges between nodes ti,jx and ti,jx+1. Note
that these numbers of copies of edges are always the same, regardless of the input fA and fB.

Additionally, we have the following numbers of edges which depend on the input functions.
First, s specifies the following number of edges between its neighbors. For any i ≤ r, j ≤ m, we

have (6Γℓ)2(i−1)L+L copies of edges between nodes ti,jL and s
i,fA(j)
1 . These numbers of edges can be

specified in one round since both si,j1 and t
i,fA(j)
L are adjacent to s. Similarly, we have (6Γℓ)2(i−1)L+2L

copies of edges between nodes ti,j1 and s
i+1,fB(j)
L which can be done in one round since both nodes

are adjacent to t. This completes the description of H.
Now we use any random walk algorithm to compute the destination of a walk of length ℓ =

2rL− 1 = Θ(Λ2κ−1) on H by starting a random walk at s
1,f(A)
1 . If the random walk destination is

tr,jL for some j, then node t outputs the number j; otherwise, node t outputs an arbitrary number.
Now observe the following claim.

Claim 4.2. Node t outputs pc
r,m(fA, fB) with probability at least 2/3.

Proof. Let P ∗ be the path consisting of nodes s
1,fA(1)
1 , . . ., s

1,fA(1)
L , t

1,fB(fA(1))
1 , . . ., t

1,fB(fA(1))
L ,

s
1,fA(fB(fA(1)))
1 , . . ., s

i,g2i−1(fA,fB)
L , t

i,g2i(fA,fB)
1 , . . ., t

r,g2r(fA,fB)
L . We claim that the random walk will

follow path P ∗ with probability at least 2/3. The node of distance (2rL − 1) from s
1,fA(1)
1 in this

path is t
r,g2r(fA,fB)
L = t

r,pcr,m(1)
L and thus the algorithm described above will output pcr,m(1) with

probability at least 2/3.
To prove the above claim, consider any node u in path P ∗. Let u′ and u′′ be the node before

and after u in P ∗, respectively. Let m′ and m′′ be the number of multiedges (u, u′) and (u, u′′),
respectively. Observe that m′′ ≥ 6Γℓm′. Moreover, observe that there are at most Γ edges between
u and other nodes. Thus, if a random walk is at u, it will continue to u′′ with probability at least
1 − 1

3ℓ . By union bound, the probability that a random walk will follow P ∗ is at least 1 − 1
3 , as

claimed.

Thus, if there is any random walk algorithm with running time O(T) on all networks in H then
we can use such algorithm to solve pcr,m (with error probability 1/3) in time O(T). Using the lower
bound of computing solving pc

r,m in Lemma 3.2, the random walk computation also has a lower
bound of Ω(κΛκ) = Ω(

√
ℓD) as claimed.

To prove Theorem 1.1 with the given parameters n, D and ℓ, we simply set Λ and κ so that
κΛ = D and Λ2κ−1 = Θ(ℓ). This choice of Λ and κ exists since ℓ ≥ D. Setting Γ large enough so
that Γ ≥ 32κ2Λ6κ−1 log n while Γ = Θ(n). (This choice of Γ exists since ℓ ≤ (n/(D3 log n))1/4.) By
applying the above lemma, Theorem 1.1 follows.

5 Conclusion

In this paper we prove a tight unconditional lower bound on the time complexity of distributed
random walk computation, implying that the algorithm in [11] is time optimal. To the best of our
knowledge, this is the first lower bound that the diameter plays a role of multiplicative factor. Our
proof technique comes from strengthening the connection between communication complexity and

15

distributed algorithm lower bounds initially studied in [9] by associating rounds in communication
complexity to the distributed algorithm running time, with network diameter as a trade-off factor.

There are many open problems left for random walk computation. One interesting open problem
is showing a lower bound of performing a long walk. We conjecture that the same lower bound of
Ω̃(

√
ℓD) holds for any ℓ = O(n). However, it is not clear whether this will hold for longer walks.

For example, one can generate a random spanning tree by computing a walk of length equals the
cover time (using the version where every node knows their positions) which is O(mD) where m is
the number of edges in the network (see detail in [11]). It is interesting to see if performing such a
walk can be done faster. Additionally, the upper and lower bounds of the problem of generating a
random spanning tree itself is very interesting since its current upper bound of Õ(

√
mD) [11] simply

follows as an application of random walk computation [11] while no lower bound is known. Another
interesting open problem prove the lower bound of Ω̃(

√
KℓD) for some value of ℓ for the problem

of performing K walks of length ℓ.
In light of the success in proving distributed algorithm lower bounds from communication com-

plexity in this and the previous work [9], it is also interesting to explore further applications of
this technique. One interesting approach is to show a connection between distributed algorithm
lower bounds and other models of communication complexity, such as multiparty and asymmetric
communication complexity (see, e.g., [23]). One particular interesting research topic is applying this
technique to distance-related problems such as shortest s-t path, single-source distance computation,
and all-pairs shortest path. The lower bound of Ω(

√
n) are shown in [9] for these types of problems.

It is interesting to see if there is an O(
√
n)-time algorithm for these problems (or any sub-linear time

algorithm) or a time lower bound of ω(
√
n) exists. The special cases of these problems on complete

graphs (as noted in [13]) are particularly interesting. Besides these problems, there are still some
gaps between upper and lower bounds of problems considered in [9] such as the minimum cut and
generalized Steiner forest.

References

[1] Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A. Huberman. Search in
power-law networks. Physical Review, 64, 2001.

[2] H. Baala, O. Flauzac, J. Gaber, M. Bui, and T. El-Ghazawi. A self-stabilizing distributed
algorithm for spanning tree construction in wireless ad hoc networks. J. Parallel Distrib.
Comput., 63(1):97–104, 2003.

[3] Judit Bar-Ilan and Dror Zernik. Random leaders and random spanning trees. In Proceedings
of the 3rd International Workshop on Distributed Algorithms, pages 1–12, London, UK, 1989.
Springer-Verlag.

[4] Thibault Bernard, Alain Bui, and Olivier Flauzac. Random distributed self-stabilizing struc-
tures maintenance. In ISSADS, pages 231–240, 2004.

[5] Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mercury: supporting scalable
multi-attribute range queries. In SIGCOMM, pages 353–366, 2004.

[6] Andrei Z. Broder. Generating random spanning trees. In FOCS, pages 442–447, 1989.

[7] Brian F. Cooper. Quickly routing searches without having to move content. In IPTPS, pages
163–172, 2005.

16

[8] Don Coppersmith, Prasad Tetali, and Peter Winkler. Collisions among random walks on a
graph. SIAM J. Discret. Math., 6(3):363–374, 1993.

[9] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Pan-
durangan, David Peleg, and Roger Wattenhofer. Distributed Verification and Hardness of
Distributed Approximation. In STOC, 2011.

[10] Atish Das Sarma, Danupon Nanongkai, and Gopal Pandurangan. Fast distributed random
walks. In PODC, pages 161–170, 2009.

[11] Atish Das Sarma, Danupon Nanongkai, Gopal Pandurangan, and Prasad Tetali. Efficient
distributed random walks with applications. In PODC, pages 201–210, 2010.

[12] Shlomi Dolev and Nir Tzachar. Spanders: distributed spanning expanders. In SAC, pages
1309–1314, 2010.

[13] Michael Elkin. Distributed approximation: a survey. SIGACT News, 35(4):40–57, 2004.

[14] Michael Elkin. An Unconditional Lower Bound on the Time-Approximation Trade-off for the
Distributed Minimum Spanning Tree Problem. SIAM J. Comput., 36(2):433–456, 2006. Also
in STOC’04.

[15] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang 0004.
Graph Distances in the Data-Stream Model. SIAM J. Comput., 38(5):1709–1727, 2008. Also
in SODA’05.

[16] Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié. Peer-to-peer membership
management for gossip-based protocols. IEEE Trans. Comput., 52(2):139–149, 2003.

[17] Juan A. Garay, Shay Kutten, and David Peleg. A Sublinear Time Distributed Algorithm for
Minimum-Weight Spanning Trees. SIAM J. Comput., 27(1):302–316, 1998. Also in FOCS ’93.

[18] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Hybrid search schemes for unstructured
peer-to-peer networks. In INFOCOM, pages 1526–1537, 2005.

[19] Amos Israeli and Marc Jalfon. Token management schemes and random walks yield self-
stabilizing mutual exclusion. In PODC, pages 119–131, 1990.

[20] David Kempe, Jon M. Kleinberg, and Alan J. Demers. Spatial gossip and resource location
protocols. In STOC, pages 163–172, 2001.

[21] Jon M. Kleinberg. The small-world phenomenon: an algorithmic perspective. In STOC, pages
163–170, 2000.

[22] Liah Kor, Amos Korman, and David Peleg. Tight bounds for distributed mst verification. In
STACS, pages 69–80, 2011.

[23] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
New York, NY, USA, 1997.

[24] Ching Law and Kai-Yeung Siu. Distributed construction of random expander networks. In
INFOCOM, 2003.

[25] Dmitri Loguinov, Anuj Kumar, Vivek Rai, and Sai Ganesh. Graph-theoretic analysis of struc-
tured peer-to-peer systems: routing distances and fault resilience. In SIGCOMM, pages 395–
406, 2003.

17

[26] Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for constant diameter graphs.
Distributed Computing, 18(6):453–460, 2006. Also in PODC’01.

[27] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and replication in unstruc-
tured peer-to-peer networks. In ICS, pages 84–95, 2002.

[28] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SIAM J.
Comput., 22(1):211–219, 1993. Also in STOC’91.

[29] David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2000.

[30] David Peleg and Vitaly Rubinovich. A Near-Tight Lower Bound on the Time Complexity
of Distributed Minimum-Weight Spanning Tree Construction. SIAM J. Comput., 30(5):1427–
1442, 2000. Also in FOCS’99.

[31] Ming Zhong and Kai Shen. Random walk based node sampling in self-organizing networks.
Operating Systems Review, 40(3):49–55, 2006.

[32] Ming Zhong, Kai Shen, and Joel I. Seiferas. Non-uniform random membership management in
peer-to-peer networks. In INFOCOM, pages 1151–1161, 2005.

18

	1 Introduction
	1.1 Distributed Computing Model
	1.2 Problems
	1.3 Previous work and our result
	1.4 Techniques and proof overview

	2 From bounded-round communication complexity to distributed algorithm lower bounds
	2.1 Preliminary: the network F(, ,)
	2.2 Description of G(, ,)
	2.3 Terminologies
	2.4 Proof of Theorem 2.3

	3 The pointer chasing problem
	4 Proof of the main theorem
	5 Conclusion

