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ABSTRACT

Interpolatory necessary optimality conditions for H2-optimal reduced-order modeling of non-parametric lin-
ear time-invariant (LTI) systems are known and well-investigated. In this work, using the general framework
of L2-optimal reduced-order modeling of parametric stationary problems, we derive interpolatory H2 ⊗ L2-
optimality conditions for parametric LTI systems with a general pole-residue form. We then specialize this
result to recover known conditions for systems with parameter-independent poles and develop new conditions
for a certain class of systems with parameter-dependent poles.

Keywords reduced-order modeling, parametric systems, optimization, interpolation, linear systems

1 Introduction

Consider a parametric linear time-invariant (LTI) system (full-
order model (FOM))

E(q)ẋ(t, q) = A(q)x(t, q) + B(q)u(t), (1.1a)

y(t, q) = C(q)x(t, q), (1.1b)

where q ∈ Q ⊆ Rnq is the parameter vector; u(t) ∈ Rni

is the input; x(t, q) ∈ Rn is the state; y(t, q) ∈ Rno is the
output; and E(q),A(q) ∈ Rn×n, B(q) ∈ Rn×ni , and C(q) ∈
Rno×n are parametric matrices. Given the FOM in (1.1), the
goal of parametric reduced-order modeling is to find a reduced
parametric LTI system (reduced-order model (ROM))

Ê(q) ˙̂x(t, q) = Â(q)x̂(t, q) + B̂(q)u(t), (1.2a)

ŷ(t, q) = Ĉ(q)x̂(t, q), (1.2b)

where x̂(t, q) ∈ Rr is the reduced state with r ≪ n; ŷ(t, q) ∈

Rno is the approximate output; and Ê(q), Â(q) ∈ Rr×r,

B̂(q) ∈ Rr×ni , and Ĉ(q) ∈ Rno×r are the reduced paramet-
ric matrices, such that ŷ approximates y for a wide range of
inputs u and a set of parameters q ∈ Q ⊆ Rnq . Parametric dy-
namical systems are ubiquitous in applications ranging from
inverse problems to uncertainty quantification to optimization

and model reduction of parametric systems has been a major
research topic; we refer the reader to, e.g., [4, 3] for more de-
tails.

Both the FOM and ROM can be fully described by their (para-
metric) transfer functions, given by, respectively,

H(s, q) = C(q)(sE(q)−A(q))−1B(q) and

Ĥ(s, q) = Ĉ(q)
(
sÊ(q)− Â(q)

)−1

B̂(q). (1.3)

As in any approximation problem, one needs a metric to judge
the quality of the approximation. For non-parametric LTI sys-
tems, i.e., when E ,A,B, C are constant matrices, the H2-norm
has been one of the most commonly used metrics in (optimal)
reduced-order modeling [1, 8, 12, 18]. For parametric LTI sys-
tems we consider here, the H2 ⊗ L2-norm introduced in [2]
provides a natural extension. The goal of H2 ⊗ L2-optimal
reduced-order modeling is to find a ROM that (locally) mini-
mizes the H2 ⊗ L2 error

∥∥∥H − Ĥ
∥∥∥
H2⊗L2

=

(∫

Q

∥∥∥H(·, q)− Ĥ(·, q)
∥∥∥
2

H2

dν(q)

)1/2

,

(1.4)
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where ν is a measure over Q and the H2 norm is given as

‖H(·, q)‖H2
=

(
1

2π

∫ ∞

−∞

‖H(ıω, q)‖
2
F dω

)1/2

.

The H2 ⊗ L2 error gives an upper bound for the output error

‖y − ŷ‖L∞⊗L2
6

∥∥∥H − Ĥ
∥∥∥
H2⊗L2

‖u‖L2
,

where

‖y‖L∞⊗L2
=

(∫

Q

‖y(·, q)‖2L∞
dν(q)

)1/2

is the L∞ ⊗ L2 norm of the output, further justifying the use
of H2 ⊗ L2 measure in parametric reduced-order modeling.

The H2⊗L2 norm with ν as the Lebesgue measure was intro-

duced in Baur et al. [2]. There, for the special case where Ê and

Â are parameter-independent, the H2 ⊗ L2-optimal reduced-
order modeling problem was converted to a non-parametric
H2-optimal reduced-order modeling problem and interpola-
tory optimality conditions could be established. For another

simplified problem where the poles of Ĥ do not vary with the
parameter q ∈ {|q| = 1} ⊂ C, Grimm [7] used an H2 ⊗ L2

norm and derived interpolatory conditions and proposed an op-
timization algorithm.

A common assumption in parametric reduced-order modeling
methods is parameter-separability. For the ROM (1.2), this
would mean that the reduced quantities can be written as

Ê(q) =

n
Ê∑

ℓ=1

ε̂ℓ(q)Êℓ, Â(q) =

n
Â∑

i=1

α̂i(q)Âi, (1.5a)

B̂(q) =

n
B̂∑

j=1

β̂j(q)B̂j , Ĉ(q) =

n
Ĉ∑

k=1

γ̂k(q)Ĉk, (1.5b)

for some functions ε̂ℓ, α̂i, β̂j , γ̂k : Q → R, constant matrices

Êℓ, Âi, B̂j , Ĉk, and positive integers nÊ , nÂ, nB̂, nĈ . We
call a ROM of this form a structured ROM (StROM). This
form has also been considered in H2 ⊗ L2-optimal reduced-
order modeling methods. In particular, Petersson [16] con-
sidered the case of a discretized H2 ⊗ L2 norm, i.e., where
ν is a sum of Dirac measures, proposing an optimization al-
gorithm to find a locally H2 ⊗ L2-optimal ROM. Addition-
ally, Hund et al. [9] proposed an optimization algorithm for
H2⊗L2-optimal reduced-order modeling using quadrature for
the case of Lebesgue measure. Both of these works used ma-
trix equation-based, Wilson-type conditions [18] and not inter-
polation.

The H2 ⊗ L2-norm was also used by Brunsch [6] to derive
error bounds within a reduced-order modeling framework for
parametric LTI systems with symmetric positive definite E(q)
and −A(q). The method is based on sparse-grid interpolation
in the parameter domain. It satisfies (Hermite) interpolation
conditions and preserves stability, but has no proven optimal-
ity properties. See also [10, 5, 17] for some data-driven ap-
proaches.

In our recent work on L2-optimal reduced-order model-
ing [14], we covered both LTI systems and parametric station-
ary problems. We developed interpolatory necessary optimal-
ity conditions in [15] for certain types of StROMs, including
non-parametric LTI systems and parametric stationary prob-
lems. We also showed that the interpolatory conditions of [7]
can be derived from our generalized L2-optimality conditions.
However, as stated before, [7] assumes the poles are fixed.

Therefore, unlike for the non-parametric LTI problems for
which interpolatory optimality conditions forH2 model reduc-
tion have been well-established [12, 8, 1], there is a significant
gap in the development of interpolatory optimality conditions
for H2⊗L2-optimal parametric ROM construction, except for
the special cases mentioned above. Our goal in this paper is
to close this gap and to develop interpolatory optimality con-
ditions for the more general setting of parametric LTI systems.
Additionally, we show that our analysis contains the earlier
conditions from [2] as a special case.

We provide background in Section 2. While Section 3 covers
the general parametric diagonal StROMs (D-StROMs) case,
Sections 4 and 5 focus on simplified cases, leading to opti-
mality conditions that can be directly linked to the bitangen-
tial Hermite interpolation framework. We conclude with Sec-
tion 6.

2 Background

Here we recall one of the main results of [13], specifically, the
necessaryL2-optimality conditions for D-StROMs, which will
form the foundation of our analysis.

Given a parameter-to-output mapping

H : P → C
no×ni ,

the goal in [13] is to construct a StROM

K̂(p)X̂(p) = F̂(p), (2.1a)

Ĥ(p) = Ĝ(p)X̂(p), (2.1b)

with a parameter-separable form

K̂(p) =

n
K̂∑

i=1

κ̂i(p)K̂i, F̂(p) =

n
F̂∑

j=1

ζ̂j(p)F̂j ,

Ĝ(p) =

n
Ĝ∑

k=1

η̂k(p)Ĝk,

(2.2)

where X̂(p) ∈ Cr×ni is the reduced state, Ĥ(p) ∈ Cno×ni

is the approximate output, K̂(p) ∈ C
r×r, F̂(p) ∈ C

r×ni ,

Ĝ(p) ∈ Cno×r, κ̂i, ζ̂j , η̂k : P → C, K̂i ∈ Cr×r, F̂j ∈ Cr×ni ,

and Ĝk ∈ Cno×r. The goal is to construct K̂(p), F̂(p), and

Ĝ(p) such that Ĥ(p) = Ĝ(p)K̂(p)−1F̂(p) is an optimal L2-
approximation to the original mapping H(p), i.e.,

∥∥∥H − Ĥ
∥∥∥
L2

=

(∫

P

∥∥∥H(p)− Ĥ(p)
∥∥∥
2

F
dµ(p)

)1/2

(2.3)

2
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is minimized where µ is a measure over P . The H2 ⊗ L2

norm (1.4) is a special case of the L2-norm (2.3) for appro-
priately defined p and µ, a fact we exploit in Sections 3 to 5.

We will use the notation (K̂i, F̂j , Ĝk) to denote the StROM
specified by (2.1) and (2.2).

We assume all K̂i’s are diagonal (and in return so is K̂(p)

in (2.1)); thus Ĥ for a D-StROM has a “pole-residue” form,
i.e.,

Ĥ(p) = Ĝ(p)K̂(p)
−1

F̂(p) =
r∑

ℓ=1

gℓ(p)fℓ(p)
∗

kℓ(p)
, (2.4)

where kℓ(p) is the ℓth diagonal entry of K̂(p), fℓ(p) =

F̂(p)∗eℓ, and gℓ(p) = Ĝ(p)eℓ. With this pole-residue form
in hand, we have the optimality conditions for D-StROMs
(Corollary 2.4 in [13]).

Theorem 2.1. Suppose that P ⊆ Cnp , µ is a measure
over P , the function H is in L2(P , µ;Cno×ni), functions

κ̂i, ζ̂j , η̂k : P → C are measurable and satisfy

∫

P



∑n

F̂

j=1

∣∣∣ζ̂j(p)
∣∣∣
∑n

Ĝ

k=1|η̂k(p)|
∑n

K̂

i=1|κ̂i(p)|



2

dµ(p) < ∞, (2.5)

K̂i ∈ C
r×r, F̂j ∈ C

r×ni , Ĝk ∈ C
no×r, and

ess sup
p∈P

∥∥∥κ̂i(p)K̂(p)
−1
∥∥∥
F
< ∞, i = 1, 2, . . . , nK̂, (2.6)

where K̂ is as in (2.2). Furthermore, let (K̂i, F̂j , Ĝk) be an

L2-optimal D-StROM of H with Ĥ as in (2.4). Then

∫

P

η̂k(p)H(p)fℓ(p)

kℓ(p)
dµ(p) =

∫

P

η̂k(p)Ĥ(p)fℓ(p)

kℓ(p)
dµ(p),

(2.7a)

∫

P

ζ̂j(p)gℓ(p)
∗H(p)

kℓ(p)
dµ(p) =

∫

P

ζ̂j(p)gℓ(p)
∗Ĥ(p)

kℓ(p)
dµ(p),

(2.7b)
∫

P

κ̂i(p)gℓ(p)
∗H(p)fℓ(p)

kℓ(p)
2 dµ(p)

=

∫

P

κ̂i(p)gℓ(p)
∗Ĥ(p)fℓ(p)

kℓ(p)
2 dµ(p),

(2.7c)

for i = 1, 2, . . . , nK̂, j = 1, 2, . . . , nF̂ , k = 1, 2, . . . , nĜ , and

ℓ = 1, 2, . . . , r.

Theorem 2.1 establishes the interpolatory optimality condi-
tions (2.7) for L2-optimal approximation. We showed in [13]
that various structured reduced-order modeling problems ap-
pear as a special case of Theorem 2.1 and derived interpolatory
optimality conditions for important classes of non-parametric
structured LTI systems. In this paper, we extend this analysis
to parametric LTI systems.

3 H2 ⊗L2-optimal Parametric Interpolation

Here we use Theorem 2.1 to derive interpolatory conditions
for H2 ⊗ L2-optimal reduced-order approximation of the
FOM (1.1) using D-StROMs. But first we need to establish
what the assumptions (2.5) and (2.6) appearing in L2-optimal
approximation for the structure (2.2) correspond to in the case
of H2 ⊗ L2 approximation with the structures of StROMs
in (1.5).

Lemma 3.1. Let p = (s, q), P = ıR×Q, and µ = 1
2πλıR×ν

where λıR is the Lebesgue measure over ıR and ν is a mea-
sure over Q ⊆ Cnq . Furthermore, for StROM in (1.5), let

the functions ε̂ℓ, α̂i, β̂j, γ̂k : Q → C be measurable. Then the
condition

∫

Q

(∑n
B̂

j=1

∣∣∣β̂j(q)
∣∣∣
∑n

Ĉ

k=1|γ̂k(q)|
)2

∑n
Ê

ℓ=1|ε̂ℓ(q)|
∑n

Â

i=1|α̂i(q)|
dν(q) < ∞, (3.1)

is equivalent to (2.5) and the conditions

ess sup
q∈Q

|ε̂ℓ(q)|

∥∥∥∥s
(
sÊ(q)− Â(q)

)−1
∥∥∥∥
L∞

< ∞, (3.2a)

ess sup
q∈Q

|α̂i(q)|

∥∥∥∥
(
sÊ(q)− Â(q)

)−1
∥∥∥∥
L∞

< ∞, (3.2b)

for ℓ = 1, . . . , nÊ and i = 1, . . . , nÂ, are equivalent to (2.6).

Proof. First note that with the choices of p = (s, q), P =
ıR × Q, and µ = 1

2πλıR × ν, the L2-norm in (2.3) recovers
the H2 ⊗L2norm in (1.4). Now note that the integral in (2.5),

for the StROM (sÊ(q) − Â(q), B̂(q), Ĉ(q)) as in (1.5), takes
the form

∫

Q

∫ ∞

−∞




∑n
B̂

j=1

∣∣∣β̂j(q)
∣∣∣
∑n

Ĉ

k=1|γ̂k(q)|

|ω|
∑n

Ê

ℓ=1|ε̂ℓ(q)|+
∑n

Â

i=1|α̂i(q)|



2

dω dν(q).

Using that
∫∞

−∞
dx

(a|x|+b)2
= 2

ab for positive a and b, the above

integral becomes equal to the one in (3.1), up to scaling by 2.

Next, the conditions in (2.6) become

ess sup
q∈Q

ess sup
ω∈R

∥∥∥∥ıωε̂ℓ(q)
(
ıωÊ(q)− Â(q)

)−1
∥∥∥∥
F

< ∞,

ess sup
q∈Q

ess sup
ω∈R

∥∥∥∥α̂i(q)
(
ıωÊ(q)− Â(q)

)−1
∥∥∥∥
F

< ∞,

which simplify to

ess sup
q∈Q

|ε̂ℓ(q)| ess sup
s∈ıR

∥∥∥∥s
(
sÊ(q)− Â(q)

)−1
∥∥∥∥
F

< ∞,

ess sup
q∈Q

|α̂i(q)| ess sup
s∈ıR

∥∥∥∥
(
sÊ(q)− Â(q)

)−1
∥∥∥∥
F

< ∞.

Since ‖·‖F and ‖·‖2 are equivalent norms, the above conditions
are equivalent to (3.2).

The work [9] used the assumptions that Q ⊂ Rnq is compact,

ν is a finite Borel measure over Q, ε̂ℓ, α̂i, β̂j , γ̂k : Q → R are

3
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continuous, Ê(q) is invertible and Ê(q)
−1

Â(q) has all eigen-
values in the open left half-plane for all q ∈ Q. Therefore,
we see that the assumptions of the earlier work [9] on H2⊗L2

approximation are indeed a special case of the ones we derived
in Lemma 3.1.

Now that we established the assumptions of Theorem 2.1 for
parametric LTI systems, we are ready to derive the correspond-
ing interpolatory H2 ⊗ L2-optimality conditions based on the

conditions (2.7). We use Ê(q) = I and all Âi being diagonal.

(The result can be extended to parametric diagonal Ê ; only the
expressions become more involved.)

Theorem 3.2. Given the full-order parametric transfer func-

tion H , let Ĥ in (1.3) be an H2 ⊗ L2-optimal D-StROM for

H with Ê(q) = I and all Âi being diagonal in (1.5a). Let

λℓ(q) denote the ℓth diagonal entry of Â(q). Moreover, define

cℓ(q) = Ĉ(q)eℓ and bℓ(q) = B̂(q)∗eℓ, where B̂(q) and Ĉ(q)
are as defined in (1.5b). Then

Ĥ(s, q) =

r∑

ℓ=1

cℓ(q)bℓ(q)
∗

s− λℓ(q)
(3.3)

and
∫

Q

γ̂k(q)H
(
−λℓ(q), q

)
bℓ(q) dν(q)

=

∫

Q

γ̂k(q)Ĥ
(
−λℓ(q), q

)
bℓ(q) dν(q),

(3.4a)

∫

Q

β̂j(q)cℓ(q)
∗H
(
−λℓ(q), q

)
dν(q)

=

∫

Q

β̂j(q)cℓ(q)
∗Ĥ
(
−λℓ(q), q

)
dν(q),

(3.4b)

∫

Q

α̂i(q)cℓ(q)
∗ ∂H

∂s

(
−λℓ(q), q

)
bℓ(q) dν(q)

=

∫

Q

α̂i(q)cℓ(q)
∗ ∂Ĥ

∂s

(
−λℓ(q), q

)
bℓ(q) dν(q),

(3.4c)

for ℓ = 1, 2, . . . , r, k = 1, 2, . . . , nĈ , j = 1, 2, . . . , nB̂, i =

1, 2, . . . nÂ, where α̂i, β̂j , and γ̂k are as defined in (1.5).

Proof. The pole-residue form (3.3) follows from the general
diagonal pole-residue form (2.4), with kℓ(s, q) = s − λℓ(q),
fℓ(s, q) = bℓ(q), and gℓ(s, q) = cℓ(q). Then, with this struc-
ture, the optimality conditions (3.4) follow from diagonal con-
ditions after applying the Cauchy integral formula. For in-
stance, the left-hand side of the right tangential Lagrange con-
dition (2.7a) becomes

∫

P

γ̂k(p)H(p)bℓ(p)

aℓ(p)
dµ(p)

=

∫

Q

∫ ∞

−∞

γ̂k(q)H(ıω, q)bℓ(q)

ıω − λℓ(q)
dω dν(q)

=

∫

Q

∫ ∞

−∞

γ̂k(q)H(ıω, q)bℓ(q)

−ıω − λℓ(q)
dω dν(q)

=
1

ı

∫

Q

∮

ıR

γ̂k(q)H(s, q)bℓ(q)

−s− λℓ(q)
ds dν(q)

=
2π

ı

∫

Q

γ̂k(q)H
(
−λℓ(q), q

)
bℓ(q) dν(q),

which yields (3.4a). The remaining two conditions (3.4b)–
(3.4c) follow similarly from (2.7b) and (2.7c).

Recall that H2-optimal approximation of non-parametric LTI
systems requires bitangential Hermite interpolation of the
FOM transfer function H at the mirror images of the reduced-
order poles [8, 1]. We showed in our earlier works [14, 15, 13]
that bitangential Hermite interpolation as necessary conditions
for optimality extend to many other H2/L2 approximation set-
tings as well. Even though the H2 ⊗ L2 optimality condi-
tions (3.4) derived here have an integral form, they still have
the similar bitangential Hermite interpolation structure as be-
fore. To arrive at these more familiar form of bitangential Her-
mite interpolations, we need to have explicit expressions for

the functions α̂i, β̂j , γ̂k, λℓ, bℓ, cℓ. In the next two sections we
focus on such cases.

4 Parameters in Inputs and Outputs

The work [2] considered parametric LTI systems with
parameter-dependence only in B and C; specifically, the ROM
of the form

Ê(q) = I, Â(q) = Â,

B̂(q) = B̂1 + q1B̂2, Ĉ(q) = Ĉ1 + q2Ĉ2,
(4.1)

with Â = diag(λ1, λ2, . . . , λr) and Q = [0, 1]
2
. Therefore,

q = (q1, q2), nÂ = 1, α̂1(q) = 1,

nB̂ = 2, β̂1(q) = 1, β̂2(q) = q1,

nĈ = 2, γ̂1(q) = 1, γ̂2(q) = q2,

λℓ(q) = λℓ, bℓ(q) = bℓ,1 + q1bℓ,2, cℓ(q) = cℓ,1 + q2cℓ,2,

where bℓ,i = B̂∗
i eℓ and cℓ,i = Ĉieℓ for i = 1, 2. In [2], only

single-input single-output (SISO) systems were considered.
Here we consider multiple-input multiple-output (MIMO) sys-
tems. (Further extensions are possible, see, e.g., [11].)

Note that the reduced transfer function is bilinear in terms of
the parameters q1 and q2:

Ĥ(s, q) =
(
Ĉ1 + q2Ĉ2

)(
sI − Â

)−1(
B̂1 + q1B̂2

)

= Ĥ11(s) + q1Ĥ12(s) + q2Ĥ21(s) + q1q2Ĥ22(s)
(4.2)

where

Ĥij(s) = Ĉi

(
sI − Â

)−1

B̂j , i, j ∈ {1, 2}.

We assume the same form for the full transfer function

H(s, q) = H11(s) + q1H12(s) + q2H21(s) + q1q2H22(s),
(4.3)

4
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where Hij ∈ H2 for i, j ∈ {1, 2}. However, contrary to [2],
we do not need to assume that Hij has a finite-dimensional
state space, i.e., they can contain non-rational terms. We
only require the ROM to have a finite-dimensional state space.
Thus, the theory we develop applies not only to MIMO sys-
tems but also to non-rational transfer functions.

Following [2], we define the auxiliary transfer functions

H(s) =

[
H11(s) H12(s)
H21(s) H22(s)

]
, (4.4a)

Ĥ(s) =

[
Ĥ11(s) Ĥ12(s)

Ĥ21(s) Ĥ22(s)

]
(4.4b)

=

[
Ĉ1

Ĉ2

] (
sI − Â

)−1 [
B̂1 B̂2

]
.

Note that H and Ĥ satisfy

H(s, q) = [Ino
q2Ino ]H(s)

[
Ini

q1Ini

]
, (4.5a)

Ĥ(s, q) = [Ino
q2Ino ] Ĥ(s)

[
Ini

q1Ini

]
. (4.5b)

We obtain the following result, were we take ν to be the
Lebesgue measure over Q (as in [2]).

Theorem 4.1. Let H, Ĥ be as in (4.3) and (4.1) and H, Ĥ

as in (4.4a) and (4.4b). Furthermore, let Ĥ be an H2 ⊗ L2-
optimal ROM for H . Define

bℓ =

[
Ini

1
2Ini

1
2Ini

1
3Ini

] [
bℓ,1
bℓ,2

]
, cℓ =

[
Ino

1
2Ino

1
2Ino

1
3Ino

] [
cℓ,1
cℓ,2

]
.

(4.6)
Then for ℓ = 1, 2, . . . , r, we have

H
(
−λℓ

)
bℓ = Ĥ

(
−λℓ

)
bℓ, (4.7a)

c
∗
ℓH
(
−λℓ

)
= c

∗
ℓ Ĥ
(
−λℓ

)
, (4.7b)

c
∗
ℓH

′
(
−λℓ

)
bℓ = c

∗
ℓ Ĥ

′
(
−λℓ

)
bℓ. (4.7c)

Proof. Based on the conditions in (3.4), we need to compute
the integrals

∫

Q

H
(
−λℓ, q

)
bℓ(q) dq,

∫

Q

q2H
(
−λℓ, q

)
bℓ(q) dq,

∫

Q

cℓ(q)
∗H
(
−λℓ, q

)
dq,

∫

Q

q1cℓ(q)
∗H
(
−λℓ, q

)
dq,

∫

Q

cℓ(q)
∗ ∂H

∂s

(
−λℓ, q

)
bℓ(q) dq,

and similarly with Ĥ . Starting with the first, we find that
∫

Q

H
(
−λℓ, q

)
bℓ(q) dq

=

∫

Q

(
H11

(
−λℓ

)
+ q1H12

(
−λℓ

)
+ q2H21

(
−λℓ

)

+ q1q2H22

(
−λℓ

))
(bℓ,1 + q1bℓ,2) dq

= H11

(
−λℓ

)
bℓ,1 +

1

2
H12

(
−λℓ

)
bℓ,1

+
1

2
H21

(
−λℓ

)
bℓ,1 +

1

4
H22

(
−λℓ

)
bℓ,1

+
1

2
H11

(
−λℓ

)
bℓ,2 +

1

3
H12

(
−λℓ

)
bℓ,2

+
1

4
H21

(
−λℓ

)
bℓ,2 +

1

6
H22

(
−λℓ

)
bℓ,2

=
[
Ino

1
2Ino

]
H
(
−λℓ

) [ Ini

1
2Ini

1
2Ini

1
3Ini

] [
bℓ,1
bℓ,2

]

where we used (4.3) and (4.5a). The second integral becomes
∫

Q

q2H
(
−λℓ, q

)
bℓ(q) dq

=
[
1
2Ino

1
3Ino

]
H
(
−λℓ

) [ Ini

1
2Ini

1
2Ini

1
3Ini

] [
bℓ,1
bℓ,2

]
.

Stacking these two vertically (and using (4.6)) gives us the
left-hand side in the right Lagrange tangential condition (4.7a).
The other conditions follow similarly.

Therefore, for this special case of (4.1), we obtain more fa-
miliar bitangential Hermite interpolation. More specifically,

H2⊗L2-optimal reduced-order modeling of H with Ĥ in (4.1)
is equivalent to a weighted H2-optimal reduced-order mod-

eling for H with Ĥ. Thus, our general framework in Theo-
rem 3.2 not only recovers the results from [2] but also extends
it to MIMO systems and eliminates the need for the full-model
to have a rational transfer function.

Interpolatory conditions of Theorem 4.1 are in terms of the

parametric function Ĥ, not the original parametric transfer
function H . The next result gives explicit interpolatory con-
ditions in terms of H for SISO systems.

Corollary 4.2. Let the assumptions in Theorem 4.1 hold. Fur-
thermore, let ni = no = 1. If bℓ,1 6= 0 and cℓ,1 6= 0, then

H

(
−λℓ,

bℓ,2

bℓ,1
, q2

)
= Ĥ

(
−λℓ,

bℓ,2

bℓ,1
, q2

)
,

∂q2H

(
−λℓ,

bℓ,2

bℓ,1
, q2

)
= ∂q2Ĥ

(
−λℓ,

bℓ,2

bℓ,1
, q2

)
,

H

(
−λℓ, q1,

cℓ,2

cℓ,1

)
= Ĥ

(
−λℓ, q1,

cℓ,2

cℓ,1

)
,

∂q1H

(
−λℓ, q1,

cℓ,2

cℓ,1

)
= ∂q1Ĥ

(
−λℓ, q1,

cℓ,2

cℓ,1

)
,

H ′

(
−λℓ,

bℓ,2

bℓ,1
,
cℓ,2

cℓ,1

)
= Ĥ ′

(
−λℓ,

bℓ,2

bℓ,1
,
cℓ,2

cℓ,1

)
,

for all q1, q2 ∈ C and ℓ = 1, 2, . . . , r.

Proof. The proof follows directly from (4.7) using (4.5) and

∂q2H(s, q) = [0 1]H(s)

[
1
q1

]

and similar expressions for ∂q2Ĥ , ∂q1H , and ∂q1Ĥ.
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This states that H2 ⊗ L2-optimality for the full-order and
reduced-order structure in (4.3) and (4.2) requires that, in the
parameter space, interpolation is enforced over lines instead of
just a finite number of points (as generically done for paramet-
ric systems).

5 Parameter in Dynamics

In the previous section, we considered a special case where the

parametric dependence was only in B̂ and Ĉ. Now, we consider
the case where Q = [a, b] ⊂ R, a < b, and the FOM and ROM
have the form, respectively,

E(q) = I, A(q) = A1 + qA2,

B(q) = B, C(q) = C
(5.1)

and
Ê(q) = I, Â(q) = Â1 + qÂ2,

B̂(q) = B̂, Ĉ(q) = Ĉ
(5.2)

with

Ak = diag(νk,1, νk,2, . . . , νk,n) and

Âk = diag(λk,1, λk,2, . . . , λk,r),

for k = 1, 2. In other words, we are assuming the paramet-
ric dependencies appear only in the dynamics matrices A and

Â and they are both composed of only two terms which are
simultaneously diagonalizable. With these parametric forms,
the full-order and reduced-order transfer functions have the
pole-residue forms

H(s, q) =

n∑

i=1

Φi

s− νi(q)
, Ĥ(s, q) =

r∑

i=1

cib
∗
i

s− λi(q)
,

(5.3)
where

νi(q) = ν1,i + qν2,i and λi(q) = λ1,i + qλ2,i. (5.4)

Let ν be the Lebesgue measure over [a, b]. Furthermore, for
any σa, σb ∈ C−, define fσa,σb

: C2
+ → C as

fσa,σb
(sa, sb) =

b− a

(sb − σb)− (sa − σa)
ln

(
sb − σb

sa − σa

)
.

(5.5)

Additionally, define the functions G, Ĝ : C2
+ → C by

G(sa, sb) =
n∑

i=1

fνi(a),νi(b)(sa, sb)Φi and (5.6a)

Ĝ(sa, sb) =

r∑

i=1

fλi(a),λi(b)(sa, sb)cib
∗
i . (5.6b)

Note that G and Ĝ depend on the pole-residue forms (5.3) of

H and Ĥ , respectively. Thus, one can consider G as the full-

order modified function and Ĝ the reduced-order one. Based
on this setup, we are ready to state the interpolatory optimality
conditions in this setting.

Theorem 5.1. Let H and Ĥ be as given in (5.3) and let G and

Ĝ be as defined in (5.6). If Ĥ is an H2⊗L2-optimal D-StROM
for H , then

G
(
−λi(a),−λi(b)

)
bi = Ĝ

(
−λi(a),−λi(b)

)
bi,

(5.7a)

c∗iG
(
−λi(a),−λi(b)

)
= c∗i Ĝ

(
−λi(a),−λi(b)

)
,

(5.7b)

c∗i
∂G

∂sa

(
−λi(a),−λi(b)

)
bi = c∗i

∂Ĝ

∂sa

(
−λi(a),−λi(b)

)
bi,

(5.7c)

c∗i
∂G

∂sb

(
−λi(a),−λi(b)

)
bi = c∗i

∂Ĝ

∂sb

(
−λi(a),−λi(b)

)
bi,

(5.7d)

for i = 1, 2, . . . , r.

Proof. Due to the special form of the ROM in (5.2) and its

transfer function Ĥ in (5.3), the quantities bℓ, cℓ, γ̂k, β̂j in (3.3)
and (3.4) in Theorem 3.2 are parameter-independent. Thus,
to analyze the first Lagrange conditions (3.4a) and (3.4b) for
the special case (5.1) and (5.2), it is enough to focus on the
integrals
∫

Q

H
(
−λi(q), q

)
dν(q) and

∫

Q

Ĥ
(
−λi(q), q

)
dν(q).

We start with the first integral involving H . Using the pole-
residue form of H from (5.3) and the expression for λi(q)
from (5.4), we obtain

∫

Q

H
(
−λi(q), q

)
dν(q) =

∫ b

a

H
(
−λi(q), q

)
dq

=

∫ b

a

n∑

j=1

Φj

−λi(q)− ν1,j − qν2,j
dq

=

n∑

j=1

∫ b

a

Φj

−λ1,i − qλ2,i − ν1,j − qν2,j
dq

=

n∑

j=1

∫ b

a

Φj

−λ1,i − ν1,j + q
(
−λ2,i − ν2,j

) dq.

Then integrating the last equality gives
∫

Q

H
(
−λi(q), q

)
dν(q)

=

n∑

j=1

Φj

−λ2,i − ν2,j
ln

(
−λ1,i − ν1,j + b

(
−λ2,i − ν2,j

)

−λ1,i − ν1,j + a
(
−λ2,i − ν2,j

)
)

=

n∑

j=1

Φj(b− a)(
−λi(b)− νj(b)

)
−
(
−λi(a)− νj(a)

)

× ln

(
−λi(b)− νj(b)

−λi(a)− νj(a)

)
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= G
(
−λi(a),−λi(b)

)
.

Similarly, one can show that
∫

Q

Ĥ
(
−λi(q), q

)
dν(q) = Ĝ

(
−λi(a),−λi(b)

)
.

Therefore, the first two optimality conditions (3.4a) and (3.4b)
in Theorem 3.2 lead to the interpolatory conditions (5.7a)
and (5.7b).

To derive the remaining two conditions (5.7c) and (5.7d)
from (3.4c), we now consider the integrals

∫

Q

q
k ∂H

∂s

(
−λi(q), q

)
dν(q), k = 0, 1. (5.8)

We will need the expressions for the partial derivatives of G.
It directly follows from (5.6a) that

∂G

∂sa
(sa, sb) =

n∑

i=1

∂fνi(a),νi(b)

∂sa
(sa, sb)Φi. (5.9)

Similar expressions hold for ∂G
∂sb

(sa, sb),
∂Ĝ
∂sa

(sa, sb), and

∂Ĝ
∂sb

(sa, sb) as well. Thus, to compute these partial derivatives,

we simply focus on fσa,σb
and obtain, via direct differentiation

of (5.5), that

∂fσa,σb

∂sa
(sa, sb)

=
b− a

((sb − σb)− (sa − σa))
2 ln

(
sb − σb

sa − σa

)

−
b− a

(sb − σb)− (sa − σa)
·

1

sa − σa
, and

∂fσa,σb

∂sb
(sa, sb)

= −
b− a

((sb − σb)− (sa − σa))
2 ln

(
sb − σb

sa − σa

)

+
b− a

(sb − σb)− (sa − σa)
·

1

sb − σb
.

Using the pole-residue form ofH from (5.3) in the first integral
in (5.8) gives

∫

Q

∂H

∂s

(
−λi(q), q

)
dν(q) =

∫ b

a

∂H

∂s

(
−λi(q), q

)
dq

=

∫ b

a

n∑

j=1

−Φj(
−λi(q)− ν1,j − qν2,j

)2 dq

=

n∑

j=1

∫ b

a

−Φj(
−λ1,i − ν1,j + q

(
−λ2,i − ν2,j

))2 dq

=

n∑

j=1

−Φj

−λ2,i − ν2,j

(
1

−λ1,i − ν1,j + b
(
−λ2,i − ν2,j

)

−
1

−λ1,i − ν1,j + a
(
−λ2,i − ν2,j

)
)
.

After various algebraic manipulations to replace λk,i and νk,j
by λi(·) and νj(·) and using (5.9), we obtain

∫

Q

∂H

∂s

(
−λi(q), q

)
dν(q)

=
n∑

j=1

−Φj(b − a)(
−λi(b)− νj(b)

)
−
(
−λi(a)− νj(a)

)

×

(
1

−λi(b)− νj(b)
−

1

−λi(a)− νj(a)

)

= −(b− a)

(
∂G

∂sa

(
−λi(a),−λi(b)

)

+
∂G

∂sb

(
−λi(a),−λi(b)

))
.

Following the same derivations, one obtains similar expres-

sions involving Ĥ and Ĝ, which shows that

c∗i

(
∂G

∂sa

(
−λi(a),−λi(b)

)
+

∂G

∂sb

(
−λi(a),−λi(b)

))
bi

= c∗i

(
∂Ĝ

∂sa

(
−λi(a),−λi(b)

)
+

∂Ĝ

∂sb

(
−λi(a),−λi(b)

))
bi.

(5.10)
Focusing on the second integral in (5.8), we find

∫

Q

q
∂H

∂s

(
−λi(q), q

)
dν(q) =

∫ b

a

q
∂H

∂s

(
−λi(q), q

)
dq

=

n∑

j=1

∫ b

a

−qΦj(
−λ1,i − ν1,j + q

(
−λ2,i − ν2,j

))2 dq

=

n∑

j=1

−Φj(
−λ2,i − ν2,j

)2

(
−λ1,i − ν1,j

−λi(b)− νj(b)

−
−λ1,i − ν1,j

−λi(a)− νj(a)
+ ln

(
−λi(b)− νj(b)

−λi(a)− νj(a)

))
.

After more tedious algebraic manipulations, we obtain
∫

Q

q
∂H

∂s

(
−λi(q), q

)
dν(q)

=

n∑

j=1

Φj(b− a)(
−λi(b)− νj(b)

)
−
(
−λi(a)− νj(a)

)

×

(
b

−λi(b)− νj(b)
−

a

−λi(a)− νj(a)

)

+

n∑

j=1

−Φj(b− a)2

((
−λi(b)− νj(b)

)
−
(
−λi(a)− νj(a)

))2

× ln

(
−λi(b)− νj(b)

−λi(a)− νj(a)

)

= a
∂G

∂sa

(
−λi(a),−λi(b)

)
+ b

∂G

∂sb

(
−λi(a),−λi(b)

)
.
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As before, with similar expressions involving Ĥ and Ĝ, we
obtain

c∗i

(
a
∂G

∂sa

(
−λi(a),−λi(b)

)
+ b

∂G

∂sb

(
−λi(a),−λi(b)

))
bi

= c∗i

(
a
∂Ĝ

∂sa

(
−λi(a),−λi(b)

)
+ b

∂Ĝ

∂sb

(
−λi(a),−λi(b)

))
bi.

(5.11)
Then (5.10) and (5.11) give the last two optimality condi-
tions (5.7c) and (5.7d), thus concluding the proof.

Theorem 5.1 proves that for this class of parametric LTI sys-
tems, bitangential Hermite interpolation, once again, forms the
foundation of the L2-optimal approximation. The interpola-
tion is based on a modified, two-variable transfer function G,
and has to be enforced at the reflected boundary values of the
poles. This is the first such result for parametric LTI systems
where the system poles vary with the parameters. Therefore,
we have extended the classical bitangential Hermite interpola-
tion conditions from non-parametric H2-optimal approxima-
tion to parametric H2 ⊗ L2-optimal approximation.

6 Conclusion

We derived interpolatory necessary optimality conditions for
H2 ⊗ L2-optimal reduced-order modeling of parametric LTI
systems with general diagonal structure. Then we give condi-
tions for special cases where only inputs and outputs or only
the dynamics are parameterized.
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