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Técnico – IST, Universidade de Lisboa – UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

2CFisUC, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
3Department of Physics, Florida Atlantic University, Boca Raton, FL 33431, USA

4Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, Potsdam, Germany
5Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, Potsdam 14476, Germany

(Dated: September 22, 2023)

Using an adapted version of the SGRID code, we construct for the first time consistent quasi-
equilibrium configurations for a binary system consisting of two neutron stars in which each is
admixed with dark matter. The stars are modelled as a system of two non-interacting fluids min-
imally coupled to gravity. For the fluid representing baryonic matter the SLy equation of state is
used, whereas the second fluid, which corresponds to dark matter, is described using the equation
of state of a degenerate Fermi gas. We consider two different scenarios for the distribution of the
dark matter. In the first scenario the dark matter is confined to the core of the star, whereas in the
second scenario the dark matter extends beyond the surface of the baryonic matter, forming a halo
around the baryonic star. The presence of dark matter alters the star’s reaction to the companion’s
tidal forces, which we investigate in terms of the coordinate deformation and mass shedding pa-
rameters. The constructed quasi-equilibrium configurations mark the first step towards consistent
numerical-relativity simulations of dark matter admixed neutron star binaries.

I. INTRODUCTION

In the present era of gravitational wave (GW) astron-
omy, the internal properties of compact stars can be
probed during their mergers. Using numerical-relativity
(NR) simulations of the last stages of a binary coales-
cence, it is possible to relate observational GW data to
properties of the source. While these simulations have
undergone significant improvements in the past, the im-
pact of dark matter (DM) on the binary neutron star
(NS) dynamics has not yet been investigated in detail
and is not taken into account in standard GW analyses.
In fact, considering a coalescence of compact objects to
occur in pure vacuum, could be an oversimplification that
may lead to incorrect conclusions.

Due to their high compactness, NSs can trap and ac-
cumulate DM in their interior throughout the star’s evo-
lution. DM alters the compact star’s properties, e. g., its
mass, its radius, its tidal deformability, its energy density
and speed of sound profiles [1–20]. Its effect depends on
the relative fraction of DM and on the exact equation of
state (EoS) for the DM and baryonic matter (BM). For an
extended discussion of the impact of DM on compact star
properties and its smoking gun signals, see Refs. [21–23].
While the effect of DM on isolated NSs can be probed
through electromagnetic observations, GW observations
of binary systems of DM admixed compact stars open up
a new observational window and the possibility to probe
a density and temperature range larger that of isolated
stars. To push forward our understanding of the imprint
of DM, we construct quasi-equilibrium configurations of
DM admixed NS binary system and study the impact of
DM focusing on quantities pertaining to binary system,
such as the orbital binding energy and the tidal deforma-

tions.

It is worth noting that not only NSs, but also black
holes could be embedded into DM. A step towards un-
derstanding the impact of DM on black hole mergers was
made in [24], where the behaviour of wave DM around
equal mass black hole binaries was studied in numerical
simulations. Furthermore, GW signals from binary coa-
lescences contain information of the binaries surrounding
medium [25].

The effect of DM on the inspiral and post-merger
phases of DM admixed NSs has been studied by a few
groups. A first study by Ellis et al. [26] used a simple
mechanical model, and showed that a DM core can lead
to the appearance of additional peaks in the post-merger
GW spectrum. In [27] NR simulations of equal-mass bi-
naries consisting of BM admixed with a bosonic Klein-
Gordon field were performed. For a DM mass fraction of
10%, a redistribution of fermionic matter by the bosonic
cores was found, followed by the formation of a one-arm
spiral instability. Another approach approximating com-
pact dark component as test particles was studied in [28].
The simulations show the DM component to remain grav-
itationally bound after the merger of BM and orbit the
center of the remnant with an orbital separation of a few
km. The DM core and a host star are likely to spin at
different rotational frequencies just after the merger due
to the absence of non-gravitational interaction. Further
on, they may synchronise via the gravitational angular
momentum transfer, including tidal effects [29].

The evolution equations for two-fluid binaries are quite
well understood, but so far no formalism for the con-
struction of quasi-equilibrium initial data exists. Equa-
tions of motion for multi-fluid systems have been derived
in [30, 31] for the general case of interacting fluids. Up
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to our knowledge, the first two-fluid NR simulations de-
scribing binaries of DM admixed NSs were performed
by Emma et al. [32] for a mixture of BM and mirror DM
only interacting via the gravitational field. The results
demonstrate that these systems tend to have a longer in-
spiral phase with increasing amount of DM, which could
be associated to the lower deformability of DM admixed
NSs. These simulations however, did not start from ini-
tial data satisfying the Hamiltonian and momentum con-
straints [33–35] and the fluids did not start in an equilib-
rium configuration. Instead the initial data was approx-
imated by superimposing Tolman-Oppenheimer-Volkoff
(TOV)-like solutions [36, 37] of isolated DM admixed
NSs. In this work we construct consistent, constraint-
solved, quasi-equilibrium conditions for a two-fluid sys-
tem of BM and DM.

One possible scenario for the formation of DM ad-
mixed NSs is the capture of DM particles during the
lifetime of the star, from a progenitor to the equilibrated
NS stages. The core of a NS is very dense and hence
the chance of a DM particle experiencing scattering is
relatively high. In this scattering process the particle
transfers its kinetic energy to the star, becoming gravi-
tationally bound [38–40]. This process is more efficient
towards the Galactic center, where the density of DM is
many orders of magnitude greater than in the galaxy’s
arms [41–43]. A conservative estimate of DM capture in
the most central part of the Galaxy shows that stars ac-
cumulate up to 0.01% of DM during the main sequence
and equilibrated NS stages combined [11]. However, also
higher DM factions inside compact stars can be achieved
through other scenarios, e.g., DM production during a
supernova explosion, accretion of DM clumps formed at
the early stage of the Universe, or initial star formation
on a pre-existing DM seed or local DM rich environ-
ments [44, 45]. If DM is symmetric, it cannot reach a
high fraction due to self-annihilation, producing an elec-
tromagnetic or neutrino signal [46]. The latter scenario
could lead to additional heating of isolated NSs as well
as post-merger remnants [47, 48], modification of kine-
matic properties [49]. Moreover, production of light DM
particles, e.g., axions, in nucleon bremsstrahlung or in
Cooper pair breaking and formation processes in the NS
interior [50–53], could speed up the thermal evolution of
a star by contributing an additional cooling channel.

We consider DM to be either concentrated in a core or
extending beyond the surface of BM, forming a DM halo
around it. As a first step, we consider non-interacting,
fermonic DM with spin 1

2 . The single star properties of
this DM candidate have been discussed in Ref. [11]. The
baryonic component is modelled through a piecewiese-
polytropic fit [54] of the SLy EoS [55] that reproduces
nuclear matter ground state properties, fulfils heaviest
pulsars measurements [56, 57], X-ray observations by
NICER [58–62], and tidal deformability constraints from
GW170817 [63] and GW190425 [64] binary NS mergers.

The two components interact only through gravity, and
therefore do not repel each other, but overlap due to the

TABLE I. Overview of the geometric units of various quanti-
ties used in the text.

quantity geometric units SI units
length 1M⊙ 1476.6250 m
time 1M⊙ 4.9254909× 10−6 s
velocity 1 299792458 m s−1

mass 1M⊙ 1.98892× 1030 kg
energy 1M⊙ 1.78755× 1047 J
specific enthalpy 1 8.98755× 1016 m2 s−2

angular momentum 1M2
⊙ 8.80457× 1041 kgm2 s−1

absence of non-gravitational interaction. This assump-
tion is in very good agreement with the observations of
the Bullet Cluster [65, 66] and direct DM searches [67],
which show that the DM-BM cross section to be many
orders of magnitude lower than the typical nuclear one,
σDM−BM ≈ 10−45 cm2 ≪ σBM ∼ 10−24 cm2.

By varying the particle mass and relative fraction of
DM, we obtain either a core configuration with a radius
of the DM component less or equal to the baryonic one,
RD ≤ RB , or a halo with RD > RB [14]. For both
scenarios, we construct initial configurations employing
SGRID [68, 69]. Many other codes exist for the construc-
tion of quasi-equilibrium NS binary systems, notably the
spectral codes LORENE [70, 71], Spells [72], FUKA [73, 74],
Elliptica [75], and the finite difference based code
COCAL [76–78]. In [74] the authors compared results
from their independent implementation with those from
the SGRID code and find good agreement between both
codes. Up to our knowledge, all codes mentioned above
are only able to solve systems consisting of a single fluid.
Here we construct for the first time quasi-equilibrium bi-
nary configurations with two fluids.

The formalism and results are presented in geometric
units in which the gravitational constant G = 1 and the
speed of light c = 1. In these units, lengths are given
as multiples of the solar mass, M⊙. For the conversion
to SI units a spatial length must be multiplied by L0 =
1476.6250 m/M⊙ and a time by T0 = 4.9254909 × 10−6

s/M⊙. In Table I we provide the conversion to SI units
for various quantities. Where appropriate we also use
MeV to specify energy and mass of particles, as well as
SI units. Throughout the paper, Greek letter indices de-
note four dimensional, spacetime indices, whereas Latin
indices denote three-dimensional, spatial indices.

The paper is organized as follows. In Section II we
summarize the two-fluid formalism and DM distribu-
tion regimes. Its implementation to the SGRID code is
described in Section III. In Section IV we analyse the
convergence properties of the constructed configurations,
quantify the difference in the velocities of the two flu-
ids and investigate some physical properties of the quasi-
equilibrium configuration over a sequence of separations.
Section V summarizes the results and discusses future
perspectives.
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II. FORMALISM

We describe the matter as a system of two non-
interacting perfect fluids only indirectly coupled through
the gravitational field. This model is well justified, be-
cause the interaction between standard model BM and
DM is weak. Utilisation of the perfect fluid model for
DM is also justified, as the mean free path and the
scattering time scale of DM particles can be small com-
pared to the characteristic time scales of the binary. In
the following, we estimate the mean free path and scat-
tering time in a semi-classical approach for a degener-
ate Fermi gas of particles. In this work we study a
range of DM particle masses, but it is only necessary
to show the validity of the perfect fluid model in the
case farthest away from the hydrodynamical limit, i. e.
for the most dilute DM component or equivalently for
the largest mean free path. For the configurations con-
sidered here, this is configuration 2 in Table II, where
the DM particle mass is 170 MeV (≈ 3 × 10−28 kg).
The Fermi gas consists of non-interacting fermions, for
which a self-scattering cross section σDM formally does
not exist. Instead, we use the value of the upper limit
obtained from observations of merging galaxies, which

yield σDM/m
(DM)
p < 1.25 cm2/g, with m

(DM)
p the mass

of the DM particles [66, 79]. In this work we construct
configurations with a particle density n(DM) of 0.7 fm−3

in the center of the star. Together with the upper limit
for σDM this yields a mean free path λ = 1/(n(DM)σDM )
of 3.7 × 10−17 m, much smaller than the typical length
scale of a NS, which is on the order of 104 m. The scatter-
ing time scale can be estimated using the Fermi velocity,
which reaches values up to 0.8 c in the centre of the star.
Finally, using the value of the mean free path, this yields
a scattering time of tc = λ/vDM = 1.5 × 10−25 s, much
smaller than for example the orbital period of the binary,
which in our configurations is a small as 3× 10−4 s.

At the surface of the stars DM reaches the free stream-
ing limit and the perfect fluid limit breaks down, but
there the density is so small, that the impact on the grav-
itational field is low and hence the matter in this region
can be neglected.

For non-interacting fluids, the energy-momentum ten-
sor can be split into the two individual fluid components
given by:

T (s)
µν = (e(s) + p(s))u(s)µ u(s)ν + p(s)gµν , (1)

where e is the proper energy density, p is the pressure, uµ

is the four velocity of the fluid and the label (s) denotes
the particles species, which is either BM or DM. The
Einstein field equations are then given by

Rµν +
1

2
gµνR = 8π(T (BM)

µν + T (DM)
µν ) (2)

and, because the two particle species do not interact,
each fluid satisfies the equations of motion of a single
fluid. Consequently, each fluid satisfies energy momen-

tum conservation separately: ∇µT
(s)
µν = 0.

For each fluid, we also define the rest mass density ρ
(s)
0 ,

which is computed from the number density n(s) by

ρ
(s)
0 = m(s)

p n(s) , (3)

with m
(s)
p being the mass of the particles. Furthermore,

the specific enthalpy is then given by

h(s) =
e(s) + p(s)

ρ
(s)
0

. (4)

To make the equations tractable, the spacetime metric
gµν is decomposed into a temporal and a spatial part by
introducing the spatial metric γij , the lapse α, and the
shift βi [34, 35, 80]. The line element in this 3+1 split
reads

ds2 = −αdt2 + γij (β
idt+ dxi)(βjdt+ dxj) . (5)

The extrinsic curvature Kij is related to the time deriva-
tive of γij , by the formula

Kij = − 1

2α
(∂tγij −Diβj −Djβi) , (6)

where Di denotes the covariant derivative compatible
with the spatial metric γij .
We construct the partial differential equations govern-

ing quasi-equilibrium by following the derivation in [81],
which is trivially applied to a system of non-interacting
fluids. To generate quasi-equilibrium configurations, we
solve equations for velocity potentials ϕ(s), which are de-
fined through the following split of the four-velocity

γiµu
(s)µ =

1

h(s)
(Diϕ(s) + w(s)i) , (7)

where w(s)i is a divergence free vector, i.e., Diw
(s)i = 0,

describing the rotational part of the fluid. Following the
derivation of [81], we fix the time derivatives of the fields
by assuming the existence of an approximate Killing vec-
tor ξ and a set of quasi-equilibrium conditions for the two
fluids

Lξe
(s) ≈ 0 , (8)

Lξp
(s) ≈ 0 , (9)

γµi Lξ(∇µϕ
(s)) ≈ 0 , (10)

γµi L ∇ϕ(s)

h(s)u(s)0

w(s)
µ ≈ 0 . (11)

We omit further details of the derivation, since for non-
interacting fluids everything can be directly carried over
to the individual fluid components, and we state only
the resulting partial differential equation for the velocity
potentials ϕ(s):

Di

(
ρ
(s)
0 α

h(s)
(Diϕ(s) + w(s)i)− ρ

(s)
0 αu(s)0(βi + ξi)

)
= 0 ,

(12)
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where the boost factor u(s)0 is given by

u(s)0 =

√
h(s)

2
+ (Diϕ(s) + w

(s)
i )(Diϕ(s) + w(s)i)

αh(s)
,

(13)
and the specific enthalpy is given by the expression

h(s) =

√
L(s)2 − (Diϕ(s) + w

(s)
i )(Diϕ(s) + w(s)i) , (14)

with

L(s)2 =
b(s) +

√
b(s)

2 − 4α4((Diϕ(s) + w
(s)
i )w(s)i)2

2α2

(15)
and

b(s) = ((ξi+βi)Diϕ
(s)−C(s))2+2α2(Diϕ

(s)+w
(s)
i )w(s)i .

(16)
The variable C(s) is a constant, which can vary for each
star and which controls the mass of the fluid component.

For the approximate Killing vector ξi we make the fol-
lowing ansatz:

ξi = Ω(−y, x− xCM , 0) +
vr
D

(ri − riCM ) , (17)

where Ω is the instantaneous orbital frequency, D is the
separation between the star centres, vr is the radial ve-
locity, and xCM is the x-coordinate of the centre of mass.
At apsis the orbital frequency together with the sep-

aration of the stars control the orbital parameters like
eccentricity and length of the semi-major axis. Away
from apsis there is a non-vanishing radial component
of the velocity to be taken into account. In cases like
the “circular” inspiral there is no apsis, but there is
a small, but non-vanishing, radially inward directed ve-
locity component vr. There exist analytic approxima-
tions from Effective-One-Body- or Post-Newtonian the-
ory, which provide a way to obtain low-eccentricity con-
figurations [82]. However, those expressions are derived
in coordinates, that are not trivially related to the co-
ordinates used in the extended conformal thin sandwich
(XCTS) formalism [34, 35]. Hence, to obtain really “cir-
cular” inspirals, in practice vr must be obtained through
eccentricity reduction [83] evolutions of the data and ad-
justing Ω and vr appropriately.
The configurations presented in this work are con-

structed within the quasi-circular approximation for
which the radial component is neglected, vr = 0. This
approximation is well justified, because the change in or-
bital separation ∆D during one orbit is much smaller
than the orbital period T . Even a few orbits before
merger ∆D is typically more than 100 times smaller than
T .

We set the value of Ω to its value at second
Post-Newtonian order in Arnowitt-Deser-Misner (ADM)
gauge [84–86]. Ω is then a function of the stellar masses
and the orbital separation D. For the stellar masses we

use the sum of the rest masses of the two fluids, which
are computed by

m
(s)
0i =

∫
Vi

ρ
(s)
i u(s)0α

√
det(γjk)d

3x , (18)

where Vi is the spatial volume over which the i-th star
extends. The value of xCM is then given by

xCM =
(m

(BM)
01 +m

(DM)
01 )xc1 + (m

(BM)
02 +m

(DM)
02 )xc2

m
(BM)
01 +m

(DM)
01 +m

(BM)
02 +m

(DM)
02

,

(19)
where xc1/2 are the x-coordinates of the centres of the
stars. In this work, we present results for equal-mass
configurations only, i. e., xCM = 0.
Besides the continuity equation (Eq. (12)) governing

the fluid velocity potentials ϕ(s), the metric must be fixed
in a way satisfying the ADM constraints. To this end we
choose a conformally flat ansatz for the spatial metric,
i. e., γij = ψ4γ̄ij , with γij = δij and ∂tγij = 0, and con-
struct the data on maximally sliced hypersurfaces, i. e.,
the trace of the extrinsic curvature vanishes: K = 0 and
∂tK = 0. The free metric components are the lapse, shift,
and conformal factor ψ and their governing equations are
formulated in terms of the XCTS equations [34, 35]. To-
gether with Eq. (12), the data is constrained by a set
of seven coupled partial differential equations, which are
solved iteratively one-by-one in a self-consistent manner.

III. SGRID

We have adapted the pseudo-spectral SGRID code [68,
69] to generate quasi-equilibrium configurations for two
fluid systems. We use the same iteration scheme that
is used in [69] for single-fluid NSs. We sketch the iter-
ation scheme in the following with an emphasis on the
adaptions and changes made.

1. To ensure the convergence of the solver, it is nec-
essary to provide an initial guess sufficiently close
to the true solution. This initial guess is chosen as
a superposition of two boosted TOV-like two fluid
stars of a given mass. To generate solutions with
particular rest masses for the fluid components,
one has to find the central pressures for which the
masses are realized. Since we are dealing with two
fluids, this is a two-dimensional root finding prob-
lem. In our tests, we found that using the Newton-
Raphson method is not always reliable, because the
masses are not a monotonous function of the central
pressures, hence, a Newton-Raphson solver easily
gets caught in a local extremum of the mass func-
tion. Instead, we employ a series of bisections on
the central pressure of one fluid component while
keeping the central pressure of the other fluid fixed.
The series of bisections iterates between the two
fluid components in a self-consistent manner until
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the fluid masses are sufficiently close to the target
parameters.

2. If the residuals of Eq. (12) are larger than 10%
of the combined residuals of the XCTS equations,
we solve Eq. (12) and set the new ϕ(s) to be the

average of the old solution ϕ
(s)
old and the just ob-

tained solution ϕ
(s)
ell , using the following weights

ϕ(s) = 0.8ϕ
(s)
old + 0.2ϕ

(s)
ell .

3. We proceed by solving the XCTS equations and
update α, β, and ψ in the same way, averaging the
old and new solution.

4. We do not adjust the values of Ω and xCM as in [69].
The value of Ω would be fixed within an eccentric-
ity reduction scheme. xCM is left at its Newtonian
value, Eq. (19).

5. We adjust the four constants C(s), such that the
rest masses of each component and in each star
match our desired target masses. We then update
the values of h(s) keeping it fixed until the end of
the next iteration.

6. If the sum of the residuals is below a certain toler-
ance or a prescribed maximum number of iterations
is reached, the iteration ends here and is concluded
with a final solving of the XCTS equations.

7. The system of partial differential equations does
not fix the position of the stars and, hence, they will
slowly drift if not kept under control. To keep the
stars in place, the center of the stars are driven back
to the desired position. For single fluids, the center
is usually defined in an unambiguous way as the
point of maximum density. For two fluids the defi-
nition is ambiguous, because the tidal deformations
due to the companion star are different for each
fluid component and, consequently, the maximum
densities are at different points. In most cases, how-
ever, the two maximum points will still be close.
The results shown in this work are obtained by
choosing the point with the maximum of the to-
tal proper energy density, e(tot) = e(BM) + e(DM),
as the center of the stars. We have chosen e(tot),
in particular, because it is a covariant scalar and it
is the major quantity determining the gravitational
potential, hence giving an estimate for the center of
mass of the star. To drive the center of mass back,
the values of h(s) are transformed by

h(s),new = h(s) +∆ri∂ih
(s) , (20)

where ∆ri = ricurrent − ridesired.

8. Continue with step 2.

The SGRID code uses surface-fitted coordinates to re-
duce the Runge phenomenon at the surface of the star.
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FIG. 1. Specific enthalpy in the z = 0 plane for a config-
uration with DM halo. In the upper halves only the specific
enthalpy of DM is shown, whereas in the lower halves the
BM component lies on top of it. The black lines indicate the
boundaries of the spectral elements. Each NS is comprised of
a central cubical element and six cubed sphere elements (of
which only four intersect the z = 0 plane). The DM parti-
cle mass in this configuration is 170 MeV (corresponding to
ID 2 in Table II) and the separation between the NS centres
amounts to 32 M⊙ (47.3 km).

Each time we update the specific enthalpy h(s) (step 5
in the iteration), we adapt the grid such that the bound-
aries of spectral elements coincide with the new surface
of the outer fluid. That means we only construct con-
figurations in which the surfaces of the two fluids do not
intersect, which would in principle be possible given the
different deformabilities of the fluids. Furthermore, we
do not construct domains that are adapted to the sur-
face of the inner fluid. Therefore, at the surface of the
inner fluid one can expect to observe the Runge phe-
nomenon and a slight degradation of the convergence in
the truncation error. Fig. 1 shows a visualisation of the
deformed spectral elements inside the NS and the distri-
bution of matter in terms of the specific enthalpy, for a
configuration with a DM particle mass of 170 MeV.

To close the system, the EoS is required to relate e(s),

p(s), ρ
(s)
0 , and h(s). For the EoS, SGRID reads in either

parameters of piecewise polytropes or EoS tables. EoS
tables are interpolated in a thermodynamically consis-
tent manner [87] using a cubic Hermite interpolation. To
find the thermodynamic quantities for a given specific
enthalpy a Newton-Raphson root finder is used. At low
densities we use a polytrope that is matched at the lowest
density of the table.

We validated our implementation of the TOV equa-
tions and the EoS interpolation by comparison of the
SGRID implementation and the code used in [11]. We
find that the TOV-like solutions of the two implementa-
tions deviate only by machine round-off.



6

TABLE II. Properties of the used isolated NS. All configurations have the same total ress mass: m
(BM)
0 + m

(DM)
0 = 1.4M⊙.

The ID is a number used for reference in the text. m
(DM)
p is the DM particle mass and m

(DM)
0 /(m

(BM)
0 +m

(DM)
0 ) is the rest

mass fraction of DM. m(BM) and m(DM) are the gravitational masses of the BM and DM component respectively. R(BM) and
R(DM) are the radii of the BM and DM surface in Schwarzschild coordinates.

ID

m
(DM)
p

[MeV ]
m

(DM)
0

m
(BM)
0 +m

(DM)
0

m(BM)/M⊙ m(DM)/M⊙
m(BM)+m(DM)

M⊙

R(BM)/M⊙

(R(BM)[km])

R(DM)/M⊙

(R(DM)[km]) DM structure

1 − 0.0% 1.27300 0.0 1.27300 6.4 (9.5) − −
2 170 0.5% 1.26641 6.75 × 10−3 1.27316 6.4 (9.5) 11.1 (16.4) halo
3 250 0.5% 1.26590 6.81 × 10−3 1.27271 6.4 (9.5) 6.1 ( 9.0) core
4 350 0.5% 1.26557 6.86 × 10−3 1.27243 6.4 (9.5) 4.5 ( 6.6) core
5 500 0.5% 1.26534 6.91 × 10−3 1.27225 6.4 (9.5) 3.4 ( 5.0) core
6 750 0.5% 1.26518 6.94 × 10−3 1.27212 6.4 (9.5) 2.5 ( 3.7) core
7 1000 0.5% 1.26511 6.96 × 10−3 1.27207 6.4 (9.5) 2.0 ( 3.0) core
8 350 5.0% 1.20503 6.768× 10−2 1.27271 6.2 (9.2) 8.2 (12.1) halo
9 500 5.0% 1.20056 6.827× 10−2 1.26883 6.2 (9.2) 5.2 ( 7.7) core

10 750 5.0% 1.19713 6.877× 10−2 1.26590 6.1 (9.0) 3.5 ( 5.2) core
11 1000 5.0% 1.19552 6.898× 10−2 1.26450 6.1 (9.0) 2.7 ( 4.0) core

IV. RESULTS

A. Parameters of Constructed Configurations

We consider different configurations by varying DM
particle mass, mass fraction of DM and separation be-
tween NSs. In all configurations the individual NSs have
the same total rest mass, i. e., the combined rest mass
of BM and DM is 1.4M⊙. In all setups, the NSs have
equal masses and are irrotational, wi = 0, i. e., they are
non-spinning. The assumption of vanishing spin is rea-
sonable, because NSs spin down, e. g. due to magnetic
breaking, and the NSs in binary mergers are usually very
old, i. e. they have spun down for a long time.

We select six values of the DM particle mass in the
range between 170 MeV and 1000 MeV, i.e., 170, 250,
350, 550, 750, and 1000 MeV. Furthermore we consider
configurations with a DM rest mass fraction of 0%, 0.5%
and 5%. In Table II we give an overview of the different
configurations and report the properties a corresponding
isolated NSs would have. There we also show the gravi-
tational masses defined as

m(s) :=

∫ R(s)

0

4πr2e(s)dr , (21)

with R(s) the radius of the surface of fluid. In a binary
system the gravitational mass of an individual NS can
only be defined in a meaningful way in the limit of infi-
nite separation, in which the binary components can be
viewed as isolated. Hence we chose to work with fixed
baryonic rest masses m

(s)
0 instead, which is invariantly

defined even in binary systems.
The choice of the lowest DM particle mass value, 170

MeV, is motivated by the results of Ref. [11], where it was
shown that for the DM particle masses below 174 MeV
DM admixed NSs agree with astrophysical observations
of the heaviest NSs for an arbitrary relative fraction of

DM. Note, that this is not the case for the higher particle
mass, where the fraction of DM is constrained in some
interval (for more details see Ref. [11]). Moreover, the
chosen mass of 170 MeV and the fraction of 0.5% leads to
a relatively small halo of approximately twice the radius
of the BM component, which is easy to model. When the
size of the halos overlap, it is no longer possible to fit the
element surfaces to the outer fluid of a star. Hence, we are
discarding the configurations of DM particles with DM
particle masses of 170 MeV and 250 MeV in the 5.0% DM
case. Fermionic DM particles with a mass of 1000 MeV
present an interesting case, that resembles nucleons.

We focus on three particular configurations on the ex-
treme opposite of our parameter spectrum. Configura-

tion 2 has the smallest DM particle mass, m
(DM)
p =

170 MeV, and the smallest non-vanishing DM fraction,
0.5%. In this configuration the DM extends beyond the
surface of the baryonic fluid and in figures we conse-
quently label it as the dark halo configuration. On the
other side of the spectrum we find configuration 11 with

the largest DM particle mass, m
(DM)
p = 1000 MeV, and a

DM fraction of 5%, for which the DM is concentrated in
the core of the stars. Consequently we label the latter as
the dark core configuration. We note however, that the
name dark halo does not indicate that DM exists only
in the surroundings of the star. In fact most of the DM
is still concentrated in the center as can be appreciated
from Fig. 1. In the same way the core of the dark core
configuration includes a mixture of BM and DM. The
third configuration is the special case of a purely bary-
onic star, the single fluid configuration (ID 1), which we
use as a reference.

We describe BM by a piecewise-polytropic fit [54] to
the SLy EoS [55]. As a model of DM, we investigate the
degenerate, relativistic Fermi gas of spin- 12 particles at
zero temperature, for which the EoS is read in as tabu-
lated data. EoSs at zero temperature are sufficient for
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our calculations, because the Fermi energy of the sys-
tem is much higher than its temperature. The typical
temperature T0 of NS cores is of the order of 106 − 108

K [88, 89]. We assume that DM has the same tempera-
ture as the BM, because the captured DM particles keep
scattering with baryons, rarely but often enough to ther-
malise with the BM component. A core temperature of
approximately 108 K is much lower than the Fermi en-
ergy of BM. This is also true for the Fermi gas EoS we
consider, e. g. in the dark halo case the Fermi energy of
DM reaches 403 MeV in the center of the star, an energy
smaller than that of the BM, but still much larger than
the temperature of the star, kBT0 ≈ 0.009 MeV. In evo-
lutions the neutron stars heat up when they collide, so
that it would become necessary to use finite temperature
EoSs. This can be achieved by employing EoS tabulated
at finite temperatures, e. g. the finite-temperature SLy
EoS of [90, 91], or by adding a temperature dependent
term to the pressure [92].

B. Convergence

To validate the code, we check the convergence of the
Hamiltonian constraint for a dark halo configuration of
NSs with a separation of 44 M⊙ (65.0 km) on a quasi-
circular orbit.

Fig. 2 shows the magnitude of the Hamiltonian con-
straint H on the z = 0 plane. The constraint violations
are largest in the interior of the star, where they reach
values up to 4×10−5, whereas in the vacuum regions the
error drops to values below 10−9, but with some spikes
on the order of 10−7 at the element boundaries, which is
a behaviour commonly seen for spectral codes, an exam-
ple being Fig. 10 of [69]. Such spikes in the Hamiltonian
constraint usually do not cause any problems in subse-
quent evolutions. Furthermore the magnitude of these
spikes converges towards zero with increasing resolution.

The Hamiltonian constraint is largest in the region
where the inner fluid is non-vanishing. In Fig. 2 one can
observe a clear transition on the surface of the baryonic
fluid to lower constraint violations in the DM halo.

Fig. 3 demonstrates the development of the volume-
normalised L2-norm of the Hamiltonian constraint for
the inner cube of one of the stars during the iterative
solving process. The figure shows the behaviour for dif-
ferent number of points n in each dimension, which is the
same for each spectral element. All curves show a satu-
ration in the norm of the Hamiltonian constraint towards
the end of the iteration process, which for all configura-
tions is stopped after 40 iterations. Furthermore, it is
visible that higher resolution leads to smaller violations
of the Hamiltonian constraint in the final solution. For
comparison Fig. 3 also shows the sequence for a corre-
sponding single fluid configuration with the same mass
and separation. After 40 iterations the single fluid config-
uration has a Hamiltonian constraint 10 smaller than the
dark halo configurations and it does not show any signs

of saturation, i. e. it would probably reach even smaller
constraint violations if iterated further. The reason for
this discrepancy is the position of the boundary of the
BM, which in the dark halo case lies in the interior of the
spectral element instead of the element surface and there-
fore due to Gibbs’ phenomenon requires more resolution
to reach the same constraint violations. To improve the
efficiency of the method it would be possible to introduce
an advanced domain decomposition with surface adapted
coordinates for the inner and outer fluid.

The convergence in the final solution is further inves-
tigated in Fig. 4, which shows its L2-norm of the Hamil-
tonian constraint with respect to the number of colloca-
tion points in the spectral elements. The figure shows
the constraint violation for the inner cube element and
for the cubed sphere facing towards the companion star,
which is also representative for all other cubed sphere el-
ements inside the NSs. The curves are almost straight
lines on the log-log-plot of Fig. 4, which is compatible
with a polynomial convergence of the constraints, i. e.,
|H|L2

∼ n−p, with p the order of convergence. This
is the expected convergence behaviour for non-smooth
data, which we have due to the surface of the inner fluid.
Using the highest and lowest resolution we can estimate
the order of convergence in the inner cube element to be
p ≈ log22/10(|H|L2,n=10/|H|L2,n=22) ≈ 2.7.

To investigate the convergence of the actual solution
variables we interpolate the data from different resolu-
tions on a common set of points and compute norms
of the estimated errors on these points. We interpo-
late the solution onto a 10 × 10 × 10-grid equidistant
in each direction, with coordinate components given by
ri ∈ {20m/9,m ∈ [0..9]}. This grid includes some points
with pure vacuum, points with only one fluid present
and points with both fluids present. The error in the
solution is estimated by taking the difference to the so-
lution with the highest resolution, i. e., the solution that
has 22 points in each dimension of the spectral elements.
In Fig. 5 we show the convergence of the 1-norm and
the maximum norm over the set of interpolated points
for the gxx component of the metric and the lapse α.
Both quantities do not show a monotonic decay of the er-
ror, but there is an overall trend of decaying error. This
somewhat broken convergence behaviour can again be
attributed to the presence of non-smooth fields on the
surface of the inner fluid. Fig. 6 shows the convergence
of the error in the specific enthalpy. The DM in this
configuration is fitted to the element boundaries and its
specific enthalpy displays a relatively clear convergence
behaviour. The BM fluid on the other hand shows a
very broken convergence and only very little improve-
ment from the lowest to the highest number of points.
The maximum norm of the error is actually growing for
the two largest number of points, whereas the 1-norm
of the error is also slightly broken, but with an overall
behaviour similar to that of gxx and α.

It should be noted, that it is not clear whether the for-
malisms used to construct NS binary initial data actually
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FIG. 2. Hamiltonian constraint in a dark halo configuration
(ID 2) in the z = 0 plane. White solid outline: surface of the
BM fluid. White dotted outline: surface of the DM fluid.
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FIG. 3. L2-norm over the inner cube in one of the stars,
normalised by the volume of the inner cube for single fluid
(ID 1) and dark halo configurations (ID 2). The different lines
show configurations with different number of points n in each
dimension.

possesses a unique solution and likewise this is true for
our formalism in Sec. II. The partial differential equa-
tion (12) is not strictly elliptic on the fluid surface and
hence the standard theorems for the uniqueness of the so-
lution can not be applied. Instead our algorithm might
find a solution of many possible, which is another pos-
sible explanation for the slightly broken convergence be-
haviour.

C. Difference in the Fluid Velocities

It is worth pointing out that even if the BM and
DM fluid components are both irrotational, i. e., non-
spinning, the exact velocity profiles are not the same.
The reason for this does not lie in the notion of an irro-
tational fluid, but is caused by differences in the fluids’
equations of motion. An irrotational fluid [34, 81, 93] is
defined by the vanishing of its kinematic vorticity ten-
sor [94]

ωαβ := Pµ
αP

ν
β∇[µuν] = 0 , (22)
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/
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left cubed sphere

FIG. 4. Normalised L2-norm of the Hamiltonian constraint
in a dark halo configuration (ID 2) for a different number of
points per dimension. The norm is normalised by the volume
of the spectral element. Note that the x-axis and y-axis are
scaled logarithmically.
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FIG. 5. Self-convergence of metric variables in dark halo
configurations (ID 2) . Black: error norm of the gxx compo-
nent of the metric. Blue: error norm of the lapse, α. We not
that the 1-norm is not normalised by the number of points.

with Pµ
α = δµα+u

µuα and its rotational component, w(s)i

in Eq. 7, vanishes. This notion does not depend on the
thermodynamic properties of the fluid and hence differ-
ences in the velocities can only be the result of the of the
equations of motion used in the derivation of the form-
lalism in Sec. II, i. e. the Euler equations [34, 81, 93]

u(s)µ∇µ(h
(s)u(s)ν +∇νh

(s)) = 0 , (23)

which follow from ∇µT
(s)
µν = 0, and the continuity equa-

tion

∇µ(ρ
(s)
0 u(s)µ) = 0 . (24)

If for example the DM would have the same four-velocity
as the BM, it would still be irrotational, but might be
incompatible with the laws of energy-momentum or par-
ticle number conservation.
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FIG. 6. Self-convergence of the specific enthalpy in dark
halo configurations (ID 2). Black: error norm of the baryonic

specific enthalpy h(BM), which is the inner fluid. Blue: error
norm of the specific enthalpy of DM, h(DM). We not that the
1-norm is not normalised by the number of points.

In nature the disparity in the fluid velocities is affected
by two counter-acting effects, particle scattering between
BM and DM on the one hand and physics determining
spin-down on the other hand. In our formulation the
two fluids are modelled as non-interacting, but the BM-
DM scattering cross-section might be non-zero in nature,
which would drive the two fluids towards a common ve-
locity. This process is counter-acted by effects driving the
fluid into an irrotational state, as for example magnetic
braking for BM [95–97]. It is unclear whether a similar
effect exists for DM and whether it is dominant over the
effect of BM-DM scattering. By assuming vanishing of
the kinematic vorticity for the DM component, we as-
sume that such an effect exists and it is also dominating
over the scattering with BM.

We find that both fluids move with basically the same
velocity, with coinciding velocities in the star center,
but increasing difference towards the surface of the in-
ner fluid. We quantify this effect in terms of the residual
three-velocity V (s)i, in which the orbital movement given
by the Killing vector ξµ is split off,

V (s)i = u(s)i/u(s)0 − ξi . (25)

Fig. 7 shows the x-component of V (s)i and the relative
difference of the fluid velocities for the region in which
both fluids are present. We present results for configu-
rations at a separation of 32 M⊙, a separation at which
the DM halos in the dark halo configurations (ID 2) are
already relatively close and deformed, as we demonstrate
in Fig. 1. We find that differences in the two fluids are
smaller for larger separation, which is intuitively under-
standable, because for large separations the system goes
to the limit of isolated NSs in which the fluid velocities
coincide.

The data in Fig. 7 is shown along a diagonal through
the star parametrized in the following way: ri(s) =
s(1, 1, 0)+ric, where r

i
c is the center of the star. We choose
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FIG. 7. Relative difference in the velocities for configura-
tion 2 (dark halo) and 11 (dark core) with a separation of
32 M⊙. The difference is shown along a diagonal with the
parametrization ri(s) = s(1, 1, 0)+ ric, going through the cen-

ter of the star located at ric = (16M⊙, 0, 0). V (BM)x (black,

dash-dotted line) and V (DM)x (grey, dash-dotted line) show
the x-component of the velocity of the respective inner fluid.

to present the data along this diagonal because the differ-
ence V (BM)i − V (DM)i has a quadrupolar structure with
nodes going through ric and being approximately parallel
to the x- and y-axes. Hence the difference is basically
zero on the x- and y-axes, but very prominent along the
specified diagonal. The relative difference between the
residual velocities is below 0.2% near the center of the
star and reaches up to 10% on the surfaces of the inner
fluids. The difference between the velocities of the dark
halo (ID 2) and dark core (ID 11) configurations is rela-
tively small, which can be seen from the fact the curves of
the velocities of the inner fluids lie on top of each other.

D. Binding Energy

NSs with a DM component are more tightly bound,
because the DM component adds gravitating mass, but
provides no additional repulsion to balance the gravita-
tional pressure. This effect is well studied and was al-
ready demonstrated by several authors [4, 11, 98]. In the
following we investigate the effect of DM on the energet-
ics of the binary system, i. e. the orbital binding energy.

The gravitational binding energy of the particles is the
difference of the ADM mass [33, 34, 99] and the sum

of the rest masses m
(s)
0i of the components. If all fluid

particles would fall in from infinity, the true ADM mass
would equal the total rest mass. However, the configura-
tions that we construct do not contain GWs and therefore
they do not model the energy lost in gravitational radia-
tion. The difference in our ADM mass estimate and the
total rest mass is, therefore, a measure of the particle
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binding energy:

Ebind,p =MADM −m
(BM)
01 −m

(DM)
01 −m

(BM)
02 −m

(DM)
02 .
(26)

We have constructed the configurations with fixed bary-
onic masses, but configurations with different separation

distance between the stars or particle mass m
(DM)
p will

have a different ADM mass, similar to how the isolated
stars in Table II have different gravitational masses. To
make the results comparable in the figures we show quan-
tities appropriately rescaled by MADM .
We construct a series of configurations with varying

orbital separation D. The orbital frequency Ω changes
as well, since it is a function of the masses and the orbital
separation. Fig. 8 shows the rescaled particle binding en-
ergy as a function of our estimate for the ADM angular
momentum JADM . It can be seen that dark core con-
figurations (ID 11) are more tightly bound than single
fluid configurations. The dark halo configurations (ID 2)
seemingly coincide with the single fluid case. This can
be attributed to the relatively low DM fraction of only
0.5% in these configurations. All configurations are more
tightly bound for smaller JADM corresponding to smaller
stellar separations. This is due to the stronger orbital
binding between the two stars.

Most of the binding energy is contained in the indi-
vidual stars and the contribution of the orbital binding
energy is universal in all configurations. The orbital bind-
ing energy Ebind,orb is the energy necessary for the two
NSs to escape to infinity. It can be computed using the

gravitational mass m
(s)
i of the components, by

Ebind,orb =MADM−m(BM)
1 −m(DM)

1 −m(BM)
2 −m(DM)

2 .
(27)

The gravitational masses m
(s)
i are obtained by solving a

TOV-like equation for isolated stars that have the same

rest masses. The gravitational mass m
(s)
i is smaller than

the rest mass m
(s)
i0 , because it accounts for the binding

energy. Hence, Ebind,orb contains only contributions of
the binding energy that are due to the mutual binding
between the stars. Fig. 9 shows that the relation be-
tween orbital binding energy and ADM angular momen-
tum (both appropriately rescaled by MADM ) is mostly
independent of the DM configuration as the lines are
falling on top of each other.

To investigate the small effect of the particle mass,
we construct configurations at a range of DM particle

masses m
(DM)
p from 170 MeV to 1000 MeV at a fixed

binary separation of 36 M⊙ (53.2 km) Fig. 10 shows the
orbital binding energy for the case of 0.5% and 5% of
DM. For the case of 0.5% DM (IDs 2 to 7) we find that
the orbital binding energy has a minimum around 550
MeV. The value of the minimum lies even below that
of the corresponding single fluid configuration. For the
case of 5% of DM (IDs 8 to 11) we do not observe a
minimum, but an orbital energy always larger than in
the corresponding single fluid configuration and increase
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FIG. 8. Particle binding energy Ebind,p as a function of
the ADM angular momentum. We show results for configu-
ration 1 (single fluid), 2 (dark halo) and 11 (dark core).
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FIG. 9. Orbital binding energy Ebind,orb as a function of
the ADM angular momentum. We show results for configu-
ration 1 (single fluid), 2 (dark halo) and 11 (dark core).

roughly linear with m
(DM)
p . We emphasise that for this

comparison one has to keep in mind that configurations

with different m
(DM)
p also have different angular momen-

tum. However, as is shown in Fig. 11 the variation in the
rescaled ADM angular momentum is below 1%. We also
find no clear relation between the ADM angular momen-

tum and m
(DM)
p , but we find that larger amounts of DM

tend to lead to larger angular momentum.

Figures 10 and 11 also demonstrate that by decreasing
the amount of DM the configurations reach the single
fluid limit. In almost all cases the configurations with
lower DM fraction have a binding energy and angular
momentum that is closer to that of the single fluid case.
Only for the particle masses of 350 MeV the angular mo-
mentum of the 5.0% configuration is closer to the single
fluid limit. However, it must be noted that for this case
the DM forms a halo around the BM and therefore this
configuration is not representative for the limit of low
DM content.
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FIG. 10. Orbital binding energy Ebind,orb as a function of
the DM particle mass mDM for a binary separation of 36 M⊙
(53.2 km). As a reference the horizontal black dotted line
shows the value for the single fluid configuration (ID 1).
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FIG. 11. Angular momentum as a function of the DM parti-
cle mass mDM for a binary separation of 36 M⊙ (53.2 km). As
a reference the horizontal black dotted line shows the value
for the single fluid configuration (ID 1).

E. Deformation

To quantify the deformation of the stars we compute
the ratio of the diameters along the orbital radius and
along the polar axes. The diameter along the orbital ra-
dius is taken as ∆x, largest difference in the x-coordinates
of two points on the fluid surface. The polar diameter
∆z, is the largest difference in the z-coordinate of two
points on the fluid surface. The tidal force of the com-
panion stretches the star in x-direction, whereas the poles
are slightly flattened. This measure of deformation is of
course coordinate-dependent, but it still provides some
physical insights.

We analyse the same set of configurations with varying
orbital separation D as in the previous section. Fig. 12
shows the deformation ∆x/∆z for each fluid surface.
When the NSs are closer, the tidal forces on the compan-
ion are stronger and hence the deformation is stronger.
It can be observed that NSs with a DM core are system-

atically less deformed than their one-fluid counterparts.

The strong deformation in the dark halo case (ID 2)
can also be seen in Fig. 1, which shows a cut through
the z = 0 plane. For a separation of 32 M⊙ (47.3 km)
the deformation is clearly visible by eye. At a separation
of 28 M⊙ (41.3 km) the deformation becomes already
so strong that the surfaces of the NSs touch and mass
shedding occurs.

The closeness to mass shedding can be quantified in
terms of the mass-shedding parameter χ, which was first
introduced in [71] and which we define as

χ(s) =
∂xh

(s)|eq
∂zh(s)|pole,avg

, (28)

where the label “eq” denotes the point on the surface,
which is facing towards the companion star and for which
the x-coordinate is extremal. The label “pole” denotes
the surface points at which the z-coordinate is extremal
and where in Eq. (28) the label “avg” indicates that we
have averaged over the values at the “north and south
pole”. Note that for non-spinning stars the “north” and
“south pole” values only differ slightly due to round-off
error. In the mass shedding limit χ(s) will tend to 0. We
evaluate the χ(s) for each fluid component individually
on the respective fluid surfaces. We show the resulting
χ(s) as a function of the distance of the centres of the
stars in Fig. 13. The DM fluid in the dark halo scenario
(ID 2) is easily deformable, which leads to a relatively
small mass shedding parameter of 0.9 already at a sep-
aration of 44 M⊙. We find that a separation of 28 M⊙
leads to a configuration with touching star surfaces, from
which we conclude that mass shedding occurs somewhere
at a separation between 28 and 29 M⊙, which means the
system will transition relatively slowly to the mass shed-
ding regime over a time where the two NSs decrease their
separation by 16 M⊙. For the dark core configurations
(ID 11), on the other hand, the transition to mass shed-
ding is rather sudden with χ reaching a value of 0.9 at
separation of approximately 23 M⊙ and the mass shed-
ding occurring for the baryonic fluid at a separation of
16 M⊙.

In Figs. 14 and 15 we show the deformation ∆x/∆z
and mass shedding parameters χ(s) as functions of the

DM particle mass m
(DM)
p corresponding to all configu-

rations in Table II and for a fixed binary separation of
36M⊙ (53.2 km). For the case of 0.5% DM the BM defor-
mation as well as χ(BM) have practically the same value
as in the single fluid case. For 5% of DM the BM defor-
mation is smaller and χ(BM) is larger owing to the higher
compactness in these configurations. The DM fluid is

less strongly deformed when m
(DM)
p is large. In partic-

ular when the DM fluid changes character from being
the halo to being the core component, the deformation
decreases rapidly and χ(DM) increases rapidly.
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FIG. 12. Deformation ∆x/∆z of the fluid surfaces as func-
tion of the NS centres. The deformation is computed as the
ratio of the largest extents in x and z direction. Curves la-
beled BM show the deformation of the surface of the baryonic
fluid, whereas curves labeled DM show the deformation of the
DM surface. We show results for configuration 1 (single fluid),
2 (dark halo) and 11 (dark core).
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FIG. 13. Mass shedding parameter χ as a function of the
separation of the NS. χ(BM) is computed from the deforma-
tion of the surface of the baryonic fluid, whereas χ(DM) is
computed from the DM surface. We show results for configu-
ration 1 (single fluid), 2 (dark halo) and 11 (dark core).

V. CONCLUSION

We have extended the SGRID code to construct
constraint-solved, quasi-equlibrium configurations of bi-
naries of NSs consisting of two non-interacting fluids.
The second fluid represents DM that can comprise some
part of the matter of NS. In this study we have used the
EoS of a degenerate, relativistic Fermi gas with different
particle masses to model the DM fluid. These quasi-
equlibrium configurations can be used as initial data for
NR inspiral simulations of DM admixed NS binaries. The
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FIG. 14. Deformation ∆x/∆z as a function of the DM par-
ticle mass mDM for a binary separation of 36 M⊙ (53.2 km).
Open symbols denote the fluids with the larger diameter, i. e.
the halo component. Filled symbols denote the inner compo-
nent, i. e. the core. As a reference the horizontal black dotted
line shows the value for the single fluid configuration (ID 1).
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FIG. 15. Mass shedding parameter χ as a function of the
DM particle mass mDM for a binary separation of 36 M⊙
(53.2 km). Open symbols denote the fluids with the larger
diameter, i. e. the halo component. Filled symbols denote the
inner component, i. e. the core. As a reference the horizontal
black dotted line shows the value for the single fluid configu-
ration (ID 1).

BAM code can already evolve mirror DM [100] and could
be easily extended to allow for general EoS for the DM
fluid.

Another possible application of the two fluid approach
are superfluid NS cores. At sufficiently high density BM
forms a state made of superfluid neutrons and supercon-
ducting protons, which can be described in a two fluid
approach. However, the two fluids still interact with each
other due to the entrainment effect and the condition of
beta-equilibrium [101]. The evolution equations for inter-
acting multifluid systems have been discussed in [30, 31],
but so far no formalism exists for the construction of ini-
tial data for NS binary systems. For the construction of
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such initial data the formalism in this work could be ex-
tended using an interaction model similar to the one used
in solutions of isolated NS with superfluid cores [102, 103]
and taking into account mutual friction [104]. In binary
NS collisions the temperature will rise above the criti-
cal temperature for superfluidity and superconductivity.
The case of finite temperature superfluid dynamics was
discussed in [105].

We have tested the convergence of the constructed con-
figurations with respect to resolution. The Hamiltonian
constraint converges polynomially with an order of ≈ 2.7.
The lack of exponential convergence can be attributed to
the presence of the non-smooth transition of the density
at the surface of the inner fluid, which is not fitted to
the boundaries of the spectral elements. Self-convergence
tests for metric components and the specific enthalpies
show that the solution improves with increasing reso-
lution, but with a slightly broken convergence towards
higher resolution, which we again attribute to the sur-
face of the inner fluid. For future improvements to the
code it is a worthwhile consideration to implement a new
grid layout that allows fitting to the surface of a second
fluid

We have shown that the two fluids do not have the ex-
act same velocities, but that the difference in the residual
velocities reaches up to 10% on the surface of the inner
fluids. The difference in the velocity profiles will be even
stronger if one assumes independent rotational states for
the components. In this work we only investigated only
purely irrotational configurations, but our formalism, in
principle, allows to construct configurations with arbi-

trary spin for the individual stars and fluid components.
This is relevant in particular for the DM component,
which might only have insufficient mechanisms to lose an-
gular momentum and hence could be in a state of rapid
rotation.

The presence of DM affects the compactness and de-
formability of NSs, which will change the merger dynam-
ics. We have shown that the presence of DM can delay
the point of mass-shedding to a later stage of the inspi-
ral, i. e., towards closer separations. This is in accordance
with the findings in numerical evolutions of two-fluid bi-
nary mergers [100]. In the case of a DM halo, mass shed-
ding could occur much earlier than for the baryonic com-
ponent. However the matter contained in the DM halo
is rather low and hence the impact of DM mass shedding
on the dynamics of the BM is potentially small, never-
theless, dynamical simulations are needed to verify this
assumption.
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M. Raidal, and V. Vaskonen, Search for Dark Matter Ef-
fects on Gravitational Signals from Neutron Star Merg-
ers, Phys. Lett. B 781, 607 (2018), arXiv:1710.05540
[astro-ph.CO].
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