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Abstract. Accurate representation of the turbulent exchange of carbon, water, and heat between the land surface and the 

atmosphere is critical for modelling global energy, water, and carbon cycles, both in future climate projections and weather 40 

forecasts. We describe a Model Intercomparison Project (MIP) that compares the surface turbulent heat flux predictions of 
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around 20 different land models provided with in-situ meteorological forcing, evaluated with measured surface fluxes using 

quality-controlled data from 170 eddy-covariance based flux tower sites. 

 

Several out-of-sample empirical model predictions of site fluxes are used as benchmarks to quantify the degree to which land 45 

model performance could improve across a broad range of metrics. The performance discrepancy between empirical and 

mechanistic model predictions also provides a potential pathway to understand sources of model error. Sites with unusual 

behaviour, complicated processes, poor data quality or uncommon flux magnitude will be more difficult to predict for both 

mechanistic and empirical models. 

 50 

Results suggest that latent heat flux and net ecosystem exchange of CO2 are better predicted by land models than sensible heat 

flux, which at least conceptually would appear to have fewer physical processes controlling it. Land models that are 

implemented in Earth System Models also appear to perform notably better than stand-alone ecosystem (including 

demographic) models, at least in terms of the fluxes examined here.  

 55 

Flux tower data quality is also explored as an uncertainty source, with the difference between energy-balance corrected versus 

raw fluxes examined, as well as filtering for low wind speed periods. Land model performance does not appear to improve 

with energy-balance corrected data, and indeed some results raised questions about whether the correction process itself was 

appropriate. In both cases results were broadly consistent, with simple out-of-sample empirical models, including linear 

regression, comfortably outperforming mechanistic land models. The PLUMBER2 approach, and its openly available data, 60 

enable precise isolation of the locations and conditions in which model developers can know that a given land model can 

improve, allowing information pathways and discrete parametrisations in models to be identified and targeted for model 

development. 

1 Introduction 

Land models (LMs) simulate terrestrial water, energy and biogeochemical cycles. They simulate the exchange of heat and 65 

moisture with the atmosphere inside weather forecast models, soil moisture and streamflow in hydrological and agricultural 

applications, ecological dynamics and carbon exchange in ecosystem modelling, and most of these processes combined inside 

climate models. The fidelity of LM simulations is therefore consequential economically, socially and environmentally. 

 

Given these LM applications, we have reason to ask ‘what makes a good land model?’ Too often, our answer has been 70 

something akin to “the best performing model”, or anything “better than the previous version” of a model. These are 

unsatisfactory answers for a number of reasons, not least that both discount the possibility that all the models we have are poor 

or unfit for a given application. The key question is “How can we do better?”  
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Model benchmarking, as opposed to model evaluation, requires setting expectations of model performance a priori, before we 75 

know how well our model performs. There are obviously many different ways we could choose to do this. We may require 

qualitative performance improvement relative to a simpler model, for example. Or, if a model’s application is well known, and 

threshold levels of performance in particular metrics can decide what is sufficient, then the answer is relatively clear - a model 

is good enough when these thresholds are met. Yet this approach still only tells us about the suitability of the model for a given 

application, rather than understand whether we have a good model per se. What a ‘good model’ means, without a given 80 

application seems like an entirely subjective question, but we suggest this should relate to the fidelity of its representation, 

given its complexity. 

  

Perhaps the most universal approach to answering this broader question is to understand whether a model does a good job of 

utilising the information that is available to it for prediction (in its input time series, parameters and initial states). A ‘perfect 85 

model’ with all required driving variables would, for example, tell us exactly which aspects of observed site behaviour were 

predictable, and which were not - it would define predictability. But we might also imagine a ‘perfect model’ that is only 

provided with a subset of the required driving variables, and expect that it performs with less fidelity. It would still nevertheless 

define predictability, but conditional on only a subset of predictors being available.  We would, for example, expect that a LM 

would provide a more sophisticated prediction of evapotranspiration than a response to incoming shortwave radiation alone, 90 

since it contains information about soil moisture availability, soil temperature, vegetation and evaporative demand. This is the 

approach to defining utilisation of information by land models that has been most commonly used - comparing land models to 

a range of empirical models of increasing complexity, using in-sample empirical approaches to compare to land models 

calibrated on evaluation data (e.g. eddy covariance fluxes) and out-of-sample empirical approaches to compare to land models 

without calibration on evaluation data (e.g. Abramowitz, 2005; Best et al. 2015; Whitley et al., 2017). In our case, the best 95 

possible utilisation of information towards flux prediction at a flux tower site defines site predictability. 

 

The Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project 

(PLUMBER; Best et al. 2015; Haughton et al., 2016) explored some of these questions in the form of a model comparison 

experiment, using 20 flux tower sites and simulations at these sites from nine land surface models (LSMs), driven by half 100 

hourly meteorology measured at the sites. Here we detail an enhanced reincarnation of that experiment - PLUMBER2 - that 

offers a more comprehensive approach than the original experiment in a number of ways. 

 

Firstly, and perhaps most trivially, many of the assumptions and sample size issues in the first experiment are addressed in 

PLUMBER2. Data is taken from 170 flux tower sites, covering a much wider range of biomes with many more site-years of 105 

data, including several sites with much longer records (>10 years). Next, the data quality control process is considerably more 

thorough, documented and peer reviewed (see Ukkola et al., 2022). A much broader range of process-based land models (LMs; 

https://doi.org/10.5194/egusphere-2023-3084
Preprint. Discussion started: 17 January 2024
c© Author(s) 2024. CC BY 4.0 License.



4 
 

the term we’ll use to refer to all mechanistic, as opposed to empirical models) have participated, including LSMs (components 

of weather or climate models), ecosystem models (LMs focused on carbon dynamics) and hydrological models (LMs focused 

on the hydrological cycle). Finally, a couple of key data quality concerns are directly explored. Analyses and empirical 110 

approaches utilise both energy-balance corrected and raw observed fluxes, with both being compared. Next, the sensitivity of 

results to low turbulence periods (typically night-time) in flux data are also tested. The Methodology section explains how 

each of these points are addressed in more detail. 

 

Perhaps most importantly, at least in terms of understanding site predictability and the capacity for LM improvement, 115 

PLUMBER2 also includes a much more sophisticated hierarchy of empirical modelling approaches, from simple regression 

through to different machine learning techniques. These approaches allow us to try to quantify site predictability, by showing 

how much of a flux’s variability at a site can be predicted by empirical models (given the same input predictors as LMs) out-

of-sample - that have not been exposed to data from that site. The discrepancy in performance between these approaches and 

a LM can also help us understand the potential for LM improvement and, since the empirical models provide time series 120 

predictions akin to LM predictions, additionally identify the specific circumstances where the gap between LM predictions 

and predictability is greatest. 

 

This is also why, as in the original PLUMBER experiment, LMs were provided with a limited amount of site information and 

were not allowed to calibrate to testing site fluxes. The restriction is critical for two main reasons. First, we want to understand 125 

LMs’ fidelity in a global simulation, where this kind of calibration to local conditions is simply not possible, but key constraints 

like reference (measurement) height and vegetation type are (ideally) appropriately prescribed. Next, key to understanding 

whether we have a ‘good model’ is the generalisability of the model - the insight it provides about the system, and its 

applicability to systems other than those used to develop it. If a LM requires calibration to testing data to be useful, one could 

argue we are testing the fitting ability of the LM rather than the insight it provides, so that there may be little to distinguish it 130 

from machine learning and other empirical approaches that we already know will perform better (Abramowitz 2012; Beaudry 

and Renner, 2012; Best et al., 2015; Nearing et al., 2018). Out-of-sample testing for any model, even if only partly empirical, 

is key to understanding its predictive ability (see Abramowitz et al., 2019), especially when it needs to be applied globally.  

 

We also note that different modelling groups arrive at the default vegetation parameter values used for each vegetation type in 135 

different ways. While calibration to flux tower data is often part of that process, we clearly do not suggest that LMs and the 

empirical models used here are calibrated in the same way. It remains unclear what a strictly controlled comparison like that 

would deliver, if it were possible. It is also not clear how much benefit in-sample testing site calibration would deliver across 

the LM cohort shown here, relative to in-sample empirical models, although Abramowitz et al (2008) give us some indication. 

 140 
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The concept of generalisability applies as much to temporal change as to spatial change. Being able to predict systematic 

changes, like future system behaviour and trends in a changing climate, is clearly one key motivation for building LMs, and 

so any application to this kind of problem also has the same requirement for out-of-sample testing, especially in the absence 

of fidelity in present conditions. 

 145 

Since many of the LMs in this experiment are most often run at a global scale on coarse grids (typically 0.5-1°), it also seems 

reasonable to question whether an evaluation experiment using site-based data provides a fair test of models’ ability. There are 

obvious differences in the nature of fluxes at the site scale of the flux tower data (typically < 1km2) and the larger grid cell 

sizes used in a global simulation. Almost all LMs, however, are designed using leaf-scale or canopy-scale theories, and do not 

contain an explicit length scale that modifies simulation characteristics for the size of the grid cell. Indeed many of these LMs 150 

are being used within regional modelling frameworks at resolutions that approximate this flux tower fetch. There are also very 

real benefits at the site scale. When direct observations of meteorological forcing and fluxes are co-located, we have an ability 

to quantify uncertainties, and errors in measurements of meteorological forcing are relatively small. Flux tower sites allow us 

to ascribe simulation errors to LMs in a way that is just not possible at gridded scales, where meteorological inputs to LMs 

cannot be directly measured. Avoiding the ‘garbage in, garbage out’ problem, and ability to evaluate models at the time step 155 

size that they operate means that flux tower sites remain the data source that offers the best observational constraint for LM 

process evaluation. 

2 Methodology 

2.1 Flux tower data 

In contrast to the 20 sites used in the PLUMBER experiment (Best et al., 2015), models completed simulations at 170 flux 160 

tower sites for PLUMBER2. While detailed explanations of the motivation, processing steps and quality control of site data 

are given by Ukkola et al. (2022), a brief overview is given here. At the time of processing, the aim was to maximise the 

number of sites that met variable availability and quality control requirements, as well as having open-access data.  

 

FLUXNET2015, FLUXNET La Thuile Free-Fair-Use, and OzFlux collections were used as the starting point, and after 165 

processing with the FluxnetLSM package (Ukkola et al., 2017), it was ensured that sites: had reference (measurement) height, 

canopy height information and IGBP (International Geosphere–Biosphere Programme) vegetation type; whole years of data; 

and were not missing significant periods of key forcing variables (where gap-filling counted as missing), specifically incoming 

solar radiation (SWdown), air temperature (Tair), specific humidity (Qair) or precipitation (Rainf). Discerning thresholds in 

these variables was clearly subjective, but involved consideration of the proportion of time series with measured data, length 170 

of gaps, coincidence between variables, and ubiquity of site type - see Ukkola et al. (2022) for detail. 
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Gap-filling (including allowing 100% synthesised data) of downwelling longwave radiation (LWdown) used the approach 

from Abramowitz et al. (2012). Surface air pressure (PSurf) was based on elevation and temperature, and ambient CO2 was 

based on global values (Ukkola et al., 2022).  175 

 

Since most sites had no publicly available leaf area index (LAI) data, and none had time evolving LAI data, we specified a 

remotely-sensed LAI time series for each site to try to minimise differences between LMs. LMs that predict LAI would clearly 

not utilise this (Table 1). The LAI time series were derived from either MODIS (8-daily MCD15A2H product, 2002-2019) or 

Copernicus Global Land Service (monthly, 1999-2017), with one of these chosen for each site based on a site-by-site analysis 180 

considering plausibility and some in-situ data, and provided as a single value for each time step of meteorological forcing. 

Time-varying LAI was provided for the time period covered by the remotely-sensed products and otherwise a climatology was 

constructed from all available years. We note that some LMs utilised this LAI estimate for a single vegetation type simulation 

and others partitioned it in a mixed vegetation type representation. 

 185 

While all observational data contain measurement uncertainty, the issue of energy balance closure in flux tower data is 

particularly relevant in the context of this experiment. At a range of time scales, most sites do not obey the assumed equality 

of net radiation with the sum of latent heat flux, sensible heat flux and ground heat flux (see Wilson et al, 2002; Stoy et al, 

2013; Mauder et al, 2020; Moderow et al, 2021). We therefore need to be careful attributing model-observation mismatch to 

model error, since LMs are fundamentally constrained to conserve energy. 190 

 

The simplest approach to dealing with this issue is to correct flux tower data for closure, where sufficient data exist. Energy-

balance closure correction was part of the FLUXNET2015 release (the bulk of sites here) and we replicated this approach for 

sites from the other sources. Analyses below consider both raw and corrected latent and sensible heat fluxes, were conducted 

only on flux time steps that were not gap-filled, and were also run separately filtered by time steps with wind speed above 2 195 

ms-1 so that potential concerns about measurement fidelity in low turbulence periods (typically night time) could be 

investigated. 

 

The final forcing and evaluation files for all sites were ultimately produced in an updated version of ALMA NetCDF (Polcher 

et al., 1998; 2000), with CF-NetCDF standard name attributes and CMIP equivalent names included where possible. A 200 

complete list of these variables, as well as those requested in LM output, are shown in Table S1. Table S2 shows a complete 

site list, with each site’s included years, IGBP vegetation type, mean annual temperature (MAT) and precipitation (MAP), 

canopy height, reference height, elevation, chosen LAI representation, and references. Each tower site has a page on 

modelevaluation.org with more detail, including additional references, meta data, photographs and time series plots. We refer 

readers to Ukkola et al. (2022) for a global map showing site locations. Site vegetation types and distribution in MAP-MAT 205 

space are shown in Fig. S1. Their location on a Budyko style dryness index versus evaporative fraction plot (Budyko, 1974; 
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Chen and Sivapalan, 2020) is shown in Fig. S2a. It is typically assumed that all sites will lie below 1 on the horizontal axis 

(i.e. evapotranspiration will be less than precipitation) and to the right of the 1-1 line (potential evapotranspiration > 

evapotranspiration), with drier, water limited sites close to 1 on the horizontal axis on the right hand side and wetter, energy 

limited sites towards the bottom left hand side close to the 1-1 line. 210 

 

This is however clearly not true for these site data. To understand why this was the case, we first examined cumulative 

precipitation at each site, compared to an in-situ based gridded precipitation product - REGEN (Contractor et al, 2020) - and 

identified those sites that appeared anomalous. Clearly there are many good reasons why site-based precipitation might 

disagree with a gridded product, even if it were perfect. A subset of the sites were nevertheless identified as having precipitation 215 

data that was a priori not realistic, either because missing data had not been gap-filled (and was not flagged as missing, so 

precipitation flat lined), units had been reported incorrectly (e.g. US-SP1 appears to use inches rather than mm) or winter 

snowfall was apparently not included in precipitation totals (see Fig. S3). 16 sites were removed from the analysis as a result. 

These issues were unfortunately only identified after all modelling groups had completed their 170 site simulations, so the LM 

analyses below are conducted on the remaining 154 sites. 220 

 

While removing these sites did lessen the extent of the problem, it did not by any means solve it (see Fig. S2b - the same as 

Fig. S2a but with 154 instead of 170 sites). Next, we examined if using the entire time series for each site, instead of filtering 

out gap-filled time steps (Fig. S2a has gap-filled data removed) resulted in any qualitative change - it did not (see Fig. S2c). 

Finally, we investigated whether using energy-balance corrected fluxes had an impact. Fig. S2d shows that it did indeed have 225 

a marked effect - but the proportion of sites where evapotranspiration exceeds precipitation increased.  

 

Figures S2a-d reinforce how complicated the simulation task is for LMs, with around 30% of sites showing an average 

evapotranspiration exceeding average precipitation. Despite posing this as a data quality problem above, there are many sound, 

physically plausible reasons for this, such as hillslope or preferential flow, irrigation or groundwater access by vegetation. 230 

Needless to say, most LMs will simply be unable to reproduce this behaviour since these inputs and processes are usually not 

included. We discuss more about this issue, its influence on results and implications for LM evaluation in the Results and 

Discussion. 

2.2 Land model simulations 

The model simulation protocol was broadly similar to that of PLUMBER. Groups ran mechanistic LMs offline in single-site 235 

mode (as opposed to gridded simulations), forced by standardised, locally observed meteorology for the 170 sites. Simulations 

were requested as “out-of-the-box”, using default (usually vegetation type based) parameters for each site, as if the LMs were 

running a global simulation. Models used the IGBP vegetation type prescribed in each forcing file where possible, mapped to 

https://doi.org/10.5194/egusphere-2023-3084
Preprint. Discussion started: 17 January 2024
c© Author(s) 2024. CC BY 4.0 License.



8 
 

the PFT schemes used by each model. In addition, site canopy height and reference height (measurement / lowest atmospheric 

model layer height) were provided in each forcing file. No additional parameter information for sites was prescribed. 240 

 

The rationale for this setup was to try to understand the degree of fidelity in flux prediction that LMs provide in a well-

constructed global simulation (i.e. where meteorological forcing is as close as possible to being error-free and vegetation 

properties are appropriately represented by vegetation type), noting that different LMs had to adapt their representation 

approaches in slightly different ways to achieve this (e.g. some use mixed vegetation types to describe a single location). While 245 

we might ideally additionally like to ensure that LMs used an appropriate soil type for each site, these are not universally 

measured or available for all sites, so LMs used default types from their default global soil type grid. 

 

Different LMs require different periods of spin-up until model states reach an equilibrium, depending on whether or not they 

include a dynamic carbon (and/or nitrogen / phosphorus) cycle(s), vegetation or stand dynamics, and how this is implemented. 250 

For models where a simple soil temperature and moisture spin-up is sufficient (e.g. if LAI is prescribed rather than predicted), 

we suggested that model spin-up use the site forcing file and repeatedly simulate the entire period, for at least 10 years of 

simulation, before beginning a simulation on the first year of site data.  

 

For LMs with prognostic LAI and/or soil carbon(C), nitrogen (N), and phosphorous (P) pools, the process was more 255 

complicated. LM simulations were initialised with a spin-up routine resulting in equilibrium conditions of C stocks (and N and 

P if available) representing the year 1850. Climatic forcing for the spin-up came from the site eddy-covariance forcing file, 

which was continuously repeated. Atmospheric CO2 and N deposition levels representing the year 1850 were set to 285 ppm 

and 0.79 kg N ha-1 yr-1, respectively. The transient phase covered the period 1851 to the year prior the first year in the site 

data. LMs were forced with historical changes in atmospheric CO2 and N deposition, continually recycling the meteorological 260 

inputs. The meteorological time series was repeated intact rather than in a randomised way, to avoid splitting of the observed 

meteorological years at the end of each calendar year. This of course does not accurately replicate the land use history of 

different sites, but in most cases, detailed site level histories were not available. 

 

All models participating in PLUMBER2 are shown in Table 1. While some simulation setup information is included in the 265 

Notes column, more detailed information is available on the Model Output profile page for each set of simulations submitted 

to modelevaluation.org. While modelling groups were requested to report as many variables as possible from Table S1, the 

breadth of contributions were highly variable, so in an attempt to include all participants, analyses here focus on latent heat 

flux (Qle), sensible heat flux (Qh) and Net Ecosystem Exchange of CO2 (NEE) only. 

 270 
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In addition to the LMs, two ‘physical benchmarks’ were also included, as per Best et al. (2015) - an implementation of a 

Manabe bucket model (Manabe, 1969) and a Penman-Monteith model (Monteith and Unsworth, 1990) with a reference 

stomatal resistance and unrestricted water availability. 

 
Table 1: Participating models. Land surface models that are developed as part of a coupled modelling system are denoted as ‘climate’ 275 
or ‘weather’ in their Notes, depending on their default application being climate projection or weather forecasting, despite 

simulations in this experiment being uncoupled/offline. In each case, leaf area index (LAI) is either prescribed, computed by the 

model itself, or not used (NA). 

Model Institution LAI Notes Authors References 

BEPS LBL, USA Prescribed Ecosystem model; v4.01 (https://github.com/JChen-
UToronto/BEPS_hourly_site_4.02) 

XL Liu et al. (1997) 

CABLE UNSW 
Sydney / 
CLEX, 
Australia 

Prescribed Land surface model, climate; r8002; biophysics only, 
no C-N-P. 

MdK, 
AU 

Kowalczyk et al. 
(2006); Wang et al. 
(2011) 

CABLE-POP UWS / 
CSIRO, 
Australia 

Prescribed Land surface model, offline only. C-N cycle included. JK Haverd et al. (2013; 
2016; 2018) 

CHTESSEL  
(currently 
ECLand) 

ECMWF, 
UK 

Prescribed Land surface model, weather. 3 simulation sets, forced 
locally and with ERA5.  

DF, SB, 
GB 

van den Hurk et al. 
(2000); Balsamo et 
al. (2009); Dutra et 
al. (2010); Boussetta 
et al. (2013) 

CLM NCAR, 
USA 

Prescribed Land surface model, climate; v5.0.34 KO, DL Lawrence et al. 
(2019) 

ORCHIDEE2 LSCE/IPSL Computed Land surface model, climate and CO2 forcing.  
Model version used in CMIP6 (no C-N) 
 

XW-F, 
CO, PP, 
NV 

Krinner et al. (2005),  

ORCHIDEE3 LSCE/IPSL Computed Model version based on ORC2 but with Nitrogen cycle 
and C-N interactions 
 

XW-F, 
CO,PP, 
NV 

Vuichard et al.,( 
2019)  

JULES Met Office, 
UK 

Prescribed Land surface model, weather and climate. HR, MB Best et al. (2011); 
Clark et al. (2011) 

Manabe 
bucket 

Met Office, 
UK 

NA Mechanistic benchmark MB Manabe (1969) 

Penman 
Monteith PET 

Met Office, 
UK 

NA Mechanistic benchmark; estimate of potential 
evapotranspiration (PET) 

MB Monteith & 
Unsworth (1990) 
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GFDL NOAA 
GFDL, USA 

Computed Land surface model, climate  SM Dunne et al. (2020); 
Shevliakova et al. 
(2023) 

MATSIRO U Tokyo, 
Japan 

Prescribed Land surface model, climate  TN, HK MATSIRO6 
Document Writing 
Team (2021) 

STEMMUS - 
SCOPE 

U Twente, 
Netherlands 
/ Northwest 
Agriculture 
and Forestry 
U, China 

Prescribed Land surface model, offline only; R1.3.0 
(https://github.com/EcoExtreML/STEMMUS_SCOP
E) 

YZ, 
YW, BS 

Wang et al. (2021) 

EntTBM Yonsei U, 
Korea 

Prescribed Ecosystem model within the Earth System Modeling 
Framework (ESMF), coupled to the NASA Goddard 
Institute for Space Studies (GISS) GCM ModelE 

YK, KC Kim et al. (2015) 

SDGVM ORNL, USA 
/ University 
of Sheffield, 
UK 

Computed Ecosystem model; carbon cycle model 
(https://bitbucket.org/walkeranthonyp/sdgvm/) 

AW Woodward et al. 
(1995); Woodward 
& Lomas (2004); 
Walker et al. (2017) 

LPJ-GUESS KIT, 
Germany 

Computed Ecosystem model; v4.0, Lund svn branch plumber, 
r8913; Qle is based on estimated evaporative demand 
and modelled soil water supply; Qh estimated from 
Rnet minus Qle (Note: LWnet component of Rnet and 
hence Qh during polar night at high latitude (lat > 64) 
sites is erroneous).  

PA Smith et al. (2014) 

MuSICA INRAE, 
France 

Prescribed Ecosystem model; Revision 710844c, veg params 
from Cable-POP, soil texture from soilgrids.org and 
soil hydraulic params from Montzka et al. (ESSD 
2017) 

MC, JO Ogée et al. (2003); 
Gennaretti et al. 
(2020) 

QUINCY MPI BGC Computed Ecosystem model; SC, SZ Thum et al. (2019) 

Noah-MP 
 

NASA, U-
Albany 

Computed  V4.0.1; land surface model included in U.S. National 
Water Model and U.S. Unified Forecast System;  run 
in NASA-LIS v7.2r (Kumar et al., 2006) ISRIC 
SoilGrids v2017 250m soil texture (Hengl et al. 2017); 
Vegetation fraction prescribed as annual maximum of 
NOAA-NCEP 1985-1989 AVHRR-based monthly 
climatology 

CF Niu et al. (2011); He 
et al. (2023) 

Empirical: 
LSTM 

University 
of Alabama 

Prescribed Empirical benchmark; three sites out-of-sample at a 
time. Two versions created - one to predict raw fluxes 
and on to predict energy-balance corrected fluxes 

CB, JF, 
GN 

 

Empirical: RF UNSW 
Sydney / 
CLEX 
Australia  

Prescribed Empirical benchmark; one site out-of-sample at a time. 
Two versions created - one to predict raw fluxes and 
on to predict energy-balance corrected fluxes. 

SH, GA  
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Empirical: 
clustering  & 
regression 

UNSW 
Sydney / 
CLEX 
Australia  

NA Empirical benchmark; one site out-of-sample at a time. 
Two versions created of 1lin and 3km27 - one to 
predict raw fluxes and on to predict energy-balance 
corrected fluxes 

JCP, GA Abramowitz (2012),  
Haughton et al. 
(2018) 

 

 280 

2.3 Empirical machine learning based benchmarks 

The empirical models we use as benchmarks are also listed in Table 1. As suggested above, these are key to quantifying site 

predictability, and so setting benchmark levels of performance for LMs that reflect the varying difficulty or complexity of 

prediction at different sites, unknown issues with data quality at some sites and more broadly understanding the amount of 

information that LM inputs provide about fluxes. To do this meaningfully, all empirical models need to provide out-of-sample 285 

predictions. That is, every site simulation made by an empirical model here has not used that site’s data to build/train the 

empirical model, and so cannot be overfitted to the particular characteristics or noise from the site. If the site is unusual, or its 

data is poor, the empirical models will provide a poor simulation, thus setting a lower benchmark of performance for the LMs. 

 

A hierarchy of different empirical model approaches was used, firstly to avoid the eccentricities of a single technique or 290 

architecture, but more importantly, to give us an approximate equivalent level of performance for each LM within the 

hierarchy, as a way to rate its performance. Approximately from the simplest, with lowest performance expectations, to highest, 

these are: 

 

● 1lin: a simple linear regression of each flux against downward shortwave radiation (SWdown), using half hourly data, 295 

training on 169 sites and predicting on one, repeated 170 times, as per Abramowitz (2012) and Best et al. (2015). 

Two versions were created - one trained to predict raw fluxes (1lin_raw) and one trained to predict energy-balance 

corrected fluxes (1lin_eb). 

● 2lin:  a multiple linear regression of each flux using SWdown and air temperature (Tair) as predictors, using half 

hourly data, training on 169 sites and predicting on one, as per Abramowitz (2012) and Best et al. (2015). 300 

● 3km27: all site-timesteps of three predictors - SWdown, Tair and relative humidity (RH) - from 169 training sites are 

sorted into 27 clusters using k-means, and all site-timesteps in each cluster are used to establish multiple linear 

regression parameters against each flux for that cluster. Time steps at the prediction site are sorted into clusters based 

on proximity to cluster centres, and regression parameters for each cluster are then used to make predictions at the 

one remaining unseen, out-of-sample site, as per Abramowitz (2012) and Best et al. (2015). 27 clusters were chosen 305 

to approximately allow each predictor high, medium and low clusters: 33=27. Two versions were created - one to 

predict raw fluxes (3km27_raw) and one to predict energy-balance corrected fluxes (3km27_eb). 
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● 6km729: As per 3km27, but using six predictors - SWdown, Tair, RH, Wind, Precip, LWdown (see Table S1 for 

variable definitions) - and 729 k-means clusters, training on 169 sites and predicting on one, similar to Haughton et 

al. (2018). 729 clusters were chosen to approximately allow each predictor high, medium and low clusters: 36=729; 310 

● 6km729lag: As per 6km729, but with lagged Precip and Tair as additional predictors. These took the form of six 

additional predictors: mean Precip and Tair from the previous 1-7 days, 8-30 days and 31-90 days. Training on 169 

sites and predicting on one, similar to Haughton et al. (2018); 

● RF: A Random Forest model with Tair, SWdown, LWdown, Qair, Psurf, Wind, RH, CO2air, VPD, and LAI as 

predictors. These predictor variables are listed in order of variable importance. While Precip was originally included, 315 

it actually offered negative variable importance - suggesting that including Precip reliably degraded the empirical 

prediction out-of-sample. Training was on 169 sites and predicting on one out of sample, repeated 170 times. As a 

nominally more sophisticated empirical model than the cluster+regression approaches above, RF offers a lower bound 

estimate of predictability of fluxes from instantaneous conditions (no lags). Two versions were created - one to predict 

raw fluxes (RF_raw) and one to predict energy-balance corrected fluxes (RF_eb). 320 

● LSTM: A Long Short-Term Memory model given as much information as the LMs. Two types of input features were 

used for training: dynamic features (that change for each time step - CO2air, LWdown, Precip, Psurf, Qair, RH, 

SWdown, Tair, VPD, Wind and LAI - and static site attributes that are constant per site (MAT, range of annual MAT, 

MAP, mean LAI, range of annual LAI, elevation, canopy height, reference height, latitude, mean SWdown, PET and 

IGBP vegetation type). Training was on 167 sites and prediction was on the three remaining sites (randomly chosen), 325 

repeated to make out-of-sample predictions at all sites. A single LSTM was used to predict Qle, Qh and NEE 

simultaneously, to account for the fact that the three fluxes are all components of a highly coupled system. The LSTM 

provides a lower bound estimate of predictability of fluxes using both instantaneous and meteorological conditions 

and internal states based on them - a proxy for LM states. Two versions were created - one to predict raw fluxes 

(LSTM_raw) and one to predict energy-balance corrected fluxes (LSTM_eb). 330 

 

As noted above, all predictions made by empirical / machine learning models are out-of-sample at the site level which means 

that all of the data from the site being predicted is excluded from the training set for all the empirical models above. We also 

note that the 1lin, 3km27m, LSTM, and RF models made two separate sets of predictions of Qle and Qh: one when trained on 

the raw fluxes and one trained on the energy balance corrected fluxes. 335 

2.4 Analyses 

The dimensionality and complexity of the data resulting from this experiment obviously presents many options to interrogate 

the performance of LMs. Our analysis here focuses on a relatively high-level overview without any intention to be 

comprehensive - we anticipate that analysis of these simulations will extend well beyond this paper and will take some time. 
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Here we consider a few canonical approaches: mean flux variability, variable ratios such as evaporative fraction and water use 340 

efficiency (although using NEE rather than GPP), separation by vegetation type and viewing results in a Budyko curve context. 

 

Where possible, we try to (a) be summative, avoiding using any one metric or site at a time, and instead try to present results 

collectively across all site and an independent metric set, and (b) present LM performance relative to a benchmark, rather than 

using raw metric values. To better understand what we mean by this, let’s first look at the metrics we use, shown in Table 2. 345 

 
Table 2: The independent set of metrics used to assess aggregate performance. Metrics are calculated on all time steps (i=1,..,n) of 

observations (O) and each model (M) separately for each site. B is the number of bins used for density estimation, in this case 1024. 

Mean Bias Error (MBE) ∑ (#!$%!)"
!#$

'
  

Standard Deviation difference (SD) 
!1 −

(∑ ('!(')* +
"
!#$

"($

(∑ (,!(,)* +
"
!#$

"($

!  

Correlation Coefficient (r) 
1 − $ '∑ (%!#!)"

!#$ $(∑ %!"
!#$ ∑ #!

"
!#$ )

()' ∑ %!+"
!#$ $*∑ %!"

!#$ ++,)' ∑ #+!
"
!#$ $*∑ #!

"
!#$ ++,

%  

Normalised Mean Error (NME) ∑ |#!$%!|"
!#$
∑ |%. !$%!|"
!#$

  

5th percentile difference (5th) |𝑀/ −𝑂/| 

95th percentile difference (95th) |𝑀0/ −𝑂0/| 

Density estimate overlap percentage (PDF) 100	 −	 +12'34(#,%)6
	 . -∑ 𝑚𝑖𝑛(𝑀7, 𝑂7)6

789 5	. 1006  

 

 350 

This set of metrics is independent, in the sense that for a given observational time series, a change can be made to the model 

time series that will affect any one of these metrics without affecting the others. This is not true, for example, of RMSE and 

correlation. Metrics are calculated separately for each model at each site. 

 

Next, we combine the information we get from this independent metric set into a single performance measure. To do this, we 355 

first set a reference group of benchmark empirical models, and compare all LMs to this reference group. Suppose we wish to 

compare a given LM against 1lin, 3km27 and LSTM, for example. Then, for each metric (m), at each site and and for each 
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variable, we have metric values for the LM, 1lin, 3km27 and LSTM. We then define the normalised metric value (NMV) for 

this LM at this site, for this variable and metric, in one of two ways.  

 360 

First, staying with the broader approach used by Best et al. (2015), we define dependent NMV by including the LM in the 

metric range being normalised: 

 

𝑑𝑁𝑀𝑉!" = #!"	%	#&'(##$%&,#'()*+,	#!,-",#!")
#+,(##$%&,#'()*+,	#!,-",#!")	%		#&'(##$%&,#'()*+,	#!,-",#!")

     (1) 

 365 

So dependent NMV simply denotes where in the metric range of these 4 models the LM was, scaled to be between 0 and 1, 

with lower values representing better performance. This allows us to average NMV over metrics, sites, variables, vegetation 

types or other groupings to get an aggregate indication of performance. This is similar to the approach used in Best et al. 

(2015), except using the average of normalised metric values, rather than discrete metric value ranks. Using metric value ranks 

effectively forces even spacing of metric values, which can give misleading results, particularly in cases when some models’ 370 

metric values are clustered. 

 

The second approach, using an independent NMV, defines the normalised metric range using only the reference benchmark 

models: 

 375 

𝑖𝑁𝑀𝑉!" = #!"	%	#&'(##$%&,#'()*+,	#!,-")
#+,(##$%&,#'()*+,	#!,-")	%		#&'(##$%&,#'()*+,	#!,-")

     (2) 

 

Using this second approach, iNMV allows us to define lower and upper performance expectations to be independent of the LM 

being assessed. In this case we might expect that 1lin will typically have a value of 1 and LSTM 0, and the LM, if its 

performance lies between these two, will have a value somewhere in this interval. It also allows the LM to score a much lower 380 

value than zero, if it performs much better than the empirical models, and conversely, a value much larger than 1 if it is much 

worse. 

 

To illustrate why such a detailed approach to analysis is necessary, we now briefly show why some common heuristic measures 

of performance are inadequate. Figures S4, S5 and S6 (supplementary material) show the performance results of the 1lin model 385 

at the US-Me2 site, examining latent heat flux, sensible heat flux and NEE in three different common graphical performance 

measures. These are: the average diurnal cycle of NEE, shown for different seasons (Fig. S4); a smoothed time series of Qh 

(Fig. S5); and the average monthly values of Qle showing the evaporative seasonal cycle (Fig. S6). In most contexts, if these 

blue curves were plots of a LM’s performance, the reader would accept this as qualitative or even quantitative evidence of 

excellent LM performance. Yet these represent perhaps the simplest possible model - a simple linear regression against 390 
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shortwave, out-of-sample (trained on other sites only). They illustrate just how much site variability can be simply driven by 

instantaneous shortwave radiation, and that visual closeness of curves, and an ability to capture seasonal variability, diurnal 

variability and even interannual variability should not a priori be accepted as evidence of good model performance. 

 

As noted above, all analyses were filtered to exclude time steps at each site where observational flux data was flagged as 395 

missing or gap-filled. Analyses were half-hourly or hourly, depending on the reported time step size at each site, except for 

models that only reported monthly outputs, which were then analysed with monthly averages. All data management and 

analyses were conducted through https://modelevaluation.org  (see Abramowitz, 2012), and can be repeated there. The analysis 

codebase used for PLUMBER2 within https://modelevaluation.org is available at https://gitlab.com/modelevaluation/me.org-

r-library. 400 

3. Results 

Figure 1 shows the average latent heat flux (Qle) versus sensible heat flux (Qh), averaged across all sites for participating 

models that reported both of these variables. Dashed lines show a proxy for observed available energy (around 69 Wm-2, 

defined as Qle+Qh, assuming mean ground heat flux on longer time scales is zero) and observed Bowen ratio (around 0.7). 

Perhaps unsurprisingly, models differ most in their partitioning of surface energy (spread along the available energy axis) 405 

rather than amount of available energy (spread along the Bowen ratio axis), supporting previous findings (see Haughton et al, 

2016). Those LMs that do not operate in a coupled modelling system (i.e. coupled to an atmospheric model; EntTBM, LPJ-

GUESS, MuSICA, QUINCY, STEMMUS-SCOPE) also appear to have a much broader spread of estimates than those used 

in coupled models (they are furthest from the observed Bowen ratio in Fig. 1). 
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 410 
Figure 1: Average latent heat flux (Qle) versus average sensible heat flux (Qh) averaged over 154 sites, shown for all models that 

submitted both quantities. Dashed lines show observed constant values of average available energy (Qle+Qh) and average Bowen 

ratio (Qh/Qle) across the sites, using raw (as opposed to energy balance corrected) flux data. Light grey dots in the background 

represent individual site averages. 

 415 
When averaged across all sites, the LMs do not appear to show any clear systematic bias in energy partitioning relative to 

observations across the ensemble. Note that in Fig. 1 the observations do not have the Fluxnet2015 energy-balance correction 

applied (the equivalent figure using energy balance corrected fluxes is shown in Fig. S7a). Aside from showing a little more 

available energy (their mean is slightly offset from the observed available energy line, by less than 10%), the LMs are relatively 

evenly spread around the observational Bowen ratio. This lends little support to an argument of systematic observational bias 420 

in the partitioning of available energy. Perhaps unsurprisingly, observations, once energy-balance corrected, lie in amongst the 

empirical models trained to predict energy-balance corrected fluxes (the cluster of grey points with higher available energy in 
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Fig. 1 - see Fig. S7a). The average Bowen ratio increases slightly to 0.73 instead of 0.7 with energy-balance correction. Perhaps 

more interesting is that the corrected version of flux observations contains an average of 16 Wm-2 additional energy across 

these sites, about a 23% increase, and that this value sits much further outside the spread of modelled estimates of available 425 

energy than the observed value in Fig. 1. So in this metric at least (and indeed in more below), the LMs’ performance is not 

improved when energy-balance corrected flux data is used. In the discussion section we consider whether results in this paper 

might raise some doubt about whether the approach to energy balance correction used in Fluxnet2015 is ideal - further results 

below are somewhat mixed. We present results comparing with raw fluxes in the main part of this manuscript, with 

comparisons against energy-balance corrected data, where they qualitatively differ, shown in Supplementary Material. 430 

Similarly, when we filter analyses to only include time steps with wind speed above 2 ms-1 (Fig. S7b), the scatter of models in 

Fig. 1 changes surprisingly little. 

 
Figure 2: Average latent heat flux (Qle) versus average net ecosystem exchange of CO2 (NEE) averaged over 154 sites, shown for all 

models that submitted both quantities. The observed value is shown in black with crosshairs. Light grey dots in the background 435 
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represent individual observed site averages, with the linear fit between them shown in bold dashed grey. Regression lines are also 

shown for LMs showing a stronger fit than in the observed case (R2=0.19). 

 

Figure 2 is similar to Fig. 1, but shows average latent heat flux (Qle) versus Net Ecosystem Exchange of CO2 (NEE) for those 

LMs that reported both variables. Given the expectation that NEE is likely to be strongly dependent on site history, and that 440 

we could not reliably include this information in the modelling protocol or account for it in this plot, there is no a priori reason 

to expect a clear relationship here. While we might broadly expect increasing carbon uptake with increasing Qle, as shown by 

the observed regression line in Fig. 2, the fit is relatively weak (R2 is 0.19). LM regressions are shown where their fit has 

higher R2 than observed, although we note that aside from ORCHIDEE2, CABLE-POP and NoahMP, only empirical models 

meet this criterion (since they effectively act as data smoothers). 445 

 

With the exception of Noah-MP, STEMMUS-SCOPE and some empirical models, all LMs predict less net carbon uptake than 

is observed. This may well be because the models were run without any site history. That is, the simulated ecosystems were 

closer to equilibrium than those in the real world. In equilibrium, vegetation and soil carbon stocks are high and thus respiration 

is also higher as it is generally simulated as a function of carbon stocks. Ecosystem models predict the least carbon uptake but 450 

a large range in Qle values (MuSICA, LPJ-GUESS, QUINCY, SDGVM). The equivalent plot with energy balance corrected 

Qle values (not shown) simply moves the ‘observed’ black square (currently below RF_raw) to the right, once again sitting 

amongst 1lin_eb, 3km27_eb, RF_eb and LSTM_eb. 

 

We also note that while LMs’ spread might well be because of a lack of site history information, the empirical models show 455 

that missing this information does not actually reduce NEE predictability to a large degree (all empirical models are within 

0.35 μmol/m2/s of observations). The empirical models also do not have any site history, and indeed in most cases, do not even 

use any estimate of LAI. They are trained only at other sites, so they cannot infer any site history information from the 

meteorology-flux relationship. Despite this, they cluster quite tightly around the observations in Fig. 2, whether predicting raw 

Qle (cluster of grey points in the crosshairs) or energy-balance corrected Qle (cluster of grey points to the right of this). They 460 

all suggest a net uptake of C across these sites, within a narrow range spread around the observations. 
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Figure 3: The average performance across all 154 sites and 7 metrics for Qh, Qle and NEE (lower is better). Average performance 

is the mean of dependent normalised metric values (dNMV) within the range of metric values across models being compared in each 465 
panel (4 in total, the LM (blue) - shown in plot title - and three reference benchmarks: 1lin_raw (red), 3km27_raw (yellow) and 

LSTM_raw (green)). The first 10 panels (faded) show empirical or physical benchmark models. 
 

Figure 3 shows modified ‘PLUMBER plots’, similar to Best et al. (2015), but here using the average of the dependent 

normalised metric values (dNMV) in the range of metric values across the four models being compared in each panel (one 470 

LM, 1lin_raw, 3km27_raw and LSTM_raw). This is as opposed to the average rank of metric values used in Best et al. (2015), 

which can distort results when metric values are clustered. Each panel in Fig. 3 shows the model in the panel title in blue, with 

benchmark empirical models in red (1lin_raw), yellow (3km27_raw) and green (LSTM_raw). Lower values represent better 

performance. LMs are shown alphabetically, with the first 10 panels, faded, showing the remaining empirical models and 

physical benchmarks against these three benchmark models. 475 
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The out-of-sample LSTM_raw on average performs best across all fluxes, for these sites and metrics. The performance of LMs 

is highly variable, with half of them performing better than the 3km27_raw model for Qle, 15 of 18 worse than the out-of-

sample simple linear regression (1lin_raw) for Qh, and NEE typically between the 1lin_raw and 3km27_raw levels of 

performance (12 of 14 LM variants). Overall, it’s clear that LMs tend to perform better against the benchmarks for Qle and 480 

NEE than Qh, typically falling within the range of these three benchmarks for Qle and NEE. CLM5, MATSIRO and NoahMP 

are the only LMs with Qh metrics within this range. The LMs falling outside the benchmark dNMV ranges for Qle and NEE 

are a mixture of LSMs and ecosystem models. The equivalent plot using energy balance corrected Qle and Qh observations is 

shown in Fig. S8a. The performance of the LMs against the benchmarks remains remarkably similar, with some LMs slightly 

better and others slightly worse against corrected data. Filtering for higher wind speed time steps (Fig. S8b, using raw flux 485 

data) also appears to make no qualitative difference, if anything making LM performance worse relative to these empirical 

benchmarks. 

 

When we look at the same set of figures using independent normalised metric value (iNMV) instead of dependent (dNMV), 

the picture is very different (Fig. 4). Recall that iNMV sets the normalised metric range (0,1) based on the three reference out-490 

of-sample empirical models (1lin, 3km27 and LSTM) only, rather than these three and the LM, and then compares the LM to 

this range. For example, if the three reference empirical models have a mean bias in Qle of 35Wm-2, 28Wm-2, and 25Wm-2 (a 

range of 10Wm-2), and the LM has a bias of only 10Wm-2, the iNMV of the reference models is 1, 0.3, and 0, respectively, and 

the LM has iNMV of -1.5 (remembering that lower is better). Alternatively, if the LM has a bias of 50Wm-2, its iNMV would 

be 2.5. So iNMV values are not constrained to be in the unit interval, as they are for dNMV.  495 

 

Figure 4 shows the same data as Fig. 3, but using iNMV instead of dNMV. The values of iNMV for the three reference models 

are now identical across all LM panels, so the values of iNMV for each LM are directly comparable. Note however that the 

vertical axis scale is different in each panel, so we can see the range for each LM. LM performance in iNMV clearly looks a 

lot worse. It tells us that when LMs perform worse than the out-of-sample linear response to shortwave, 1lin, they often perform 500 

a lot worse (at least a lot worse relative to the range between 1lin and LSTM_raw). While some LMs (CABLE, CABLE-POP, 

CHTESSEL, CLM, JULES, NoahMP and ORCHIDEE) perform within the range of the three empirical models for some 

variables, averaged over all variables, no LM outperforms the out-of-sample linear regression against SWdown. This is a 

sobering result. LM performance is particularly poor relative to the benchmarks for Qh with no models within the range of the 

benchmarks (compared to 40% of them for Qle and 29% for NEE). 505 

 

Equivalent plots to Fig. 4 using energy-balance corrected fluxes (Fig. S8c) and time steps with wind speed > 2ms-2 (Fig. S8d) 

are shown in supplementary material. Again, LM performance appears remarkably similar despite the significant changes 

made with the target energy-balance corrected data (Fig. 1). It remains true that no LMs outperform the 1lin averaged over all 
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fluxes. Note that in this comparison, where energy-balance corrected data are the reference target, the versions of empirical 510 

models trained for this target are used for comparison (i.e. 1lin_eb, 3km27_eb and LSTM_eb). 

 

We also note that despite this result, some LMs do perform better than the empirical benchmarks for a subset of the metrics in 

Table 2, for some variables. Figs S7e - S7k are versions of Fig. 4 constructed with only one metric at a time. LMs tend to 

perform better in the 5th percentile and PDF overlap metrics, and worst in temporal correlation and NME. It’s also apparent 515 

that RF, 6km729 and 6km729lag all outperform the LSTM in quite a few of these metrics. Despite this, we did not investigate 

alternatives to the LSTM as the high level empirical benchmark. 

 

 
Figure 4: As per Fig. 3, but using the average of independent normalised metric values (iNMV) defined by the range of metric values 520 
across the three reference models (1lin_raw, 3km27_raw and LSTM_raw). Note that different panels have different y-axes. 
 

https://doi.org/10.5194/egusphere-2023-3084
Preprint. Discussion started: 17 January 2024
c© Author(s) 2024. CC BY 4.0 License.



22 
 

Figure 5 shows how closely LMs approximate the density of observed values of Qle, Qh and NEE. The thick black line shows 

the observed density estimate of each variable. The thinner lines are the modelled density estimate minus the observed density 

estimate, and so show which magnitudes of fluxes are simulated too often (positive) or not often enough (negative). The 525 

vertical axis is the same for both observed density and LM density error. Most obvious in these plots is that the simpler 

empirical models (1lin, 2lin, and to some degree 3km27) tend to estimate too many positive values of NEE between 1-2 

µmol/m2/s, Qh values around -20 to -30 Wm-2 and Qle values around 5-10Wm-2. With the exception of CABLE, EntTBM and 

QUINCY, most LMs underpredict near zero Qle values. JULES appears to simulate near zero Qh values far too often, as 

CABLE does near zero Qle values, and ORCHIDEE and CHTESSEL near zero NEE values. The equivalent figure using 530 

energy balance corrected Qle and Qh fluxes is shown in Fig. S8, and is remarkably similar to Fig. 5. The same plot filtered for 

wind speed was also qualitatively very similar, and so is not shown here. 
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Figure 5: Error in the density of values of Qle, Qh and NEE relative to observations collated across all sites. The thick black lines 535 
show the density of observed values of each variable, and thinner lines error in each model’s variable density, on the same vertical 

axis. Horizontal axes are restricted to the region of highest density difference. 

 

Figure 6 shows boxplots of error in the average energy evaporative fraction (EF) across the 154 sites, shown separately for 

each participating model. Energy evaporative fraction is defined using average flux values at each site: Qle / (Qle+Qh). The 540 

equivalent plots using energy balance corrected data and data filtered for wind speed are almost indistinguishable from Fig. 6, 

and so have not been included. In keeping with what we saw in Fig. 1, the mechanistic benchmarks and ecosystem models 

show the largest deviation from site observations, and empirical approaches are reliably zero-centred despite having no explicit 

mechanism to constrain the ratio between Qle and Qh. Once again, there does not appear to be any obvious reason to suspect 

a bias in partitioning in observations - some LMs (6) show a high EF bias, and others (11) a low bias. 545 

 

An equivalent version of this figure showing water evaporative fraction - Qle / Rainf - is shown in Fig. S10a and Fig. S10b (in 

supplementary material), using raw and energy-balance corrected fluxes, respectively. Once again, models are well scattered 

about the zero error line when raw fluxes are used, and almost all appear strongly negatively biased when compared to the 

energy balance corrected fluxes. The equivalent plots using wind speed filtered data are qualitatively the same as Figures S10a 550 

and S10b, and so are not included here. 
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Figure 6: Box plots of error in site mean energy evaporative fraction (Qle/(Qle+Qh)) over all sites, shown separately for each model, 

using raw flux data across 154 sites. 

 555 

Figure 7 is similar to Fig. 6, but shows error in water-use efficiency (NEE/Qle), expressed in units of 𝜇mol of carbon gained 

per gram of water (left vertical axis) and error as a percentage of observed WUE (right vertical axis), with the heavy pink 

dashed lines representing +/- 100%. It shows that almost all LMs underestimate WUE, typically by about 50%, presumably 

related to the broad under-prediction of NEE by LMs evident in Fig. 2. At the other end of the spectrum, NoahMP shows a 

very high WUE bias, consistent with its overprediction of C uptake in Fig. 2 (due to a high dynamically predicted LAI). The 560 

empirical models, without any explicit constraint on the ratios of predicted variables (they are predicted independently), are 

better spread around observed values. Note that this statement applies equally to those empirical models trained on raw flux 

tower data and those trained on energy balance corrected data. The equivalent plot using energy balance corrected Qle data is 

shown in Fig. S10, and looks qualitatively similar to Fig. 7. For this metric, there are no discernable differences in performance 

across types of LM. 565 
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Figure 7: Box plots of error in site mean ecosystem water use efficiency (-NEE/Qle) over all sites, shown separately for each model. 

WUE error is expressed both in units of umol of C gained per gram of water lost (left vertical axis, grey and multicoloured box plots) 

and error percentage of observed WUE (right vertical axis, pink box plots), with the heavy pink lines representing +/- 100%. 570 
 

We now focus on utilising the better performing empirical models as a benchmark for the mechanistic models. While they are 

the best performing models in this collection, they provide a lower bound estimate of predictability of fluxes at each site, since 

we can almost certainly produce better empirical models. The discrepancy between our best performing out-of-sample 

empirical models and a given mechanistic model defines an amount by which we know that the mechanistic model can improve 575 

by. This also allows us to define model performance in a way that accounts for site complexity / peculiarity / predictability, as 

well as observational errors particular to each site, and avoids some misleading statistics, like large RMSE values at sites that 

simply have larger fluxes. For this purpose, we use one of the best performing empirical models as the reference model, 

LSTM_raw. 

 580 
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First, in Fig. 8, we look at the discrepancy in iNMV between each mechanistic model and LSTM_raw for latent heat flux 

predictions. Results are shown separately for each IGBP vegetation type, and only the interquartile range and median estimates 

are shown for each boxplot. Note that these are the observed vegetation types for each site, and that some LMs with dynamic 

vegetation might represent these sites differently. Values below zero show that the LM performed better than the three 

benchmark empirical models (1lin, 3km27, LSTM). Values between zero and one mean that the LM performed within the 585 

range of the benchmark models (shaded grey background), and above one means that the LM was worse than 1lin. The average 

of all vegetation types for each mechanistic model is shown by the dark grey horizontal line and number in the lower section 

of each panel, with the zero line in light grey. Each box plot represents the difference in independent normalised metric values 

across all metrics in Table 2. 

 590 

Figure S12a shows the equivalent to Fig. 8 using energy-balance corrected fluxes, and Figures S12b and S12c show the same 

for sensible heat flux, with raw and energy-balance corrected fluxes, respectively. As is apparent in Fig. 3, the LSTM 

comfortably outperforms the LMs in general. And while some LMs show improved performance using energy balance 

corrected data, others show degradation, although more appear to improve, and by larger margins. 

  595 

Figure 9 shows the same information for NEE predictions. While results remain highly variable across LMs, there is evidence 

that some ecosystem models that appeared worse in other fluxes are better at carbon flux prediction (e.g. LPJ-GUESS, 

QUINCY, SDGVM), competing with some of the more complex LSMs. Perhaps surprisingly, there appears to be no 

relationship between those LMs that performed within the 0-1 iNMV range (CABLE, CABLE-POP, CHTESSEL_1, 

CHTESSEL_ERA5_3, CHTESSEL_ERA5_4, GFDL, ORCHIDEE2, ORCHIDEE3, QUINCY) and whether LAI was 600 

prescribed or computed dynamically (4 of these has computed LAI). Those outside the 0-1 iNMV range were also mixed in 

the LAI simulation approach (see Table 1).  
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Figure 8: Normalised metric discrepancy between each mechanistic model and LSTM_raw for latent heat flux (Qle), with separate 605 
inter-quartile boxes for each vegetation type, using raw fluxes. Mean model discrepancy is shown by the dark grey line and text at 

the bottom of each panel, with reference empirical model range [0,1] shaded in grey. Vegetation types are: Mixed Forest (MF); 

Grassland (GRA); Evergreen Needleleaf (ENF); Evergreen Broadleaf (EBF); Savanna (SAV); Woody Savanna (WSA); Open 

Shrubland (OSH); Cropland (CRO); Wetland (WET); Deciduous Broadleaf (DBF); Closed Shrubland (CSH). Lower scores are 

better. 610 
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Figure 9: As per Fig. 8, but for Net Ecosystem Exchange of CO2 (NEE), for those LMs that reported NEE. Lower scores are better. 

 

 615 

Given that we’ve seen that mechanistic LMs are broadly unable to meet the benchmarks provided by their out-of-sample 

empirical counterparts, we now briefly investigate whether there are obvious signs that biases are shared across the mechanistic 

models. 

 

Figure 10 shows the same information as Fig. 8, but this time sorted by vegetation type, with each model shown as a separate 620 

interquartile box plot. This time the average of all models is shown by the dark grey bar, and the zero line in light grey. There 

are clearly variations across vegetation types, and while mean LM performance is worst for open shrubland (OSH), evergreen 

broadleaf forest (EBF) and mixed forest (MF), results across different LMs vary significantly. Overall, LM performance 

appears better for grass-dominated vegetation types (grassland and savannas) than tree ecosystems. The equivalent plots for 

Qh (Fig. S13b), using energy-balance-corrected data (Fig. S13a for Qle; S13c for Qh) and NEE (Fig. S13d) seem to confirm 625 
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the lack of clear differentiation by vegetation type, and do not broadly show particular vegetation types as consistently 

anomalous. While some of the LM means (dark grey line) appear to change markedly for Qle after energy-balance correction 

(most notably for grassland sites), note that this seems largely because of significant changes to outlier LMs, rather than a 

change in aggregate behaviour. This is definitely less of a change for Qh as a result of energy-balance correction. Also note 

that in all of these figures, the LM mean is often well above most of the 25th-75th percentile box plots. This simply reinforces 630 

that point made above that when LMs are worse than the reference benchmarks, they are often much worse (the smallest and 

largest 25% of values do not contribute to these box plots, obviously). 

 
Figure 10: Independent normalised metric discrepancy between each model and LSTM_raw for latent heat flux (Qle), as per Fig. 7, 

but sorted by vegetation type. The average of all LMs for each vegetation type is shown by the bold dark grey line, and the zero line 635 
is in light grey. Lower scores are better. 
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Figure 11 shows the same data - iNMV improvement offered by the LSTM over models - on a per-site basis, with the median 

difference for all LMs plotted (shown by colours). Each site’s location is shown on axes of observed water evaporative fraction 

versus dryness index, as per Figures S2a-d. Note that the location of the 1-1 line relative to the sites is very much dependent 640 

upon our estimate of potential evapotranspiration (PET), which here is given by the Penman-Monteith model described above, 

so it’s entirely plausible that a different estimate would see all sites (with the exception of US-Bkg) lying to the right of the 1-

1 line. We might also wish to plot a curve on this figure illustrating the Budyko hypothesis (Budyko, 1974; although there is 

no single accepted derivation of an equation that describes the asymptotic behaviour it suggests; see Sposito, 2017; Mianabadi, 

2019), but the spread of sites should make it clear why this is not particularly useful. Many sites have an evaporative fraction 645 

above 1. This reinforces that the conceptual idealisation of the Budyko hypothesis applies only at very large spatial scales 

and/or in idealised circumstances of water availability. Irrigation, or landscape features like topography/hillslope, sub surface 

bedrock bathymetry or groundwater can mean it is entirely physically reasonable for a location to exhibit an evaporative 

fraction above 1, as around 30% of these sites do. These factors are likely to still be relevant at scales of 10s of kilometres, so 

it seems unreasonable to suggest these effects are not also relevant for gridded simulations. 650 

 

Of the sites in Fig. 11 with evaporative fraction greater than 1, only one is irrigated (ES-ES2). Hillslope factors are quite 

plausibly important in four others (CN-Dan, DK-ZaH, US-SRG, US-SRM). One is affected by fire prior to the measurement 

period, which might mean that accumulated water was available (US-Me6). Others are sites from the La Thuile release not 

included in Fluxnet2015, which raises the possibility of data quality concerns (BW-Ma1, ES-ES1, RU-Zot, US-Bkg, US-SP3). 655 

But for the majority there is no immediately obvious explanation (AR-SLu, AU-Cpr, AU-Cum, AU-Gin, AU-Otw, AU-Tum, 

CN-Cha, CN-Cng, CN-Du2, DE-Seh, FR-Fon, US-AR1, US-AR2, US-Me2, ZM-Mon). While the data used in Fig. 11 is 

filtered for gap-filled and other quality control flags, we can confirm that using the entire time series for each site does not 

result in any qualitative change to site locations on this figure (see Fig. S2c).  

 660 
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Figure 11: Independent normalised metric value (iNMV) improvement offered by LSTM over the median iNMV value of all LMs 

(excluding empirical and physical benchmarks), shown by colour for latent heat flux (Qle). Each site’s location is shown on axes of 

observed evaporative fraction versus dryness index. The prevalence of particular colour values is shown by the violin plot to the left 

of the colour legend. Values within [-0.1,0.1] are shown in pink, and values above 2 have constant, dark blue colour. Dot sizes indicate 665 
the length of site data, ranging from 1 (smallest) to 21 years (largest) - see Table S2 for site details. 

 

The equivalent plots to Fig. 11 for corrected-Qle, Qh, corrected-Qh and NEE are shown in Figures S14a-d, respectively. None 

of these appear to support the community’s heuristic expectation that LMs’ performance decreases with dryness. While there 

is a cluster of energy-limited sites where LMs consistently outperform LSTM_raw (red-orange-yellow dots), there are also 670 

several water-limited sites where LMs do well, and the worst simulated sites by LMs, shown in blue, seem evenly spread 

throughout the figures.  
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While it’s clear that LSTM_raw broadly outperforms LMs at most sites, there are clearly some sites (red-orange-yellow) where 

LMs on aggregate outperform the LSTM. This does not appear to be the case consistently across all three fluxes for any 675 

particular site, however, or indeed any clear signal about the type of sites (in terms of vegetation type, dryness or available 

energy) that are better simulated. This probably suggests that these outcomes may be more stochastic than the result of any 

structural advantage the LMs might have. 

 

Versions of this plot for each individual submitted model (and indeed any future submission) are available on 680 

https://modelevaluation.org in the PLUMBER2 workspace. 

4 Discussion and conclusions 

It should be clear from the results above that the metric choices we make when evaluating LMs are critical. It might appear 

from Fig. 3 that many LMs (CABLE, CHTESSEL, CLM, JULES, MATSIRO, MuSICA, ORCHIDEE, NoahMP) perform 

better than the 3km27 model here for Qle, something that could represent progress since the original PLUMBER experiment 685 

(where no models outperformed the 3km27 model for standard metrics - see Best et al, 2015). There are however some 

differences here that mean PLUMBER and PLUMBER2 results are not directly comparable. First, the single set of metrics 

we’re using here is a combination of the ‘standard’, ‘distribution’ and ‘extremes’ based metrics used in PLUMBER, and the 

infamous poor LM performance in PLUMBER was for the standard metrics set alone. Next, Fig. 3 uses (dependent) normalised 

metric range, rather than ranks. We also have fewer models, and different models, in each panel that is used to calculate the 690 

metric range, and results are calculated over 154 instead of 20 sites. It nevertheless remains true that Qh is much more poorly 

predicted than Qle.  

 

While of a similar performance standard to Qle prediction overall, NEE was notably underpredicted by LMs in a way that Qle 

was not. While it seems obvious that a lack of site history in LM setup (noting that this information was not available) is the 695 

cause for this, it’s intriguing to see that empirical models (also not given this information) were able to predict NEE without 

this bias, in most cases without any LAI information at all (Fig. 2). These empirical models were out-of-sample (they did not 

use any data from the sites they predicted in their training). This is a categorical indication that importance of site history and 

leaf area is significantly overstated in our LMs, and not nearly as important as we believe it is for flux prediction. 

 700 

The importance of metric choices becomes clear when we consider the difference in apparent LM performance between dNMV 

and iNMV. By excluding the LM we’re evaluating from the criteria that define good or bad performance (the set of the three 

empirical models) we define benchmark levels of performance that are independent of the land model being evaluated. It 

means that when the LM is much better, or much worse than a priori expectations, it will get a score that is proportionally 

much better or much worse. Using metric ranks or dNMV instead limited the cost of poor performance in the cumulative 705 
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metrics shown in PLUMBER style plots, and so gave an artificially positive indication of LM performance relative to the 

reference benchmark models. 

 

While this might be confronting, it provides the community with a framework with which to assess the significance of proposed 

improvements to LM performance, in a way that is relatively insensitive to metric choice, and critically, is based on 710 

demonstrated capacity for improvement. That is, when a LM is worse than an out-of-sample empirical model given the same 

predictors, we know that there is enough information provided to the LM to do better. We suggest that the summative analysis 

we present here using iNMV is a fairer, more comprehensive representation of LM performance than either the original 

PLUMBER paper or the dNMV versions of the same analyses.  

 715 

It’s also clear that, as with most model comparisons, the summary statistics presented in this paper do not give us any 

categorical indications about how to start improving models. They nevertheless allow, perhaps for the first time, to fairly 

account for some of the inevitable difficulties and eccentricities associated with using observed data. By evaluating 

performance relative to out-of-sample empirical estimates we can actually begin to quantify expectations of achievable LM 

improvement, and pinpoint the circumstances in which this potential for improvement is most apparent. Given the number of 720 

LMs involved we did not actively explore these circumstances in detail here, since they are particular to each LM, but have 

nevertheless provided an approach to achieve this. Some clear indications are already evident from the sites shown in green 

and particularly blue in Figures 11, S13a,b,c,d. These are sites where we know that LM model prediction can be substantially 

improved, since an out-of-sample empirical model offers substantial performance improvements using the same predictors as 

the LMs. These are of course the average discrepancy across all LMs, so the capacity for improvement at a particular site is 725 

likely to vary for different models. Equivalent figures for each individual model and variable can be found on 

modelevaluation.org in the PLUMBER2 workspace via the profile page for each submitted model output. Data and analysis 

code from this experiment are also available and we openly invite further analyses and contributions from the community. 

 

Beyond a lower bound estimate of potential improvement, the hierarchy of empirical models we examined can also provide 730 

more nuanced information about performance expectations. The difference in performance between 6km729 and 6km729lag, 

for example, gives us an idea about the improvements in flux simulation we should expect from adding in model states such 

as soil moisture and temperature, rather than simply having an instantaneous response to meteorology (see Figures 8, 9 and 

S12a,b,c). The same is also true of the RF and LSTM, although they had slightly different predictor sets and architectures. The 

simplest model, 1lin, also makes it clear that much of what we might heuristically regard as high model fidelity is a simple 735 

linear response to shortwave forcing (Figures S4, S5, S6 and perhaps most importantly Fig. 4). It should be abundantly clear 

that simple diagnostics can be very misleading and that defining ‘good’ model performance is inherently complicated. Without 

the empirical model hierarchy we’ve detailed here, judgements about LM performance would almost certainly be susceptible 

to confirmation bias. 
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4.1 Data limitations 740 

The question of whether the Fluxnet2015 energy balance correction process is appropriate is not clear. Figure 1 and its 

equivalents in the supplementary material do seem to suggest that available energy in LMs is indeed higher than in raw 

observations (although a priori this is not evidence that the observations are wrong), but the energy balance corrected versions 

of this plot show an even larger discrepancy. Similarly, the differences between corrected and uncorrected water evaporative 

fraction (Figures S10a and S10b) show that corrected Qle fluxes look markedly different to almost all models. The plots based 745 

on iNMV do seem to show that the correction process helps improve performance for several LMs. Nevertheless there is also 

more subtle evidence in the performance of the empirical models that gives us other, contradictory information. LSTM_raw is 

the best performing reference model in Fig. 4, and as expected, LSTM_eb, trained to match qualitatively different (energy-

balance corrected) target data, does not perform as well against raw flux data as LSTM_raw. This is what we’d expect. 

However, when we look at the reverse situation, using LSTM_eb as the reference model, and energy-balance corrected fluxes 750 

as the target data (shown in Fig. S8c), the situation is quite different. LSTM_raw performs worse for Qh, as expected, but it 

performs better than LSTM_eb for Qle. This tells us that unlike for Qh, a sophisticated ML model trained on the corrected Qle 

flux has no advantage predicting corrected Qle than the same ML model trained on raw fluxes - in fact it has a disadvantage. 

A similar result can be seen for 6km729lag. It is less sophisticated than LSTM_eb, and trained to predict the raw fluxes, yet it 

outperforms LSTM_eb. This suggests that the correction to Qle makes these fluxes less predictable. It is likely categorically 755 

incorrect, whereas the correction to Qh may well add some value. This may suggest that the missing energy in uncorrected 

fluxes might be more likely to be in Qh fluxes (agreeing with other proposed correction approaches - see Charuchittipan et al., 

2014). 

 

The analyses also highlight the inherent complexity of real world simulation. We see a significant number of sites with an 760 

evaporative fraction greater than 1, which, despite being entirely physically plausible, is simply not possible for current LM 

process representations to replicate. It tells us that either (a) access to groundwater beyond gravity drainage is common, (b) 

below surface bedrock structure has a significant local hydrological effect, and/or (c) horizontal advection of moisture in soil 

(and locally on the surface) plays a significant role in moisture availability at the ~1km2 spatial scale (i.e. flux tower fetch). 

Very few global coupled models include any of these effects. It is very likely that almost all sites and indeed much larger 765 

spatial scales are affected by this same issue to varying degrees, even if their evaporative fractions do not appear to be 

anomalously high. This is supported by the remarkable result that LM performance is apparently not any worse for sites where 

evapotranspiration exceeds precipitation (Figures 11, S14a-d). 

Model complexity and under-constraint 

As noted in the introduction, these LMs would likely produce better simulations if they were allowed to calibrate their 770 

parameters to each site’s flux data, although how large that benefit would be, relative to allowing the empirical models to also 

use testing site data, is not at all clear. Our interest here, however, is the fidelity these models provide in global simulations, 

where they are typically given only coarse vegetation and/or soil type maps from which to extract all of their parameter values 
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for each grid cell. This is what both LMs and empirical models were given to make out-of-sample predictions. Previous work 

has also suggested that providing local information for calibration might result in much larger benefits for empirical models 775 

than LMs (see Abramowitz et al., 2008). 

 

This raises the question of whether LMs are too complex for the level of fidelity they provide. It’s at least theoretically possible, 

for example, that an LM is perfect, but because we are unable to precisely prescribe its parameters for these site simulations 

(and global simulations) we are actively hindering its ability to get the right result. What the out-of-sample empirical models 780 

show is that the information available in LMs’ meteorological variables alone - without any description of what type of 

vegetation or soil might be at a given site, or indeed the reference height of the measurements - is enough to outperform all of 

the LMs. This is not to say that LMs could not perform better with more detailed site-specific information of course, but the 

way that they were run here was designed to mimic their application at global scales, and for that job they are considerably 

more complicated than is justified by their performance. A more detailed examination of how well LMs perform when given 785 

detailed site information would not simply require showing that metric scores for LMs improved when given this information, 

it would require that LMs come closer to outperforming ML approaches also provided with similar site-specific information. 

 

There are of course other reasons why we might want complexity in a LM beyond improved performance, like the ability to 

infer the impacts of particular decisions on a broader range of processes within the land system. But it’s nevertheless important 790 

to know the degree of predictability that’s possible with the increasing amount of information that our models are provided 

with - what we’re missing out on that is categorically achievable. The fact that it’s been found that increasing model complexity 

shows little relationship to performance in some circumstances, even when additional site information is provided, should be 

concerning (Lipson et al, 2023). We also need to recognise that the many increases in sophistication that we might want to 

include to improve the representativeness of LMs (see Fisher and Koven, 2020) may come at a significant cost. The more 795 

degrees of freedom we have in a model, the more and broader range of observational data we need to effectively constrain it, 

the less able we are to pinpoint model shortcomings, and the more susceptible we become to getting the right answer for the 

wrong reasons (see Lenhard and Winsberg, 2010). A very crude statistical analogy might be that if we have a model with one 

process that is right 90% of the time, the model is 90% accurate. But if we have a model with 10 serial processes that are right 

90% of the time, the model is 0.910 = 35% accurate. 800 

 

4.2 Empirically-based land models 

So there is a balance between complexity that includes the processes that we know are important, and the lack of 

observational/process constraint that we can provide when trying to simulate these at the global scale. A reasonable but perhaps 

challenging next question is whether we might build entirely empirically-based LMs. In some sense, the distinction between 805 

“physically” based and “empirical” models is artificial, as in this context our LMs contain many empirical approximations 

already (something that makes LMs somewhat different from their atmospheric and oceanic counterparts). Perhaps the best 
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approach is to start with the constraining data that is available at the global scale, and then build a model that is dependent 

only upon what is available. That way the model will not be under-constrained in the way that current LMs are. We can already 

see from the results above that the fidelity of flux predictions would certainly rival existing LMs. But replacing a LM would 810 

require implementation of conservation equations and stores of heat and moisture, and while progress is being made towards 

this kind of endeavour (Kashinath et al., 2021; Shen et al., 2023), an operational implementation is not yet available.  

 

Perhaps the biggest question to address, should this approach eventuate, is the ability of an empirically-based LM to perform 

reliably under future climate change conditions. Some of the empirical models here might not be as appropriate as others for 815 

this purpose (those given remotely sensed LAI as an input for example, although a significant number of LMs are in this 

category too). If empirical models perform significantly better in today’s climate, as we’ve seen above, then to nullify that 

performance advantage, the nature of the future change needs to (a) be outside the range of behaviour seen in the existing 

global training data envelope (here, be behaviour not observed at any flux towers historically), and (b) be different enough to 

the existing training envelope to cancel the existing performance discrepancy. Pitman & Abramowitz (2005) provide some 820 

evidence that the magnitude of change might not be enough to bridge this gap. It seems reasonable to assume that the closer 

the spatial and temporal scale of the empirical model implementation is to the processes that determine variability, the closer 

the empirical model comes to actually approximating the processes involved, and quite plausibly, the more likely it is to be 

able to perform out-of-sample in future climates (assuming a broad enough training set). Given that flux tower data is at a 

similar temporal and spatial scale to processes represented in LMs this seems plausible.  825 

 

4.3 Next steps 

The next steps for the community towards building LMs that better utilise the information available to them seem reasonably 

clear. Understanding the shortcomings of an LM is not a simple process, so moving away from in-house, ad-hoc model 

evaluation towards more comprehensive, community built evaluation tools, where the efforts of those invested in model 830 

evaluation are available to everyone will be key. This will allow results to be comparable across institutions and routine 

automated testing to become part of the model development cycle. This will need to cover both global scales (e.g. ILAMB; 

Hoffman et al., 2016; Collier et al, 2018) and site-based process evaluation (e.g. modelevaluation.org; Abramowitz, 2012). In 

both cases, inclusion of empirical performance estimates, such as those shown here, will be key to distinguishing incremental 

improvements from qualitative improvements in LM performance. 835 

 

We are also building the suite of analyses shown in this paper into a model development testing pipeline available via 

https://modelevaluation.org. This will allow the community to replicate these exact analyses in routine automated testing as a 

part of repository check-ins. For more information about how to engage in this process, adopt and adapt these to your needs, 

please contact the lead author. We also note that there were additional LM participants in this work that removed their 840 

submissions once the performance of their models relative to others was shared in draft stages of manuscript preparation. 
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Finally, there is obviously much, much more to explore in the PLUMBER2 dataset. Most participants submitted many more 

variables than were examined in this paper (and several came close to the list in Table S2). This paper nevertheless provides a 

broad overview of the experimental design and preliminary results for key atmospheric fluxes. The vast majority of 845 

submissions to PLUMBER2, as well the forcing and evaluation data, are publicly available on https://modelevaluation.org as 

a community resource for further analyses, and we actively invite further collaborations to utilise the data set that this 

experiment has produced. 

 

Code and data availability 850 

Flux tower data used here are available at http://dx.doi.org/10.25914/5fdb0902607e1 as per Ukkola et al. (2022), and use data 

acquired and shared by the FLUXNET community, including these networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, 

CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-

TERN, TCOS-Siberia and USCCC. The ERA- Interim reanalysis data are provided by ECMWF and processed by LSCE. The 

FLUXNET eddy covariance data processing and harmonisation was carried out by the European Fluxes Database Cluster, 855 

AmeriFlux Management Project and Fluxdata project of FLUXNET, with the support of CDIAC and ICOS Ecosystem 

Thematic Center, and the OzFlux, ChinaFlux and AsiaFlux offices. All land model simulations in this experiment are hosted 

in modelevaluation.org, and to the extent that participants had no legal barriers to sharing these, are available after registering 

with modelevaluation.org. The analyses shown here were also performed on modelevaluation.org, using the codebase publicly 

available at https://gitlab.com/modelevaluation/me.org-r-library. 860 
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