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Gravitational waves (GWs) from binary neutron stars (NSs) have opened unique opportunities
to constrain the nuclear equation of state by measuring tidal effects associated with the excita-
tion of characteristic modes of the NSs. This includes gravitomagnetic modes associated with the
Coriolis effect, whose frequencies are proportional to the NS’s spin frequency, and for which the
spin orientation determines the subclass of modes that are predominantly excited. We advance the
GW models for these effects that are needed for data analysis by first developing a description for
the adiabatic signatures from gravitomagnetic modes in slowly rotating NSs. We show that they
can be encapsulated in an effective Love number which differs before and after a mode resonance.
Combining this with a known generic model for abrupt changes in the GWs at the mode resonance
and a point-mass baseline leads to an efficient description which we use to perform case studies
of the impacts of gravitomagnetic effects for measurements with Cosmic Explorer, an envisioned
next-generation GW detector. We quantify the extent to which neglecting (including) the effect
of gravitomagnetic modes induces biases (significantly reduces statistical errors) in the measured
tidal deformability parameters, which depend on the equation of state. Our results substantiate
the importance of dynamical gravitomagnetic tidal effects for measurements with third generation
detectors.

I. INTRODUCTION

The gravitational wave (GW) discovery of the binary
neutron star (NS) inspiral GW170817 [1] provided, for
the first time, a purely gravitational channel for prob-
ing the properties of dense matter in NS interiors, whose
equation of state remains poorly constrained [2, 3]. While
this event provided the first empirical constraints with
GWs, more precise measurements of the equation of
state will become possible as existing detectors (such as
LIGO [4], Virgo [5],KAGRA [6]) improve in sensitivity in
the coming years [7] and next-decade’s envisioned third
generation facilities such as Einstein Telescope [8] and
Cosmic Explorer [9] become operational. These next-
generation detectors will have a much higher sensitivity
and wider bandwidth, which will open opportunities for
transformative insights into dense matter under extreme
gravity [10–12]. Realizing this science potential critically
relies on advancing theoretical models of the GWs from
binary systems with matter effects, which are needed to
extract information about the source properties from the
data, as reviewed in [13]. To date, GW measurements
have only been sensitive to the dominant effects of NS
matter on the signals and had relatively large statistical
errors, causing systematic errors due to shortcomings in
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the modeling to be subdominant [14]. However, similar
measurements at a higher sensitivity or with future de-
tectors will require models that are significantly more ac-
curate and include more realistic physics to enable more
stringent constraints on NS matter and avoid biases in
the interpretation.

During a binary inspiral, the GW signatures of the
properties of matter in NSs are due to spin and tidal ef-
fects. Tidal effects encompass various phenomena associ-
ated with the resonant or non-resonant excitation of char-
acteristic oscillation modes of the NS, whose properties in
turn depend on the properties of dense subatomic matter.
The modes are driven by the tidal fields of the compan-
ion, which vary in time due to the orbital motion and can
be decomposed into gravitoelectric and -magnetic fields
depending on their parity properties. The former are
involved in the dominant tidal effects due to the funda-
mental modes of the NS, which have the strongest tidal
couplings and relatively high resonance frequencies that
leave their excitation non-resonant for most of a quasi-
circular inspiral [15–17]. By contrast, gravitomagnetic
tidal fields associated with relativistic frame-dragging ef-
fects lead to the excitation of inertial modes of NSs whose
frequencies are proportional to the spin [18–22] and will
thus invariably pass through resonances in binary inspi-
rals. The resonant energy and angular momentum trans-
fer between the modes, orbit, and GWs leads to compar-
atively sudden changes in the GW frequency evolution,
thus contributing a small but distinctive feature to the
signals.
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There has been much previous work on gravitomag-
netic modes of NSs, which are associated with the Cori-
olis effect and include inertial modes such as the ’r-
modes’ [23–26]. Racine and Flanagan [27] computed the
direct effects of the resonance on the dynamics and devel-
oped an effective waveform model for the resulting GW
imprints. This model was recently revisited to assess
the impact for measuring tidal deformabilities with next-
generation detectors [28–30]; see [31] for use of the model
for other classes of modes and [32] for studies of inertial
modes in postmerger GWs. Studies have also modeled
and examined the effect of nonresonant gravitomagnetic
tides on the inferred tidal deformability [33], and included
them in an effective one body model [34]. However, the
conclusions were limited due to an interesting feature of
the response of a NS’s matter and spacetime to a gravito-
magnetic tidal perturbation, which leads to two possible
kinds gravitomagnetic tidal deformabilities depending on
the assumptions on the state of the perturbed fluid [35–
40]. It turns out that the significance of these two tidal
deformabilities is that both are relevant but in different
ways for the asymptotic limits of the response before and
after a gravitomagnetic mode resonance [41].

In this paper, we first derive an explicit expression for
the effective gravitomagnetic response function charac-
terizing the ratio of the induced current quadrupole mo-
ment to the gravitoelectric tidal field in the context of
a binary system at large separation with arbitrary spin
orientations and low spin magnitudes. The asymptotic
limits of this response before and after resonance yield
the relevant combinations of the gravitomagnetic tidal
deformabilities in the different regimes. A new aspect
in this paper is that we include these effects together
with the direct resonance-induced changes in the GWs
from [27, 28]. A further difference compared to this
previous work is that we map all EoS-dependent pa-
rameters that appear in the resonance expressions and
were thus far only considered for Newtonian descriptions
of NSs to their fully relativistic counterparts, which we
employ for further studies of the impact of gravitomag-
netic tides on parameter estimation. In general, multi-
ple quadrupolar gravitomagnetic modes with azimuthal
number |m| = 1, 2 are resonantly excited in an inspi-
ral, however, certain spin orientations mainly favor the
excitation of only one of them, which can be exploited
to simplify an initial exploratory study [27]. We also
make use of previous findings that for NSs, the equation
of state information contained in gravitomagnetic Love
numbers can be approximately related to the main tidal
deformability Λ, which reduces the number of signal pa-
rameters [33, 42]. Furthermore, as the full parameter
estimation in the entire parameter space for binary NS
signals in third-generation detectors is prohibitive and
the largest constraints will come from events with a high
signal-to-noise ratio, we use restricted Fisher matrix com-
putations as a proxy for the statistical errors. While all of
these assumptions are restrictive, the aim of our work is
to scope out the importance of gravitomagnetic modes on

GW measurements with third-generation detectors using
a more realistic model of these effects than in previous
such studies. We first estimate the plausible changes in
the width of the posterior distributions when using full
Markov Chain Monte Carlo (MCMC) pipelines versus the
Fisher matrix, perform a number of sanity checks on the
results, and compare with previous work. We then study
the impact of different mode resonances as well as the
asymptotic adiabatic contributions on the accuracy with
which tidal deformability can be measured in a few differ-
ent case studies, and the biases incurred when neglecting
the gravitomagnetic effects.

The paper is organized as follows. In Sec. II we ob-
tain the effective Love number, discuss its features, and
the description of gravitomagnetic tidal effects far from
resonance. In Sec. III we incorporate these results into a
frequency-domain waveform model. We discuss the data
analysis framework in Sec. IV and the results in Sec. V.
Section VII contains our conclusions and outlook.

Unless otherwise specified, we use geometric units G =
c = 1. We use capital Latin letters from the middle
of the alphabet I, J,K, . . . to denote spatial components
of a tensor expressed in the rest frame of a NS. These
indices are raised and lowered with the flat Cartesian
three-metric δIJ , thus, their up or down placement has
no meaning. We use the Einstein summation convention
that repeated indices are implied to be summed over. We
also use round brackets around indices to denote their
symmetrization, for instance, for two vectors xI and vJ

we denote x(IvJ) = (xIvJ + xJvI)/2.

II. EFFECTIVE GRAVITOMAGNETIC LOVE
NUMBER

In this section, we review the identification of an effec-
tive magnetic Love number based on a fully relativistic
formalism for slowly rotating bodies [41] and calculate an
explicit expression for the case of the leading-order grav-
itomagnetic tidal fields in a binary system. We also de-
rive the adiabatic limits of these results for arbitrary spin
orientations using an orbit-averaging procedure. Our re-
sults are based on considerations to linear order in the
spins and focus on the quadrupole which is expected to
give the largest effect. The entire framework we use
is adapted to approximations based on the hierarchy of
length- and timescales during the early part of a binary
inspiral, see [41] for more details.

A. Definition of gravitomagnetic Love numbers

A NS immersed in an external gravitomagnetic tidal
field BIJ will develop an induced flux quadrupole mo-
ment JIJ . The gravitomagnetic quadrupolar Love num-
ber, which we denote by σ, is defined as the ratio

σ =
1

2

J IJ
BIJ

. (2.1a)
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Alternatively, σ can be identifies as the coupling coeffi-
cient in the Lagrangian [41] describing gravitomagnetic
tides in the adiabatic limit according to the conventions

LBad =
2σ

3
BIJB

IJ . (2.1b)

Calculations of magnetic Love numbers based on rela-
tivistic perturbations of a NS revealed that magnetic
quadrupolar Love numbers σ can be of two types, de-
pending on assumptions on the perturbed fluid inside
the non-rotating neutron star [35–40]. Restricting the
fluid to remain static under perturbations leads to the
static Love number σstat, while allowing it to be irrota-
tional yields a different result σirrot. As discussed in [41]
and detailed below, both Love numbers are relevant for
characterizing the gravitomagnetic tidal response of a NS
asymptotically far from a mode resonance.

1. Effective frequency-dependent Love number

When going beyond the restriction to adiabatic lim-
its, the tidal deformability generalizes to an effective
frequency-dependent response function. Its particular
form is given by considering the dynamics of the mat-
ter contributions to the flux quadrupole moment QIJB
described by the Lagrangian given in Eq.(3.17) of [41]
as

LB ≈ − 3

32(σirrot − σstat)

[
Q̇IJB Q̇

IJ
B − 2ω̂BΩJKQ̇IJB Q

KI
B

]
−1

2
BIJQ̇

IJ
B +

2σstat

3
BIJBIJ .

(2.2)

Here, overdots denote proper time derivatives and the
tensor ΩIJ is related to the NS’s spin frequency Ω by

ΩIJ = εIJKΩK , (2.3)

where εIJK is the Levi-Civita permutation tensor. The
dimensionless frequency quantity ω̂B is given in terms
of the quadrupolar gravitomagnetic mode frequencies in
the co-rotating frame ωB2m, where l = 2 denotes the
quadrupolar modes and m the azimuthal mode number,
by

ω̂B =
ωB2m
mΩ

. (2.4)

In the Newtonian limit, the mode frequencies ωB2m reduce
to ωNewt

2m = −mΩ/3 in this frame, making (2.4) indepen-
dent of m.

To obtain an effective adiabatic Lagrangian in the form
of (2.1) we integrate the first term in (2.2) by parts and
neglect the total time derivative. We then eliminate the
acceleration Q̈IJB by using the oscillator equations of mo-
tion

Q̈IJB − 2ω̂BΩK(IQ̇
J)K
B =

8

3
(σirrot − σstat)ḂIJ . (2.5)

Substituting these equations of motion (2.5) for Q̈IJB into
the Lagrangian and omitting total derivatives leads to

L̄B ≈ −1

4
BIJQ̇

IJ
B +

2σstat

3
BIJBIJ , (2.6)

which is only valid for configurations of the system that
satisfy the equations of motion (2.5).

We identify the effective response function by requiring
that the Lagrangian (2.6) take the form of the adiabatic
Lagrangian (2.1) with σ replaced by an effective Love
number

L̄B
!
=

2σeff

3
BIJBIJ . (2.7)

Omitting total derivatives, this leads to the identification
of an instantaneous (inst) effective Love number

σinst
eff =

− 3
8BIJQ̇

IJ
B + σstatBIJBIJ

BKLBKL
. (2.8)

This result for an effective Love number still has undesir-
able features, for instance, it varies over an orbit and the
definition is not unique due to the different ways of as-
signing the time derivatives up to total derivative terms.
For example, the first term in the numerator of (2.8)

could equivalently be written as 3ḂIJQ
IJ
B /8. These sub-

tleties disappear when we impose that the above defi-
nitions hold only at the level of the orbit-averaged La-
grangians. Denoting the orbit-average by angular brack-
ets, we

define the effective Love number by

σeff = σstat −
3

8

〈BIJQ̇IJB 〉
〈BIJBIJ〉

, (2.9)

with Q̇IJB a solution to the equations of motion (2.5).
The above definition of the effective Love number (2.9)
becomes more transparent when expressed in terms of
the flux quadrupole defined in (2.1) which, as discussed

in [41], is given by J IJ = 2σstatBIJ−3Q̇IJB /4. With this,

σeff =
1

2

〈BIJJ IJ〉
〈BIJBIJ〉

, (2.10)

which is directly analogous to the definition in the grav-
itoelectric case.

B. Application to a binary system

To obtain an explicit expression for the effective Love
number requires specifying the relevant tidal field BIJ .
Here, we consider a binary system composed of the NS
with mass M1 and a point-mass companion M2 at large
orbital separation. We work in the center of mass frame
of the NS and introduce a coordinate system in which the
position of the center of mass of the companion is z(t)
and its velocity is ż(t). The gravitomagnetic tidal field



4

Bij due to the companion is then given to the leading
post-Newtonian order by [27]

Bij =
6M2

r5
z(iεj)klzkżl (2.11)

where r is the relative separation and we use lower-case
Latin indices for the spatial components of tensors in this
frame.

We further specialize to quasi-circular orbits of con-
stant radius ṙ = r̈ = 0 and parameterize the orbit using
two angles: the azimuthal orbital phase φ and the incli-
nation angle ψ of the spin axis of the NS relative to the
orbital angular momentum such that the position vector
becomes

z(t) = r(cosψ cosφ(t), sinφ(t), sinψ cosφ(t)). (2.12)

The spin inclination angle ψ is often approximated as
constant because its change is very small [28, 43]. The
transformation of (2.11) from the NS’s center of mass
frame to the co-rotating frame is given by

BIJ = RiIR
j
JBij , (2.13)

where RiI are rotation matrices. We assume that the
NS’s spin is along the z-axis in the co-rotating frame
such that Ω = (0, 0,Ω) and R1

1 = R2
2 = cos(Ωt),R2

1 =
sin(Ωt) = −R1

2, R3
3 = 1 with all other components van-

ishing. The body label 1 on Ω is implied here. To re-
duce (2.9) to a function of the orbital parameters also re-
quires the steady-state solution of the oscillator equations
of motion (2.5). This is most conveniently calculated in
a spherical-harmonic basis, using that

QIJB = N2

∑
m

Y2m
IJ Q

B
m, (2.14)

where N2 =
√

8π/15 and Y2m
IJ are symmetric-trace-free

tensors whose components are complex numbers [44]. We
use a similar decomposition as (2.14) for BIJ . The equa-
tions of motion (2.5) can then be expressed as

Q̈Bm + imΩω̂BQ̇Bm = −8

3
(σirrot − σstat)Ḃm, (2.15)

In order to solve (2.15) for the case of interest here, we
extract from (2.11), (2.13) and (2.12) the spherical har-
monic components

Bm = N2Y∗2mIJ BIJ , (2.16)

where the asterisk denotes complex conjugation. For cir-
cular orbits, these coefficients are given by

2B2e
−2iΩt = B̄(2i sinψ sinφ− sin 2ψ cosφ) (2.17a)

B1e
−iΩt = B̄(i cosψ sinφ− cos 2ψ cosφ) (2.17b)

B0 = B̄
√

3/2 cosφ sin 2ψ, (2.17c)

with

B̄ =
3M2ω

r2
, ω = φ̇. (2.17d)

The results for negative m are obtained from the relation

B−m = (−1)mB∗m. (2.18)

Using these forcing terms in the equations of mo-
tion (2.15) and solving for steady state solutions for QBm
leads to

Q2e
−2iΩt =

8B̄ (σirrot − σstat)

3D2
[iA2,scφ + C2,ssφ] ,(2.19a)

Q1e
−iΩt =

8B̄ (σirrot − σstat)

3D1
[iA1,ccφ + C1,csφ] (2.19b)

Q0 = −4
√

6
M2(σirrot − σstat)

r2
sin 2ψ sinφ, (2.19c)

where cφ = cos(φ), sφ = sin(φ) and

Am,s = ω sinψ + (1 + ω̂B)Ω sin 2ψ (2.19d)

Cm,s = mΩ(1 + ω̂B) sinψ +
ω

m
sin 2ψ, (2.19e)

with the corresponding quantities with subscripts c ob-
tained by replacing ’sin’ by ’cos’ in the above expressions.
The denominators in (2.19) are given by

Dm =
[
ω −mΩ(1 + ω̂B)

] [
ω +mΩ(1 + ω̂B)

]
. (2.19f)

The final step is to use these results to obtain the ef-
fective Love number. The relevant tensor contractions
entering (2.9) are given by

BIJB
IJ = 2B̄2, Q̇IJB

IJ =

2∑
m=−2

Q̇mB−m. (2.20)

Using (2.20) in (2.9) leads to the instantaneous effective
Love number. Performing an orbit-average for the case
considered here amounts to

σeff = σstat −
3

16B̄2

ω

2π

∫ 2π/ω

0

2∑
m=−2

Q̇mB−mdt. (2.21)

Substituting (2.19) and (2.17a) into (2.21) leads to the
final result for the effective Love number for one of the
bodies

σeff = σstat +
3(σirrot − σstat)

8
(sin 2ψ)2 +

(σirrot − σstat)

2D1

{
ωΩω̂B (cosψ + cos 3ψ) +

[
ω2 − Ω2(1 + ω̂B)

]
(1 + cosψ cos 3ψ)

}
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+
(σirrot − σstat)(sinψ)2

4D2

[
8ωΩω̂B cosψ +

(
ω2 − 4Ω2(1 + ω̂B)

)
(3 + cos 2ψ)

]
. (2.22)

In a binary system of two NSs, one must add the same
contribution but with the parameters of the companion
body.

C. Features of the effective response

1. Effects of the spin orientation

The poles of the response (2.22), i.e. where one of
the factors in the denominators given in (2.19f) vanishes,
correspond to the four different mode resonances for the
m 6= 0 modes.

For special cases of the spin inclination angle only a
subset of the modes contributes to σeff, as also evident
from (2.19). For example, for aligned spin corresponding
to ψ = 0 the response (2.22) reduces to

σeff |ψ=0= σstat +
(σirrot − σstat) (ω − Ω)

ω − Ω(1 + ω̂B)
(2.23)

This shows that for aligned spins, and within our approx-
imations, the only pole in the response is ω → Ω(1 + ω̂B)
which corresponds to the m = 1 resonance frequency.

Another special case is a spin inclination of ψ = π/3,
where the contribution from the |m| = 1 modes is non-
resonant. This can be seen either from (2.19), by noticing
that the numerator in Q1 for this special value of ψ will
involve factors of ω−Ω(1+ω̂B) which cancel the divergent
term in the denominator, or by considering the third term
in (2.22) showing the same effect.

2. Adiabatic limits

Above, we have computed the response assuming a
fixed orbit, obtaining divergences in the response at the
resonances. However, in a binary inspiral, the contin-
ued GW dissipation causes the system to evolve through
the resonance, exciting the mode amplitudes only to a
finite maximum value. This effect was already examined
in detail in [27], who also developed an effective wave-
form model for these resonance-induced effects. A miss-
ing phenomenon from these and subsequent studies were
the additional adiabatic effects due to the behavior of the
modes far from the resonances. To compute the relevant
NS parameters characterizing the adiabatic response, we
consider the asymptotic limits of σeff long before or after
a resonance. The subtleties with extracting the relevant
limits were discussed in detail in [41], as the appropri-
ate ordering of limits between ω,Ω → 0 is delicate and
depends on the situation. In particular, the relevant adi-
abatic limit before the mode resonance is obtained by
considering ω → 0 in (2.22), while the post-resonance

adiabatic limit is given by taking the limit Ω → 0 first.
This leads to the asymptotic expressions pre- and post-
resonance respectively

σasym =

{
σstat + (σirrot−σstat)[8+3ω̂B sin(2ψ)2]

8(1+ω̂B)

σirrot

. (2.24)

We will use the above insights into the features of the
response to assemble an approximate waveform model
that properly accounts for both resonance and adiabatic
effects.

III. EFFECTIVE WAVEFORM MODEL WITH
ADIABATIC AND RESONANCE EFFECTS

1. Approximate waveform model

Computing the impact of gravitomagnetic tidal effects
on the GW signals from inspiraling NS binary systems
is a complicated task. Here, we bypass these challenges
by assmebling a simple effective model for the gravit-
omagnetic imprints in frequency-domain descriptions of
the GW signals based on adapting existing results using
the insights developed in the previous section. Such a
model is very useful for scoping out the features, mag-
nitude, and consequences of the various gravitomagnetic
effects in future GW measurements, and for identifying
focus areas for more detailed modeling. In addition to
the gravitomagnetic effects, we also include the domi-
nant adiabatic gravitoelectric tidal effects to understand
the impacts on the overall information on NS matter.

Specifically, we write the GW phasing in the frequency
domain as

Ψ = 2πftc − φc + Ψpm + Ψtidal
ad + Ψtidal

res , (3.1a)

where tc, and φc are the reference time and phase and
f is the GW frequency. The term Ψpm is the point-
mass contribution, for which we use the post-Newtonian
TaylorF2 results given e.g. in Eq. (3.18) of [45]. For
the adiabatic tidal contributions Ψtidal

ad we use the results
of [15, 33, 42, 46–50] given by

Ψtidal
ad = −b0Λ̃f5/3 +

(
−b1Λ̃ + b2δΛ̃ + b3Σ̃

)
f7/3

−b5Σ̂(χ1, χ2)f8/3 + f2f
8/3 + f3f

3 + f4f
10/3,(3.1b)

and take the resonance-induced effects from [27, 28] in
the form

Ψtidal
res = −

∑
i=1,2

(
1− f

f res
i

)
|∆Φi|Θ(f − f res

i ). (3.1c)
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We note that the signs of all the contributions made ex-
plicit here correspond to those relevant for the parame-
ter choices for the case studies discussed in Sec. V below,
with all the tidal parameters Λ̃, δΛ, Σ̃, Σ̂ defined below
being positive. We also see that the resonance contribu-
tion is a distinct sudden change in the phase and time
of the GW signal at the resonance, whose scaling with
the frequency is degenerate with that of the gauge pa-
rameters φc and tc in the phasing (3.1a). The various
coefficients in (3.1b) are given by

b0 =
117(πM)5/3

256ν
, b1 =

9345(πM)7/3

8192ν
(3.2)

b2 =
19785(πM)7/3

46592ν

√
1− 4ν (3.3)

b3 =
3(πM)7/3

128ν
= b4/(πM)1/3, (3.4)

with M = M1 +M2 the total mass and ν = M1M2/M
2.

The functions fj depend on Λ̃, δΛ̃, and for f2 additionally
on the spins χ1,2. In particular, the expression for the
function f2 in (3.1b) is obtained from Eqs. (7) and (9)
of [51] and those for f3, f4 from Eq. (6.6b) of [49]. The

parameters Λ̃ and δΛ characterizing the gravitoelectric
effects are given by

Λ̃ =
16

13

(
12

X1
− 11

)
X5

1 Λ1 + (1↔ 2) , (3.5)

2δΛ̃ =
√

1− 4ν

(
1− 13272

1319
ν +

8944

1319
ν2

)
(Λ1 + Λ2)(3.6)

+

(
1− 15910

1319
ν +

32850

1319
ν2 +

3380

1319
ν3

)
(Λ1 − Λ2)

with Λi the dimensionless quadrupolar gravitoelectric
tidal deformability parameters of each body indexed here
by i. We also denote Xi = Mi/M and (1↔ 2) indicates
the operation of adding the same terms but with the
body labels interchanged. The gravitomagnetic parame-
ters in (3.1b) are defined by [51]

Σ̃ =

(
6920

7
− 20740

21X1

)
X5

1 Σ1 + (1↔ 2) (3.7a)

Σ̂ =

[
χ1 −

(
4933

3X1
− 9865

3
+ 1644X1

)
χ2

]
X5

1 Σ1

+(1↔ 2), (3.7b)

with χi = Si/M
2
i the dimensionless spin parameter of

each body. We use for the dimensionless gravitomag-
netic deformability parameters Σi the asymptotic results
of Sec. II C 2 to replace

Σi =
σasym
i

M5
i

(3.7c)

using the appropriate pre- or post-resonance expressions
from (2.24).

In the resonance contributions (3.1c), the quantity Θ
denotes the Heaviside step function, f res

i are the GW

frequencies at which the mode resonances occur. They
are related to the gravitomagnetic mode frequencies ωB2m
by

f res =
ωinertial

2m

π
, (3.8)

where the mode frequencies in the inertial frame can be
obtained by shifting

ωinertial
2m = ωB2m −mΩ. (3.9)

The quantities ∆Φ1,2 are the corresponding resonance-
induced phase shifts, which, for the l = 2 modes with
m = 2 and m = 1, are given by [27]

∆Φ2m = −10π2

192

(
2m

3

)2/3

(MiΩi)
2/3

(
Mi

M

)10/3

I2m
i ,

(3.10a)
where M = (M1M2)3/5/M1/5 is the chirp mass and

I22
i = (Īri )2 sin2(ψi) cos4

(
ψi
2

)
(1−Xi) (3.10b)

(3.10c)

I21
i = (Īri )2 cos2

(
3ψi
2

)
cos2

(
ψi
2

)
(1−Xi) , (3.10d)

with Īri related to the dimensionless relativistic tidal de-
formabilities by [41]

(Īr)2 =
15

4π
(Σstat − Σirrot). (3.10e)

2. Reducing the number of matter parameters using
quasi-universal relations

Even within the restricted context considered here,
the effective GW model for the tidal signatures (3.1b)
and (3.1c) contains ten matter parameters, namely the
deformabilities Λi, σ

stat
i , σirrot

i and resonance frequencies
for the m = 1 and m = 2 modes for each body. Such
a large number of extra parameters prevents the data
analysis from yielding meaningful results. We reduce the
number of parameters by using empirical quasi-universal
relations that are approximately independent of the equa-
tion of state and enable an approximate reduction of the
matter parameters to one deformability Λ for each body.
The quasi-universal relations are of the form [33, 42]

ln(∓Σ) =

5∑
n=0

anY
n, (3.11)

with the irrotational case corresponding to
the minus sign and coefficients airrot

n =
{−2.03, 0.487, 0.00969, 0.00103, 9.37×10−5, 2.24×10−6},
while the plus sign applies for the static case with astat

n =
{−2.66, 0.786,−0.01, 0.00128,−6.37× 10−5, 1.18× 10−6}
and where

Y = ln(Λ). (3.12)
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The GW frequencies appearing in the resonant mode
contributions (3.1c) are given by (3.8), which can be writ-
ten explicitly as

f res =
1

π
(κm −m) Ω, (3.13)

where the parameter κm reduces to κm → 2m/3 in the
Newtonian limit, while for relativistic stars, it is approx-
imately related to Λ by [20, 52]

κ2 = 0.3668 + 0.0498Y − 0.0025Y 2, (3.14)

We note that these results from [20] are specialized to
the m = 2 mode. Within the effective action model (2.2)
we are using, the modes with different m all have the
same scaled frequency ω̂B and hence the same κ. Thus,
we use (3.14) also for the m = 1 modes.

With the GW phasing model for the gravitomagnetic
effects in hand, we next apply it in a data analysis frame-
work to study the impact on GW measurements.

IV. ANALYSIS FRAMEWORK

A Bayesian data analysis framework is commonly used
for GW signals, as explained e.g. in [13] and briefly re-
viewed below. We assume that in the absence of any GW
signal, the detector noise n has a Gaussian distribution,
where louder noise realizations are less likely. In the pres-
ence of a signal h with parameters θ, the data d from the
detector output can be decomposed as

d = h(θ) + n, (4.1)

for some noise realization n. Then, the likelihood L for
the detector to measure the data d for a signal with pa-
rameters θ is given by

logL(d|θ) = −1

2
(d− h(θ)|d− h(θ)). (4.2)

Here, the meaning of (.|.) differs on both sides of the
equation: on the left hand side, L(d|θ) denotes the con-
ditional probability of observing the data d for a collec-
tion of signal parameters θ, while on the right hand side,
the notation (.|.) indicates an inner product on the vec-
tor space of signals. For two signals h1 and h2 this inner
product is defined as

(h1|h2) = 4R
∫ fhigh

flow

h̃1(f)∗h̃2(f)

Sn(f)
df. (4.3)

The symbol R denotes the operation of taking the real
part, the integration limits are the lower and upper fre-
quency range considered, Sn is the noise spectral density
of the detector, and the tilde and asterisk indicate the
Fourier transform and complex conjugate respectively.
This log likelihood (4.2) can be further expanded as

logL(d|θ) = −1

2
[(d|d) + (h(θ)|h(θ))− 2(d|h(θ))] .

(4.4)

The first term is proportional to the log noise evidence
and the second term (h(θ)|h(θ)) = ρ2

opt is called the op-
timal matched filter signal-to-noise ratio (SNR) squared.
The third term is the product of the optimal SNR and
the matched filter SNR given by (d|h(θ)) = ρoptρmf .

The posterior probability distribution of the parame-
ters θ follows from Bayes’ theorem:

p(θ|H, d, I) =
p(d|H,θ, I)p(θ|H, I)

p(d|H, I)
(4.5)

where I is the background information, H is the hypoth-
esis, i.e. the waveform model. The quantity p(θ|H, I)
is the prior probability, i.e. knowledge about the pa-
rameters within the model before analyzing the data,
p(d|H, I) is the evidence and p(d|H,θ, I) is the likeli-
hood function which is identified with (4.4). Comput-
ing the posterior probability distribution of the parame-
ters θ requires Markov chain Monte Carlo (MCMC) sam-
plers [53].

The above framework is general but also computa-
tionally intensive, especially when taking into account
the following considerations. Gravitomagnetic tidal ef-
fects are subdominant, though expected to be relevant
for next-generation GW detectors. The detectors will
have a much wider frequency band than current detectors
such that signals from NS binaries will linger for many
hours to days within the sensitive band. The associated
tremendous computational costs severely limit the scope
of explorative studies possible with the current MCMC
code infrastructures. However, ’golden’ events similar to
GW170817, which would have an SNR of over a thousand
in next-generation detectors, will provide rich science
yields, especially when combined with the larger number
of events with lower SNR. For the exploratory studies
in this paper, we use an MCMC analysis in a lower-
dimensional subspace of the signal parameters, which
we validate against a simplified data analysis framework
based on approximations for large SNR: the Fisher Ma-
trix formalism. For a high SNR event and Gaussian noise,
the probability distributions of the best-fit parameters
will be Gaussians centered around the actual values. Let
θ be the true value of the parameters and θ+∆θ the best-
fit parameters in the presence of Gaussian noise. Then
for large SNR, the likelihood function is given by

p(∆θ) = N e− 1
2 Γij∆θi∆θj (4.6)

where the Fisher matrix Γij is defined as,

Γij =

(
∂h

∂θi

∣∣∣∣ ∂h∂θj
)
. (4.7)

The 1-sigma error σi on the parameters θi is then given
by

σi =
√

(Γ−1)ii. (4.8)
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V. RESULTS

We use the analysis frameworks described in Sec. IV
to analyze the impact of gravitomagnetic tides on the
measurability of the tidal Love number Λ. For simplic-
ity, we focus on the Cosmic Explorer (CE) detector [54] ,
however, we expect similar results for the Einstein Tele-
scope [8].

A. Setup and parameter choices for case studies

We consider a few illustrative cases for our analysis.
These examples represent only a small subset of the ex-
pected range of diverse events but nevertheless yield use-
ful insights. Specifically, we consider binary neutron stars
with masses (M1,M2) = (1.5, 1.3)M� and explore two
values of the dimensionless spin parameters χ = 0.005
and χ = 0.01 for each NS, where χ refers to the spin
magnitudes. For the tidal deformability parameters we
choose (Λ̃, δΛ̃) = (519, 48) [55], corresponding to the
MPA1 equation of state. We use quasi-universal rela-
tions [56] between the moment of inertia and Λ to con-
vert from χ to the spin frequency Ω. In general, both
the m = 1 and m = 2 resonances will contribute to the
signals. To isolate each of these resonance effects and an-
alyze its contributions, we choose spin inclination angles
of ψ = 0 (aligned spins) and ψ = π/3 such that only the
m = 1 or m = 2 modes respectively undergo a resonant
excitation within our approximations. We assume the
same spin magnitudes and orientations for both NSs.

We analyze the signals in the CE detector sensitiv-
ity [54] between flow = 5Hz and fhigh ∼ 1720Hz, which
is a proxy for the merger frequency based on the esti-
mates for nonspinning NSs from [57]. Unless otherwise
specified, the SNR for the signals from these systems is
1800 for the CE detector, which corresponds to an event
similar to GW170817.

For the above choices of binary parameters, the mode
resonance frequencies for the larger and smaller mass NSs
are given by f res

1 =12 (24)Hz and f res
2 =13 (26)Hz for the

m = 1 (m = 2) modes respectively and taking the spin
magnitudes to be χ = 0.005; they increase to twice these
numbers when doubling the spin magnitudes to χ = 0.01.
Figure 1 illustrates the location of these resonance to-
gether with the power spectral density of the CE detec-
tor [54].

To study the consequences of different effects, we con-
sider different tidal waveform models. We refer to the
’PNTidal’ model as the piece of (3.1b) involving only
the adiabatic gravitoelectric tidal effects characterized by
Λ̃, δΛ, and denote models that also include gravitomag-
netic effects by PNTidalmodes for the resonant contribu-
tions (3.1c), PNTidalasym for the asymptotic adiabatic
contributions, and PNTidalmodes

asym for the model which in-
cludes all gravitomagnetic effects. Because we work only
to linear order in the spins, we neglect the effects of spin-
induced multipole moments on the GWs.

101 102 103

Frequency(Hz)

10−24

10−23

10−22

√
S
n
(H

z−
1/

2
)

CE PSD

Merger

m = 1 , χ1 = 0.005

m = 2 , χ1 = 0.005

m = 1 , χ2 = 0.005

m = 2 , χ2 = 0.005

m = 1 , χ1 = 0.01

m = 2 , χ1 = 0.01

m = 1 , χ2 = 0.01

m = 2 , χ2 = 0.01

FIG. 1: CE noise spectral density and various mode reso-
nances for the two bodies and varying spins χ. Green and
purple symbols refer to the NS with mass M1 = 1.5M�
with lower and higher spin respectively, while red and
brown symbols are the corresponding values for the com-
panion of mass M2 = 1.3M�. Diamond shapes denote
the modes with azimuthal number m = 1, triangles those
with m = 2.

B. Consistency checks

1. Fisher matrix versus Bayesian parameter estimation and
effect of the dimensionality of the parameter space

The Fisher matrix approximation is valid for high
SNR, which we expect to hold for most of the case studies
considered here. To assess the validity of this expectation
we compare with Bayesian parameter estimation results
for the case of the PNTidal matter model. In princi-
ple, the waveforms are characterized by 17 parameters,
after reducing the matter parameters to just Λ for each
body. Exploring the full parameter space is thus very
computationally expensive. For efficiency, we focus the
comparitive analysis here only on the following restricted
subset the intrinsic parameters

θ = (tc, φc, Λ̃, δΛ̃) (5.1)

and fix the other parameters to be ψ1 = 0, ψ2 = 0,
χ1 = 0.01 χ2 = 0.01. This subset was chosen to contain
the matter-related parameters Λ̃ and δΛ̃ as well as tc and
φc which are degenerate with mode resonance effects. We
sample the Fisher likelihood with the prior constraints
Λ1 ≥ 0,Λ2 ≥ 0. We also perform a Bayesian analysis
for the same setup using the emcee sampler to obtain
the posterior probability distribution of the parameters.
Figure 2 shows the results of both analyses.
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FIG. 2: Posterior probability distribution of Λ̃ for SNR
1800 with the PNTidal waveform model (without gravit-
omagnetic effects) used for injection and recovery. The
label 4D refers to a reduced parameter space of the tidal
deformabilities Λ̃, δΛ̃ and the time and phase of coales-
cence tc, φc with all other parameters fixed, while 8D also
includes the sampling of the mass and spin parameters
for each body. The results from the Fisher matrix (or-
ange curve) agree well with the corresponding Bayesian
analysis (blue curve), with both centered on the injected
value (vertical line). The green curve shows the broaden-
ing of the distribution when doubling the dimensionality
of the parameter space sampled. The shaded tails of the
curves indicate regions outside the 90% credible interval.
For the parameter δΛ̃, both the 4D and 8D posteriors are
essentially flat in this case.

We see that in this case, the results from the Fisher
(blue curve) and Bayesian (orange curve) frameworks
agree well and are centered on the injected value (ver-
tical line). To obtain an estimate of the changes in the
width of the posterior distributions when including more
parameters, in particular the masses and spin magnitudes
for each body, we also perform a Fisher analysis for eight
free parameters θ = (tc, φc,M1,M2, Λ̃, δΛ̃, χ1, χ2). More
specifically, we obtain a mean and 90 percentile results
of Λ̃ = 519+5.1

−4.7 from the MCMC and Λ̃ = 518.9+4.8
−4.9

from the Fisher analyses with four free parameters re-
spectively, which shows that they are in good agree-
ment. For an eight-dimensional parameter space we find
Λ̃ = 518.9+11.3

−11.2, which indicates that when doubling the
dimensionality of the parameter space the posterior dis-
tributions increase in width by about a factor of two. The
good agreement between the Fisher and Bayesian results
also provides a useful check of the 4D MCMC sampling,
which is the method we will continue to use in what fol-
lows.

2. Comparison to the adiabatic effects studied in [51]

The final consistency check we perform here is to com-
pare with the results of [51] for the impact of adiabatic

gravitomagnetic effects on measurements of Λ̃. Follow-
ing [51] we restrict our analysis to only three free pa-

rameters θ = (tc, φc, Λ̃), with all the other parameters
fixed. Figure 3 shows the results for aligned spins of
magnitude χ = 0.005. Comparing the orange curve (no
mode resonances) and blue curve (no adiabatic effects)
to the green curve shows that in this case the largest
impact of gravitomagnetic effects is due to the adiabatic
limits, while mode resonances play a subdominant role.
Specifically, we obtain Λ̃ = 519.34.5

−4.5 with the full model
(green curve) that was also used for the injection and thus
quantifies the statistical errors. Using only the adiabatic
effects (orange curve) leads to Λ̃ = 520.94.4

−4.4, which is
close to the injected value. On the other hand, when in-
cluding only the mode resonances for the recovery while
neglecting the adiabatic effects (blue curve) leads to a
distribution that is significantly shifted away from the
injected value with Λ̃ = 515.14.6

−4.5. The smallness of the

effect of the mode resonances on measurements of Λ̃ is
in part due to the fact that the resonance-induced phase
corrections (3.1c) have a scaling in frequency degenerate
with the gauge parameters tc and φc in the phase (3.1a),
which absorbs some of the resonance effects into shifts
of tc and φc. The adiabatic effects show a similar mag-
nitude as found in [51] based on only the irrotational or
static Love numbers, which lead to shifts in the poste-
rior distributions to lower and higher values respectively,
c.f. Fig. 6 therein. While the specific choices for the case
study here differ from [51] the setup is similar enough
to interpret qualitative trends by comparing their find-
ings to the adiabatic results represented by the orange
curve in Fig. 3, which uses the more realistic asymptotic
Love numbers from (2.24) as opposed to only σirrot for
the entire waveform.
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FIG. 3: Shifts in the posterior distribution for Λ̃ due to
adiabatic and resonant gravitomagnetic effects. This case
study is for SNR 1800, aligned spins χ = 0.005 and
sampling only on (Λ̃, tc, φc) with all other parameters
fixed. We inject with a waveform that includes all ef-
fects PNTidalmodes

asym and recover with the same waveform
(green curve) and those that include only the resonance
jumps (blue curve) and only the adiabatic effects (orange
curve). In this case the contribution from the adiabatic
effects is dominant; omitting them (as for the results
shown by the blue curve) leads to the largest shifts in
the distribution.

C. Physical effects

Having performed the consistency checks discussed
above, we next analyze the impact of various physical
effects and parameter dependencies by sampling on the
four-dimensional parameter space (5.1). We first con-
sider nonspinning systems, where there is no effect from
the mode resonances, then aligned spins with only the
m = 1 modes resonant, and finally spin orientations that
maximize the effects of the m = 2 modes.

1. Gravitomagnetic effects for nonspinning systems

For this study we use the PNTidal model without the
gravitomagnetic effects as the reference baseline for the
injection and set χ = 0. Figure 4 shows the results
for the posterior distributions in the tidal parameters Λ̃
and δΛ̃, with the two-dimensional representations given
in the lower left panel, and the one-dimensional projec-
tions for each parameter in the upper and right panels.
The one-dimensional representations are the full distribu-
tions, while the contours in the Λ̃− δΛ̃ plane correspond
to the credible intervals at the one (68%) and two (95%)
sigma confidence level. The blue curves in Fig. 4 repre-
sent a consistency check that when injecting and recov-

ering with the same model the mean is centered on the
injected value indicated by the gray lines and quantify
the statistical uncertainties. The orange curve in Fig. 4
corresponds to the results obtained when including all
gravitomagnetic effects, where, however, for nonspinning
systems there is only an adiabatic gravitomagnetic effect,
no resonances. As expected, we see that they induce a
small shift in the posterior for Λ̃. We note that the dif-
ference to the study in Sec. V B 2 is the model used for
the injection, the value of the spins, which also impacts
the adiabatic gravitomagnetic parameters (3.7), and the
dimensionality of the parameter space sampled. We also
observe that the adiabatic effects have no significant im-
pact on the measurability of δΛ in this case, as the shape
of the error ellipses and the flat distribution in δΛ̃ remain
largely unaffected.
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FIG. 4: Posterior distributions of the tidal parameters for
nonspinning NSs at SNR 1800. The injection neglected
gravitomagnetic tides, and the blue curve illustrates the
recovery with the same waveform. The effect of gravit-
omagnetic tides, which are purely adiabatic in this case,
is indicated by the orange curve. In the two-dimensional
representation in the lower-left panel, the contours cor-
respond to the one and two sigma confidence levels.

2. Effect of gravitomagnetic tides for aligned spins

A more realistic scenario is to include finite spins of the
NSs. We first consider the case of aligned spins, where
the m = 1 mode resonances contribute in addition to
the adiabatic effects. As in Sec. V C 1, we use the model
without gravitomagnetic tides as the reference baseline



11

for the injection and recover with the the same model
(blue curve) as well as the model including all gravito-
magnetic effects (orange curve).
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FIG. 5: Gravitomagnetic effects for aligned spins of
χ1,2 = 0.005 and SNR 1800. The blue curve corre-
sponds to using the same waveform for injection and re-
covery. Comparing this with the orange curve indicates
the changes due to gravitomagnetic tides from both the
m = 1 mode resonances and the adiabatic effects, which
lead to a shift in the distribution of Λ̃ and a slight change
in the shape of the δΛ̃ posterior.

For small spins χ = 0.005, we see from Fig. 5 that the
gravitomagnetic effects lead to a slightly larger shift in
the posterior probability distributions than in the non-
spinning case shown in Fig. 4. These trends become more
discernible for higher spins of χ = 0.01 shown in Fig. 6.
For higher spins, the recovered distributions for Λ̃ with
and without gravitomagnetic effects have essentially no
overlap. We also notice that compared to the low-spin
case in Fig. 5 the shift in the distribution for Λ̃ is in the
opposite direction. We will investigate the causes of this
below in Sec. VI. Roughly, it can be attributed to the
fact that for higher spins the resonances occur at higher
frequency, as seen in Fig. 1. Furthermore, as also found
in [28], which included only the mode resonance effects
with Newtonian parameters, the presence of gravitomag-
netic tides significantly improves the measurability of δΛ.
This is indicated by a peak in the one-dimensional projec-
tion or the size of the ellipse in the Λ̃−δΛ̃ plane, which is
in contrast to the distribution being essentially uninfor-
mative when neglecting the gravitomagnetic effects (c.f.
the blue curves in Fig 6).
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FIG. 6: Gravitomagnetic effects for aligned spins of
χ1,2 = 0.01 and SNR 1800. The blue curve corresponds
to using the same waveform for injection and recovery,
the orange curve indicates the effect of gravitomagnetic
tides from both the m = 1 mode resonances and the adi-
abatic effects. Significant shifts in Λ̃ and a peaked shape
of the distribution of δΛ̃ are clearly visible in this case.
This is also illustrated by the two-dimensional represen-
tation of the error ellipses in the lower left panel.

3. Effects of different gravitomagnetic contributions for
aligned spins

Having quantified the impact of gravitomagnetic ef-
fects, we next investigate the relative importance of adi-
abatic and resonant contributions to these results. For
this purpose, we switch to using the full tidal model
PNTidalmodes

asym for the injections. The results when re-
covering with different models that are missing various
effects for the case with spins of χ = 0.005 are shown in
the upper panels of Fig. 7. The green curve illustrates the
recovery with the same model as the injection, the blue
curve corresponds to omitting the adiabatic effects, while
the orange curve illustrates the omission of resonance ef-
fects from the model. From the large (small) shift away

from the injected value in the distribution for Λ̃ when
omitting (including) adiabatic effects it follows that the
conclusions of Sec. V B 2 about the signatures from adia-
batic tides dominating over the resonance effects in this
case continue to hold for the larger parameter space con-
sidered here. Furthermore, we also see by comparing the
orange and blue curves in the upper panels of Fig. 7 that
the more peaked distribution in δΛ can be primarily at-
tributed to the mode resonances in this case.
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FIG. 7: Effects of various gravitomagnetic contributions
on the parameter recovery for aligned spins. The results
are for the systems with SNR 1800 and spins of χ = 0.005
(upper panels) and χ = 0.01 (lower panels). Green curves
correspond to recovering with the same full model as used
for the injection, blue curves include only the mode reso-
nances, while orange curves indicate the adiabatic effects.
We see that the conclusions about the impact of the res-
onance and adiabatic effect is opposite for the lower and
higher spins: for low spins, adiabatic effects are most
important for reducing the bias in Λ̃, while resonances
give the dominant contribution to the measurability of
δΛ̃. For high spins, the largest reduction in the bias in
Λ̃ is due to the resonances, while the impact on δΛ̃ is
comparable between resonance and adiabatic effects.

The lower panel of Fig. 7 shows the same study with
higher spins of χ = 0.01. We see the opposite behavior
compared to the case with lower spins: now the mode
resonances (blue curves) dominate over adiabatic effects

(orange curve) for measuring Λ̃ without bias; in fact the

inferred Λ̃ with the adiabatic model has no overlap with
the injected value in this case. In all cases, a peaked
distribution in δΛ emerges, indicating that it is measur-
able, though with significantly larger errors than Λ̃. The
resonance effects yield a double-peaked distribution in
this parameter for χ = 0.01, which we attribute to the
larger spacing of the two resonances in this case. Interest-
ingly, for χ = 0.01 the adiabatic effects contribute about
equally to measuring δΛ̃ as the mode resonances, which
is in contrast with the case of lower spins.

4. Effect of the m = 2 modes

The analysis thus far focused on aligned-spin systems
where only the m = 1 modes are resonant. In this sub-
section we quantify the impact of the m = 2 mode reso-
nances by choosing spin orientations ψ = π/3 following
a similar line of analysis as for the aligned-spin case.
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FIG. 8: Gravitomagnetic effects for spin orientations
ψ = π/3 and magnitudes χ = 0.005 at SNR 1800. The
blue curve corresponds to using the same waveform for
injection and recovery. Comparing this with the orange
curve indicates the changes due to gravitomagnetic tides
from both the m = 2 mode resonances and the adiabatic
effects, which lead to a shift in the distribution of Λ̃ and
a more peaked shape of the δΛ̃ posterior.

First, we consider the impact of including all gravito-
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magnetic effects. From Fig. 8 we see that even for small
spins of χ = 0.005, the gravitomagnetic effects lead to
larger shifts in the posterior probability distribution for
Λ̃ and in the opposite direction compared to the aligned
spin case in Fig. 5. An approximate reasoning for this
behavior is that the m = 2 resonances occur later in the
inspiral than the m = 1 resonances, as we will discuss in
more depth in Sec. VI. Figure 8 also shows a peak in the
distribution for δΛ when including gravitomagnetic tides
(orange curves), however, because the injection neglected
gravitomagnetic effects, it is not centered on the injected
value.

For higher spins of χ = 0.01, the above trends are
more pronounced, as seen in Fig. 9. We observe that the
two-dimensional confidence intervals have no overlaps at
all in this case, and that the distribution in δΛ becomes
more distinctly peaked.
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FIG. 9: Gravitomagnetic effects for spin orientations
ψ = π/3 and magnitudes χ1,2 = 0.01 at SNR 1800. The
blue curve corresponds to using the same waveform for
injection and recovery. Comparing this with the orange
curve indicates the changes due to gravitomagnetic tides
from both the m = 2 mode resonances and the adiabatic
effects, which lead to a substantial shift in the distribu-
tion of Λ̃ and clear peak in the δΛ̃ posterior.
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FIG. 10: Effects of various gravitomagnetic contributions
on the parameter recovery for misaligned spins. The re-
sults are for the systems with SNR 1800 and spin orien-
tations of ψ = π/3 with χ = 0.005 (upper panels) and
χ = 0.01 (lower panels). Green curves correspond to re-
covering with the same full model as the injection, blue
curves include only the mode resonances, while orange
curves indicate the adiabatic effects. We see that in both
cases the mode resonances play a larger role for reducing
biases than the adiabatic effects.

To gain deeper insights into the reasons for these
results, we next characterize the impact of the reso-
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nant and adiabatic contributions to gravitomagnetic ef-
fects separately. The results of injecting with the full
PNTidalasym

modes and recovering with different models for
cases with smaller and larger spins are shown in the up-
per and lower panels of Fig. 10 respectively. We see that
the contributions of the m = 2 mode resonances (blue
curves) are more significant for reducing biases than the
adiabatic effects (orange curves) for both the smaller and
larger spin magnitudes in this case, though both effects
are important to accurately recover the parameters.

D. Measurement accuracy for different spins

Having characterized the importance of the various
contributions and gravitomagnetic tides overall, we next
compare the net effects on the measurement accuracy for
different spin magnitudes.
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FIG. 11: Effect of the spin magnitude on inferred tidal
parameters for aligned spins and SNR of 1800. The injec-
tion and recovery both use the same model PNTidalmodes

asym

with corresponding spin magnitudes, as indicated in the
legend. Increasing the spin magnitude has very little im-
pact on the width of the posterior in Λ̃ but significantly
affects that of δΛ̃, where a higher spin leads to tighter
bounds.

In this study, the injected and recovered waveform is
the full PNTidalmodes

asym model with increasing spin χ =
0, 0.005, 0.01. The results for aligned spins are shown in
Fig. 11 for increasing spin magnitudes χ = 0, 0.005, 0.01
corresponding to the blue, orange, and green curves re-
spectively. We see that changing the spins has very little
impact on the posterior distributions for Λ̃ in this case.

By contrast, a decreasing spin results in a broader distri-
bution in δΛ̃. As our analysis keeps the spins fixed, the
impact of spins is through their coupling with adiabatic
tidal parameters through (3.7), the resonance phase shift
∼ Ω2/3, and the mode resonance frequency, as we will
further discuss in Sec. VI.

From the above results, we also infer that the double-
peak in the distribution of δΛ̃ for χ = 0.005 arises from
the combination of adiabatic and resonant effects, which
act in opposite directions, while for χ = 0.01 it is largely
due to the presence of two resonances spaced widely
enough to be noticeable in the data analysis.

A different perspective on the behavior can be gained
by considering where in frequency the information about
tidal parameters accumulates. This is not immediately
visible from the phasing (3.1a) due to the implicit and
nontrivial dependencies of the gravitomagnetic parame-
ters on Λ̃ and δΛ upon using the quasi-universal relations.
Figure 12 shows the normalized integrands entering the
Fisher matrix error computations. For Λ̃, the abrupt
changes due to the resonances are too small to be visible
on the scale of this plot, which is in contrast to the infor-
mation on δΛ̃, where the resonance features are clearly
visible.

The corresponding results with varying spin magni-
tudes for the case with misaligned spins of ψ = π/3 are
shown in Fig. 13. We find similar trends as for the aligned
spin case. However, a notable difference is that while the
presence of spin has the expected impacts on the distribu-
tions, the consequences of any change in its magnitude
are very small. This is in contrast with the trends in
Fig. 11 for the m = 1 modes. An explanation of this
behavior could potentially come from considering the lo-
cation of the resonances studied here with respect to the
noise curve shown in Fig. 1, where changing the spin
has a more drastic impact on the relative location of the
m = 1 resonances (diamonds) in the detector sensitivity.
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FIG. 12: Accumulation of information encoded in integrands Abs
(
∂h̃?

∂θi
∂h̃
∂θi
∗ 1
Sn(f)

)
(normalized to its maximum

value) for θi = Λ̃ (left panel) and θi = δΛ̃ (right panel) as a function of frequency for the injected value of aligned

spins {0.0, 0.005, 0.01}, Λ̃= 519.38 and δΛ̃ = 48.37. “SNR” denotes the integrands Abs
(

h̃?h̃
Sn(f)

)
, “electric” denotes

only adiabatic gravitoelectric tidal contribution in (3.1a) and “Mag. all” denotes adiabatic and resonant
gravitomagnetic tidal contribution in (3.1a).
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FIG. 13: Effect of the spin magnitude on inferred tidal
parameters for inclined spins at 60o and SNR of 1800.
The injection and recovery both use the full model
PNTidalmodes

asym with varying spin magnitudes as indicated
in the legend. Increasing the spin magnitude from a fi-
nite value to a higher one has very little impact on the
width of the posteriors in this case.

χ ψ = 0 ψ = π/3

SNR 1800 SNR 1800

0.0 518.8+5.0
−5.3

(
10.5+193.2

−194.2

)
518.8+5.0

−5.3

(
10.5+193.2

−194.2

)
0.005 518.8+4.7

−4.9

(
12.1+135.5

−143.5

)
519.1+4.8

−4.6

(
9.2+118.5
−118.4

)
0.01 519.0+4.7

−4.5

(
12.1+75.6

−79.4

)
519.2+4.9

−4.6

(
12.5+106.8

−109.7

)
SNR 400 SNR 400

0.0 518.9+20.6
−20.3 (14.6+190.1

−198.8) 518.9+20.6
−20.3 (14.6+190.1

−198.8)

0.005 519.1+20.5
−20.5

(
10.9+191.9

−191.6

)
520.1+20.1

−20.5

(
12.2+187.0

−191.8

)
0.01 520.4+20.1

−20.0

(
12.0+158.5

−162.0

)
521.1+20.0

−19.4

(
8.4+188.3
−189.1

)
TABLE I: Recovered mean and 90% credible intervals

of Λ̃(δΛ̃) for SNR 1800 and 400. The injected values are

Λ̃ = 519 and δΛ = 48. The spin magnitude χ on each
NS increases from top to bottom, and we recall that in
the aligned spin case ψ = 0 only the m = 1 modes pass

through resonance, for ψ = π/3 it is only the m = 2
modes, and in the nonspinning case the resonances are

absent.

1. Extrapolating to lower SNR of 400

Thus far, we have assumed a SNR of 1800 in the
CE detector, which is plausible for an event similar to
GW170817. However, many more events will be observed
at a lower SNR. To estimate the changes in our conclu-
sions for such more numerous events, we perform the
same analysis as above but for a SNR of 400 instead of
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1800. From Fig. 14 we see that for lower SNR the quali-
tative trends of the effects of increasing the spins remain:
there is little impact on the posterior distribution for Λ̃,
while that for δΛ̃ becomes tighter. Comparing the left
and right panels of Fig. 14, which correspond respectively
to the spin orientations where only the m = 1 and m = 2
modes are present, we also notice that for the higher spins
considered here, the m = 1 modes have a larger effect on
the measurability of δΛ than the m = 2 modes. Compar-
ing the results of Fig. 14 with the cases with higher SNR
in Figs. 11 and 13 also quantifies the expected trends of a
higher SNR resulting in tighter posterior distributions in
the parameters. Table I lists the specific values obtained
for the mean and 90% credible intervals of the inferred Λ̃
and δΛ̃ distributions. From these results we see that for
Λ̃, the change in the 90% interval for SNR 400 compared
to 1800 is largely consistent with an approximate scal-
ing of the errors as (SNR)−1, i.e. the width increases by
roughly a factor of ∼ 4.5. By contrast, the broadening of
the 90% interval in δΛ̃ with lower SNR is significantly less
than expected from such a scaling, which is a promising
indication for measurements, however, corroborating this
for more realistic data analysis implications will require
further work.

VI. DISCUSSION

In this section, we discuss interesting aspects of the
above findings and their interpretation. The high-level
outcome of the case studies in Sec. V is that they cor-
roborate previously disconnected findings [28, 51] that
gravitomagnetic tidal signatures in the GWs from both
adiabatic and resonance-induced effects can have impor-
tant impacts on the GW phasing for measurements with
third-generation detectors. In addition, our analysis pro-
vided insights into the quantitative dependencies of these
results on different features associated to the resonance-
induced and adiabatic contributions and showed that
their relative importance strongly depends on the sys-
tem parameters. We discuss these findings below.

1. Features and parameter dependencies of gravitomagnetic
effects in GWs

Asymptotic adiabatic effects. The leading-order contri-
bution in the phase is parameterized by the quantity Σ̃
in (3.1b), which increases slowly with Λ̃ and is positive
both before and after a resonance. However, its mag-
nitude significantly drops to much lower values across a
resonance. In the GW phase, Σ̃ first enters together with
δΛ̃ at the same scaling with frequency, and both with the
opposite sign as the Λ̃ contribution, c.f. (3.1b). These ef-
fects thus lead to a reduction of the net size of tidal GW
signatures. Spin effects coupled with the adiabatic grav-
itomagnetic effects enter at a higher order in frequency
through the parameter Σ̂, thus contributing new informa-

tion that breaks the degeneracy with δΛ̃. For the specific
cases considered here, Σ̂ is positive. The spin orientation
impacts the size of the pre-resonance values of the adi-
abatic parameters Σ̃ and Σ̂ , which can be larger for
misaligned spins than for aligned spins.

Resonance-induced effects. The resonance effects in the
GW phase introduce a behavior that is very different
from other contributions to the phasing because of its
abruptness. Once present, the scaling with frequency is
the same as for the gauge parameters tc, φc. The size of
the resonance-induced phase shifts depend on the spin
magnitude and orientation, as well as the static and ir-
rotational gravitomagnetic Love numbers characterizing
how strongly the modes couple to the tidal field. The
resonance jumps induce a negative GW phase correc-
tion, accelerating the inspiral and increasing the differ-
ence to a non-tidal signal. This is the opposite behav-
ior as the leading-order adiabatic effects from gravito-
magnetic tides discussed above. The resonance effects
increase with larger Λ̃ and decrease for larger δΛ̃. Fur-
thermore, larger spins lead to larger resonance jumps,
as also seen from the spin dependence of (3.10), where
∆Φ2m ∼ χ2/3, and where we also note that the depen-
dence on the spin orientation is such that ∆Φ2m is largest
for aligned spins. In addition, the resonance frequencies
are approximately proportional to the spin frequency as
well as the mode number m. Larger spins and m shift the
resonances to higher frequencies, which can have several
consequences depending on the resonance location. For
example, for the case studies considered here, a shift of
the resonances to higher frequencies leads to an enhanced
accumulation of information from the pre-resonance adi-
abatic effects, the resonance jumps being within regimes
of greater detector sensitivity, and a reduction in the
number of cycles over which information from the res-
onances accumulates. As expected, when resonances oc-
cur within the most sensitive band of the detector, which
in Sec. V were the cases with χ = 0.01 and the scenario
with χ = 0.005 with spins misaligned by 60o, the relative
importance of the resonance effects is larger.

2. Case studies of aligned-spin systems

For systems with aligned spins, we found different
trends depending on the spin magnitudes. In the non-
spinning case, only the adiabatic post-resonance effects
contribute to the GW phase. As explained above,
the leading-order adiabatic gravitomagnetic parameter Σ̃
contributes to the phasing (3.1b) in the same way as δΛ̃,

while the contribution from Σ̂ vanishes for zero spins.
Consequently, gravitomagnetic effects have a rather small
impact on the measurability of δΛ̃, as also seen in Fig. 4.
Furthermore, the Σ̃-dependent contribution effectively
reduces the size of the tidal effects in the phasing, which
in this Fisher matrix study leads to the shift of the re-
covered Λ̃ to lower values, as also seen in Fig. 4.

For finite but low spins of χ = 0.005, the gravitomag-
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FIG. 14: Fisher matrix results for systems with SNR 400 for different spins. The injection and recovery both use
the model PNTidalmodes

asym with the corresponding spin magnitude indicated in the legend. Left panel : aligned spins,
right panel : spin inclinations of 60o. Same as Figs. 11 and 13 except for lower SNR.

netic mode resonances occur at the lower end of CE’s
sensitive band, c.f. Fig 1, where the sensitivity is deteri-
orating. As seen in the upper panel of Fig. 7, we find that
in this case that the dominant contribution for recovering
the correct mean for Λ̃ is the post-resonance asymptotic
values. Consequently, the results for Λ̃ shown in Fig. 5,
are similar to the nonspinning case in Fig. 4. When com-
pared to the full baseline model with all gravitomagnetic
effects, the mode resonances tend to lead to lower Λ̃ mean
values, while adiabatic effects shift the distribution more
towards higher ones in this case. A new feature with
spins is that the δΛ̃ distribution becomes less flat, im-
plying that this parameter becomes measurable, albeit
with much larger statistical errors than Λ̃. As seen from
Fig. 7, a non-flat distribution arises from both adiabatic
effects and resonance jumps, however, the contribution
from the latter is larger in this case.

For the higher spin system with χ = 0.01, where the
resonances occur at higher frequencies, the posterior in
Λ̃ with all gravitomagnetic effects is shifted in the oppo-
site direction relative to the gravitoelectric baseline than
the case with lower spins χ = 0.005, as seen by compar-
ing Figs. 5 and 6. This is due to the resonance effects
becoming the dominant contribution to the results for
Λ̃, as seen in the lower panel of Fig. 7. Interestingly,
the measurement of δΛ̃ in this higher-spin case is im-
pacted nearly equally by both adiabatic and resonance
effects, which both give similarly tight posteriors. We
attribute the enhanced contribution from adiabatic ef-
fects for higher spins primarily to the larger contribution

from Σ̂, which breaks the degeneracies, with a poten-
tial further enhancement due to the resonance occuring
at higher frequency, which increases the importance of
the larger pre-resonance contribution to Σ̃(Λ̃, δΛ̃), mak-
ing the effects larger overall.

3. Spins inclined at 60o

The system with misaligned spins of χ = 0.005 we con-
sidered has the same resonance frequencies as the case
study of aligned spins with χ = 0.01. However, the
other parameters of these systems differ, which enables
us to study their dependencies for a fixed resonance lo-
cation. Specifically, the value of the phase jumps ∆Φ2m

from (3.10) are about four times larger for the high-spin
m = 1 case than for m = 2 with low spin. Conversely,
in the same comparison, Σ̃ is smaller by a factor of four
and |Σ̂| is smaller by a factor of about two for the pre-

resonance regime. The post-resonance values of Σ̃ are
the same in the two cases. The outcomes of our analysis
for the m = 2 case with low spins are indeed qualita-
tively similar to that with the same resonance location
but aligned spins. Notably, we find that the gravitomag-
netic effects lead to a significant shift in Λ̃ compared to
the gravitoelectric baseline and to a non-flat distribution
of δΛ̃. Overall, the effects are larger for aligned high spins
than for the misaligned low spin case, as can be seen by
comparing, for example, Figs. 6 and 8.

For the case of misaligned spins with χ = 0.01, the
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results are similar to those with the lower spin magni-
tudes, as seen in Fig. 13. This is in contrast with the
aligned-spin case, where an increasing spin magnitude
changes the importance of different gravitomagnetic con-
tributions and noticeably improves the measurability as
seen in Fig. 11, for reasons explained above.

VII. CONCLUSION

In this work, we developed an approximate but efficient
adaptation of known results to incorporate more realistic
descriptions of resonant and adiabatic gravitomagnetic
tidal effects in the Fourier-domain GW phasing for slowly
rotating neutron stars and focusing on the quadrupole
effects. We discussed the subtleties with adiabatic ef-
fects in this case, where calculations based on relativistic
perturbation theory identified two different characteris-
tic tidal deformability parameters. We derived the com-
binations of these parameters that appear together with
a dependence on the spin orientation and the normal-
ized mode frequencies in the GW signals and emphasized
that they are different before and after a mode resonance.
We also showed how to adapt an existing model for the
resonance-induced GW phase shift to incorporate the
fully relativistic properties of the neutron stars. In gen-
eral, each neutron star passes through two quadrupolar
gravitomagnetic resonances corresponding to the m = 1
and m = 2 modes, which for spins of χ & 0.005 lie within
the sensitive band of third-generation GW detectors.

We used the above model to perform a data analy-
sis study of the impact of gravitomagnetic effects on the
measurements of tidal parameters with third-generation
GW detectors, which relied on several simplifying as-
sumptions. In particular, we used quasi-universal rela-
tions to reduce all matter parameters to the two tidal
deformabilities, considered neutron stars with slightly
unequal masses but equal spins and -orientations such
that only one set of modes is resonantly excited during
the inspiral, and mainly adopted a MCMC approach re-
stricted to a four-dimensional subspace of parameters for
GW170817-like events. These case studies enabled us to
gain several quantitative insights and demonstrated that
gravitomagnetic tides can be important to avoid biases

in the inferred Λ̃ and lead to a peaked distribution in
δΛ̃, which is flat and thus uninformative when neglecting
gravitomagnetic effects.

To gain further insights into the underlying reasons
for these results, we analyzed the different contributions
to the gravitomagnetic tides, adiabatic versus resonance-
induced, and compared the impacts from the m = 1
modes (relevant for the aligned-spin configuration) to
those of the m = 2 modes (relevant for the case with
misaligned spins). We found that for the m = 1 modes,
increasing the spin leads to increasingly better measure-
ments of the tidal parameters. Furthermore, for aligned
spins of magnitude χ = 0.005, the adiabatic effects are
most important to avoid biases in the parameter Λ̃, while
for larger spins of χ = 0.01 it is the mode resonances.
In all cases, the mode resonances have a significant im-
pact on the measurability of δΛ̃. On the other hand,
for spin orientations where only the m = 2 modes are
resonant, we found no significant changes in the results
with increasing spins. We also considered a case with a
lower SNR of 400, as is expected for a larger number of
events, and found that similar qualitative trends persist.
Interestingly, we noticed that while the broadening of the
inferred posterior probability distribution seems to scale
inversely with the SNR, the broadening of the posterior
in δΛ̃ is much less than this scaling. This is a promising
indication for future measurements but will need to be
confirmed with more realistic data analysis studies.

In conclusion, our work represents an exploratory
study based on more realistic modeling of gravitomag-
netic tides than in previous work. We made several sim-
plifying assumptions and approximations, and neglected
a number of additional matter effects that impact the
GWs. Our results about the importance of the gravit-
omagnetic effects for measurements motivate more de-
tailed data analysis studies as well as further advances in
the modeling, which we leave to future work.
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