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Abstract

We consider non-Lorentzian expansions, Galilean and Carrollian, of the Lorentz force equa-

tion in which both the particle position and the electro-magnetic field are expanded. There

are two well-known limits in the case of a constant field, called electric and magnetic, that

are studied separately. We show that the resulting equations of motion follow equivalently

from considering a non-linear realisation of a certain infinite-dimensional algebras.
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1 Introduction

Non-Lorentzian theories refer to theories that have as their underlying symmetry algebra a

kinematical algebra that is different from the Poincaré one, such as the Galilei algebra or the

Carroll algebra, for a review see [1]. There is a variety of kinematical algebras that have been

classified in [2–6]—in this paper we focus on the Galilean and Carrollian case. Usually, non-

Lorentzian systems can be obtained as the limit of a relativistic system when some characteristic

parameter goes to zero (infinity). Consider for example a relativistic free point particle and its

velocity relative to the speed of light v/c. Taking this parameter to zero (infinity) one obtains

the Galilean (Carrollian) free particle. Non-relativistic expansions in 1/c2 have been considered

in various previous studies, see for example the review [7] in the context of gravity.

Given a relativistic system, instead of considering its strict non-Lorentzian limits, one can

perform a non-Lorentzian expansion in terms of the characteristic parameter, that allows one

to obtain not only the non-Lorentzian limit, but also a series of corrections. However, only the

first term in the expansion exhibits the symmetry of the contracted (non-Lorentzian) algebra,

whereas the full expansion exhibits the relativistic symmetry. In [8] it was shown how to study

the symmetry algebra of the truncated expansions at any level. The idea is to construct, from

the contracted algebra, g0 := g(0) with generators {t(0)α } an infinite sequence of expansions g(N)

with generators {t(n)α }0≤n≤N , leading to an infinite-dimensional Lie algebra g∞. The method of

Lie algebra expansions was pioneered in [9–14]. The infinite-dimensional algebra g∞ is like a
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non-Lorentzian expansion of the contracted algebra. Since g acts on the space-time manifold M ,

its infinite expansion g∞ acts on an infinite-dimensional homogeneous space M (∞) using non-

linear realisations. Introducing collective coordinates on this generalised space, one can recover

the space M and the symmetry algebra g.

In [15] it was shown that, starting from the Poincaré algebra, one could obtain a non-

relativistic expansion of the relativistic free particle Lagrangian L = −mc
√
−ẋ2, by considering

an infinite-dimensional algebra G∞ containing the Galilei algebra G as a quotient by an ideal.

The non-linear realisation ofG∞ in a top-down approach using an associated infinite-dimensional

space-time yields associated Euler–Lagrange equations that correspond to the non-relativistic

expansion of equations of motion of a free relativistic particle if we consider a specific slice of

M (∞).

In this work, for the case of a particle in a constant electro-magnetic field, we will start

considering the inverse procedure of that in the free case. Starting from the bottom up, we will

consider a non-relativistic expansion of the relativistic Lorentz force equation. Both the particle

position and the electro-magnetic field are expanded.

In [16] it was shown that the Poincaré algebra admits a non-central extension, the Maxwell

algebra. A standard Lagrangian which realises this symmetry algebra is [17]1

L = −mc
√

−ẋµẋµ − 1

2
fµνΩ

µν (1.1)

where the dot denotes d/dτ and Ωµν := θ̇µν + 1
2 (ẋ

µxν − ẋνxµ) is a Maurer–Cartan derivative,

while fµν(τ) and θµν(τ) are new dynamical variables, that are similar to higher inertial moments

[19,18]. This Lagrangian describes a relativistic particle subject to a generic external, constant

electro-magnetic field represented by fµν .

There is more than one non-Lorentzian limit for electro-magnetism [20–23]. Different regimes

arise depending on the relative strength of the magnetic and electric field. The limits are called

electric and magnetic depending on the dominant component of the electro-magnetic field.2 We

will see in both cases that they admit different infinite-dimensional symmetry algebras.

As we shall show these infinite-dimensional algebras coincide with those obtained by applying

the Lie algebra expansion method to the relativistic Maxwell algebra in two different ways.

For instance in the Galilei case, these two ways differ by connecting to the non-relativistic

Galilean electric E and Galilean magnetic M Maxwell algebras. The corresponding infinite-

dimensional algebras E∞ and M∞ and their relation to the Galilean free algebras [23] will be

exhibited.3 These infinite-dimensional algebras admit quotients that describe the symmetries of

the expansion up to a finite order in 1/c. Using the non-linear realisation approach we construct

Lagrangians associated with these infinite-dimensional algebras, whose Lagrange equation of

motion coincide with the ones obtained by expanding the Lorentz equation in the bottom-up

approach. The non-linear realisation also involves extra coordinates of the infinite-dimensional

1Compared to [18] we have changed the sign of the unit charge of the particle, that is the sign in front of the

fµν term.
2There is a third limit, called pulse in [22,23], where the electric and magnetic field have similar strength. We

will comment more on this limit in Section 2 and Appendix A.
3Carrollian free algebras were discussed in [8].
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space-time and that are expanded. The Lagrangian also involves extra fields on the particle’s

world-line that are related to the expansion of the electro-magnetic field. We shall perform a

similar analysis for the Carroll limit.

The organisation of this work is as follows: In Section 2, we will obtain a non-relativistic

expansion of the Lorentz equation in powers of 1/c2 in the two cases depending on whether the

constant electric or magnetic field is dominant. In Section 3, we will study the same problem, that

of a non-relativistic expansion of the Lorentz equation, through its algebra of symmetries, the

Maxwell algebra. The Carroll case, both bottom-up and top-down, is considered in Section 4. In

Section 5, we discuss the relation between the Galilei and the Carroll limit with electro-magnetic

field. In appendices we also relate our algebraic constructions to that of free Lie algebras, as

well as the case of a 1/c expansion rather than 1/c2.

2 Non-relativistic expansion of the Lorentz equation

Our starting point is the Lorentz equation for a massive test particle of unit charge in an

electro-magnetic field background Fµν

mc
d

dτ

(

ẋµ(τ)√
−ẋ2

)

= Fµν(x(τ))ẋν(τ) (2.1)

where the dot denotes derivative with respect to the arbitrary worldline parameter τ , xµ is

the position four-vector and we are using the metric ηµν = diag(−1, 1, . . . , 1), such that ẋ2 =

ẋµẋµ = −(ẋ0)2+~̇x2. Greek indices µ, ν refer to space-time indices, while i, j, k, . . . indices will be

reserved for the spatial components. In this way we write xµ = (x0, xi) = (ct, xi). From now on

we assume that Fµν is constant but not fixed. This means that under Lorentz transformations

we have xµ → Λµ
νx

ν and Fµν → Λµ
ρΛ

ν
σF

ρσ. We think of the constant Fµν as parametrising a

moduli space of theories and the Lorentz transformation above transforms points on this moduli

space. If one were to fix the point on moduli space by taking a fixed Fµν , the Lorentz symmetry

is broken from six to two generators called the Bacry–Combe–Richards algebra [24].

Separating space and time, the Lorentz force reads in non-manifestly covariant form

m
d

dτ





1
√

1− ~̇x2/(cṫ)2



 =
1

c2
F̃ tiẋi , (2.2a)

m
d

dτ





ẋi

ṫ

√

1− ~̇x2/(cṫ)2



 = F̃ ti ṫ+ F ij ẋj , (2.2b)

where we have defined the rescaled field F̃ ti = cF 0i which has the same units as the electric

field.
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We expand the γ factor γ = 1 + 1
2

~̇x2

ṫ2c2
+ 3

8
~̇x4

ṫ4c4
+ . . . and construct an expansion of the

coordinates xµ according to4

t = t(0) +
1

c2
t(1) + . . . , xi = xi(0) +

1

c2
xi(1) + . . . (2.3)

as well as of the electro-magnetic field Fµν by

F̃ ti = F̃ ti
(0) +

1

c2
F̃ ti
(1) + . . . F ij = F ij

(0) +
1

c2
F ij
(1) + . . . (2.4)

Order by order in 1/c2, the following non relativistic expansion of the Lorentz equation (2.2)

is obtained:

m
d

dτ

[

~̇x2(0)

2ṫ2
(0)

]

= F̃ ti
(0)ẋ(0)i (2.5a)

m
d

dτ

[

ẋi(0)

ṫ(0)

]

= −F̃ it
(0) ṫ(0) + F ij

(0)ẋ(0)j (2.5b)

m
d

dτ

[

3

8

(~̇x2(0))
2

ṫ4(0)
+

~̇x(0) · ~̇x(1)
ṫ2(0)

−
~̇x2(0)ṫ(1)

ṫ3(0)

]

= F̃ ti
(0)ẋ(1)i + F̃ ti

(1)ẋ(0)i (2.5c)

m
d

dτ

[

1

2

~̇x2(0)ẋ
i
(0)

ṫ3(0)
−

ṫ(1)ẋ
i
(0)

ṫ2(0)
+

ẋi(1)

ṫ(0)

]

= −F̃ it
(0) ṫ(1) + F ij

(0)ẋ(1)j − F̃ it
(1)ṫ(0) + F ij

(1)ẋ(0)j (2.5d)

. . .

Continuing these equations to infinite order is still fully equivalent to the relativistic system (2.2).

The equations (2.5a) and (2.5b) are the standard non-relativistic particle in a general electro-

magnetic field. In particular, (2.5a) is the conservation of energy.

We are now interested in non-Lorentzian limits of the charged particle. It is known that there

is not a single non-relativistic limit for electro-magnetism [20–23]. Instead, different regimes

appear depending on the relative strength of the magnetic and electric field. In the magnetic

limit |E|/|B| ≪ c whereas in the electric limit |E|/|B| ≫ c.5 Since |E|2 − c2|B|2 is Lorentz-

invariant, the notion of the different limits is independent of the choice of frame.

2.1 Magnetic limit

The magnetic limit can be obtained by having F ij
(0) 6= 0 and keeping F̃ ti fixed, since then

F ij ≫ 1

c
F̃ ti (2.6)

4Here, we are assuming an expansion in powers of 1/c2. In Appendix A, we consider a 1/c expansion which is

more appropriate for a certain limit of the Maxwell equations.
5There is a third limit, called pulse in [22,23], where the electric and magnetic field have similar strength, i.e.

|E| = c|B|. This limit is not compatible with the expansion proposed in (2.4) but instead requires a 1/c expansion

that will be treated in Appendix A.
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is satisfied. The particle’s equations in the magnetic limit are therefore formally the same as

before taking the limit, namely (2.5). However, the limit in the Maxwell field equations in the

magnetic case are only non-relativistically invariant and lack the displacement current [20,21].

The equations (2.5) are invariant under the following transformation laws:

δt(n) = ǫ(n) +

n−1
∑

m=0

~v(m) · ~x(n−m−1), δxi(n) = ǫi(n) +

n
∑

m=0

vi(m)t(n−m) , (2.7a)

δF̃ ti
(n) =

n
∑

m=0

v(m)kF
ki
(n−m), δF ij

(n) = −2

n−1
∑

m=0

F̃
t[i
(m)v

j]
(n−m−1) , (2.7b)

where we have introduced the expansion of the boost parameter vi = vi(0)+
1
c2
vi(1)+ . . . and also

expanded time and spatial translations, ǫ = ǫ(0) +
1
c2
ǫ(1) + . . . and ǫi = ǫi(0) +

1
c2
ǫi(1) + . . .

These transformations can be obtained as the non-relativistic expansion of the infinitesimal

Lorentz transformations. The transformations for the electro-magnetic fields are the Galilean

expansion of the Lorentz transformation of Fµν relating different constant fields, thus moving on

moduli space. As we shall show in the next section the transformations laws for t(n) and xi(n) are

the same as for the action of the G∞ algebra that was introduced in [15]. The transformations

for the electro-magnetic fields will also be seen to agree with those derived from an extended

algebra.

The boost operator defines a sequence:

. . . xi(1)
vi
(1)−−→ t(1)

vi
(0)−−→ xi(0)

vi
(0)−−→ t(0)

vi
(0)−−→ 0 , (2.8)

which extends the known two-step nilpotency ~x
~v−→ t

~v−→ 0 of the Galilei algebra (see e.g. [8]) to

higher orders.

The sequence of boosts can also be used to relate the equations of motion in an indecom-

posable manner:

. . . (2.5d)
vi
(1)−−→ (2.5c)

vi
(0)−−→ (2.5b)

vi
(0)−−→ (2.5a)

vi
(0)−−→ 0 . (2.9)

This action is indecomposable as there is no transformation going in the other direction.

2.2 Electric limit

To obtain the electric limit, one can set F ij
(0) = 0, so that for F̃ ti

(0) 6= 0 one has

F ij ≪ 1

c
F̃ ti. (2.10)

This leads to the following limit of the equations of motions (2.5):

m
d

dτ

[

~̇x2(0)

2ṫ2(0)

]

= F̃ ti
(0)ẋ(0)i , (2.11a)

m
d

dτ

[

ẋi(0)

ṫ(0)

]

= F̃ ti
(0) ṫ(0) , (2.11b)
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m
d

dτ

[

3

8

(~̇x2(0))
2

ṫ4(0)
+

~̇x(0) · ~̇x(1)
ṫ2(0)

−
~̇x2(0) ṫ(1)

ṫ3(0)

]

= F̃ ti
(0)ẋ(1)i + F̃ ti

(1)ẋ(0)i , (2.11c)

m
d

dτ

[

1

2

~̇x2(0)ẋ
i
(0)

ṫ3(0)
−

ṫ(1)ẋ
i
(0)

ṫ2(0)
+

ẋi(1)

ṫ(0)

]

= F̃ ti
(0) ṫ(1) + F̃ ti

(1) ṫ(0) + F ij
(1)ẋ(0)j . (2.11d)

These equations are invariant instead under the transformations

δt(n) = ǫ(n) +
n−1
∑

m=0

~v(m) · ~x(n−m−1) , δxi(n) = ǫi(n) +
n
∑

m=0

vi(m)t(n−m) , (2.12a)

δF̃ ti
(n) =

n−1
∑

m=0

v(m)kF
ki
(n−m−1) , δF ij

(n) =

n
∑

m=0

−2F̃
t[i
(m)v

j]
(n−m) (2.12b)

that differ from the magnetic transformations (2.7). In the next section, we shall show how

these equations and transformations obtained from a bottom-up approach can also be derived

from the top down by using a suitable infinite-dimensional Lie algebra.

3 Lie-algebraic reformulation

A particle subject to a constant electro-magnetic field has symmetries extending the Poincaré

algebra [24]. If one transforms also the electro-magnetic background under Lorentz transforma-

tions, the associated algebra of symmetries is the Maxwell algebra [16–18] which is a non-central

extension of the Poincaré algebra, with generators Pµ,Mµν and Zµν . The algebra is given by

[Mµν ,Mρσ] = ηνρMµσ − ηνσMµρ − ηµρMνσ + ηµσMνρ , (3.1a)

[Mµν , Pρ] = ηνρPµ − ηνρPµ , (3.1b)

[Pµ, Pν ] = Zµν . (3.1c)

The most general reparametrisation-invariant Lagrangian at first order in derivatives one could

write realising this symmetry algebra is

L = −mc
√

−ẋµẋµ − 1

2
fµνΩ

µν , (3.2)

where Ωµν := θ̇µν+ 1
2 (ẋ

µxν − ẋνxµ) is the Maurer–Cartan derivative and θµν are the coordinates

associated to the new generators Zµν . This Lagrangian describes a point particle subject to an

external constant electro-magnetic field. The field fµν = fµν(τ) is set to a constant by the

equations of motion of θµν(τ).

We want to construct a perturbative expansion of the Maxwell algebra by combining its

contractions with the method of Lie algebra expansions [9–14]. The contraction of relevance in

this paper can be obtained by a suitable rescaling of the generators. Starting from an algebra

g with generators tα and structure constants fαβ
γ , we define a new Lie algebra gω for each

ω > 0 by rescaling some generators homogeneously with powers of ω. For any ω > 0 this is

an invertible definition and the resulting Lie algebra gω is isomorphic to the starting one. The
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contracted algebra gω→∞ is well-defined if the limit ω → ∞ makes sense and the algebra is

typically no longer isomorphic to g and one cannot necessarily invert the contraction process.

It is possible to keep track of information of the original algebra g by a perturbative scheme

known as Lie algebra expansion. To each generator tα of g one associates a formal power series

tα →
∑

n≥0

tα ⊗ λn0(α)+n =
∑

n≥0

t(n)α , (3.3)

where the offset n0(α) can depend on the generator. This produces an infinite-dimensional

algebra out of g with generators t
(n)
α . The label n is to be thought of as the nth order perturbative

expansion in the parameter λ and the offset has to be chosen in such a way that the commutator

of order m with order n only contains generators of order ≥ m+n. The commutator is here

defined by combining the commutator on g with the product of formal power series in λ.

At lowest order, the commutators involving of the t
(0)
α then can be arranged to be those of

the contracted algebra, but the higher terms capture the perturbative expansion of the original

algebra g.

A perturbative expansion for the Poincaré algebra adapted to the Galilean contraction was

presented in [15], obtaining an infinite-dimensional algebra G∞.

In Sections 3.1 and 3.2, we will show the explicit contractions and constructions of the ex-

panded algebra relevant to the electric and magnetic limits of electro-magnetism. In Appendix B

we also show how this construction can be embedded in an even more general construction of

infinite-dimensional free Lie algebras in the magnetic and electric limits.

3.1 Electric case

The electric limit E of the Maxwell algebra is obtained by separating space and time indices and

performing the following contraction of (3.1), see [22,23]:

M̃ij = Mij , G̃i =
1

ω
Mi0, (3.4a)

H̃ = ωP0, P̃i = Pi, (3.4b)

Z̃ij = ω2Zij, Z̃i = ωZ0i. (3.4c)

The contracted algebra in the limit ω → ∞ has the commutation relations
[

G̃i, P̃j

]

= 0,
[

M̃ij , P̃k

]

= 2δk[jP̃i],
[

G̃i, Z̃j

]

= 0, (3.5a)
[

H̃, G̃i

]

= P̃i,
[

M̃ij , G̃k

]

= 2δk[jG̃i],
[

P̃i, P̃j

]

= 0, (3.5b)
[

H̃, P̃i

]

= Z̃i,
[

M̃ij , Z̃k

]

= 2δk[jZ̃i],
[

G̃k, Z̃ij

]

= 2δk[iZ̃j], (3.5c)
[

G̃i, G̃j

]

= 0,
[

M̃ij, Z̃kl

]

= −4δ[i[lZ̃k]j]. (3.5d)

We will construct the infinite-dimensional algebra E∞ via the method of Lie algebra ex-

pansion by a semigroup [9–14], S
(∞)
E as follows. Decompose the relativistic Maxwell algebra

into [25]

V0 = {Mij , P0, Zij} and V1 = {M0i, Pi, Z0i} , (3.6)

7



which is a Z2-grading:

[V0, V0] ⊂ V0 , [V0, V1] ⊂ V1 , [V1, V1] ⊂ V0 . (3.7)

Using the resonant semigroups S
(∞)
0 = {λ2m|m = 0, 1, . . . } and S

(∞)
1 = {λ2m+1|m = 0, 1, . . . },

we can construct the expanded algebra V0 ⊗ S
(∞)
0 ⊕ V1 ⊗ S

(∞)
1 with generators

J
(m)
ij = Mij ⊗ λ2m, H(m) = P0 ⊗ λ2m, Z

(m)
ij = Zij ⊗ λ2m, (3.8a)

G
(m)
i = M0i ⊗ λ2m+1, P

(m)
i = Pi ⊗ λ2m+1, Z

(m)
i = Z0i ⊗ λ2m+1. (3.8b)

and commutation relations

[J
(m)
ij , J

(n)
kl ] = 4δ[i[kJ

(m+n)
l]j] ,

[

J
(m)
ij , P

(n)
k

]

= −2δk[iP
(m+n)
j] , [J

(m)
ij , Z

(n)
kl ] = 4δ[i[kZ

(m+n)
l]j] ,

(3.9a)
[

J
(m)
ij , G

(n)
k

]

= −2δk[iG
(m+n)
j] ,

[

G
(m)
i ,H(n)

]

= −P
(m+n)
i , [J

(m)
ij , Z

(n)
k ] = 2δk[jZ

(m+n)
i] ,

(3.9b)
[

G
(m)
i , P

(n)
j

]

= δijH
(m+n+1),

[

G
(m)
i , G

(n)
j

]

= J
(m+n+1)
ij ,

[

Z
(m)
ij , G

(n)
k

]

= −2δk[iZ
(m+n)
j] ,

(3.9c)
[

G
(m)
i , Z

(n)
j

]

= Z
(m+n+1)
ij ,

[

P
(m)
i ,H(n)

]

= −Z
(m+n)
i ,

[

P
(m)
i , P

(n)
j

]

= Z
(m+n+1)
ij .

(3.9d)

As noted in Appendix B, these expansions can be obtained as particular quotients of suitable

Galilean free Lie algebras. Note that quotienting by the ideal generated by all generators of

levels m ≥ 1 we recover the electric Maxwell algebra E.

Our next aim is to construct a dynamical model that is invariant under the infinite-dimen-

sional E∞. This will be modelled after the charged particle (3.2).

To make the connection more transparent, we let λ2m = c−2m and λ2m+1 = c−2m−1 in the

above expansion, and introducing convenient factors of c. The generators of the electric Maxwell

algebra then read

H(m) = P0 ⊗ c−2m+1, P
(m)
i = Pi ⊗ c−2m, G

(m)
i = M0i ⊗ c−2m−1, (3.10a)

J
(m)
ij = Mij ⊗ c−2m, Z

(m)
i = Z0i ⊗ c−2m+1, Z

(m)
ij = Zij ⊗ c−2m+2. (3.10b)

If we give dimensions L−1 to the relativistic translations, and no units to relativistic Lorentz

transformations, then, using the above definitions, the level 0 generators, which we wish to iden-

tify with the Galilean limit of the Maxwell generators, have the following units [H(0)] = T−1

[P
(0)
i ] = L−1, [G

(0)
i ] = TL−1, [J

(0)
ij ] = 1, [Z

(0)
i ] = L−1T−1 and [Z

(0)
ij ] = T−2. The genera-

tors (3.10) satisfy the commutation relations (3.9).

From the algebra we define the homogeneous space with generalised coordinates on which

E∞ acts, by quotienting by generalised “Lorentz” generators: G
(m)
i , J

(m)
ij , i.e. the formal coset

expE∞/ expL∞ . (3.11)
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Introduce in this space the coordinates xi(m), t(m), θ
i
(m), φ

ij
(m) associated to P

(m)
i , H(m), Z

(m)
i ,

Z
(m)
ij , respectively. In this way, xi(0) and t(0) have units of length and time respectively, whereas

θi(0) has units of LT , and φij
(0) of T 2. If we want θi and φij to have interpretation as inertial

momentum [19], we need to add factors of c through the collective coordinates.

The infinitesimal action of a general element of the algebra of the form:

∞
∑

n=0

(

ǫ(n)H
(n) + ǫi(n)P

(n)
i + vi(n)G

(n)
i + εi(n)Z

(n)
i + εij(n)Z

(n)
ij

)

(3.12)

on the generalised space of coordinates is given by

δt(m) = ǫ(m) +
m−1
∑

n=0

vi(m−n−1)x
(n)
i (3.13a)

δxi(m) = ǫi(m) +

m
∑

n=0

vi(m−n)t(n) (3.13b)

δθi(m) = εi(m) +

m
∑

n=0

1

2
ǫi(m−n)t(n) −

1

2
ǫ(m−n)x

i
(n) − 2vk(m−n)φ

i
k(n) (3.13c)

δφij
(m) = εij(m) +

m−1
∑

n=0

ǫ
[i
(m−n−1)x

j]
(n) − 2v

[i
(m−n−1)θ

j]
(n) (3.13d)

The connection to (3.2) is via the collective coordinates

Xi =

∞
∑

m=0

c−2mxi(m), T =

∞
∑

m=0

c−2mt(m), Θi =

∞
∑

m=0

c−2m+1θi(m), Φij =

∞
∑

m=0

c−2m+2φij
(m),

F0i =

∞
∑

m=0

c−2m−1f
(m)
0i , Fij =

∞
∑

m=0

c−2m−2f
(m)
ij . (3.14)

They give Θi and Φij units of inertial momenta. With these definitions, f
(0)
0i already has dimen-

sions of electric field, and f
(0)
ij dimensions of magnetic field.

Plugging these collective coordinates into (3.2) and grouping in powers of 1/c2, we obtain the

following expansion of the associated action S =
∑∞

m=0 S(m) with S(m) proportional to c2−2m:

S(0) = −mc2
∫

dτ
[

ṫ(0)
]

(3.15a)

S(1) =

∫

dτ

{

−m

[

ṫ(1) −
ẋ2(0)

2ṫ(0)

]

− f
(0)
0i

(

θ̇i(0) +
1

2

(

ṫ(0)x
i
(0) − ẋi(0)t(0)

)

)

− 1

2
f
(0)
ij

(

φ̇ij
(0)

)

}

,

(3.15b)
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S(2) =
1

c2

∫

dτ

{

−m

[

ṫ(2) −
ẋi(0)ẋ

j
(1)δij

ṫ(0)
+

ṫ(1)ẋ
2
(0)

2ṫ2(0)
−

ẋ4(0)

8ṫ3(0)

]

− f
(0)
0i

(

θ̇i(1) +
1

2

(

ṫ(1)x
i
(0) + xi(1)ṫ(0) − ẋi(0)t(1) − t(0)ẋ

i
(1)

)

)

(3.15c)

− f
(1)
0i

(

θ̇i(0)+
1

2

(

ṫ(0)x
i
(0)−ẋi(0)t(0)

)

)

− 1

2
f
(0)
ij

(

φ̇ij
(1)+

1

2

(

ẋi(0)x
j
(0)−ẋj(0)x

i
(0)

)

)

−1

2
f
(1)
ij φ̇ij

(0)

}

. . .

These actions are invariant under the transformations (3.13), if they are supplemented by the

transformation

δf
(m)
0i = −

m−1
∑

n=0

vj(n)f
(m−n−1)
ij ,

δf
(m)
ij = 2

m
∑

n=0

v
(n)
[i f

(m−n)
0|j] . (3.16)

The action S(0) is a total derivative with trivial dynamics, the action S(1) gives the strict

electric limit of the charged particle. Since we are interested in corrections, we investigate the

equations of motion of S(2) that read:

m

2

d

dτ

(

ẋ2(0)

ṫ2(0)

)

= −f
(0)
0i ẋi(0) , (3.17a)

m
d

dτ

(

ẋ(0)

ṫ(0)

)

= −f
(0)
0i ṫ(0) , (3.17b)

m
d

dτ

(

~̇x(1) · ~̇x(0)
ṫ2(0)

−
ṫ(1)ẋ

2
(0)

ṫ3(0)
+

3

8

ẋ4(0)

ṫ4(0)

)

= −f
(1)
0i ẋi(0) − f

(0)
0i ẋi(1) , (3.17c)

m
d

dτ

(

ẋi(1)

ṫ(0)
−

ṫ(1)ẋi(0)

ṫ2(0)
+

1

2

~̇x2(0)ẋi(0)

ṫ3(0)

)

= −f
(1)
0i ṫ(0) − f

(0)
0i ṫ(1) + f

(0)
ij ẋj(0) . (3.17d)

In deriving these equations, we have used the equations obtained by varying the fields θi(m) and

φij
(m)

that read

ḟ
(m)
ij = ḟ

(m)
0i = 0 (3.18)

and force the components f
(m)
ij and f

(m)
0i to be constants.

For these τ -independent quantities we see that (3.17) agree with the equations (2.11) under

the identification F̃ ti
(m) = f0i

(m) , F
ij
(m+1) = f ij

(m) and after raising/lowering indices.
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3.2 Magnetic case

The magnetic limit of the Maxwell algebra is instead obtained from rescaling the generators as

follows [22]

M̃ij = Mij , G̃i =
1

ω
Mi0, (3.19a)

H̃ = ωP0, P̃i = Pi, (3.19b)

Z̃ij = Zij, Z̃i = ωZ0i. (3.19c)

The new commutation relations, after taking the limit ω → ∞ read

[

G̃i, P̃j

]

= 0,
[

M̃ij , P̃k

]

= 2δk[jP̃i],
[

G̃i, Z̃j

]

= −Z̃ij, (3.20a)
[

H̃, G̃i

]

= P̃i,
[

M̃ij , G̃k

]

= 2δk[jG̃i],
[

P̃i, P̃j

]

= Z̃ij, (3.20b)
[

H̃, P̃i

]

= Z̃i,
[

M̃ij, Z̃k

]

= 2δk[jZ̃i],
[

G̃k, Z̃ij

]

= 0, (3.20c)
[

G̃i, G̃j

]

= 0,
[

M̃ij , Z̃kl

]

= −4δ[i[lZ̃k]j]. (3.20d)

The infinite-dimensional algebra M∞ will be constructed as an expansion of the Maxwell

algebra by a semigroup S
(∞)
E as follows. We decompose the generators of the Maxwell algebra

into [12]

V0 = {Mij ,H}, V1 = {Gi, Pi, Zi}, V2 = {Zij}, (3.21)

with

[V0, Vi] ⊂ Vi , [V1, V1] ⊂ V0 ⊕ V2 , [V1, V2] ⊂ V1 , [V2, V2] ⊂ V0 . (3.22)

A resonant semigroup will be, S
(∞)
0 = {λ2m|m = 0, 1, . . . }, S(∞)

1 = {λ2m+1|m = 0, 1, . . . } and

S
(∞)
2 = {λ2m+2|m = 0, 1, . . . }. Defining the new expanded algebra:

V0 ⊗ S
(∞)
0 ⊕ V1 ⊗ S

(∞)
1 ⊕ V2 ⊗ S

(∞)
2 , (3.23)

whose generators are

J
(m)
ij = Mij ⊗ λ2m, H(m) = P0 ⊗ λ2m, Z

(m)
ij = Zij ⊗ λ2m+2, (3.24a)

G
(m)
i = M0i ⊗ λ2m+1, P

(m)
i = Pi ⊗ λ2m+1, Z

(m)
i = Z0i ⊗ λ2m+1. (3.24b)
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The expanded algebra will be denoted by M∞ and has the following commutation relations:

[J
(m)
ij , J

(n)
kl ] = 4δ[i[kJ

(m+n)
l]j] ,

[

J
(m)
ij , P

(n)
k

]

= −2δk[iP
(m+n)
j] , [J

(m)
ij , Z

(n)
kl ] = 4δ[i[kZ

(m+n)
l]j] ,

(3.25a)
[

J
(m)
ij , G

(n)
k

]

= −2δk[iG
(m+n)
j] ,

[

H(m), G
(n)
i

]

= P
(m+n)
i , [J

(m)
ij , Z

(n)
k ] = 2δk[jZ

(m+n)
i]

(3.25b)
[

G
(m)
i , P

(n)
j

]

= δijH
(m+n+1),

[

G
(m)
i , G

(n)
j

]

= J
(m+n+1)
ij ,

[

G
(m)
k , Z

(n)
ij

]

= 2δk[iZ
(m+n+1)
j] ,

(3.25c)
[

G
(m)
i , Z

(n)
j

]

= Z
(m+n)
ij ,

[

H(m), P
(n)
i

]

= Z
(m+n)
i ,

[

P
(m)
i , P

(n)
j

]

= Z
(m+n)
ij ,

(3.25d)
[

G
(m)
i , P

(n)
j

]

= δijH
(m+n+1),

[

H(m), G
(n)
i

]

= P
(m+n)
i ,

[

G
(m)
k , Z

(n)
ij

]

= 2δk[iZ
(m+n+1)
j] ,

(3.25e)
[

G
(m)
i , Z

(n)
j

]

= Z
(m+n)
ij ,

[

H(m), P
(n)
i

]

= Z
(m+n)
i ,

[

P
(m)
i , P

(n)
j

]

= Z
(m+n)
ij ,

(3.25f)

One recovers the strict limit of the magnetic Galilei algebra when setting all generators from

level m ≥ 1 to zero.

A dynamical model with this symmetry can be found in the same as for the electric limit. We

first set λ2m = c−2m and λ2m+1 = c−2m−1 and relabel the generators of the infinite-dimensional

magnetic Maxwell algebra M∞:

H(m) = P0 ⊗ c−2m+1, P
(m)
i = Pi ⊗ c−2m, G

(m)
i = M0i ⊗ c−2m−1, (3.26a)

J
(m)
ij = Mij ⊗ c−2m, Z

(m)
i = Z0i ⊗ c−2m+1, Z

(m)
ij = Zij ⊗ c−2m. (3.26b)

They satisfy the relations (3.25).

In this the generalised homogeneous space on which M∞ acts non-linearly is given as the

formal coset

expM∞/ expL∞, (3.27)

by quotienting by the generalised Lorentz generators. We introduce in this space the coordinates

xi(m), t(m), θ
i
(m), φ

ij
(m), associated to P

(m)
i ,H(m), Z

(m)
i , Z

(m)
ij , respectively.

The infinitesimal action of a general element of the M∞ algebra of the form:

∞
∑

n=0

(

ǫ(n)H
(n) + ǫi(n)P

(n)
i + vi(n)G

(n)
i + εi(n)Z

(n)
i + εij(n)Z

(n)
ij

)

(3.28)
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on the generalised space of coordinates is given by

δt(m) = ǫ(m) +
m−1
∑

n=0

vi(m−n−1)x
(n)
i , (3.29a)

δxi(m) = ǫi(m) +

m
∑

n=0

vi(m−n)t(n), (3.29b)

δθi(m) = εi(m) +
m
∑

n=0

1

2
ǫi(m−n)t(n) −

1

2
ǫ(m−n)x

i
(n) − 2vk(m−n−1)φ

i
k(n), (3.29c)

δφij
(m) = εij(m) +

m
∑

n=0

ǫ
[i
(m−n)x

j]
(n) − 2v

[i
(m−n)θ

j]
(n). (3.29d)

With the collective coordinates

Xi =

∞
∑

m=0

c−2mxi(m), T =

∞
∑

m=0

c−2mt(m), Θi =

∞
∑

m=0

c−2m+1θi(m), Φij =

∞
∑

m=0

c−2mφij
(m),

F0i =

∞
∑

m=0

c−2m−1f
(m)
0i , Fij =

∞
∑

m=0

c−2mf
(m)
ij . (3.30)

one can expand (3.2) and obtain the first few expanded actions as

S(0) = −mc2
∫

dτ
[

ṫ(0)
]

, (3.31a)

S(1) =

∫

dτ

{

−m

[

ṫ(1)−
ẋ2(0)

2ṫ(0)

]

− f
(0)
0i

(

θ̇i(0)+
1

2

(

ṫ(0)x
i
(0)−ẋi(0)t(0)

)

)

−1

2
f
(0)
ij

(

φ̇ij
(0)+ẋ

[i
(0)x

j]
(0)

)

}

,

(3.31b)

S(2) =
1

c2

∫

dτ

{

m

[

−ṫ(2)+
ẋi(0)ẋ

j
(1)δij

ṫ(0)
−
ṫ(1)ẋ

2
(0)

2ṫ2
(0)

+
ẋ4(0)

8ṫ3
(0)

]

− f
(1)
0i

(

θ̇i(0)+
1

2

(

ṫ(0)x
i
(0)−ẋi(0)t(0)

)

)

− f
(0)
0i

(

θ̇i(1) +
1

2

(

ṫ(1)x
i
(0) + xi(1) ṫ(0) − ẋi(0)t(1) − t(0)ẋ

i
(1)

)

)

− f
(0)
ij

(

φ̇ij
(1) +

(

ẋ
[i
(1)x

j]
(0) + ẋ

[j
(0)x

i]
(1)

))

− f
(1)
ij

(

φ̇ij
(0) + ẋ

[i
(0)x

j]
(0)

)}

(3.31c)

. . .

Each term in the expansion is invariant under (3.29), if supplemented by

δf
(m)
0i = −

m−1
∑

n=0

vj(n)f
(m−n)
ij ,

δf
(m)
ij = 2

m
∑

n=0

v
(n)
[i f

(m−n−1)
0|j] . (3.32)

Notice that the transformations in the magnetic limit differ in the summation range from the

ones in the electric limit.
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The action S(0) is a total derivative and S(1) is the strict magnetic limit of a particle. The

equations of motion for S(2) read:

m
1

2

d

dτ

(

ẋ2(0)

ṫ2(0)

)

= −f
(0)
0i ẋi(0), (3.33a)

m
d

dτ

(

ẋ
(0)
i

ṫ(0)

)

= −f
(0)
0i ṫ(0) + f

(0)
ij ẋj(0), (3.33b)

m
d

dτ

(

~̇x(0) · ~̇x(1)
ṫ2(0)

−
ṫ(1)ẋ

2
(0)

ṫ3(0)
+

3

8

ẋ4(0)

ṫ4(0)

)

= −f
(1)
0i ẋi(0) − f

(0)
0i ẋi(1), (3.33c)

m
d

dτ

(

ẋi(1)

ṫ(0)
−

ẋi(0) ṫ(1)

ṫ2(0)
+

ẋ2(0)ẋi(0)

2ṫ3(0)

)

= −f
(1)
0i ṫ(0) − f

(0)
0i ṫ(1) + f

(0)
ij ẋj(1) + f

(1)
ij ẋj(0). (3.33d)

They again coincide with (2.5) after identifying F̃ ti
(m) = f0i

(m) , F
ij
(m) = f ij

(m), which shows agree-

ment between the bottom-up and top-down approach.

The role of the θi and φij variables is twofold. First, they appear in the Lagrangian as

Lagrange multipliers to ensure that the new variables f0i(τ) and fij(τ) remain constant on-

shell. Second, they maintain invariance, as the fields f0i and fij are the conjugate momenta of

θi and φij, and therefore their transformations laws are determined by the latter.

The boost transformations again act indecomposably on the expanded coordinates and fields

as well as on the equations of motion.

4 Carroll limit

We can repeat the same analysis for the Carroll limit of a charged particle. In order to have

any non-trivial dynamics we consider a Carroll tachyon [26,8] since an ordinary Carroll particle

cannot move. The steps are very similar to above and we shall be brief.

4.1 Bottom-up approach

The starting point is the relativistic Lorentz equation (2.1), but now for a tachyon we use Carroll

time s = Cx0 in terms of the Carroll speed of light C first introduced in [27, 21]. Note that

s has dimensions L2/T . Moreover, we have used the rescaled Carroll mass M̃ that satisfies

MC = mc = M̃ [8]. The separated relativistic equations are

M̃
d

dτ





ṡ
√

~̇x2
√

1− ṡ2

~̇x2C2



 = C2F̃ siẋi (4.1a)

M̃
d

dτ





ẋi
√

~̇x2
√

1− ṡ2

~̇x2C2



 = F̃ siṡ+ F ijẋj , (4.1b)
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where we have introduced F̃ si = F 0i/C. This definition is hinted at by analogy with the non-

relativistic case, where the electric field is defined as F̃ ti = cF 0i. In the Carroll case we define

the electro-magnetic fields as

F̃ si = F 0i/C =
F̃ ti

cC
, F̃ ij = F ij (4.2)

These definitions are also suggested by the Carrollian electric contraction of the Maxwell algebra

that we discuss below in (4.11), where C−1 plays the role of the contraction parameter. Even

though this definition differs from the one used by [21], it is completely equivalent, as they also

satisfy the Carroll version of the Maxwell equations.

The fact that the spatial velocity appears with a positive sign under the square root despite

our signature (− + . . .+) is due to the tachyonic nature of the particle. The equations (4.1)

possess full relativistic invariance, although not manifestly so.

In the limit C → ∞, the analogue of the gamma factor expands as

1
√

~̇x 2 − ṡ2/C2

=
1

√

~̇x 2
+

ṡ2

2C2~̇x 2
√

~̇x 2
+

3ṡ4

8C4(~̇x 2)2
√

~̇x 2
+ . . . (4.3)

We also consider an expansion of the coordinates and of the electro-magnetic field according to

s =

∞
∑

m=0

s(m)C
−2m , xi =

∞
∑

m=0

xi(m)C
−2m , (4.4a)

F̃ si =
∞
∑

m=0

F̃ si
(m)C

−2m , F ij =
∞
∑

m=0

F ij
(m)C

−2m . (4.4b)

Substituting this into (4.1) we obtain in the lowest orders in 1/C2:

F̃ si
(0)ẋ(0)i = 0, (4.5a)

M̃
d

dτ





ẋi(0)
√

~̇x2(0)



 = F̃ si
(0)ṡ(0) + F ij

(0)ẋ(0)j , (4.5b)

M̃
d

dτ





ṡ(0)
√

~̇x2
(0)



 = F̃ si
(0)ẋ(1)i + F̃ si

(1)ẋ(0)i , (4.5c)

M̃
d

dτ





ẋi(1)
√

~̇x2(0)

−
ẋi(0)~̇x(0) · ~̇x(1)
~̇x2(0)

√

~̇x2(0)

+
ẋi(0)ṡ

2
(0)

2~̇x2(0)

√

~̇x2(0)



 = F̃ si
(1)ṡ(0) + F̃ si

(0)ṡ(1) + F ij
(1)ẋ(0)j + F ij

(0)ẋ(1)j ,

(4.5d)

M
d

dτ





ṡ(1)
√

~̇x2(0)

−
ṡ(0)~̇x(0) · ~̇x(1)
~̇x2(0)

√

~̇x2(0)

+
ṡ3(0)

2~̇x2(0)

√

~̇x2(0)



 = F̃ si
(0)ẋ(2)i + F̃ si

(1)ẋ(1)i + F̃ si
(2)ẋ(0)i . (4.5e)

Note how as in the Galilei case, the different level equations are related via boosts as

. . .
βi
(2)−−→ (4.5e)

βi
(1)−−→ (4.5d)

βi
(1)−−→ (4.5c)

βi
(0)−−→ (4.5b)

βi
(0)−−→ (4.5a)

βi
(0)−−→ 0 . (4.6)
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This also justifies the presence of the first equation (4.5a), arising at order C2 in the limit

of (4.1), that might be surprising at first sight since it is not a second-order differential equation

but a transversality constraint.

We consider the electric and magnetic limits of the electro-magnetic field.6 Translating them

in terms of the Carroll electric and magnetic fields (4.2):

EGalilei ≫ cBGalilei ⇐⇒ BCarroll ≪ CECarroll. (4.7)

The magnetic field was naturally greater in the non-relativistic limit, whereas the electric field

is the bigger one in the Carroll limit, hinting at a duality between the Carroll and Galilei limits.

We will come back to this duality in Section 5.

4.1.1 Electric Carroll limit

The electric limit can be implemented in our expansion by keeping F̃ si
(0) 6= 0 since F̃ si

(0) ≫ F ij
(0)/C,

whereas the magnetic limit will correspond to F ij
(0) 6= 0 and F̃ si

(0) = 0.

The equations of motion in the electric limit are formally the same as (4.5). The first equation

says that at the first level, the motion of the tachyon is perpendicular to the electric field. Note

that this restriction is similar to a non-relativistic particle which moves perpendicular to the

magnetic field.

They are invariant under the following transformations of the coordinates as well as the

fields:

δs(n) = ǫ(n) +
n
∑

m=0

~β(m) · ~x(n−m) , δxi(n) = ǫi(n) +
n−1
∑

m=0

βi
(m)s(n−m−1) ,

δF̃ si
(n) =

n−1
∑

m=0

β(m)jF
ji
(n−m−1) , δF ij

(n) = −2

n
∑

m=0

F̃
s[i
(m)β

j]
(n−m) , (4.8)

where we have defined the Carroll boost βi = Cvi/c and have performed an expansion βi =
∑∞

m=0 β
i
(m)C

−2m.

4.1.2 Magnetic Carroll limit

The equations in the magnetic limit read:

M̃
d

dτ





ṡ(0)
√

~̇x2(0)



 = F̃ si
(1)ẋ(0)i , (4.9a)

M̃
d

dτ





ẋi(0)
√

~̇x2(0)



 = F ij
(0)ẋ(0)j , (4.9b)

6One could also consider a pulse limit. This would require a 1/C expansion that proceeds very similarly to

the Galilei case in Appendix A and that we do not spell out.
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M
d

dτ





ṡ(1)
√

~̇x2(0)

−
ṡ(0)~̇x(0) · ~̇x(1)
~̇x2(0)

√

~̇x2(0)

+
ṡ3(0)

2~̇x2(0)

√

~̇x2(0)



 = F̃ si
(1)ẋ(1)i + F̃ si

(2)ẋ(0)i , (4.9c)

M̃
d

dτ





ẋi(1)
√

~̇x2(0)

−
ẋi(0)~̇x(0) · ~̇x(1)
~̇x2(0)

√

~̇x2(0)

+
ẋi(0)ṡ

2
(0)

2~̇x2(0)

√

~̇x2(0)



 = F̃ si
(1)ṡ(0) + F ij

(1)ẋ(0)j + F ij
(0)ẋ(1)j . (4.9d)

These are instead invariant under

δs(n) = ǫ(n) +
n
∑

m=0

~β(m) · ~x(n−m) , δxi(n) = ǫi(n) +
n−1
∑

m=0

βi
(m)s(n−m−1) ,

δF̃ si
(n) =

n
∑

m=0

β(m)jF
ji
(n−m) , δF ij

(n) = −2
n−1
∑

m=0

F̃
s[i
(m)β

j]
(n−m−1) . (4.10)

They differ from (4.8) in summation ranges.

4.2 Lie algebraic point of view

In this section, we present the details of the expansion of Maxwell algebra in the different

Carrollian limits. We also study the equations of motion in the top-down approach.

4.2.1 Electric Carroll Maxwell

The electric limit can be obtained via a contraction of the Maxwell algebra (3.1), see [22]:

M̃ij = Mij , G̃i =
1

ω
Mi0 ,

H̃ =
1

ω
P0, P̃i = Pi ,

Z̃ij = Zij , Z̃i =
1

ω
Z0i (4.11)

and taking the limit ω → ∞, the contracted commutation relations become

[

G̃i, P̃j

]

= δijH̃,
[

M̃ij , P̃k

]

= 2δk[jP̃i],
[

G̃i, Z̃j

]

= 0, (4.12a)
[

H̃, G̃i

]

= 0,
[

M̃ij , G̃k

]

= 2δk[jG̃i],
[

P̃i, P̃j

]

= Z̃ij , (4.12b)
[

H̃, P̃i

]

= Z̃i,
[

M̃ij , Z̃k

]

= 2δk[jZ̃i],
[

G̃k, Z̃ij

]

= 2δk[iZ̃j], (4.12c)
[

G̃i, G̃j

]

= 0,
[

M̃ij, Z̃kl

]

= −4δ[i[lZ̃k]j]. (4.12d)

For applying the expansion method to the electric Carroll we use the following division into

subspaces [25]

V0 = {Jij , Pi, Zij} , V1 = {Gi,H,Zi} . (4.13)
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Then we define the generators

J
(m)
ij = Mij ⊗ C−2m, H(m) = P0 ⊗ C−2m−1, Z

(m)
ij = Zij ⊗ C−2m,

G
(m)
i = M0i ⊗ C−2m−1, P

(m)
i = Pi ⊗C−2m, Z

(m)
i = Z0i ⊗C−2m−1. (4.14)

The commutation relations of the infinite-dimensional algebra are
[

G
(m)
i ,H(n)

]

= P
(m+n+1)
i ,

[

G
(m)
i , P

(n)
j

]

= δijH
(m+n) , (4.15a)

[

J
(m)
ij , P

(n)
k

]

= 2δk[jP
(m+n)
i] ,

[

G
(m)
i , G

(n)
j

]

= J
(m+n+1)
ij , (4.15b)

[

J
(m)
ij , G

(n)
k

]

= 2δk[jG
(m+n)
i] ,

[

J
(m)
ij , J

(n)
kl

]

= 4δ[i[kJ
(m+n)
l]j] , (4.15c)

[

J
(m)
ij , Z

(n)
kl

]

= 4δ[i[kZ
(m+n)
l]j] ,

[

J
(m)
ij , Z

(n)
k

]

= 2δk[jZ
(m+n)
i] , (4.15d)

[

Z
(m)
ij , G

(n)
k

]

= 2δk[jZ
(m+n)
i] ,

[

G
(m)
i , Z

(n)
j

]

= Z
(m+n+1)
ij , (4.15e)

[

P
(m)
i ,H(n)

]

= −Z
(m+n)
i ,

[

P
(m)
i , P

(n)
j

]

= Z
(m+n)
ij . (4.15f)

The dimensions of the various generators are: [H(0)] = TL−2 dual to s, [P
(0)
i ] = L−1, [G

(0)
i ] =

TL−1, dual to Carroll boosts, βi
Carroll, [J

(0)
ij ] = 1, [Z

(0)
i ] = L−3T and Z

(0)
ij = L−2.

We define local coordinates xi(m), s(m), θ
i
(m) and φij

(m) dual to P
(m)
i ,H(m), Z

(m)
i , Z

(m)
ij and

group them into the collective coordinates:

Xi =

∞
∑

m=0

C−2mxi(m), S =

∞
∑

m=0

C−2ms(m), Θi =

∞
∑

m=0

C−2m−1θi(m), Φij =

∞
∑

m=0

C−2mφij
(m),

F0i =
∑

m

C−2m+1f
(m)
0i , Fij =

∑

m

C−2mf
(m)
ij , (4.16)

such that [Θi] = L2 and the field f
(m)
0i has dimensions of F̃ si/C2m and f

(m)
ij has dimensions

F ij/C2m.

Expanding the action

Stachyon =

∫

dτ

{

−M̃

[√

~̇X2 − Ṡ2/C2

]

− 1

2
FµνΩ

µν

}

(4.17)

of a Carroll tachyon in a constant electro-magnetic background, we get

S(0) = −
∫

dτ

{

M̃
√

~̇x2(0) − f
(0)
0i

(

θ̇i(0) +
1

2

[

ṡ(0)x
i
(0) − ẋi(0)s(0)

]

)

− 1

2
f
(0)
ij

(

φ̇ij
(0) + ẋ

[i
(0)x

j]
(0)

)

}

,

(4.18a)

S(1) = − 1

C2

∫

dτ

{

M̃

[

−
ṡ2(0)

2
√

ẋ2(0)

+
~̇x(0) · ~̇x(1)
√

ẋ2(0)

]

− f
(1)
0i

(

θ̇i(0) +
1

2

[

ṡ(0)x
i
(0) − ẋi(0)s(0)

]

)

− 1

2
f
(1)
ij

(

φ̇ij
(0) + ẋ

[i
(0)x

j]
(0)

)

− f
(0)
0i

(

θ̇i(1) +
1

2

[

ṡ(1)x
i
(0) + ṡ(0)x

i
(1) − ẋi(1)s(0) − ẋi(0)s(1)

]

)

,
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− 1

2
f
(0)
ij

(

φ̇ij
(1) + ẋ

[i
(1)x

j]
(0) + ẋ

[i
(0)x

j]
(1)

)

}

(4.18b)

S(2) = − 1

C4

∫

dτ

{

M̃







ṡ4(0)

8
√

~̇x2
(0)

~̇x2
(0)

−

(

~̇x(0)·~̇x(1)
)2

2
√

~̇x2
(0)

~̇x2
(0)

+
ṡ2(0)~̇x(0)·~̇x(1)
2
√

~̇x2
(0)

~̇x2
(0)

+
2ṡ(0)ṡ(1)−~̇x2(1)−2~̇x(0)·~̇x(2)

2
√

~̇x2
(0)







− f
(2)
0i

(

θ̇i(0) +
1

2

[

ṡ(0)x
i
(0) − ẋi(0)s(0)

]

)

− 1

2
f
(2)
ij

(

φ̇ij
(0) + ẋ

[i
(0)x

j]
(0)

)

+ . . .

}

(4.18c)

Let us also consider the equations of motion. The ones implied by S(0) are:

δs(0) : f
(0)
0i ẋ(0)i = 0 , (4.19a)

δxi(0) : M̃
d

dτ





ẋi(0)
√

~̇x2(0)



 = −f
(0)
0i ṡ(0) + f

(0)
ij ẋj(0) , (4.19b)

δθi(0) :
d

dτ
f
(0)
0i = 0 , (4.19c)

δφij
(0)

:
d

dτ
f
(0)
ij = 0 . (4.19d)

The (new) dynamical equations implied by S(1) are:

δxi(0) : M̃
d

dτ





ẋi(0)ṡ
2
(0)

2
√

~̇x2(0)~̇x
2
(0)

+
ẋi(1)
√

~̇x2(0)

−
~̇x(0) · ~̇x(1)ẋi(0)
~̇x2(0)

√

~̇x2(0)



 = −f
(1)
0i ṡ(0) − f

(0)
0i ṡ(1) + f

(1)
ij ẋj(0) + f

(0)
ij ẋj(1) ,

(4.20a)

δs(0) : M̃
d

dτ





ṡ(0)
√

~̇x2(0)



 = −f
(1)
0i ẋi(0) − f

(0)
0i ẋi(1) , (4.20b)

δθi(0) :
d

dτ
f
(1)
0i = 0 , (4.20c)

δφij
(0) :

d

dτ
f
(1)
ij = 0 . (4.20d)

We see that they agree with (4.5). Under a general element of the algebra

∞
∑

n=0

(

ǫ(n)H
(n) + ǫi(n)P

(n)
i + βi

(n)G
(n)
i + εi(n)Z

(n)
i + εij(n)Z

(n)
ij

)

(4.21)
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the coordinates, dual to the generators defined in (4.14), transform as:

δs(m) = ǫ(m) +
m
∑

n=0

βi
(m−n)x

(n)
i , (4.22a)

δxi(m) = ǫi(m) +
m−1
∑

n=0

βi
(m−n−1)s(n), (4.22b)

δθi(m) = εi(m) +

m
∑

n=0

1

2
ǫi(m−n)s(n) −

1

2
ǫ(m−n)x

i
(n) − 2βk

(m−n)φ
i
k(n), (4.22c)

δφij
(m) = εij(m) +

m
∑

n

ǫ
[i
(m−n)x

j]
(n) − 2β

[i
(m−n−1)θ

j]
(n). (4.22d)

For invariance of the action we also demand that the fields f
(m)
0i and f

(m)
ij transform under boosts

as:

δf
(m)
0i = −

m−1
∑

n=0

βj
(m−n−1)f

(n)
ij , (4.23a)

δf
(m)
ij = −2

m
∑

n=0

β
(m−n)
[i f

(n)
0|j] . (4.23b)

After raising/lowering indices, and identifying f0i
(m) = F̃ si

(m) , f
ij
(m) = F ij

(m), we see that the results

from the bottom-up approach are successfully reproduced by the top-down analysis.

4.2.2 Magnetic Carroll Maxwell

In the magnetic limit we perform the contraction of the Maxwell algebra according to:

M̃ij = Mij , G̃i =
1

ω
Mi0 ,

H̃ =
1

ω
P0, P̃i = Pi , (4.24)

Z̃ij = Zij , Z̃i = ωZ0i .

The commutation relations after sending ω → ∞ become
[

G̃i, P̃j

]

= δijH̃,
[

M̃ij , P̃k

]

= 2δk[jP̃i],
[

G̃i, Z̃j

]

= Z̃ij , (4.25a)
[

H, G̃i

]

= 0,
[

M̃ij , G̃k

]

= 2δk[jG̃i],
[

P̃i, P̃j

]

= Z̃ij , (4.25b)
[

H̃, P̃i

]

= 0,
[

M̃ij , Z̃k

]

= 2δk[jZ̃i],
[

G̃k, Z̃ij

]

= 0, (4.25c)
[

G̃i, G̃j

]

= 0,
[

M̃ij , Z̃kl

]

= −4δ[i[lZ̃k]j]. (4.25d)

For the expansion of the magnetic Carroll, we consider the grading

V0 = {Jij} , V1 = {Gi, Pi, Zi} , V2 = {H,Zij} (4.26)
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and the usual semigroups S
(∞)
0 , S

(∞)
1 , S

(∞)
2 , such that we have the following generators:

J
(m)
ij = Mij ⊗ λ2m, H(m) = P0 ⊗ λ2m+2, Z

(m)
ij = Zij ⊗ λ2m+2, (4.27a)

G
(m)
i = M0i ⊗ λ2m+1, P

(m)
i = Pi ⊗ λ2m+1, Z

(m)
i = Z0i ⊗ λ2m+1. (4.27b)

The commutation relations are:

[

G
(m)
i ,H(n)

]

= P
(m+n+1)
i

[

G
(m)
i , P

(n)
j

]

= δijH
(m+n) , (4.28a)

[

J
(m)
ij , P

(n)
k

]

= 2δk[jP
(m+n)
i]

[

G
(m)
i , G

(n)
j

]

= J
(m+n+1)
ij , (4.28b)

[

J
(m)
ij , G

(n)
k

]

= 2δk[jG
(m+n)
i]

[

J
(m)
ij , J

(n)
kl

]

= 4δ[i[kJ
(m+n)
l]j] , (4.28c)

[

J
(m)
ij , Z

(n)
kl

]

= 4δ[i[kZ
(m+n)
l]j] ,

[

J
(m)
ij , Z

(n)
k

]

= 2δk[jZ
(m+n)
i] , (4.28d)

[

Z
(m)
ij , G

(n)
k

]

= 2δk[jZ
(m+n+1)
i] ,

[

G
(m)
i , Z

(n)
j

]

= Z
(m+n)
ij , , (4.28e)

[

P
(m)
i ,H(n)

]

= −Z
(m+n+1)
i ,

[

P
(m)
i , P

(n)
j

]

= Z
(m+n)
ij . (4.28f)

Introducing λ2m = C−2m and λ2m+1 = C−2m−1, and choosing appropriate units, we define

the following generators:

J
(m)
ij = Mij ⊗ C−2m, H(m) = P0 ⊗C−2m−1, Z

(m)
ij = Zij ⊗ C−2m, (4.29a)

G
(m)
i = M0i ⊗ C−2m−1, P

(m)
i = Pi ⊗ C−2m, Z

(m)
i = Z0i ⊗ C−2m+1. (4.29b)

Define the following collective coordinates:

Xi =

∞
∑

m=0

C−2mxi(m), S =

∞
∑

m=0

C−2ms(m), Θi =

∞
∑

m=0

C−2m+1θi(m), Φij =

∞
∑

m=0

C−2mφij
(m),

F0i =
∑

m

C−2m−1f
(m)
0i , Fij =

∑

m

C−2mf
(m)
ij . (4.30)

In this way, f
(m)
0i has dimensions of F̃ si/C2m+2, and f

(m)
ij has dimensions of F ij/C2m.

The expansion of the action (4.17) now becomes:

S(0) = −
∫

dτ

{

M̃
√

~̇x2(0) − f
(0)
0i θi(0) −

1

2
f
(0)
ij

(

φ̇ij
(0) + ẋ

[i
(0)x

j]
(0)

)

}

, (4.31a)

S(1) = − 1

C2

∫

dτ







M̃



−
ṡ2(0)

2
√

ẋ2(0)

+
~̇x(0) · ~̇x(1)
√

ẋ2(0)



− f
(0)
0i

(

θ̇i(1) +
1

2

[

ṡ(0)x
i
(0) − ẋi(0)s(0)

]

)

−1

2
f
(1)
ij

(

φ̇ij
(0)

+ ẋ
[i
(0)

x
j]
(0)

)

− 1

2
f
(0)
ij

(

φ̇ij
(1)

+ ẋ
[i
(1)

x
j]
(0)

+ ẋ
[i
(0)

x
j]
(1)

)

− f
(1)
0i θ̇i(0)

}

,

(4.31b)
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S(2) = − 1

C4

∫

dτ

{

M̃

[

ṡ4(0)

8
√

~̇x2(0)~̇x
2
(0)

−

(

~̇x(0)·~̇x(1)
)2

2
√

~̇x2(0)~̇x
2
(0)

+
ṡ2(0)~̇x(0) · ~̇x(1)
2
√

~̇x2(0)~̇x
2
(0)

+
2ṡ(0)ṡ(1)−~̇x2(1)−2~̇x(0) · ~̇x(2)

2
√

~̇x2(0)

]

− f
(2)
0i

(

θ̇i(0) +
1

2

[

ṡ(1)x
i
(0) + ṡ(0)x

i
(1) − ẋi(1)s(0) − ẋi(0)s(1)

]

)

− 1

2
f
(2)
ij

(

φ̇ij
(0) + ẋ

[i
(0)x

j]
(0)

)

+ . . .

}

. (4.31c)

The equations of motion for S(0) are:

δxi(0) : M̃
d

dτ





ẋi(0)
√

~̇x2(0)



 = f
(0)
ij ẋj(0) , (4.32a)

δθi(0) :
d

dτ
f
(0)
0i = 0 , (4.32b)

δφij
(0) :

d

dτ
f
(0)
ij = 0 . (4.32c)

The (new) dynamical equations implied by S(1) are:

δxi(0) : M̃
d

dτ





ẋi(0)ṡ
2
(0)

2
√

~̇x2(0)~̇x
2
(0)

+
ẋi(1)
√

~̇x2(0)

−
~̇x(0) · ~̇x(1)ẋi(0)
~̇x2(0)

√

~̇x2(0)



 = −f
(0)
0i ṡ(0) + f

(1)
ij ẋj(0) + f

(0)
ij ẋj(1) ,

(4.33a)

δs(0) : M̃
d

dτ





ṡ(0)
√

~̇x2(0)



 = −f
(0)
0i ẋi(0) , (4.33b)

δθi(0) :
d

dτ
f
(1)
0i = 0 , (4.33c)

δφij
(0) :

d

dτ
f
(1)
ij = 0 . (4.33d)

Under the identification f0i
(m) = F̃ si

(m+1) , f
ij
(m) = F ij

(m) and after the raising/lowering indices we

recover (4.9).

Under a general element of the algebra

∞
∑

n=0

(

ǫ(n)H
(n) + ǫi(n)P

(n)
i + βi

(n)G
(n)
i + εi(n)Z

(n)
i + εij(n)Z

(n)
ij

)

(4.34)
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the coordinates, dual to the generators defined in (4.14), transform as:

δs(m) = ǫ(m) +
m
∑

n=0

βi
(m−n)x

(n)
i , (4.35a)

δxi(m) = ǫi(m) +

m−1
∑

n=0

βi
(m−n−1)s(n), (4.35b)

δθi(m) = εi(m) +

m
∑

n=0

1

2
ǫi(m−n)s(n) −

1

2
ǫ(m−n)x

i
(n) − 2βk

(m−n−1)φ
i
k(n), (4.35c)

δφij
(m) = εij(m) +

m
∑

n=0

ǫ
[i
(m−n)x

j]
(n) − β

[i
(m−n)θ

j]
(n) . (4.35d)

Invariance also requires fixing the transformations of f
(m)
0i and f

(m)
ij under boosts:

δf
(m)
0i = −

m
∑

n=0

βj
(m−n)f

(n)
ij , (4.36a)

δf
(m)
ij = −2

m−1
∑

n=0

β
(m−n−1)
[i f

(n)
0|j]. (4.36b)

This again reproduces the results from the bottom-up approach.

5 A note on the duality Carroll–Galilei

In [8] a correspondence was established in the (non-Lorentzian) expansion of a free particle

between the massive (massless) Galilei case and the tachyonic (massive) Carroll regime, at the

level of the action. A ‘duality’ between the Carroll and Galilei algebras was also established

in [28,29]. Some subtleties arise when trying to extend this duality in the presence of an electro-

magnetic field, both at the level of the (expanded) algebra and at the level of the equations of

motion.

At the level of the algebras, the duality between Carroll and Galilei can be seen for instance

when studying their contraction from the Poincaré algebra, where a duality P0 ↔ Pi arises.

Consider the different contractions of the Maxwell algebra to obtain the Carroll and Galilei

electro-magnetic limits presented in Table 1.

Inspection of the table shows that there is no obvious duality transformation. The reason

turns out to be simply that there is only one longitudinal (time) direction in this discussion and

so the there is no generator that arises is naively dual to Zij since Z00 = 0 by anti-symmetry.

The situation is different if the relativistic translations would split into Pµ = (Pα, Pi) as

in [22], making use of several longitudinal directions α as would be the case for branes. Then

there would be an element [Pα, Pβ ] = Zαβ in the algebra that could be considered as the dual

of Zij under the exchange of longitudinal and transverse directions.7 If one allows for more

7The different contractions of the Maxwell algebra in the case of more than one longitudinal direction give

eight inequivalent Carroll and Galilei algebras, where the duality between them is explicit and unbroken. They

are divided into three groups: of electric type, of magnetic type and of pulse type.
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Galilei Carroll

Electric

M̃ij = Mij , G̃i =
1

ω
Mi0,

H̃ = P0, P̃i =
1

ω
Pi,

Z̃ij = Zij , Z̃i =
1

ω
Z0i.

M̃ij = Mij , G̃i =
1

ω
Mi0 ,

H̃ =
1

ω
P0, P̃i = Pi ,

Z̃ij = Zij , Z̃i =
1

ω
Z0i.

Magnetic

M̃ij = Mij , G̃i =
1

ω
Mi0,

H̃ = P0, P̃i =
1

ω
Pi,

Z̃ij =
1

ω2
Zij , Z̃i =

1

ω
Z0i.

M̃ij = Mij , G̃i =
1

ω
Mi0 ,

H̃ =
1

ω
P0, P̃i = Pi ,

Z̃ij = Zij , Z̃i = ωZ0i.

Table 1: Contractions of the Maxwell algebra to the different non-Lorentzian algebras. The

conventions are slightly changed from previous sections to match the discussion from [22].

longitudinal components, the decomposition of the Maxwell generators is Zµν = (Zij , Zαi, Zαβ)

and we can map Pα ↔ Pi, Zαi ↔ Zαi and Zij ↔ Zαβ . The electro-magnetic type of the

contraction gets switched and the pattern is not obvious, as there are multiple electric/magnetic-

like contractions when we allow for multiple longitudinal directions. In particular, the magnetic

Galilei regime gets mapped via this duality to the electric Carroll regime.

One can check that duality in the case of the expanded algebras and their commutation

relations is not present at the level of the equations of motion in absence of generators Pα and

Zαβ either, where the duality would come from the coordinate of the generators of the algebra,

x0 ↔ ~x, F ij ↔ Fαβ.

The duality between Carroll and Galilei regimes in the presence of an electro-magnetic field,

or from an algebra point of view, in the case of their Maxwell extensions, can still be traced back

to the interchange of transverse and longitudinal directions. Unfortunately, the antisymmetry

of the Maxwell generators Zab (or alternatively of the electro-magnetic tensor F ab) and the

presence of only one longitudinal direction makes this symmetry degenerate.

6 Conclusion

In this paper we have investigated several non-Lorentzian expansions of the Lorentz force for a

particle in a constant electro-magnetic field: a Galilean expansion in the case of a massive point

particle and a Carrollian one in the case of a tachyonic point particle. In both cases, there are

also different limits depending on the relative strength of the electric and magnetic fields: the

electric, magnetic and pulse limit.

Expanding the position and time coordinates in powers of 1/c2 (or 1/C2), as well as a similar

expansion for the electric and magnetic field components, we have obtained a series of equations

of motion, which can be thought as a series of relativistic corrections to the non-Lorentzian

limits.
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We also showed that this analysis agrees with a top-down approach based on a Lie algebra

expansion of the underlying symmetry algebras. We obtained the algebra of symmetries of the

expanded equations, that turned out to be infinite-dimensional algebras which appear as certain

infinite-dimensional expansions using the semigroup expansion method of the Maxwell algebra.

We have also shown how to obtain the very same equations of motion from considering non-linear

realisations of the infinite-dimensional algebras.

We have also discussed the possible extension of the known duality between the Carroll and

Galilei limits in the presence of an electro-magnetic field, via their algebra of symmetries.

Our analysis was restricted to constant electro-magnetic fields and it would be interesting

to extend it to varying fields. One possible starting point would be the extension of Maxwell

algebras considered in [17,18] where one would need to consider first the analogues of the various

non-Lorentzian limits appearing in the present paper.

An interesting open question is whether a similar construction can be carried out in the case

of a test particle in a fixed gravitational background. For this one would need to study the

non-Lorentzian limits of the geodesic equation with an appropriate notion of constancy of the

gravitational background. The same issue arises for a coloured particle coupled to a Yang–Mills

background [30].

Acknowledgements

We are grateful to Luca Ciambelli, Jaume Gomis, Sabrina Pasterski and Jorge Russo for in-

teresting discussions. AK gratefully acknowledges the generous hospitality of the Universitat

de Barcelona through the Maria de Maeztu programme where this work was initiated. JG ac-

knowledges the hospitality and support of the Max Planck Institute for Gravitational Physics

in Golm and the Perimeter Institute in Waterloo where this work has been further elaborated.

The research of JG was supported in part by PID2019-105614GB-C21 and by the State Agency

for Research of the Spanish Ministry of Science and Innovation through the Unit of Excellence

Maria de Maeztu 2020-2023 award to the Institute of Cosmos Sciences (CEX2019-000918-M).

A Expanding in 1/c

In this appendix, we consider the possibility of expanding all quantities in terms of powers of

1/c rather than 1/c2 as done in the main part of the paper in sections 2 and 3. This is relevant

for including also the pulse limit [22, 23]. We will focus only on the expansion in the Galilei

limit, as the Carroll case then is straight-forward.

We write the expansion of the variables in powers of 1/c instead of 1/c2 as

t = t(0) +
1

c
t(1/2) +

1

c2
t(1) + . . . , xi = xi(0) +

1

c
xi(1/2) +

1

c2
xi(1) + . . .

F̃ ti = F̃ ti
(0) +

1

c
F̃ ti
(1/2) +

1

c2
F̃ ti
(1) + . . . , F ij = F ij

(0) +
1

c
F ij
(1/2) +

1

c2
F ij
(1) + . . . (A.1)
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We then obtain the following equations for the temporal component of the Lorentz equa-

tion (2.2a) at lowest orders in the expansion:

m
d

dτ

[

~̇x2(0)

2ṫ2(0)

]

= F̃ ti
(0)ẋ(0)i , (A.2a)

m
d

dτ

[

~̇x(0) · ~̇x(1/2)
ṫ2
(0)

−
ṫ(1/2)~̇x

2
(0)

ṫ3
(0)

]

= F̃ ti
(0)ẋ(1/2)i + F̃ ti

(1/2)ẋ(0)i (A.2b)

and

m
d

dτ

[

3

8

~̇x4(0)

ṫ4(0)
+

3

2

ṫ2(1/2)~̇x
2
(0)

ṫ4(0)
−

ṫ(1)~̇x
2
(0)

ṫ3(0)
− 2

ṫ(1/2)~̇x(0) · ~̇x(1/2)
ṫ3(0)

+
~̇x2(1/2)

2ṫ2(0)
+

~̇x(0) · ~̇x(1)
ṫ2(0)

]

= F̃ ti
(0)ẋ(1)i + F̃ ti

(1)ẋ(0)i + F̃ ti
(1/2)ẋ(1/2)i . (A.2c)

For the spatial component of the Lorentz force (2.2b) we get

m
d

dτ

[

ẋi(0)

ṫ(0)

]

= −F̃ it
(0)ṫ(0) + F ij

(0)ẋ(0)j (A.3a)

m
d

dτ

[

−
ṫ(1/2)ẋ

i
(0)

ṫ2(0)
+

ẋi(1/2)

ṫ(0)

]

= −F̃ it
(0)ṫ(1/2) + F ij

(0)ẋ(1/2)j

− F̃ it
(1/2) ṫ(0) + F ij

(1/2)ẋ(0)j (A.3b)

as well as

m
d

dτ

[

1

2

~̇x2(0)ẋ
i
(0)

ṫ3(0)
−

ṫ(1)ẋ
i
(0)

ṫ2(0)
−

ṫ(1/2)ẋ
i
(1/2)

ṫ2(0)
+

ẋi(1)

ṫ(0)
+

ṫ2(1/2)ẋ
i
(0)

ṫ3(0)

]

= −F̃ it
(0) ṫ(1) − F̃ it

(1/2) ṫ(1/2) − F̃ it
(1) ṫ(0) + F ij

(1)ẋ(0)j + F ij
(1/2)ẋ(1/2)j + F ij

(0)ẋ(1)j (A.3c)

In this context the magnetic, electric and pulse limits are obtained as follows:

1. Magnetic: By keeping F ij
(0) 6= 0. The equations of motion are formally the same as (A.2,

A.3).

2. Electric: Obtained by setting F ij
(0) = F ij

(1/2) = 0 and keeping F̃ ti
(0) 6= 0. The equations of

motion are (A.2) for the temporal component and for the space components:

m
d

dτ

[

ẋi(0)

ṫ(0)

]

= −F̃ it
(0)ṫ(0) + F ij

(0)
ẋ(0)j (A.4a)

m
d

dτ

[

−
ṫ(1/2)ẋ

i
(0)

ṫ2(0)
+

ẋi(1/2)

ṫ(0)

]

= −F̃ it
(0)ṫ(1/2) − F̃ it

(1/2) ṫ(0) (A.4b)

m
d

dτ

[

1

2

~̇x2(0)ẋ
i
(0)

ṫ3(0)
−

ṫ(1)ẋ
i
(0)

ṫ2(0)
−

ṫ(1/2)ẋ
i
(1/2)

ṫ2(0)
+

ẋi(1)

ṫ(0)
+

ṫ2(1/2)ẋ
i
(0)

ṫ3(0)

]

= −F̃ it
(0)ṫ(1) − F̃ it

(1/2) ṫ(1/2) − F̃ it
(1)ṫ(0) + F ij

(1)ẋ(0)j (A.4c)

. . .
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3. Pulse: This is obtained by setting F ij
(0) = 0 and keeping F̃ ti

(0), F
ij
(1/2) 6= 0. The temporal

equations are again (A.2), while the space component are:

m
d

dτ

[

ẋi(0)

ṫ(0)

]

= −F̃ it
(0)ṫ(0) + F ij

(0)ẋ(0)j (A.5a)

m
d

dτ

[

−
ṫ(1/2)ẋ

i
(0)

ṫ2(0)
+

ẋi(1/2)

ṫ(0)

]

= −F̃ it
(0)ṫ(1/2) − F̃ it

(1/2) ṫ(0) + F ij
(1/2)ẋ(0)j (A.5b)

m
d

dτ

[

1

2

~̇x2(0)ẋ
i
(0)

ṫ3(0)
−

ṫ(1)ẋ
i
(0)

ṫ2(0)
−

ṫ(1/2)ẋ
i
(1/2)

ṫ2(0)
+

ẋi(1)

ṫ(0)
+

ṫ2(1/2)ẋ
i
(0)

ṫ3(0)

]

= −F̃ it
(0)ṫ(1)−F̃ it

(1/2) ṫ(1/2)−F̃ it
(1) ṫ(0)+F ij

(1)ẋ(0)j+F ij
(1/2)ẋ(1/2)j

(A.5c)

. . .

It can be checked that all the equations above are invariant under the Lorentz transformations

expanded in 1/c when taking the appropriate limit.

Even though the equations of motion in the electric/magnetic limit in the 1/c-expansion are

different from those in the 1/c2-expansion, they realise the same algebra of symmetries as in

the 1/c2-expansion, namely (3.9) and (3.25) respectively. In fact, equations (A.2–A.4) can be

obtained from the Lie algebra approach, by setting the expansion parameter λ = 1/
√
c, so that

λ2m = c−m.

Another interesting observation, already mentioned in [31], is that the 1/c2 expansion can

be obtained from the 1/c expansion via a reshuffling of the terms in the 1/c expansion. In the

free case, both the 1/c and 1/c2 expansion yield the same equations of motion. In the presence

of an electro-magnetic field, the finer 1/c equations allow us not only to detect the case of the

pulse limit, but also give corrections with respect to the 1/c2 expansion.

One way to check if they are describing the same physics is to use the gauge condition and

projection used in [15]:
1

c2m
xi(m) = xi ,

1

c2m
t(m) = t = τ , (A.6)

where m ∈ 1
2Z. Here, we have only written a projection for the space-time coordinates since we

do not know how to properly define a similar projection for the electro-magnetic field.

Thus, focusing only on the free part of the action without electro-magnetic field, the expanded

action in 1/c is

S =

∫

dτ

{

−mc2ṫ(0) −mc
[

ṫ(1/2)
]

−m

[

ṫ(1) −
ẋ2(0)

2ṫ2(0)

]

−m
1

c

[

ṫ(3/2) +
ṫ(1/2)ẋ

2
(0)

2ṫ3(0)
−

ẋi(1/2)ẋ(0)i

ṫ2(0)

]

+ . . .

}

(A.7)
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After the projection the 1/c-expanded action reads:

S(0) =

∫

dτ
[

−mc2
]

(A.8a)

S(1/2) =

∫

dτ
[

−mc2
]

(A.8b)

S(1) =

∫

dτ

[

−mc2 +
1

2
m~̇x2

]

(A.8c)

S(3/2) =

∫

dτ

[

−mc2 +
1

2
m~̇x2

]

(A.8d)

. . .

We see that the 1/c expansion produces the same results as the 1/c2 expansion after imposing

the projection condition (A.6). In particular, all the equations from the 1/c2 expansion are

simply duplicated.

B Free Lie algebras

The infinite dimensional algebras M∞ and E∞ can also be obtained as particular quotients of

the Galilean free algebras. We do not consider the Carroll case here, the extension to Carroll is

straight-forward. A free Lie algebra with D = d + 1 generators {Pµ}, is the Lie algebra whose

elements are all possible multi-commutators of the generators. The only relations imposed are

antisymmetry and the Jacobi identity. The free Lie algebra f admits a natural N-grading

f =
∞
⊕

ℓ=1

fℓ (B.1)

where each summand fℓ consists of all possible multi-commutators with ℓ elements.

The recursive relation between each level and the lower ones can be summarised by a gener-

ating series identity that reads [32,33]

∞
⊗

ℓ=1

[

∞
⊕

k=0

(−1)ktkℓ∧kfℓ

]

= 1− tf1 (B.2)

Elements in fℓ can be grouped by representations of the symmetric group SD acting on the

elements in a set of multi-commutator of ℓ free Lie algebra generators. For this reason we can

represent them using Young diagrams with ℓ boxes, for example

f1 ↔ , f2 ↔ , f3 ↔ etc. (B.3)

The relation of free Lie algebras to Chevalley–Eilenberg cohomology was disccussed in [18]. Free

Lie algebras can be also defined in the superalgebra case, see for example [32,33].

Thinking of the elements of f1 as the translation generators of some kinematic algebra, we will

also make use of the action of some Lorentz-type of algebra on them. We call the corresponding
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Lie algebra f0 = {Mµν} and then have a graded structure

f0 ⊕ f1 (B.4)

to begin with. The action of f0 extends to all fℓ by using the Leibniz property.

We wish to construct free Lie algebras for the electric and magnetic Maxwell algebras in

the non-Lorentzian limits. This requires making a choice of starting generators adapted to the

non-Lorentzian limit in question.

For the Galilean electric free algebra we then obtain the first levels shown in Table 2.

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5

m = 0 Mij Gi Sij Yij,k ⊕ 3 ⊕ 3 ⊕ ⊕ 3 ⊕

m = 1 H Pi Bij , Zi,j ⊕ 2 ⊕ 4 ⊕ ⊕ 9 ⊕ 5 ⊕ 3

m = 2 Zij ⊕ ⊕ ⊕ 2 ⊕ ⊕
⊕ ⊕ ⊕

3 ⊕2 ⊕7 ⊕8 ⊕4 ⊕6 ⊕

7 ⊕ 5 ⊕

m = 3 ⊕ 2 ⊕ 2 7 ⊕ 2 ⊕ 4 ⊕ 7 ⊕ 12 ⊕ 5

m = 4 ⊕ 5 ⊕ ⊕ 4 ⊕ 2 ⊕ ⊕ 4 ⊕
5 ⊕

m = 5 3 ⊕ ⊕ ⊕

Table 2: Table with all generators up to level ℓ = 5 of the Galilean electric free lie algebra. We

have used Young tableaux notation to represent gl(D)− tensors. A double grading (ℓ,m) was

used, following [23].

We will be particularly interested in a quotient of the Galilean electric free algebra which we

will denote E∞ and shown in Table 3.

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5

m = 0 J
(0)
ij G

(0)
i J

(1)
ij = Sij G

(1)
i = Yi J

(2)
ij G

(2)
i

m = 1 - H(0) P
(0)
i H(1) = N = 1

D−1δ
ijZi,j P

(1)
i H(2)

m = 2 - - Z
(0)
ij Z

(0)
i = [H,Pi] Z

(1)
ij Z

(1)
i

Table 3: First few generators of the quotient E∞ of the Galilean electric free algebra.

For the Galilean Magnetic free algebra we obtain Table 4.

The quotient we will be interested in will be the one from Table 5 and we will denote it by

M∞.

Another interesting truncation of both the electric and magnetic Galilean free algebras is

G∞, presented in Table 6 which was discussed in [15].
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ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5

m = 0 Mij Gi Sij Yij,k ⊕ 3 ⊕ 3 ⊕ ⊕ 3 ⊕
m = 1 H Pi Bij, Zi,j ⊕ 2 ⊕ 3 ⊕ 4 ⊕ 9 ⊕ 5 ⊕ 12

m = 2 Zi ⊕ ⊕ Zij 6 ⊕ 8 ⊕ 2

m = 3 4 ⊕ 2

m = 4

Table 4: Table with all generators up to level ℓ = 5 of the Galilean magnetic free algebra.

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 . . .

m = 0 J
(0)
ij G

(0)
i J

(1)
ij = Sij G

(1)
i J

(2)
ij . . .

m = 1 H(0) P
(0)
i H(1) P (1) . . .

m = 2 Z
(0)
i Z

(0)
ij . . .

Table 5: First few generators of the quotient M∞ of the magnetic free algebra.

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 . . .

m = 0 Mij Gi Sij Yi = δjkYij,k . . .

m = 1 H Pi N = δijZi,j . . .

Table 6: Table with the first few generators of the quotient G∞ of the magnetic free algebra.
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