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We propose to use quantum information notions to characterize thermally induced melting of
nonperturbative bound states at high temperatures. We apply tensor networks to investigate this idea
in static and dynamical settings within the Ising quantum field theory, where bound states are confined
fermion pairs—mesons. An equilibrium signature of meson melting is identified in the temperature
dependence of the thermal-state second Rényi entropy, which varies from exponential to power-law
scaling. Out of equilibrium, we identify as the relevant signature the transition from an oscillatory to a
linear growing behavior of reflected entropy after a thermal quench. These analyses apply more broadly,
which brings new ways of describing in-medium meson phenomena in quantum many-body and high-
energy physics.
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I. INTRODUCTION AND MOTIVATION

Emergent phenomena of quantum field theories (QFTs)
under extreme conditions can pose significant challenges
for their theoretical description both in condensed matter
and particle physics [1–4]. Many problems of this type are
motivated by quantum chromodynamics (QCD), as is the
focus of this article: the melting of mesons [5,6]. The
phenomenon of meson melting, i.e. the breakdown of
bound states into their elementary constituents at high
enough temperatures, is of fundamental interest in QCD,
where it is relevant for the physics of the early Universe and
for the understanding of nuclear collisions. Whereas a full
explanation of the process from first principles is not
available, the current phenomenological description under-
stands the meson melting as a dynamical process in which
out of equilibrium mesons interact with a thermal back-
ground [5]. This phenomenology is not exclusive of QCD,

though, but can be explored in other models that exhibit
mesons in their spectrum.
In this article, we propose a new approach to the meson

melting phenomenon through the study of entanglement
measures. As a first step in this direction, we consider the
(1þ 1)-dimensional Ising QFT, which contains both inte-
grable and nonintegrable parameter regimes exhibiting
meson excitations. In particular, we study static and time-
dependent thermal states in different temperature regimes in
the thermodynamic and continuum limit of the quantum
Ising model near its critical point by analyzing several
entropic quantities. For this purpose we employ numerical
tensor network (TN) simulations, a tool originating from
quantum information that directly gives access to both
entropic quantities and entanglement measures [7–11].
The dynamical setup is generated by a quantum quench—
a common method, which creates an out of equilibrium state
through a (instantaneous) parameter change in the under-
lying Hamiltonian. This protocol can be seen as a theoretical
method by itself, since it can induce entirely new dynamical
features to the system. We use it to mimic a dynamical
situation as in themodernQCDviewpoint onmesonmelting.
Our study of entanglement measures in the context of meson
melting can be seen complementary to the works [12–14], in
which quarkonium suppression and dissociation have been
described as an entropic self-destruction. Notice also that,
recently, entanglement measures have been used in a similar
vein to characterize (1þ 1)-dimensional meson scattering
events [15].
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Our TN approach is also closely related to the field of
quantum simulations [16–19], in which quantum hardware
is utilized to study many-body problems via digital or
analog implementations. Recently, there has been a con-
siderable amount of attention to the potential use of these
technologies for studies of meson physics, both in exper-
imental measurements [20–23] as well as in theoretical
proposals [24–28]. With such arising quantum technologies
offering a significant long-term promise for studying
fundamental physics problems, it is a timely problem to
frame the melting of bound states using their native
language of quantum information.

A. Outline of the article

In describing the effect of melting mesons from a
quantum information perspective, we are crossing several
fields in physics. To make our work accessible for a broad
audience, we aim for a self-contained presentation and
organize this article as follows.
Sections II and III are devoted to a short review of

physical and conceptual background material relevant for
our studies. In particular, Sec. II contains a discussion of the
meson melting phenomenology in QCD, which primarily
motivates our work (Sec. II A). We then introduce in
Sec. II B the model we analyze, the 1þ 1D Ising QFT,
which emerges in the continuum limit of the quantum Ising
model. In Sec. III we describe relevant concepts of
entanglement properties in quantum many-body systems,
which underlie TN Ansätze and numerical algorithms for
our simulations. This section also contains a discussion of
entropic quantities and quantum quenches.
The results of our analyses are discussed in Secs. IV and

V. In Sec. IV we present simulation results for different
scaling behaviors of the Rényi entropy density in thermal
equilibrium states. In Sec. V we analyze entanglement
entropies after thermal quantum quenches at different
effective temperatures. In both cases, we consider mesonic
parameter regimes of the Ising QFTand find signatures that
indicate the melting of meson states at high temperatures.
We devote several appendixes to further background

information and computational details. In Appendix A
insights from methods in QCD and holography are dis-
cussed, while in Appendix B more details on TNs are
presented. Details on a transfer operator method and signal
analysis techniques can be found in Appendixes C and D,
respectively.

II. PRELIMINARIES

A. Phenomenology of the meson
melting process in QCD

Spectral functions are the main quantities studied within
QFT to describe the melting of mesons. In this section we
provide an introduction to the known phenomenology of
this effect based on the recent and comprehensive review

[5]. For more detailed discussions and further background
information we refer to Appendix A 1.
In thermal equilibrium the spectral function ρ is given by

the negative imaginary part of the retarded correlator,

ρðp⃗;ωÞ ¼ −Im½DRðp⃗;ωÞ�: ð1Þ

Here, the retarded correlatorDR is defined with respect to a
meson operator Mðx⃗; tÞ as the thermal expectation value
DRðx⃗;t;x⃗0;t0Þ≡θðt−t0ÞTrfρβ½Mðx⃗;tÞ;M†ðx⃗0;t0Þ�g, where
ρβ is the thermal density operator at inverse temperature β
and θðtÞ is the Heaviside function. In a QCD context, ρ is
typically considered in Fourier space via a Wigner trans-
formation, in which relative frequency and momentum
coordinates ðp⃗;ωÞ are used as in (1). The spectral function
in this form probes the particle content of the physical
system. Meson bound states show up as peaks at frequency
values given by their masses.
Within QCD, there are several established methods to

calculate spectral functions of quark bound states.1 They
form the basis for our current understanding, which was
initiated by the influential work [29] on suppression and
melting of mesons. Starting from an analogy with Debye
screening in an electromagnetic plasma, the authors argue
that the quark-gluon plasma created in a nuclear collision
weakens the binding energies of meson bound states in the
thermal environment, causing a suppression of meson
detection rates. Building up on that, the work [30] put
forward the picture of a sequential process. In this static
scenario, an in-medium Hamiltonian describes mesons as
its eigenstates. The potential term in the Hamiltonian gets
weaker for increasing temperatures, such that bound states
transform into scattering states at a unique melting temper-
ature, where a sharp transition takes place. Weakly bound
meson states melt first, while strongly bound ones survive
longer in the thermal medium.
The work [31] opened a new way of thinking about this

process by showing that the quark potential (A3) is complex.
This implies that a meson bound state is a dynamical system,
which interacts constantly with its thermal environment by
scattering processes. In this modern picture, the melting
process is best understood from the behavior of spectral
functions in dependence of the temperature. With increasing
temperature, the meson peaks move toward smaller fre-
quency values; their magnitude is decreasing while their
thermal width is increasing. Peaks at larger frequencies, i.e.
lower binding energies, melt first, and their peak structure
dissolves completely into a continuum. The combination of
thermal broadening and decreasing of the binding between
the quarks means that mesons transition into other
(unknown) states. The dynamical origin of this process is
not known from this description. As a consequence, the

1We refer to Appendix A 1 for a short overview and discussion
of them.
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definition of a melting temperature in this time-dependent,
sequential scenario is not uniquely determinable any more
and a less important concept. The overall intuitive picture
drawn in [5] is that the thermal environment acts as a sieve
that filters out weakly bound meson states, which are
exposed to intensifying scattering events as the temperature
is raised. Apart from direct approaches in QCD, also holo-
graphic models corroborated this phenomenological picture
of a sequential melting process. Some insights from these
methods are reviewed in Appendix A 2.
From these elaborations, it becomes obvious that only a

fully real-time treatment can describe all dynamical proc-
esses contributing to the melting of meson bound states.
Recently, open quantum system approaches to this problem
provided new insights in this direction. They treat the
interactions between a system (quark-antiquark pair) and its
environment (thermal medium) in a real-time Schrödinger
formalism. Interestingly, it could link the melting process to
the quantum mechanical effect of decoherence (see e.g.
[32,33] and further references in [5]).

B. The 1 + 1D Ising QFT

The Ising spin model is defined by the Hamiltonian

H ¼ −J
�XN−1

j¼1

σzjσ
z
jþ1 þ h

XN
j¼1

σxj þ g
XN
j¼1

σzj

�
; ð2Þ

where σαj is the corresponding Pauli matrix at position j,
and we have considered an open chain of N sites.
Throughout our numerical calculations, we use J ≡ 1.
This sets an overall energy scale associated with the lattice.
Furthermore, h and g are, respectively, the transverse and
longitudinal fields.
In the pure transverse field Ising model (g ¼ 0), it is

well known that a quantum phase transition takes place at
the critical point J ¼ h ¼ 1 from a ferromagnetic
(ordered) phase (h < 1) toward a paramagnetic (disor-
dered) phase (h > 1). In the thermodynamic (infinite
system size N → ∞) and continuum limit (vanishing
lattice spacing a≡ 2=J → 0), the infrared (IR) regime
of the Hamiltonian (2) is effectively described by the
Majorana fermion QFT [34]

HIR ¼
Z

∞

−∞
dx

�
i
4π

ðψ∂xψ − ψ̄∂xψ̄Þ−
iMh

2π
ψ̄ψ þCM15=8

g σ

�
:

ð3Þ

The free fermion mass Mh is related to the transverse
lattice parameter h through the relation Mh ≡ 2Jj1 − hj,
while the longitudinal mass scale is given by
Mg ≡DJjgj8=15. Here, C ≈ 0.062 and D ≈ 5.416 are
numerical constants [34,35].
As discussed in detail in [34], the QFT defined by the

Hamiltonian (3) appears in the scaling limit Mh=J → 0 for

fixed ratio Mh=Mg. It comprises the following important
classes in the vicinity of the critical point. First, if Mh ¼
Mg ¼ 0 (i.e. at the critical point fh ¼ 1; g ¼ 0g), the
Hamiltonian (3) represents the Ising conformal field theory
(CFT), which is a free Majorana fermion CFT with central
charge c ¼ 1

2
. There are two scalar primary Hermitian

operators,

ϵ≡ iψ̄ψ ∼ σxj ; ð4Þ

with scaling dimensionΔϵ ¼ 1 and σ ∼ σzj withΔσ ¼ 1
8
. For

Mh ≠ 0, Mg ¼ 0, the continuum limit of the transverse
Ising model in both the ferromagnetic and paramagnetic
phase is integrable in terms of a massive free fermion QFT,
characterized by the fermion mass Mh. Elementary exci-
tations in the ferromagnetic phase can be interpreted as
domain walls. As soon as a longitudinal field is turned on
(g ≠ 0), these are nonperturbatively confined [36]. The two
remaining important regimes therefore give rise to mesonic
excitations with the following properties:
(1) Mh ¼ 0, Mg ≠ 0: This regime describes the inte-

grable and interacting E8 QFT of Zamolodchikov
[37], which is mathematically captured by the
exceptional simple Lie algebra of rank 8. It contains
8 stable mesons as nonperturbative fermionic bound
states in the spectrum. Their masses Mn are known
and can be expressed as analytical ratios in terms of
the lightest mass M1 ≡Mg.

(2) Mh ≠ 0, Mg ≠ 0: This parameter range with both ϵ
and σ perturbations turned on represents an interact-
ing nonintegrable QFT with stable and unstable
meson bound states [37–40].

We are primarily interested in studying the latter non-
integrable regime at nonzero temperature, in which TN
simulations have the most predictive power since they
provide an ab initioway of capturing the underlying meson
physics. Despite the simplicity of the original lattice
model (2), we therefore can study a highly nontrivial class
of QFTs in (3), which we denote as the (1þ 1)-dimensional
Ising QFT in the following discussion.

III. METHODS AND CONCEPTS

A. Tensor network simulations

We perform numerical simulations using matrix product
states (MPS) and matrix product operators (MPO) [7–
9,41]. These are TN Ansätze that provide efficient repre-
sentations of the state and operators of the quantum
many-body system (see Appendix B for details). More
concretely, a MPS parametrizes a quantum many-body
state of a lattice system by a set of tensors (one per site) of
dimensions d × χ × χ, where d is the physical dimension of
the degree of freedom associated to each lattice site, and χ,
called bond dimension, determines the size of the varia-
tional family, and bounds the entanglement entropy of the
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MPS. In the broadest sense, a MPO is simply a MPS for the
space of operators, where the local dimension is d2 instead
of d.
The MPS/MPO Ansatz allows us to work directly in the

infinite spatial volume (thermodynamic limit), by assuming
translational invariance and studying a unit cell. For a
nearest-neighbor model like (2), we use a two-site unit cell
and apply the infinite time-evolving block decimation
(iTEBD) algorithm [42] to simulate both imaginary and
real-time evolution. The former allows us to efficiently
approximate thermal states as an MPO [43,44], while the
latter is employed in the subsequent quench studies. The
iTEBD algorithm is based on a Suzuki-Trotter decom-
position (see [45] and references therein) of the time
evolution operator into discrete time steps and a sequential
application of two-body operators acting on the MPS or
MPO Ansatz. The resulting bond dimension increases, in
general, under this operation, and in practice it is necessary
to truncate it. This is one source of error in the numerical
algorithms. While it also limits the reachable timescales
under real-time evolution, this will prove not to be a
significant obstacle for the problem at hand.

B. Entropies

In our work several entropic quantities play a pivotal role
in unraveling the meson melting. In particular, we make use
of the von Neumann entropy and of the more general Rényi
entropies. The former is defined as

SðρÞ ¼ −Tr½ρ ln ρ�; ð5Þ

where ρ is the density matrix describing the state of the
system. The Rényi entropies2 are defined as

SαðρÞ ¼
1

1 − α
lnðTrραÞ: ð6Þ

In the case of pure states, when we consider a bipartition in
subsystems A and B, the corresponding entropies for the
reduced density matrix ρA ≡ TrBρ of a subsystem measure
the entanglement with respect to this bipartition, and the
von Neumann entropy (5) SðρAÞ ¼ SðρBÞ is then referred to
as the entanglement entropy.
In the case of pure states given by MPS, these entropies

can be efficiently calculated, because it is easy to recover
the Schmidt decomposition across each cut between a pair
of sites, which in turn provides the eigenvalues of the
corresponding reduced density matrix for half the chain. In
the case of mixed states given by MPO, like the ones
representing thermal states, these quantities cannot be

efficiently recovered, in general. We can however compute
the 2-Rényi entropy (or another low integer order) of the
whole state.
Another option utilized by us is to consider a purification

of the mixed state, i.e. embedding a given mixed state as a
reduced density matrix of a pure state from an enlarged
Hilbert space. A canonical purification of a mixed state,
demonstrated here on an example of a thermal density
matrix, is given by the thermofield double state

jΨβi ∝ e−βH=2jΦi; ð7Þ

where jΦi is a maximally entangled state in a doubled
system. Such a canonical purification can be constructed
also for a general mixed state. For the canonical purification
there is a natural identification of spatial subsystems in the
original system and corresponding subsystems in the copy.
This leads to the notion of the reflected entropy, which is
the entropy associated with tracing out the same spatial
subsystems in both Hilbert space factors in the canonical
purification. When the purification is given as a MPS, one
can efficiently compute the reflected entropy using the
MPS/MPO techniques, which will play an important role in
the rest of the paper. The reflected entropy was originally
introduced in [46] in a holographic setting as a proposed dual
to twice the area of the entanglement wedge cross section.
Because of this, it has received a considerable amount of
attention in the context of the AdS=CFT correspondence and
QFTs; see e.g. [47–54]. In particular, the works [55–57]
discussed it also for CFT quenches, whereas [58] analyzed a
variety of related mixed state entanglement measures as a
holographic probe of confinement.
The purification of a mixed state is not unique, since any

unitary transformation on the ancillary copy leaves the state
of the system unchanged. The entanglement entropy is in
general not invariant under such transformation. One can
define a version of the reflected entropy, called the
entanglement of purification [59], as the minimal one over
all possible purifications. The reflected entropy provides an
upper bound to such an optimal quantity, which in general
is hard to compute. Note that the area of the entanglement
wedge cross section is conjectured to correspond to the
entanglement of purification [60]. If this conjecture is
correct, it implies that in holographic states optimization
allows lowering the reflected entropy by a factor of 2 by
applying a unitary on a purifying system.
In the present work, we employ the TN Ansatz to extract

the discussed entropic quantities for the Ising QFT. Before
closing this section, we want to point out that the authors of
[61,62] recently developed a simulation scheme to calculate
(generalized) Rényi entropies for bosonic systems and
1þ 1D CFTs. In a parallel vein, [63] calculated entangle-
ment measures in (1þ 1)-dimensional theories using a
Hamiltonian truncation approach [64], which provides an
alternative computational Ansatz.

2Observe that in the limit α → 1þ, SαðρAÞ reduces to SðρAÞ. In
the continuum or in the presence of gauge fields, the definition of
reduced density matrices can lead to mathematical subtleties,
which, however, will not be relevant for our subsequent spin
chain calculations.
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C. Quantum quenches and quasiparticle model

We now turn to the concept of quantum quenches to
study a dynamical situation in the context of meson
melting. A quantum quench means a rapid change of a
Hamiltonian parameter governing the time evolution of a
physical system. Initiated primarily by the works [65–67],
quantum quenches became a theoretical framework to
probe and characterize dynamical properties of quantum
many-body systems [68]. The modification of the under-
lying Hamiltonian during time evolution kicks the system
out of equilibrium. This drastic change can induce new
processes and effects through dynamical interactions.
Our studies are motivated by the seminal work [69].

Therein, the authors analyzed the entanglement growth for
quantum quenches in the Ising model. In more detail,
iTEBD methods were used to prepare the ground state jψ0i
of some Hamiltonian H0, which then was evolved with a
Hamiltonian H1 in the ferromagnetic phase in the presence
of meson states, i.e. at finite longitudinal field values. It was
observed that the existence of mesons causes oscillations in
the entanglement entropy at frequencies given by their
masses and mass differences. If the initial state is in the
paramagnetic phase (i.e. a quench across the phase boun-
dary), the associated entanglement growth persists mostly
forever, whereas it is always bounded if jψ0i is located in
the ferromagnetic phase and mesons are produced at rest.
While the original work [69] considered a semiclassical
parameter regime away from the quantum critical point, the
recent paper [70] observed such entanglement oscillations
also in the E8 QFT regime of the Ising model. Similar
observations were made for gauge theories in [71–73] as
well as for quasiparticles in paramagnetic quenches
[74,75]. Further aspects of entanglement dynamics and
thermalization behavior in spin chain models are discussed,
e.g., in [76–78].
Many properties of the entanglement production and

spreading after quantum quenches can be understood with
a quasiparticle model. Originally developed in [65] for the
Ising model, it was later found to hold also for generic
integrable systems (in the absence of mesons) [79–81] and
thermofield double states [82]. A generalization of themodel
was provided in [83]. In essence, the model describes the
initial state as a source of independent entangled quasipar-
ticle pairs, which are created at any given point and move
after the quench with opposite momentum and velocity
through the quantum many-body system and therefore
spread quantum correlations. In lattice systems, the maxi-
mum speed of propagation is limited by the Lieb–Robinson
bound [84]. As a consequence, the entropy of a finite-size
subregion will grow linearly in time as pairs spread with one
of their members crossing the boundary of the region.
Eventually, the entanglement saturates when both members
of all pairs produced inside the subsystem have left it. This
picture is consistent with general entanglement scaling laws
in the time evolution found in [85]. For the special case of a

semi-infinite spatial bipartition this implies an indefinite
entanglement growth. However, the boundedness of entan-
glement production for the meson case can also be explained
within the quasiparticle picture [69,86]. Namely, the exist-
ence of a confining potential, due to the presence of meson
states, induces that quasiparticles bounce back as they get
separated from their partners, causing the oscillatory and
bounded behavior for mesons produced at rest.
In this paper, we consider quenches in which the system

is initially prepared in a thermal equilibrium state, and then
is evolved with a different Hamiltonian. Such finite temper-
ature quenches are much less explored than those starting
from a ground state; see [87–92] for selected results. In this
scenario, we analyze the time evolution of different
entropic quantities to detect the melting of mesons at high
temperatures. For nonintegrable parameter regimes, in
which we are primarily interested here, it was shown in
[86] that quantitative quasiparticle model interpretations are
applicable only at low energies (or temperatures), when
mesons are dilute and one can focus on the two-fermion
problem. Since we enter physical situations beyond this
case, we will make use of quasiparticle interpretations in
our subsequent meson analyses only in a qualitative
fashion, or compare to the free fermion regime.

IV. RESULTS FROM THERMAL EQUILIBRIUM

In Sec. II A we have discussed that in a QCD context
meson melting is indicated by a thermal broadening and
movement of peaks in the in-medium spectral function. For
the Ising QFT, our previous work [93] studied the retarded
thermal correlation function with respect to the ϵ operator
(4), which is the closest analog in this system to the
simplest meson operator in QCD. We did observe sharp
meson peaks, whose residues decrease with the temper-
ature. Further, we observed that growing temperature
causes the appearance of singularities associated to meson
mass differences, which we interpreted as in-medium
effects (for detailed discussions of both effects see also
[94]). However, over the range of the temperatures explored
we did not see definite signatures of the meson broadening.
This, of course, does not mean that the mesons do not melt,
but rather that the chosen observable in conjunction with
the range of parameters and the methods adopted are not
suitable to observe such an effect. In particular, our
previous studies required long time evolutions to resolve
the peaks associated with the lowest lying mesons, which
became prohibitively costly for TN methods due to the
required size of the bond dimension at large temperatures.
For this reason in the present work we shift our view-

point to the study of entropies in the ferromagnetic regime
of the Ising QFT. These quantities are sensitive to classical
and quantum correlations in the many-body system, and
can provide a complementary probe of meson features at
high temperatures. In this section, we consider a static
setting, namely thermal equilibrium states of the Ising
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model (2) at inverse temperature β, and study their second
Rényi entropy per site, defined as

s2 ¼ −
1

N
ln

Trρ2β
ðTrρβÞ2

ð8Þ

for the (unnormalized) thermal state ρβ ¼ exp½−βH�.
We find a MPS approximation to the purification (7) in

the thermodynamic limit using the iTEBD algorithm to
approximate exp½−ðβ=2ÞH�. The transfer operator of this
MPS determines the norm of the state (and can be chosen to
be normalized by appropriate gauge choice). In order to
determine the density s2, we thus just need the dominant
eigenvalue η of the transfer operator of ρ2β, Eρ2β

,3

s2 ¼ − ln η: ð9Þ

The value of η can be determined efficiently by considering
the action of Eρ2β

on an eigenvector and using iterative

eigensolvers.
For our meson studies we choose exemplarily the Ising

QFT parameter point specified by Mh=Mg ≈ 0.09 in the
nonintegrable ferromagnetic phase. Additionally, we vary
the individual masses Mh and Mg according to the para-
metrization

MðnÞ
h;g ¼

Mð0Þ
h;g

2n
; ð10Þ

where Mð0Þ
h =J ¼ 0.125, Mð0Þ

g =J ≈ 1.356 and the ratio
Mh=Mg is kept constant. For increasing values of n, the
masses are decreasing, i.e. we approach the critical point in
the phase diagram. This means nothing other than taking
the scaling limit previously described in Sec. II B. The
resulting masses M1=J of the first meson, which we
read out from [39], are hence also decreasing. For a fixed
range of lattice spacing values, βJ∈ ½1; 16�, we therefore
can probe different physical temperatures, measured in
units βM1.
Before discussing the results of these simulations, let us

consider the expected scaling behavior in the transverse
field Ising model, i.e. without longitudinal field perturba-
tions causing confinement. In this case the model can be
mapped to a free fermion system (see e.g. [95]) from which
the partition function follows as

Zβ ¼ Tr½e−βH� ¼
Y
k

2 cosh

�
βϵk
2

�
; ð11Þ

where the single-particle energies are given by ϵk ¼
2J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2 − 2h cosðkÞ

p
for discrete wave number k. The

definition (8) implies immediately that the second Rényi
entropy density can be calculated as s2 ¼ 2β½fð2βÞ − fðβÞ�
from the free energy density fðβÞ ¼ − 1

Nβ lnZβ. In the
thermodynamic limit, this leads to

s2ðβÞ ¼ ln 2 −
1

π

Z
π

0

dk ln

"
coshðβϵkÞ
cosh2

�
βϵk
2

�
#
: ð12Þ

At low temperatures, i.e. in the limit β → ∞, and away
from criticality the dominant contribution to s2 originates
from k ¼ 0, which gives

s2 ∼
e−2βJjh−1jffiffiffiffiffiffiffiffi

πβJh
jh−1j

q : ð13Þ

Note that the term jh − 1j is proportional to the free fermion
mass Mh ¼ 2Jj1 − hj. On the other hand, at the critical
point (h ¼ 1), the integral can be evaluated to give a power-
law decay with the inverse temperature

s2 ∼
π

16

�
1

βJ
þ 1

16ðβJÞ3 þ…

�
: ð14Þ

The 1=β behavior is the (free) CFT result, and the 1=β3

correction is a lattice effect.
The exponential scaling at low temperatures in the

massive free fermion regime is clearly distinct from the
power-law decay at high temperatures at criticality. While
we do not have a prediction for the scaling in the non-
integrable regime, it is tempting to assume that the temper-
ature dependence could be equally determined by the
existence of a mass gap in the spectrum. To test this
hypothesis, we need to analyze both the low-temperature
regime, given for βM1 ≫ 1, and the high-temperature
regime, given by βM1 ≲ 1. In the latter case, we addition-
ally need to ensure that the result is not dominated by lattice
excitations, i.e. βJ ≳ 1.
Figure 1 (left panel) shows the behavior of s2 as a

function of the inverse temperature βM1. In all cases, we
observe an exponential decay at low temperatures. In the
right panel, we analyze this regime quantitatively (exem-
plified for n ¼ 1) by applying a signal analysis technique
based on the Prony method onto s2 as a function of βJ and
decomposing it into harmonic contributions with complex
parameters.4 Two clear poles on the imaginary axis are
visible. They quantify the exponential decay at low temper-
atures. The values agree with the masses of the first two
meson states (shown as black circles). Based on these
findings, we expect the low-temperature scaling of the
Rényi entropy density,

3See Appendix C for details on the transfer operator. 4We refer to Appendix D for more details on the method.
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s2 ∼
X
i

cie−βMi; ð15Þ

for some coefficients ci and meson massesMi, whereby the
lowest mass M1 is obviously dominating. This form of
the asymptotic scaling is the natural generalization of the
massive free fermion result s2 ∼ e−βMh in (13).
Figure 2 (top panel) shows again s2 as a function of βM1,

but emphasizing the high-temperature regime in a double-
logarithmic plot. To the left of the gray line the high
temperature regime βM1 ≲ 1 starts, while the dashed lines
denote the estimated lattice scale for each curve. As n is
increasing, i.e. the individual masses Mh;g are decreasing,
one can observe the emergence of a linear scaling in
between these two curves, indicating a power-law behavior.
Assuming the general functional dependence

fðβÞ ∼ β−p; ð16Þ

we extract in Table I the values of the power-law exponents
p from a linear fit to the numerical data in between these
two scales. For f ¼ s2, the value p ¼ 1 is obtained with a
very good accuracy of only a few percent. This implies that
the high-temperature scaling behavior matches the CFT
expectation from (14). Based on the clear observation from
Fig. 1 of meson states in the entropy scaling at low
temperatures and their absence at high temperatures, we
interpret this signature as strong evidence for meson
melting. In this regime, which is not yet influenced by
the lattice scale, melted meson states do not leave an
imprint on the entropy scaling any more, which is why the
scaling is identical to a critical system. To further

corroborate this finding, we additionally analyze also the
scaling behavior of the thermal energy density (bottom
panel in Fig. 2) and its derivative. Both these thermodynamic
quantities show a similar power-law scaling at high temper-
atures. The corresponding exponents are tabulated in Table I.
At n ¼ 3 they agree well with the analytical expectation,
which is set by the scaling dimensionΔ ¼ 2 of the associated
CFT operator. Interestingly, the Rényi entropy s2 seems to
allow an even better estimation of the scaling exponent for all
values of n, indicating the potential of entropic quantities to
identify the meson melting process.
In summary, we have shown that the scaling behavior of

the second Rényi entropy density provides a clear signature
of the asymptotic high- and low-temperature regime in a
nonintegrable Ising QFT with meson bound states. At low
temperatures, we found that the behavior is dominated by
the exponential damping of the form (15). At high temper-
atures, the power-law dependence (16) matches the CFT
behavior. We interpret the latter scaling as signaling the fact
that the meson states have been melted. In fact, a similar
analysis for the E8 regime yields the same qualitative
picture, providing evidence that the results are independent
from integrability properties of the underlying system.
Naively, it might look trivial that a massive QFT matches
at high temperatures the CFT behavior due to the fact that
the temperature then provides effectively the only scale in
the system. (A similar situation for the massive free fermion
regime in the Ising model is discussed for example in [95].)
However, in our present studies we do have nonperturbative
meson bound states in the spectrum, which are “visible” at
low temperatures, and we observe a smooth transition to the
high-temperature regime, which we can disentangle from
the UV lattice scale. We therefore see the scaling properties

–0.4 –0.2 0.0 0.2 0.4

–3

–2

–1

0

FIG. 1. Left: temperature dependence of the Rényi entropy density s2. The curves are calculated using iMPO simulation at constant
ratio Mh=Mg ≈ 0.09 in the nonintegrable ferromagnetic phase using the parametrization (10). Right: Prony result of the n ¼ 1 curve of
s2ðβJÞ in the complexified βJ plane. The plots demonstrate that the low temperature behavior of s2 is dominated by an exponential
decay with frequencies matching the meson masses M1=J and M2=J (extracted from [39]), shown as black circles in the
right panel.
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of the second Rényi entropy as a clear witness of the meson
melting process in a static situation. While we have focused
on the second order Rényi entropy, it is possible that this
conclusion holds also for higher-order ones.

V. RESULTS FROM DYNAMICS AFTER
THERMAL QUENCHES

A. Setup

We consider quenches from the thermal equilibrium state
of a prequench Hamiltonian H0. At time t ¼ 0 an instanta-
neous global quench is applied, and the system evolves with
Hamiltonian H1. In particular, we construct the purificationffiffiffiffiffiffiffiffiffi
ρð0Þp ≡ e−βH0=2jΦi in the form (7) and simulate its time

evolution
ffiffiffiffiffiffiffiffi
ρðtÞp ≡UðtÞ ffiffiffiffiffiffiffiffiffi

ρð0Þp
, where UðtÞ ¼ e−itH1 is the

quenched time evolution operator. The thermal state approxi-
mation is then given by ρðtÞ≡UðtÞ ffiffiffiffiffiffiffiffiffi

ρð0Þp ffiffiffiffiffiffiffiffiffi
ρð0Þp †U†ðtÞ.5

An MPO representation of this principle is illustrated in
Fig. 3(a).6 We fix for H1 the parameters that correspond to

Mð0Þ
h and Mð0Þ

g from the parametrization (10) (namely h ¼
0.9375 and g ≈ 0.0746), as this corresponds to the smallest
time period 2πJ=M1 ≈ 4.2 (for M1=J ≈ 1.5) of the first
meson, and we know, from our earlier equilibrium studies
[93], that in this regime, MPO simulations and Prony signal
analysis [97] allowed a reliable identification of the QFT
meson masses.
The previously considered global Rényi entropy density

s2 in Eq. (9) is constant under unitary time evolution, and
computing its corresponding value for a finite subsystem is
computationally too demanding for large bond dimensions.
However, we instead can study reflected entropies, which
we introduced previously in Sec. III B, in the following
way. Since we have a MPO approximation of the purifi-
cation as well as its time evolution available, the entropies
are directly accessible from the Schmidt values of the
Ansatz. In particular, if fλαg are the Schmidt values across a
cut of the purified state

ffiffiffiffiffiffiffiffi
ρðtÞp

, the von Neumann and
2-Rényi reflected entropies are given by

s̃1 ¼ −
Xχ
α¼1

λ2α lnðλ2αÞ; ð17Þ

s̃2 ¼ − ln
�Xχ

α¼1

λ4α

�
: ð18Þ

The thermal approximation is known to be efficient, and the
error of the time-evolved MPO can be monitored by the
truncation. We therefore can accurately estimate the tar-
geted entropies. Using this procedure, we study in this
section the growth and oscillatory behavior of these
quantities after a thermal quench.

FIG. 2. High-temperature scaling of the second Rényi entropy
density s2 (top) and thermal energy density E (bottom) in the
nonintegrable ferromagnetic phase at Mh=Mg ≈ 0.09 for the
parametrization (10). The gray line at βM1 ¼ 1 indicates
the high-temperature threshold. Dashed lines indicate the lattice
scale for each curve. When taking the scaling limit (increasing n)
the results indicate the emergence of a power-law behavior
matching the CFT expectation, cf. Table I.

TABLE I. High-temperature scaling exponents p in the func-
tional power-law Ansatz (16) for several quantities f and the
parametrization (10). The numerical values are obtained from a fit
to the iMPO simulations and are in good agreement with the
analytical CFT expectation in the scaling limit.

f n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 Exact

s2 0.926 1.073 1.106 1.078 1
E 1.171 1.645 1.933 2.022 2
∂E=∂β 1.176 2.027 2.709 2.955 3

5Note that this choice of purification is not unique: any unitary
applied to the ancillary sites results in the same reduced state. In
particular, itmaybepossible to find at any timeunitariesV such that
the purification UðtÞ ffiffiffiffiffiffiffiffiffi

ρð0Þp
V† has lower entropy [96]. We fix our

purification asUðtÞ ffiffiffiffiffiffiffiffiffi
ρð0Þp

becausewe are interested in singling out
the dynamical properties of the Hamiltonian H1.6Details of the diagrammatic TN notation are presented in
Appendix C.
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After the quench, the state is not in thermal equilibrium
for H1. However, we can define an effective temperature,
which corresponds to the thermal equilibrium of H1 at the
same (conserved) energy density of the system. The
effective inverse temperature β� is then given in terms of
the prequench and postquench Hamiltonian densities H̄0

and H̄1 by the condition

Tr½H̄1e−βH̄0 �
Tr½e−βH̄0 � ¼ Tr½H̄1e−β

�H̄1 �
Tr½e−β�H̄1 � : ð19Þ

Since we keep the final Hamiltonian H1 fixed, the effective
temperature can be increased either by varying the initial
temperature β with respect to a fixed prequench
Hamiltonian H0 or by modifying the parameters of H0

for fixed β. We will employ both methods in our studies. In
the latter scenario, we choose the initial points in the phase
diagram as shown in Fig. 3(b). The different quench
protocols, labeled by the numbers in the plot, result in
the effective temperatures β�J (measured with respect to
H1) summarized in Table II (determined up to two digits)
for several initial temperatures βJ (measured with respect to
H0). The quench Hamiltonian H1 corresponds to the fixed

parameters h ¼ 0.9375 and g ≈ 0.0746. In the quench
protocol ①, we have h ¼ 0.93, and for ⑤ h ¼ 0.8732. In
type ⑥, the longitudinal field is chosen asymptotically large
as g ¼ 100. The remaining initial parameters are identifiable
from Fig. 3. Note in particular that protocol ④ starts in the
classical regime, whereas ② is in the E8 phase and ③ at the
critical point. The different quench types encompass pure
transverse quenches (①, ②, ④, ⑤) and longitudinal quenches
⑥. Otherwise, both fields are quenched.We consider the case
of an initial low temperature (i.e. close to the ground state) at
βJ ¼ 16 as well as higher initial temperatures, cf. Table II.
Note that protocol ⑤ is tuned such that is has the same
effective temperature as ② for βJ ¼ 16. Similarly, types ④
and ⑥ at βJ ¼ 16 and ③ at βJ ¼ 0.97 result in (nearly) the
same effective temperature. Overall, we have adjusted our
setup to achieve both low physical temperatures β�M1 ≫ 1
as well as high temperatures β�M1 ≲ 1, while avoiding the
lattice regime β�J ≪ 1.7

In the following, we ensure that our simulations re-
present faithful physical results by checking the conver-
gence of s̃1 and s̃2 with the maximally allowed value χ of
the bond dimension in (17) and (18). This becomes relevant
if there is a large entanglement growth, which potentially
could not be captured by the TN Ansatz. Moreover, we
again also explicitly consider the scaling limit in which the
1þ 1D Ising QFT emerges from the discrete Ising model.
We therefore can draw reliable interpretations from our
described quench setup.

B. Effective temperature effects

We start with the analysis of quenches from an initial
state close to the ground state of H0, prepared at low
temperature βJ ¼ 16. Figure 4 shows the results for s̃1
(dashed curves) and s̃2 (solid curves) as a function of time

FIG. 3. Overview of the TN setup (a) and different quench
protocols in the transverse (h) vs longitudinal (g) field plane (b).
The E8 regime is marked by the gray dotted line. Thermal initial
states

ffiffiffiffiffiffiffiffiffi
ρð0Þp

are prepared at inverse temperature β for the
parameter locations marked by green dots. By quenching to
the final nonintegrable ferromagnetic point, denoted by red
arrows toward the black cross, an effective temperature β� as
listed in Table II is induced by the thermal quench. Entanglement
measures are then calculated for a semi-infinite bipartition into a
subsystem A and its complement B for the purification of the
time-evolved state UðtÞ ffiffiffiffiffiffiffiffiffi

ρð0Þp ffiffiffiffiffiffiffiffiffi
ρð0Þp †U†ðtÞ.

TABLE II. Comparison of the prequench temperatures βJ of
the initial thermal state (with respect to H0) and the resulting
postquench effective temperatures β�J and β�M1 (with respect to
H1) for the different quench types shown in Fig. 3.

Initial
temperature βJ

Effective temperature β�J, (β�M1)

① ② ③ ④ ⑤ ⑥

16 6.10 3.55 1.55 0.91 3.55 0.93
(9.3) (5.4) (2.4) (1.4) (5.4) (1.4)

2 2.00 1.92 1.34 � � � � � � � � �
(3.0) (2.9) (2.0)

0.97 � � � � � � 0.91 � � � � � � � � �
(1.4)

0.5 0.50 � � � � � � � � � � � � � � �
(0.8)

7Note that the effective temperatures β�J ¼ 2.00 and β�J ¼
0.50 for type (1) mean that the difference to the initial βJ is
smaller than our considered precision of two digits.
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(in units of J) for the quench protocols ①–④. As listed in
Table II, the effective temperatures are in increasing order
from β�M1 ≈ 9.3 to β�M1 ≈ 1.4. As can be appreciated
from Fig. 4, the reflected entropy grows faster for larger
effective temperature. For our discussion, we limit our-
selves to regimes which are numerically achievable with
our MPO simulations. When the entanglement grows fast,
this is possible only up to a certain time, after which the
observed entropy saturates due to a finite bond dimension
effect (see e.g. Fig. 4 after tJ ≈ 20). Thus our analysis is
limited to early and intermediate timescales.
In the quench types① and ②, which are shown in detail in

the left column, s̃1 and s̃2 exhibit an oscillatory behavior,
similar to the ground state case first discussed in [69]. As we
will analyze in detail below, these entanglement oscillations
are caused by the QFT meson states at characteristic
frequencies corresponding to their masses. Type (2) (orange
curves) shows on top of these entanglement oscillations an
overall increase. This can be explained in the quasiparticle
model either through the production of mesons with finite
velocities, or the fact that the arising envelope frequencies
(that bound the entanglement growth when mesons are
produced at rest) would require (much) longer timescales.
The latter case is plausible when keeping in mind that we
have chosen a parameter point in the QFT regime of the Ising
model close to its critical point. The meson masses, e.g. in
absolute units ofJ, are smaller as compared to a semiclassical
regime and hence result in much longer time recurrences.
From Fig. 4 it becomes apparent that the entanglement
oscillations are heavily suppressed as the effective temper-
ature is raised from type① to④. This indicates that themeson
states do not dominate the entanglement growth at their
characteristic mass frequencies anymore. In particular, the
first reflected entropy of quench protocol④ (red dashed curve
in the right panel) grows fast at early times, with an

apparently linear behavior. Below, we will study each of
these effects in detail.
These findings are in general valid for both s̃1 and s̃2 as

visible in Fig. 4. Observe, however, that the growth of s̃2 is
suppressed as compared to s̃1. For this reason, it turns out
that the second reflected entropy allows for a more precise
identification of meson masses from the entanglement
oscillations when evaluating both the Prony signal analysis
method as well as the Fourier spectra. That is why we
consider s̃2 for a detailed analysis in the following
discussion. The results are presented in Fig. 5 for protocols
①–③ (from left to right). At the lowest effective temperature
β�M1 ≈ 9.3 for quench type ① (left column), the Prony
analysis allows a clear identification of the first five meson
poles, which are in good agreement with their QFT mass
values when compared to the predictions in [39] (solid
vertical lines). Additional features are visible also at M6 to
M8, which, however, become fuzzier and hence more
uncertain. In addition, the continuum threshold at 2M1 is
identifiable as a vertical line of poles, indicating a branch
cut (shown as the dashed vertical line). In the correspond-
ing Fourier spectra, the meson poles translate into peaks at
their frequency values. The peak of the first meson is
largely dominating over the other ones. Overall, the Fourier
spectrum is decreasing over several orders of magnitude
toward larger frequencies. The green dash-dotted lines in
the Fourier spectra mark all six possible mass differences
between the first four meson states. At their respective
values, kinks appear in the spectrum, corresponding to
additional poles in the Prony plot. They lie at frequencies
smaller than the first meson mass as well as between M1

and M2.
As the effective temperature is raised to β�M1 ≈ 5.4 in

protocol ② (middle column) and β�M1 ≈ 2.4 in protocol ③
(right column), the meson pole identifications become

FIG. 4. Time dependence of the first (dashed curves) and second (solid curves) reflected entropies for the quench protocols (1)–(4) (as
defined in Fig. 3) with an initial temperature βJ ¼ 16. With increasing effective temperature (in order of the quench labels) the
entanglement growth is getting enhanced and suppresses the entanglement oscillations. The plateau arising in quench type (4) at late
times is an unphysical effect caused by the truncated bond dimension (see main text for further discussions).
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fuzzier in the Prony analysis. Notably, the absolute values
of the corresponding Fourier spectra are raised by 3 and 6
orders of magnitude, respectively. For protocol ③, the
Fourier spectrum is flattening out (relative to the overall
magnitude). Since in all cases the postquench nonintegrable
QFT regime is identical, we attribute this effect to the
increasing effective temperature. This hypothesis is cor-
roborated by data from a different quench with the same
effective temperature (see Fig. 6). When comparing the
meson peak heights to the overall magnitude of the Fourier
spectrum, the impact of the meson mass frequencies seems
to get suppressed at high temperatures. We see this thermal
suppression effect on the Fourier spectrum as a first hint of
how the melting of meson states at even higher temper-
atures can be detected. A sequential process in similarity to
QCD (cf. the discussion in Sec. II A) could show up in this
description through a stepwise decrease and disappearance
of individual meson peaks in the Fourier spectrum of the
reflected entropies. The available data in Fig. 5 are,
however, inconclusive about whether this process is con-
sistent with this picture.
To analyze the influence of the initial state in more detail,

we compare quenches from different initial states at the
same effective temperature. Figure 6 shows the time
evolution of the reflected entropies and resulting Fourier
spectra of quench protocols ② and ⑤ starting from a
prequench thermal state at βJ ¼ 16. Both states have the
same effective temperature β�J ≈ 3.55 or β�M1 ≈ 5.4, but
are initially prepared in the E8 regime versus the

nonintegrable ferromagnetic phase. The figure shows that
s̃1 (dashed curves) and s̃2 (solid curves) differ only
marginally in the two quench protocols and exhibit a slight
phase shift. The first meson peak dominates the Fourier
spectrum equally in both models. For the available fre-
quency resolution and range, both Fourier spectra are in
close correspondence with each other. These results indi-
cate that the described features, at least for this particular
case, are primarily driven by thermal effects, set by the
effective temperature, while the influence of the initial state
seems subdominant. Below, we will find a similar situation
also for other models at even higher temperatures, provid-
ing evidence for the robustness of the physical interpreta-
tion about thermal effects from our findings.
We now study the situation of raised effective temper-

ature by starting from an initial thermal state at a higher
temperature βJ ¼ 2. In this case, the entanglement growth
is larger, and it becomes important to monitor the behavior
of the iTEBD simulation in dependence of the bond
dimension. The obtained reflected entropies are shown
in Fig. 7 for the quench protocols ①–③ (from left to right)
for two different bond dimensions, χ ¼ 400 (blue) and 600
(orange). The effective temperatures for protocol ① and ②

are very close, β�M1 ≈ 3.0 and β�M1 ≈ 2.9, resulting in
similar curves for the reflected entropies. For quench type
③, the effective temperature β�M1 ≈ 2.0 causes an entan-
glement growth about twice as fast. At long times we
observe that the results for both bond dimensions differ,
indicating that they are not fully converged. This effect is

FIG. 5. Results of the Prony signal analysis (top) and Fourier spectra (bottom) of s̃2 for the quench protocols (1)–(3) (from left to right)
with an initial temperature βJ ¼ 16 and effective temperatures β�M1 as shown. Solid vertical lines represent meson masses from
Ref. [39], and dashed lines mark the continuum threshold of 2M1. Green dash-dotted lines mark all possible mass differences of the first
four mesons. Both methods allow an identification of meson states as poles in the complex frequency plane or peaks in the Fourier
spectrum. When the effective temperature is raised, meson poles become fuzzier, while the spectrum increases and flattens out.
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milder for s̃2 (both on an absolute and relative scale), which
is most likely because s̃2 is more local than s̃1. Due to the
larger entanglement growth, the discrepancy is larger for
quench type ③.
Being aware of these limitations, we compare in Fig. 8

the Prony results and Fourier spectra of s̃2 for the different
quench protocols (for the highest bond dimension) for an
overall qualitative assessment. In all examples, features in
the complex frequency become fuzzier in the Prony
analysis when compared with the quench results in
Fig. 5 at lower temperatures. Some of the meson poles
fully disappear, in particular for type ① and ③ (top left and
right panel). Observe also that the branch cuts indicating
the continuum threshold disappeared in all types. The
corresponding Fourier spectra are increased by several
orders of magnitude and now flattened out in all cases.
Although types ① and ② have a comparable effective
temperature, the Prony result for the latter (top middle
panel) still allows a much clearer identification of some
meson states in the Prony analysis. This difference seems to

be rooted in the fact that initial states were prepared in
distinct phases with different properties.
The overall phenomenological picture that arises from

these analyses is that an increase of the effective temper-
ature leads to an enhancement of the entanglement growth,
which suppresses the impact of entanglement oscillations
caused by meson states in the thermal bath. In the absence
of mesons, the quasiparticle model predicts a fully linear
growth of entanglement entropies. We therefore aim in the
following discussion to identify a linear growth of the
reflected entropies as a signature of meson melting at
the highest attainable temperatures. Leaning on the dis-
cussions in [78,86], this phenomenological description can
be alternatively understood in terms of meson densities.8

While low temperature quenches excite dilute mesons at
rest, mesons start to become denser, scatter and move at
finite velocity as the effective temperature increases. This
superimposes a large entanglement growth to the entangle-
ment oscillations. At very high temperatures, mesons are
very dense and cannot be resolved individually anymore,
since entanglement is spread very fast and entanglement
oscillations are suppressed. This causes a linear entropy
growth, analogous to the free fermion regime, which we
interpret as meson melting. In this regime, mesons are not
the relevant degrees of freedom for the system dynamics
any longer.
In this line of reasoning, we consider in Fig. 9 the time

evolution of reflected entropies for the quench types ③, ④
and ⑥ with an (nearly) identical effective temperature
β�M1 ≈ 1.4. Due to the large entanglement growth, numeri-
cal results are converged in bond dimension only up to
times tJ ≲ 9 (shown by the gray dashed line). At later times
the entropies saturate (cf. also the red curves in Fig. 4 for
type ④), a signature of the truncation error. Altogether,
there are only marginal differences for s̃1 between all
quench protocols and a small scaling difference for s̃2 in
type ③ (blue solid curve) compared with the others. Since
the initial states are in very different regimes (classical,
ferromagnetic and critical), we interpret the overall agree-
ment as a confirmation that the discussed effects on the
entanglement growth are indeed thermally induced.
Figure 9 therefore exhibits directly also a linear function,
which is obtained by fitting s̃1 in the time interval 2 ≤
tJ ≤ 9 as 0.09þ 0.42ðtJÞ. The data for s̃1 are bounded by
such a linear growth, but do not yet follow exactly this
scaling behavior. On the other hand, the curves for s̃2 grow
less strongly in a nonlinear fashion. In this case, the time
ranges for which the data are converged are too short to
enable a robust Prony or Fourier signal analysis.
The highest effective temperature β�M1 ≈ 0.8 was

achieved for quench protocol ①. The results, displayed
by blue curves (dashed for s̃1, solid for s̃2) in Fig. 10,
converged in bond dimension up to tJ ≈ 7.5 (indicated by
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FIG. 6. Comparison of the quench protocols (2) (blue curves)
and (5) (yellow curves) for an initial temperature βJ ¼ 16 and the
same effective temperature β�M1 ≈ 5.4. Top: time dependence of
the first (dashed) and second (solid) reflected entropy in both
models. Bottom: corresponding Fourier spectra of the second
reflected entropy. The different regime of the initial state (E8 vs
nonintegrable ferromagnetic) causes only mild differences in the
behavior of entanglement growth and oscillations.

8We thank Alvise Bastianello for discussions on this point.
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the vertical dashed gray line). One can observe a strong
growth of both reflected entropies. In the time interval
1.5 ≤ tJ ≤ 7.5, we can fit the functions 0.04þ 0.67ðtJÞ
and 0.18þ 0.53ðtJÞ to s̃1 and s̃2, respectively. In contrast to
the simulations at intermediate temperatures, both reflected
entropies now seem to follow this linear growth behavior
after a brief initial time period with irregular growth
induced through the quench itself. The same phenomeno-
logical picture arises independently in quench type ② (not
shown here), i.e. with an initial state in the E8 regime, at the
same temperature. As alluded to before, the existence of
mesons necessarily implies the appearance of entanglement
oscillations in the time evolution of entropic quantities,

consistent with a quasiparticle model interpretation, if
applicable in the nonintegrable range. Since in the present
case we have β�M1 < 1 in the physical high-temperature
regime, we explain the linear behavior through the fact that
the mesons are melted, i.e. do not contribute entanglement
oscillations to the overall growth of entanglement entropies
anymore.
This interpretation is corroborated through a quench study

in the (massive) free fermion regime. Complementary to
protocol①, we choose for that case a transverse quench using
the parameters ðh0; g0; βÞ ¼ ð0.93; 0; 0.5Þ → ðh1; g1; β�Þ ¼
ð0.9375; 0; 0.50Þ. The resulting reflected entropies (orange
curves) are compared in Fig. 10 to the previous nonintegrable

FIG. 7. Time dependence of the reflected entropies for the quench protocols (1)–(3) (from left to right) with an initial temperature
βJ ¼ 2 and effective temperatures β�M1 as shown. The first (dashed) and second (solid) reflected entropies are shown for several bond
dimensions (blue vs orange curves), indicating that the results have not yet converged at late times.

FIG. 8. Results of the Prony signal analysis (top) and Fourier spectra (bottom) of s̃2 for the quench protocols (1)–(3) (from left to right)
with an initial temperature βJ ¼ 2 and effective temperatures β�M1 as shown. Results are shown for the χ ¼ 600 curves in Fig. 7.
Background lines are as in Fig. 5. The plots exemplify the effect of increased effective temperature through raising the initial temperature
as compared to Fig. 5. Except for the E8 initial regime, meson states do not leave a considerable impact on the entanglement growth
through entanglement oscillations.
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counterpart (blue curves). Although the effective temper-
atures are not directly comparable anymore due to the
different mass scales, the differences in the entanglement
growth between these two quench types are relatively small.
In particular, the free fermion data confirm the linear growth
of the reflected entropies after the initial quench period. We
can respectively fit the functions 0.01þ 0.68ðtJÞ and 0.08þ
0.59ðtJÞ to s̃1 and s̃2, which are shownas gray curves and can
be compared to the black ones for the previous nonintegrable
regime.These results confirm that a linear growth of reflected
entropies is a property of the free fermion regime, which is in
accordance with the quasiparticle model description. It
therefore strengthens our interpretation on meson melting
for the nonintegrable ferromagnetic case, since this qualita-
tive behavior can be explained when meson states are not
present in the physical system.

C. Quench results in the high-temperature scaling limit

The results of the previous section have shown that we
can extract meson states from entanglement oscillations of
reflected entropies at low and intermediate temperatures in
the nonintegrable ferromagnetic phase. Their masses match
quantitative expectations of the Ising QFT. When the
regime of high effective temperatures is reached, the linear
entropy growth suppresses all oscillations. In this case,
which we interpreted through the melting of mesons, the
entanglement growth is very large, and its QFTorigin is not
immediately visible anymore. Similarly to the simulations
in thermal equilibrium, it then makes sense to consider the
quench scenario also in the scaling limit in order to
approach the QFT regime rigorously.
We therefore now focus on the scaling limit, defined as

Mh=J → 0 for fixed ratioMh=Mg, for quench protocol ① at
the highest effective temperatures. This setup leaves some
degrees of freedom, since we can parametrize the prequench
(Mpre

h ;Mpre
g ) and postquench (Mpost

h ;Mpost
g ) masses as well as

the initial (β) and effective temperatures ðβ�Þ. Here, we keep
the ratiosMpre

h =Mpre
g ≈ 0.10 andMpost

h =Mpost
g ≈ 0.09 constant

as in the original quench setup, and vary the postquench
masses again according to the parametrization (10). Sincewe
perform a transverse quench, we have Mpre

g ¼ Mpost
g and

hence Mpre
h =Mpre

g ¼ Mpre
h =Mpost

g .
In the first set of simulations, we choose, identically to

the previous case, the initial temperature βJ ¼ 0.5, which
results in different physical effective temperatures β�M1.
The results for the reflected entropies are shown in the left
panel of Fig. 11. The time dependencies of s̃1 (dashed
curves) and s̃2 (solid curves) are shown in physical units,
i.e. tM1, where M1 is the first meson mass read out from
[39]. We plot only the early time window, in which
convergence is achieved. As we increase n, i.e. as we
approach the critical point in the scaling limit Mh=J → 0,
the reflected entropies grow faster. In all cases, a linear
growth behavior of the form

FIG. 9. Time dependence of the first (dashed) and second
(solid) reflected entropy for quench protocols (3), (4) and (6) with
an effective temperature β�M1 ≈ 1.4. The vertical dashed gray
line indicates convergence in the bond dimensions up to tJ ≲ 9.
The curves differ only mildly although initialized in different
phases and temperatures, implying that the described features are
induced by increasing the effective temperature.

FIG. 10. Time dependence of s̃1 (dashed blue) and s̃2 (solid
blue) for quench protocol (1) with an effective temperature
β�M1 ≈ 0.8. The vertical dashed gray line indicates convergence
in the bond dimensions up to tJ ≲ 7.5. The results for s̃1;2 in the
nonintegrable ferromagnetic phase (blue curves) are compared to
a massive free fermion counterpart (orange curves) at the same
effective temperature in units of the lattice spacing. The black and
gray dashed and solid lines mark linear fit functions for s̃1 and s̃2
at early times, respectively. The results demonstrate the emer-
gence of an overall linear growth behavior at high effective
temperatures in the nonintegrable ferromagnetic phase, which is
consistent with the interpretation of melted meson states which
do not dominate the entanglement growth anymore. This behav-
ior is analogous to the free fermion regime, in which no meson
bound states are present.
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s̃1;2ðtÞ ¼ rtM1 þ s1;2ðt ¼ 0Þ ð20Þ

can be deduced from the results after a very short initial
quench phase. Here, r denotes the slope of the linear
dependence. The numerical fit results for r−1 are shown in
the right panel of Fig. 11 as a function of the (inverse)
effective temperature β�M1. Both the results for s̃1 (blue
squares) and s̃2 (orange circles) can be well fitted by linear

functions through the origin as r−1s̃1 ¼ ð2.93� 0.02Þβ�M1

r−1s̃2 ¼ ð3.60� 0.10Þβ�M1. This, unsurprisingly, tells us
that the slope diverges when reaching the infinite temper-
ature limit. It, however, shows that this limit is approached
with a proper scaling behavior, set only by the temperature.
This means that the reflected entropies follow in the high-
temperature regime, up to a numerical constant and shift,
the time dependence

s̃1;2ðtÞ ∼
t
β�

: ð21Þ

This behavior is consistent with the interpretation that
mesons are melted, since their mass scale does not leave an
imprint on the time evolution anymore.
As elaborated before, the scaling limit, in which the Ising

QFT emerges, can be taken also in a different way. While
we have so far considered a situation in which the effective
temperature is raised, we now keep β�M1 ≈ 0.76 fixed.9

Using the same parametrization (10) for the postquench
parameters, this implies the series β�J ¼ f0.5; 1; 2; 4g for
the effective temperatures in transverse quenches of type
①.10 Figure 12 shows the resulting time dependencies of s̃1
(dashed curves) and s̃2 (solid curves). It becomes discern-
ible that the first reflected entropy grows faster when n is
increasing from n ¼ 0 to n ¼ 2. The results for s̃1 at n ¼ 2
(green dashed curve) and n ¼ 3 (red dashed curve) are

FIG. 11. Dependence of s̃1 (dashed) and s̃2 (solid) on the physical time tM1 for quenches of type (1) in the high-temperature scaling
limit, when mesons are expected to be melted (left panel). The postquench masses are varied according to the parametrization (10),
resulting in higher effective temperatures for increasing n. Only the time intervals of convergence are shown. The reflected entropies are
growing more rapidly when approaching the scaling limit for increasing n and can be fitted by linear functions of the form (20), whose
inverse slopes r−1 are plotted in the right panel in dependence on the inverse effective temperature β�M1 (blue squares for s̃1, orange
circles for s̃2). The inverse slopes themselves approach the infinite temperature limit in a linear fashion (solid blue and dashed orange fit
curves), implying a high temperature dependence of the form (21) for the reflected entropies.

FIG. 12. Dependence of s̃1 (dashed) and s̃2 (solid) on the
physical time tM1 for quenches of type (1) in the high-temper-
ature scaling limit. The postquench masses are varied according
to the parametrization (10) at fixed physical temperature
β�M1 ≈ 0.76. The entropy curves converge for increasing n
and confirm an overall linear increase associated to mesons
being melted.

9This parameter value corresponds to the blue n ¼ 0 curves
in Fig. 11.

10The initial temperature βJ follows from demanding (19), and
Mpre

h is uniquely determined from the specified ratio Mpre
h =Mpre

g .
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coinciding, indicating that convergence is achieved. For s̃2,
convergence is approached slightly slower in the available
time window (solid orange, green and red curves). These
findings confirm the overall qualitative picture of a linear
increase in absence of meson oscillations, which persists in
the high-temperature scaling limit of the Ising QFT.

VI. DISCUSSION AND OUTLOOK

In this article we initiated and performed an in-depth
study of the meson melting phenomenon from a quantum
information perspective. We consider the (1þ 1)-dimen-
sional Ising QFT emerging in the continuum limit of the
quantum Ising model as a bench test for a novel entangle-
ment viewpoint on the topic. This is possible because the
quantum Ising model contains nonperturbative meson
bound states in integrable and nonintegrable ferromagnetic
parameter regimes, which resemble the relevant confine-
ment property with QCD. It therefore can provide impor-
tant insights into phenomena manifested also by much
more complicated theories. While this study is motivated
by the analogous QCD effect, we however emphasize that
in the present analysis we do not even attempt to draw any
conclusions for QCD itself.
From a modern QCD viewpoint, the meson melting

mechanism is interpreted as a sequential process that strictly
requires a dynamical treatment. While both QCD and holo-
graphic approaches indicate the melting of individual meson
states through a thermal broadening of their corresponding
peaks in the spectral function, in our previous work [93] we
could not observe an analogous feature in the complex
frequency structure of retarded thermal equilibrium corre-
lators in ferromagnetic parameter regimes of the (1þ 1)-
dimensional Ising QFT.We therefore motivated in this paper
a new paradigm to capture and describe meson melting
characteristics via entropic quantities. For this purpose we
employed TN simulations, which enable the approximation
of thermal states as well as their subsequent real-time
evolution.Moreover, TNs easily allowcalculations of several
entropies directly in the thermodynamic limit.
In particular, for a thermal equilibrium setting, we

showed in Sec. IV that the scaling of the second Rényi
entropy density is determined at low temperatures through
an exponential damping (as a function of the inverse
temperature β) set by the meson masses. In contrast, at
high temperatures, the behavior is identical to that expected
in a CFT (power-law dependence), meaning that meson
states have been melted, i.e. the temperature sets the only
scale in the physical system.
An independent, truly out of equilibrium probe is

provided by the real-time evolution of reflected entropies
after thermal quantum quenches (cf. Sec. V). In this setting,
we prepared initial thermal states in the ferromagnetic
phase of the Ising model and implemented a quantum
quench by simulating their evolution under a fixed post-
quench Hamiltonian in the nonintegrable ferromagnetic

phase. Whereas the initial state is not in equilibrium, we can
identify an effective temperature corresponding to the
energy density of the state. We could vary the effective
temperature of this setup either through different parameter
regimes in the prequench state or by modifying its initial
temperature. While at low effective temperatures mesons
give rise to entanglement oscillations (in line with the
vacuum quenches in [69]), we observed a linear entangle-
ment growth at the highest achieved temperatures, meaning
that the imprint of mesons is fully suppressed and that they
are not the relevant degrees of freedom any longer. The
latter observation is consistent with a quasiparticle model
interpretation that excludes the presence of meson states,
and with MPO simulations in the (massive) free fermion
regime. We similarly infer from these dynamical properties
that the meson melting process took place. For the
particular theory under consideration, the (1þ 1)-dimen-
sional Ising QFT, we do not see conclusive indications to
decide whether this process is consistent with a sequential
picture. Such a feature in principle could be discernible
from the temperature dependent meson content in the
Fourier spectra of reflected entropies. Both our static
and dynamical results, however, suggest that the meson
melting takes place as a smooth crossover, in analogy to
QCD. In higher dimensions, there are in principle more
geometric possibilities for the definition of a subsystem.
From the general idea of the quasiparticle model we,
however, expect that the same phenomenological picture
of linear entanglement growth as a meson melting indica-
tion is valid also in this case.
Our analyses comprehensively show that Rényi or

reflected entropies can serve as witnesses of the meson
melting process both in static and dynamical settings at
finite temperature. While we focused on the relativistic
Ising QFT emerging in the IR limit of the corresponding
spin chain model, it would be of course highly desirable to
analyze a similar setting also in more complicated and
higher-dimensional gauge theories. In view of the rapid
progress in using both TN and quantum simulations for this
purpose (see [98–101] for an overview of current develop-
ments and future prospects for high-energy physics), one
should remain optimistic about prospects of studying
meson melting in these richer systems along the lines
we developed in the present article. In particular, some of
our considered entropic quantities, like Rényi entropies,
became already measurable in quantum simulation experi-
ments [102]. This opens the opportunity to study similar
physical systems and test our predictions beyond the
classical computational realm. In a parallel vein, the recent
work [15] demonstrated the role of entanglement gener-
ation in (1þ 1)-dimensional QED scattering events using
TNs. Following these lines of research, we are convinced
that a quantum information based perspective can provide
relevant insights into many open questions related to
mesonic systems in particle and condensed matter physics.
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APPENDIX A: REVIEW OF QCD AND
HOLOGRAPHIC APPROACHES

1. Theoretical methods in QCD

The meson operator entering formula (1) of the spectral
function is constructed as Mðx⃗; tÞ≡ q̄fðx⃗; tÞΓqfðx⃗; tÞ from
the Dirac spinor qf of a quark with flavor f. Here, Γ is the
vertex operator—a combination of gamma matrices, which
selects the spin and angular momentum. See, e.g., [5] for a
detailed selection of possible choices. In the simplest cases,
the identity 1 or gamma matrix γμ can be chosen. Real-time
properties such as strength and form of field fluctuations
are captured by the time-ordered two-point functionDðx⃗; t;
x⃗0; t0Þ ≡ hT Mðx⃗; tÞM†ðx⃗0; t0Þiβ ¼ TrfρβT Mðx⃗; tÞM†ðx⃗0;
t0Þg, where T is the time-ordering operator and ρβ the
thermal density operator. This quantity can be expressed as
a path integral over the Schwinger-Keldysh contour that
contains both the initial conditions (encoded in thermal
density matrix elements) and the quantum dynamics
(enforced by the QCD action). The time-ordered two-point
function can be decomposed as follows:

Dðx⃗; x⃗0; t; t0Þ ¼
1

2
hfMðx⃗; tÞ;M†ðx⃗0; t0Þgiβ

þ 1

2
signðt − t0Þh½Mðx⃗; tÞ;M†ðx⃗0; t0Þ�iβ

≡ Fðx⃗; t; x⃗0; t0Þ −
i
2
signðt − t0Þρðx⃗; t; x⃗0; t0Þ:

ðA1Þ

Here, we defined the statistical function F, which measures
the population of states, and the spectral function ρ. Meson
peaks in ρ depend on the momentum p⃗, following the
(relativistic) dispersion relation of the QFT. Above
the continuum threshold, given by twice the mass of the
lightest particle, unbound particle pair peaks can appear
within a continuous background structure. The thermal
width of any such peak is proportional to the inverse

lifetime of the corresponding (quasi)particle. Another
important quantity in this context is the binding energy
of a bound state, which is given by the difference of its mass
peak to the continuum threshold.
QCD based methods for the calculations of spectral

functions have intrinsic limitations, as we will concisely
review here following the detailed discussion in [5]. First,
effective field theory approaches make use of the fact that
meson flavors of large mass can be integrated out to get a
nonrelativistic approximation of QCD. The resulting expan-
sion in energy scales is, however, truncated, limiting the
physical content of the description. Furthermore, latticeQCD
allows a nonperturbative treatment on a discretized space-
time lattice based on Monte Carlo sampling. However, the
computations in taking the continuum limit are numerically
extremely expensive. Both these methods give access to the
Euclidean correlator DEðx⃗; τÞ ¼ hMðx⃗;−iτÞM†ð0⃗; 0Þiβ,
which is related in Fourier space to the spectral function
via an integral transformation. The extraction of ρðp⃗;ωÞ
from this relation for only a limited number of discrete,
uncertainty-prone lattice data points limits the quantitative
robustness of the results. An alternative approach is based on
a potential method. To define it, consider the real-time
Wilson loop

W□ðr; tÞ ¼ P exp

	
ig
I
r×t

Aμdzμ



ðA2Þ

along a rectangular path of size r times t in the spatial and
time direction. The static interquark potential Vs is then
defined as

VsðrÞ ¼ lim
t→∞

i∂tW□ðr; tÞ
W□ðr; tÞ

: ðA3Þ

This potential together with amass and kinetic term defines a
Hamiltonian, which governs the time evolution of the two-
point meson correlator via the Schrödinger equation. The
imaginary part of its solution in Fourier space yields the
spectral function. The accuracy of this method is limited
through the omittance of finite velocity corrections.
Overall, the presented methods of determining in-

medium spectral functions for quark bound states at finite
temperature provide the phenomenological picture of the
meson melting process discussed in Sec. II A in the
main text.

2. Insights from holographic models

Holographic approaches based on the gauge/gravity
duality provide a framework to study high-temperature
properties of quarkonium and to describe the melting of
mesons. The underlying principle is to study a gravitational
theory in a hyperbolic AdS spacetime with an additional
holographic coordinate as the dual to a QFT in Minkowski
spacetime. Since this duality translates the strong coupling
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regime of the QFT into a weakly coupled gravity theory, the
considered problem can become computationally more
tractable. Thermodynamic and entanglement properties of
gravitational solutions admitting black hole horizons can
then be identifiedwith those of the gauge theory. (For general
introductions into this broad field and further applicationswe
refer to, e.g., [103–106].) We briefly want to point out some
major lessons regarding meson melting from these explora-
tions, based on the recent series of papers [107–115], in
which this topic was thoroughly discussed.
The basic ingredient is the description of meson states as

test particles in a fixed asymptotic AdS spacetime.11 The
underlying action

S ¼
Z

d4xdz
ffiffiffiffiffiffi
−g

p
e−ϕGðϕÞFmnFmn ðA4Þ

contains a dilaton field ϕ, a flavor coupling function GðϕÞ,
and a Uð1Þ gauge field Vm in the definition Fmn ¼ ∂mVn −
∂nVm of the field strength tensor. The dilaton breaks
conformal symmetry and models the running coupling in
QCD. Upon a field redefinition ψ in Fourier space, the
equation of motion of the gauge field takes in tortoise
coordinates12 the Schrödinger form

ð∂2ξ − ½UT −m2�Þψ ¼ 0 ðA5Þ

with a temperature-dependent potential UT . Normalizable
solutions of this equation yield a discrete mass spectrumm2

n
(n∈N). The original soft-wall model of [116] uses a
quadratic Ansatz (with respect to z) for the dilaton field
and the simplest choice G≡ 1 to enforce a linear spectrum
of the form m2

n ¼ c0 þ c1n, which matches experimental
data of radial meson excitation spectra at T ¼ 0. At finite
temperature, the potential well in UTðzÞ is decreasing,
implying the existence of lesser bound states. In other
words, the model is capable of reproducing the sequential
melting of meson states. Further studies in [117–124] on
refinements of this model found, however, unrealistic
melting temperatures much below the QCD deconfinement
scaleOð150 MeVÞ. The authors of [107–114] resolved that
problem by finding one-parameter extensions of the metric
and dilaton as well as a construction principle for the
blackening function that result in consistent melting tem-
peratures and, at the same time, exhibit thermodynamic
properties consistent with the equation of state from lattice
QCD. While this approach is based on ad hoc Ansätze for
the background, the latter can be determined also self-
consistently, for example, in a Einstein–dilaton model,
defined by the action

S ¼ 1

16πGð5Þ
N

Z
d4xdz

�
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�
; ðA6Þ

where the dilaton potential VðϕÞ governs the thermo-
dynamic system properties. It was found that then only
nontrivial flavor functions GðϕÞ allow a consistent descrip-
tion of both meson trajectories (governed by UT) and
thermodynamic functions (as a crossover deconfinement
transition). Based on a linear response framework for
holographic settings, one can calculate the spectral function
according to Eq. (1) from the boundary asymptotics of the
bulk field. In [114], this led to the observation that the
temperature, at which a peak forms in the spectrum might
be much larger than the melting temperature following
from the Schrödinger potential.
Overall, one can fairly conclude that holographic meth-

ods do not yet reach the level to provide robust quantitative
predictions of all QCD relevant features (meson trajecto-
ries, thermodynamic quantities, spectral functions). As
noted also in [5], some of the holographic models, e.g.
in the recent work [125], predict the melting of spectral
functions toward larger frequencies at high temperatures,
which is in direct contradiction to QCD results.
In contrast toQCDbasedmethods, holographic approaches

provide, however, the advantage of giving access to entan-
glement measures. Starting with the work [126], it was
observed that holographic entanglement entropy, which
according to the seminal work [127,128] is given as aminimal
bulk surface area, can serve as a probe (i.e. order parameter) of
the confinement-deconfinement transition. Further explora-
tions of this quantity for different holographic models
mimicking QCD properties can be found in [129–141].
However, no such studies so far analyzed this phenomenon
explicitly related to the meson melting process. Our TN
simulations in this article therefore provide the first genuine
study of entanglement properties in this physical context.

APPENDIX B: ENTANGLEMENT STRUCTURE
AND TENSOR NETWORK ANSÄTZE

The starting point of our considerations is a generic
quantum many-body system with N elementary constitu-
ents of local physical dimension d living on discrete lattice
sites. An arbitrary pure state vector jΨi in the tensor
product Hilbert space H ¼ H1 ⊗ H1 ⊗ … ⊗ HN of such
a system can be written as

jΨi ¼
Xd

i1;i2;…;iN¼1

ψ i1;i2;…;iN ji1i ⊗ ji2i ⊗ � � � ⊗ jiNi; ðB1Þ

where ψ i1;i2;…;iN are complex coefficients with respect to
some basis vectors ji1i; ji2i;…; jiNi. The exponentially
large set of dN wave function coefficients ψ i1;i2;…;iN easily
exceeds classical computational resources for an exact
representation, which is thus limited to very small systems.

11As test particles, different meson flavors do not react back
between themselves or with the metric and the dilaton.

12The tortoise coordinate ξ follows from the blackening
function f and the holographic coordinate z as dξ ¼ dz=f.
The mass m is the zero component p0 of the four-momentum.
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TN Ansätze provide families of states with an efficient
representation, in which the coefficients of the wave
function are parametrized by a polynomial number of
tensors (see e.g. [7–11] for introductions to the topic).
In this work we make use of the MPS and MPO Ansatz.

For a system with N sites of physical dimension d, a MPO
is an operator with the form

O ¼
Xd

i1 ;i2 ;…;iN¼1
j1 ;j2 ;…;jN¼1

TrðAð1Þ
i1j1

Að2Þ
i2j2

� � �AðNÞ
iNjN

Þ

× ji1ihj1j ⊗ ji2ihj2j ⊗ � � � ⊗ jiNihjN j: ðB2Þ

Here, the local rank-4 tensors AðkÞ
αβikjk

ðk ¼ 1;…; NÞ have
two physical indices ik, jk (corresponding to the bra and ket
operation) and virtual indices α, β with bond dimension χ.
For open boundary conditions, the edge tensors (k ¼ 1; N)
reduce to rank-3 tensors, instead. For fixed physical
indices, the coefficient is a product of matrices, hence
the nomenclature. The Ansatz (B2) can be used to represent
density operators, but the positivity condition cannot be
imposed directly at the level of the individual tensors. It is
however possible to further restrict the form of the tensors
to enforce positivity, by using a purification. In particular,
thermal states of local Hamiltonians admit an efficient
approximation of this form, as discussed in Sec. III.

APPENDIX C: DETAILS OF THE
TRANSFER OPERATOR

TheMPO approximation of the unit cell of a thermal state
can be represented graphically as a TN diagram as follows:

ðC1Þ

Here, the two columns (blue and orange) indicate the
repeating sites in the two-site unit cell of the translational

invariant chain. Each box represents a tensor AðkÞ
αβikjk

as in the
MPO definition (B2). Virtual bond indices are drawn

horizontally, physical ones vertically. Solid boxes symbolizeffiffiffiffiffi
ρβ

p and striped boxes respectively the adjoint ffiffiffiffiffi
ρβ

p †. As
discussed before, this construction ensures positivity of the
state. The thermal transfer operator is then defined as

ðC2Þ

where an overall trace over the physical indices is implied.

APPENDIX D: PRONY SIGNAL ANALYSIS

The basic idea of the Prony method [97] is to reconstruct
a function fðtÞ as a sum of complex exponentials,

fðtÞ ¼
XK
k¼1

cke−iωkt; ðD1Þ

where ck and ωk are respectively complex coefficients and
frequencies, and K is the (variable) total number of modes.
Prony based methods make use of the linearity of the
Ansatz (D1) to determine ck and ωk independently. In
contrast to standard Fourier methods, this provides the
advantage of extracting also complex valued frequencies.
Observe in particular that real frequencies correspond to
oscillations, while negative (positive) imaginary contribu-
tions give rise to an exponential decay (growth). In our
previous work [93] we developed a signal analysis tech-
nique, which performs a Prony analysis on a finite subrange
of the (time) domain of the variable t and subsequently
shifts the analysis window toward later times. Each
identified mode is then visualized as in Fig. 1 with a
unique color in the complex frequency plane (on a scale
from blue to red). Discrete frequencies will appear as stable
modes across different analysis windows, whereas streaks
(a sequence of poles in different time windows) indicate
branch cuts.
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