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Abstract
Cellular senescence is acknowledged as a key contributor to organismal ageing and 
late-life disease. Though popular, the study of senescence in  vitro can be compli-
cated by the prolonged and asynchronous timing of cells committing to it and by 
its paracrine effects. To address these issues, we repurposed a small molecule in-
hibitor, inflachromene (ICM), to induce senescence to human primary cells. Within 
6 days of treatment with ICM, senescence hallmarks, including the nuclear eviction of 
HMGB1 and -B2, are uniformly induced across IMR90 cell populations. By generat-
ing and comparing various high throughput datasets from ICM-induced and replica-
tive senescence, we uncovered a high similarity of the two states. Notably though, 
ICM suppresses the pro-inflammatory secretome associated with senescence, thus 
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1  |  INTRODUC TION

From the onset of development until late-life stages, human cells 
encounter multiple signaling and stress cues. Many of these can 
lead to the induction of senescent phenotypes that commit cells to 
an irreversible growth arrest and are inextricably linked with ageing 
(Gorgoulis et al., 2019; López-Otín et al., 2013; Schmeer et al., 2019). 
In fact, clearing senescent cells in  vivo leads to prolonged health 
and lifespan (Baker et  al., 2011, 2016; Wang et  al., 2021, 2022). 
Depending on the initial trigger, senescent responses can be 
grouped into various types like replicative senescence (RS) occur-
ring via telomere attrition, oncogene induced-senescence (OIS) 
due to oncogenic activation, stress-induced premature senescence 
(SIPS) due to oxidative stress, and DNA damage or therapy-induced 
senescence (TIS) following chemo-/radiotherapy (Campisi,  2013). 
All give rise to distinct gene expression programs, which however 
converge to an underlying transcriptional signature associated 
with cell cycle control and transcriptional remodeling (Hernandez-
Segura et al., 2017).

Apart from the pronounced cell cycle arrest, there are different 
genomic hallmarks of the commitment to senescence. For example, 
models of OIS show formation of large senescence-associated heter-
ochromatic foci (SAHFs) (Narita et al., 2003), which involve the dissoci-
ation of heterochromatin from the lamina, the redistribution of Lamin 
B1 (Sadaie et al., 2013; Shah et al., 2013) and nuclear pore components 
(Boumendil et al., 2019), as well as an interplay between DNMT1 and 
HMGA2 (Sati et al., 2020). These effects are also reflected on changes 
in the three-dimensional (3D) organization of chromosomes (Chandra 
et al., 2015; Sati et al., 2020), with many have also being recorded in a 
model of DNA damage-induced senescence (Zhang et al., 2021).

In RS, DNMT1 is linked to focal hypomethylation (Cruickshanks 
et al., 2013), and HMGB (rather than HMGA) proteins seem to play 
a central role as they are quantitatively depleted from senescent 
cell nuclei (Papantonis, 2021). The loss of HMGB1 was shown to 
affect both chromatin reorganization and mRNA splicing upon RS 
entry (Sofiadis et  al., 2021), while that of HMGB2 was causal for 
heterochromatin imbalance and the formation of large senescence-
induced CTCF clusters (SICCs) (Zirkel et al., 2018). Cells maintained 
in RS long-term (i.e., in “deep” senescence) display more pronounced 
changes in 3D genome organization, mostly compaction of chro-
mosomal arms and changes between compartments of active and 
inactive chromatin (Criscione, Teo, et al., 2016) to suppress gene ex-
pression and activate transposable elements (De Cecco et al., 2013). 
This is in line with spurious (Sen et  al.,  2023) and accelerated 
transcription in senescence (Debès et  al.,  2023), with an overall 

compromised ability to transcribe (Zirkel et al., 2018), as well as with 
a transcription-dependent reorganization of chromatin loops (Olan 
et al., 2020).

A key outcome of the senescent gene expression program is the 
production and secretion of a complex and cell type-specific mixture 
of pro-inflammatory factors: the senescence-associated secretory 
phenotype (SASP) (Acosta et al., 2013; Kang et al., 2015; Laberge 
et al., 2015; Wiley et al., 2016). SASP factors act in an autocrine and 
a paracrine manner (Lopes-Paciencia et al., 2019), and mediate both 
beneficial (e.g., wound healing) and detrimental effects of senes-
cence (e.g., chronic inflammation and tumorigenesis) (Sun, Coppé, 
et al., 2018; Sun, Yu, et al., 2018). However, the production of SASP 
and other secondary signals (e.g., Notch in OIS; Teo et  al.,  2019) 
by senescent cells emerging in a population can both promote and 
limit senescence spread (Martin et al., 2023) in a manner that ulti-
mately leads to a large heterogeneity of individual cell states (Chan 
et al., 2022; Teo et al., 2019; Wiley et al., 2017; Zirkel et al., 2018).

This pronounced heterogeneity, together with the asynchrony 
in senescence commitment by individual cells and the extended 
culture periods needed to reach replicative senescence, complicate 
studies of the core of the senescent program. Here, we address 
these caveats by the introduction of a novel and robust model of 
chemically induced senescence via the repurposing of the small mol-
ecule inhibitor ICM (Lee et  al., 2014). We show that ICM induces 
senescence rapidly (within <6 days) and homogeneously in the pop-
ular fetal lung fibroblast (IMR90) cell model, while also constraining 
SASP production and its paracrine effects. We provide a compre-
hensive data resource by characterizing ICM-induced senescence in 
order to facilitate its adoption by the broader community.

2  |  RESULTS

2.1  |  ICM induces a senescence-like phenotype in 
human fibroblasts

Inflachromene (ICM) was initially discovered as a direct binder of 
HMGB1/-B2 proteins in a broad screen of compounds, and charac-
terized as a potent blocker of their cytoplasmic translocation and 
extracellular release. As a result, ICM restricted inflammatory phe-
notypes in vitro and in vivo to exert a neuroprotective effect (Lee 
et al., 2014). However, ICM was only tested in the neural context and 
for only up to 24 h. We subjected different isolates of fetal human 
lung fibroblasts (IMR90), one of the most popular models for se-
nescence studies (Coppe et al., 2006; Demaria et al., 2014; Harley 
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alleviating most paracrine effects. In summary, ICM rapidly and synchronously in-
duces a senescent-like phenotype thereby allowing the study of its core regulatory 
program without confounding heterogeneity.
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et  al., 1990; Hayflick & Moorhead, 1961; Krtolica et  al., 2001), to 
continuous exposure to different ICM concentrations. Treatment 
with 10 μM (but not 5 μM) ICM led to growth arrest within <4 days. 

Notably, removing ICM from the IMR90 growth medium after 6 days 
of treatment did not result in regrowth, while removal after 3 days 
of treatment did (Figure  1a). Such an effect of longer term ICM 

F I G U R E  1 ICM treatment induces a senescent-like phenotype. (a) Mean proliferation rates (±SEM from three independent replicates) of 
DMSO- and ICM-treated IMR90 for 3–6 days using automated live-cell imaging. *p < 0.01, unpaired two-tailed Student's t test at 240 h. (b) 
Representative widefield images of proliferating (top) and 610CP-C6-ICM-treated IMR90 (bottom) with DNA counterstained with Hoechst. 
The overlap between the two signals was assessed via a linescan. Bar, 5 μm. (c) Proliferating, ICM-treated and senescent IMR90 assayed for β-
galactosidase activity. ICM-treated and senescent cells appeared darker, indicative of their senescent state. (d) FACS cell cycle profiles of PI-
stained proliferating (DMSO), senescent or ICM-treated IMR90 for 3 and 6 days. (e) Representative images of IMR90 showing treated or not 
with ICM for 6 days and immunostained for HMGB2 and p21. Bars, 6 μm. Violin plots (right) quantify changes in the levels of the two markers. 
N, number of cells analyzed per each condition. *p < 0.05, two-tailed Wilcoxon-Mann–Whitney test. (f) As in panel e, but immunostained for 
HMGB1 and CTCF. (g) As in panel e, but immunostained for HP1α and H3K27me3. (h) Western blot analysis of CTCF, HMGB2, EZH2 and 
histone H3 in proliferating (DMSO) and 6-day ICM-treated IMR90; α-tubulin levels provide a loading control. (i) Mean mRNA levels (±SD from 
two independent isolates) of selected senescence marker genes in proliferating (DMSO) and 6-day ICM-treated IMR90. *p < 0.05, unpaired 
two-tailed Student's t test. (j) Mean ChIP-qPCR enrichment levels (±SD from two independent isolates) at selected genomic positions (a–f) in 
proliferating (DMSO) and 3- or 6-day ICM-treated IMR90. *p < 0.05, unpaired two-tailed Student's t test.
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treatment was unexpected and prompted us to ask whether it actu-
ally induced a senescent-like state to the cells.

First, we synthesized a 610CP-C6-tagged version of ICM (see 
Section 4) to verify that it indeed enters IMR90 nuclei and localizes to 
chromatin, where HMGBs reside; both could be confirmed microscop-
ically (Figure 1b). Next, we stained control and 6-day ICM-treated cells 
for β-galactosidase activity, a marker of senescence (Dimri et al., 1995). 
ICM-treated cells stained essentially uniformly as SA-β-Gal-positive, 
more than IMR90 from the same isolate driven to senescence by se-
rial passaging, although they do not present with the same spindle-like 
morphology (Figure  1c). FACS analysis showed that ICM treatment, 
already after 3 days, arrested IMR90 in late S-phase (24.4% and 29.2% 
after 3-  and 6-day treatment, respectively, compared to 2.4% in 
DMSO-treated cells), an effect comparable to the S-phase accumula-
tion seen in replicatively senescent cells (23.6%; Figure 1d).

It has been established that the nuclear depletion of HMGB1 
and -B2 from the cell nucleus is a robust indicator of replicative 
senescence entry by different primary human cell types (Davalos 
et al., 2013; Sofiadis et al., 2021; Zirkel et al., 2018). We could show 
that pronounced nuclear loss of HMGBs is also achieved by ICM 
treatment of IMR90 (Figure 1e,f), together with the expected reduc-
tion in H3K27me3 levels (Figure  1g). These effects were coupled 
to the upregulation of senescence marker p21 (Figure 1e), the for-
mation of senescence-induced CTCF clusters (SICCs; Figure 1f), and 
the emergence of HP1α foci (Figure 1g), again, much like what has 
been recorded in RS (Zirkel et al., 2018). All these effects could be 
detected, albeit to a somewhat smaller extent, upon treatment with 
ICM for 3 days (Figure S1A,B), when growth arrest is not yet irre-
versibly committed to (Figure  1a). This suggests that HMGB1/-B2 
loss and SICC formation are early events on the path to senescence, 
as previously postulated (Zirkel et al., 2018). Moreover, ICM-treated 
cells did not accumulate DNA damage as assessed by activated his-
tone γH2A.X levels (Figure S1C,D).

Senescence induction was also reflected in changes at the pro-
tein and mRNA levels of all these factors, as well as of other known 
senescence-regulated genes like HDAC9, CCND2, and HMGA1 
(Figure 1h,i). Finally, using ChIP-qPCR we confirmed loss of HMGB2 
chromatin binding upon ICM treatment from known cognate posi-
tions in RS-IMR90 (Zirkel et al., 2018) at both topologically associat-
ing domain (TADs) boundaries and non-boundary regions (Figure 1j). 
In summary, short-term ICM treatment of IMR90 results in irrevers-
ible growth arrest, as well as in phenotypic changes likening those 
of RS.

2.2  |  Automated imaging and classification of 
nuclear features changes in ICM-treated cells

Replicative senescence induces similar changes to the nuclear mor-
phology of different primary human cell types, including size increase 
and a characteristic texture of DAPI chromatin staining (Sofiadis 
et  al., 2021; Zirkel et  al., 2018). Based on these observations, we 
reasoned that ICM-treated cells could be classified as regards their 
senescence state via imaging of their nuclear features. To this end, 
we devised an automated imaging and classification workflow to 
process images of >11,000 IMR90 cells that were either proliferat-
ing (early-passage), senescent or treated with ICM for 3–9 days. Our 
workflow used fixed cells counterstained by SiR-DNA to visualize 
chromatin. Cells were identified and imaged via automated confocal 
imaging, while super-resolution mid-planes of individual nuclei were 
also captured using the platform's STED mode (Figure 2a). To discard 
erroneous detections, STED images of nuclei were filtered using a 
machine learning-based quality control script achieving 95% preci-
sion in identifying “good” versus “bad quality” images (Figure 2a; see 
Section 4 for details).

We extracted GLCM texture (e.g., homogeneity, dissimilarity, 
energy, and angular second moment) and other features (e.g., area, 
eccentricity, and mean intensity) from each STED nuclear image 
that passed this QC and from full nuclei in confocal images, and 
used them for t-SNE embedding (Figure 2b). In parallel, features 
from proliferating and replicatively senescent cells were used to 
train a Support Vector Machine (SVM) classifier and assess the 
extent to which cells treated with ICM for different numbers of 
days resembled RS ones. Using features extracted from confocal 
images, we recorded a broad range of nuclear phenotypes. t-SNE 
embedding showed that most proliferating cells separate from se-
nescent ones, albeit with considerable replicate mixing (Figure 2c). 
This was in line with previous single-cell transcriptional profiling 
that identified senescent-like cells in “young” populations and vice 
versa (Zirkel et al., 2018). We also saw 3-day ICM-treated nuclei 
predominantly clustering away from senescent and proliferating 
ones (likely representing an intermediate state), whereas 6-  and 
9-day ICM-treated IMR90 were proximal to senescent rather 
than to 3-day or proliferating ones (Figure  2c). These patterns 
of separation also manifested in the SVM-based classification of 
ICM-treated cells. Both 6- and 9-day-treated IMR90 classified as 
senescent, whereas 3-days ones scored as ambiguous (Figure 2d). 
No single extracted feature sufficed for exact classification, but 

F I G U R E  2 An automated classifier approach for assessing senescent cell nuclear morphology. (a) Overview of the automated imaging and 
analysis workflow. Coarse-resolution confocal stacks were acquired in a tiled fashion and, once a nucleus of sufficient quality was detected, 
a mid-plane STED image of it was also acquired. GLCM features were extracted from single nuclei from confocal (after tile stitching and 
maximum projection of z-stacks) or STED images and used for downstream embedding and classification. (b) t-SNE embedding of features 
extracted from confocal images with randomly selected example images from proliferating (orange), senescent (purple), and ICM-treated 
cells (turquoise) shown. Bar, 5 μm. (c) As in panel b, but highlighting proliferating, senescent and 3- or 6-day ICM-treated cells of different 
replicates. (d) Confusion matrix showing the fraction of ICM-treated cells classified as similar to proliferating or senescent cells using an SVM 
classifier trained on confocal- (top) or STED-imaged nuclear features (bottom). (e) Box plots showing the distribution of nuclear size (left), 
GLCM energy values (in a 4-pixel distance along the x-axis; middle), and GLCM dissimilarity (in a 2-pixel distance along the y-axis; right) in 
confocal images of proliferating, senescent, 3- or 6-/9-day ICM-treated cells.
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increasing nuclear size, as well as changes in abstract features like 
GLCM energy and dissimilarity, appeared to better discriminate 
6-  and 9-day ICM-treated cells (Figure  2e). Notably, when STED 
images were used, sample-to-sample variation overshadowed 
phenotypic differences between proliferating and senescent nu-
clei resulting in the inconclusive classification of ICM-treated cells 
(Figure 2d). We attribute this to the large effects that even small 
variance in, for example, DNA staining intensity can have on fine 
scale details captured by STED nanoscopy, as was also observed 
in a deep learning-based study classifying senescence from images 
of nuclear-stained cells, whereby coarse features provided more 
predictive power than finer scale ones (Heckenbach et al., 2022). 
Overall, we could deduce that ICM treatment of IMR90 produced 
nuclear features resembling those of senescent cells, most of 
which exhibit decreased heterogeneity (see replicate dispersal in 
Figure 2c).

2.3  |  ICM-induced gene expression changes 
resemble replicative senescence

We followed up the phenotypic characterization with gene expres-
sion profiling of ICM-treated IMR90. First, based on previous data 
from RS, we would expect overall reduced RNA production if ICM-
cells had indeed committed to senescence. We measured this by 
incorporating EUTP into nascent RNA with a short pulse (7.5 min) 
and visualizing transcripts using an A488 fluorescent tag. Following 
quantification of signal intensity in the different cellular compart-
ments, we saw an almost twofold drop in nuclear and nucleolar RNA 
levels by 6 days of ICM treatment, but only a modest decrease in 
labelled cytoplasmic RNA. This resembled the progressive drop seen 
in IMR90 passage into senescence (Figure 3a).

Despite this documented drop, senescence entry is character-
ized by a distinct program involving both up-  and downregulated 
genes (Hernandez-Segura et  al.,  2017; Sofiadis et  al., 2021; Zirkel 
et  al.,  2018). We sequenced poly(A)+-selected RNA (mRNA-Seq) 
from two different IMR90 isolates treated with DMSO (control) or 
ICM for 6 days. We found ~950 and >1250 genes to be significantly 
(padj < 0.05, log2FC > |0.6|) differentially expressed (Figure  3b,c). 

These genes could be linked to gene ontology (GO) terms associ-
ated with landmark senescence pathways, such as mitotic cell cycle 
regulation and growth factor response (for downregulated ones; 
Figure S2A) or ECM organization and the p53 pathway (for upreg-
ulated ones; Figure S2B). Surprisingly, and contrary to the promi-
nent pro-inflammatory induction occurring in senescence (Coppé 
et al., 2010; Sofiadis et al., 2021), we found inflammatory activation 
via TNFα/NF-κB and interleukins to be markedly suppressed by ICM 
treatment (Figure  S2A), suggesting suppression of the SASP. This 
agreed with the anti-inflammatory mode-of-action of ICM in neu-
rons (Lee et al., 2014). Along these lines, a prediction of transcription 
factors (TFs) that regulate these differentially expressed genes via 
TTRUST (Han et al., 2018) revealed an expected enrichment for p53 
and E2F-family TFs for downregulated genes, but also strong enrich-
ment of NF-κB subunits (RELA, NFKB1) and co-regulators (NFKBIA) 
involved in the inflammatory response (Figure 3d). Also, chromatin-
associated gene markers known to be regulated upon RS entry were 
similarly affected by ICM treatment with the notable exception of 
HMGA1 and A2, which have been implicated in the induction of het-
erochromatic foci in senescence and SASP regulation (Doubleday 
et al., 2020; Narita et al., 2006; Parry et al., 2018; Sati et al., 2020; 
Figure 3e).

Given that replicative senescence is a gene expression pro-
gram predominantly regulated at the level of transcription 
(Sofiadis et  al., 2021), we also sequenced and analyzed nascent 
RNA profiles from 3- and 6-day ICM-treated IMR90 via our “fac-
tory” RNA-Seq approach (Caudron-Herger et  al.,  2015). Using 
the same cutoffs as before, but analyzing intronic RNA levels 
(reflecting direct transcriptional changes), we identified 343 and 
557 up-  and downregulated genes, respectively, at 3 days post-
ICM treatment. These numbers increased to 538 and 706 after 
6 days of treatment (Figure 3f). Despite this increase, the major-
ity of 3-day differentially expressed genes (i.e., 74% of up-  and 
81% of downregulated genes) were also identified at the 6-day 
mark (Figure 3g) in line with the high convergence between the 
two time points (Figure S3A). Both sets associated with GO terms 
characteristic of RS induction (e.g., mitotic cell cycle, p53 pathway, 
and telomere organization; Figures S3B,C and S4A,B) and highly 
similar to those obtained by mRNA-Seq analysis (Figure S2A,B). 

F I G U R E  3 Transcriptional changes in ICM-treated human lung fibroblasts. (a) Quantification of nascent EU-RNA levels (by 
immunofluorescence) in IMR90 passaged into senescence (left) or treated with ICM (right). *Significantly different to starting nuclear/
nucleolar levels; p < 0.05, unpaired two-tailed Student's t test. (b) Volcano plot showing all differentially expressed mRNAs between 
proliferating and ICM-treated IMR90. Significantly up- (orange; >0.6 log2FC) or down-regulated ones (green; <−0.6 log2FC) are indicated. (c) 
RNA-Seq profiles in the CDK1 and CDKN1A locus from proliferating, 3- and 6-day ICM-treated IMR90s. (d) Heatmap showing transcription 
factors predicted to regulate genes from panel C based on motif enrichment. (e) Heatmap showing changes in mRNA levels upon senescence 
and ICM treatment of genes encoding selected chromatin-associated factors. For each gene shown, statistically significant expression 
changes (log2FC) were recorded in at least one condition. (f) Volcano plot showing nascent RNA differences (fold enrichment) between 3 
and 6 days of ICM treatment. Significantly up-/downregulated genes are shown (>|0.6| log2-fold change). N is the number of the genes in 
each group. (g) Venn diagrams of up-/down-regulated genes from ICM mRNA-Seq and 3- or 6-day ICM nascent RNA-Seq. (h) GO term/
pathway analysis of all commonly downregulated genes from panel g. (i) Comparison of differentially expressed genes between replicative 
senescence and 3 or 6 days of ICM treatment (left and middle panel, R2 = 0.28 and 0.36, respectively) and oncogene induced senescence and 
ICM (right panel, R2 = −0.1). N is the number of genes in each comparison. (j) Plot showing changes (log2FC ± SD) in mean RNAPII elongation 
rates calculated using nascent RNA-Seq data.
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TFs predicted to control the 3-  and 6-day ICM-regulated genes 
were also similar, with p53 and E2F-family factors being most 
enriched (Figures S3D and S4C). However, there was a relative 
de-enrichment for NF-κB-regulated downregulated genes at both 
time points, indicating that their suppression upon ICM treatment 
might not be exclusively transcriptional. Indeed, by looking at the 
overlap between differentially expressed mRNAs and nascent 
RNAs, only about 28% of up- or of downregulated nascent tran-
scripts were also regulated at the messenger level, while >1000 
up- and >700 downregulated mRNAs did not qualify as differen-
tially expressed in factory RNA-Seq data (Figure 3g). Some part 
of this can be attributed to a difference in approach and anal-
ysis (exon-  vs. intron-level quantification), but likely also points 
to posttranscriptional regulation (e.g., changes in mRNA stabil-
ity). Still, the 152 commonly downregulated genes in the three 
datasets associated with the expected GO terms and pathways 
(Figure 3h).

Next, we used publicly-available RNA-Seq data from rep-
licative (Rai et  al.,  2014) and oncogene-induced senescence in 
IMR90 (Hernandez-Segura et  al.,  2017), as well as a signature 
deduced from different types of senescence (Hernandez-Segura 
et  al.,  2017) for a comparison to data from 3-  and 6-day ICM-
treated cells. We found a robust positive correlation with RS dif-
ferentially expressed genes (R2 = 0.28 and 0.36 for 3 and 6 days, 
respectively; Figure 3i) and with the consensus signature (R2 = 0.84; 
Figure S5A), but no correlation with OIS (R2 = −0.1; Figure 3i). This 
agrees with our phenotypic characterization showing resemblance 
of ICM-induced senescence and RS, with a key discrepancy con-
cerning inflammatory gene activation. We therefore compared RS 
with ICM mRNA-Seq (wherein pro-inflammatory gene suppression 
was most apparent; Figure S2A) to address this. The 175 genes 
strongly upregulated in RS, but suppressed by ICM treatment, 
were strongly associated with the pro-inflammatory response and 
the SASP (Figure S5A,B).

Moreover, we wanted to address the extent to which 
ICM treatment produced effects that can be attributed to 
HMGB1/-B2 depletion. We therefore analyzed HMGB1 (Sofiadis 
et al., 2021) and new HMGB2 siRNA-mediated knockdown RNA-
Seq data (Figure  S5C,D). We found ICM-induced gene expres-
sion changes correlating strongly (R2 = 0.46) with those recorded 
upon HMGB2-KD (Figure  S5C), and moderately anticorrelating 
(R2 = −0.27) with those induced by HMGB1-KD (Figure S5D). Gene 
set enrichment analysis (GSEA) of the positively and negatively 
correlated genes in each comparison confirmed previous analyses. 
Namely that HMGB2-KD suppressed pro-inflammatory responses 
and induced mitotic arrest (Figure S5E) as would be expected from 
ICM. On the other hand, HMGB1-KD induced inflammatory cas-
cades in contrast to ICM, with which it positively correlated as 
regards a pronounced cell cycle arrest (Figure  S5F). Therefore, 
ICM treatment appears to promote replicative arrest via the same 
gene expression changes caused by HMGB1/-B2-KD, while also 
suppressing pro-inflammatory gene induction caused mostly via 
the loss of HMGB1.

Finally, we examined two more features of cellular ageing, the in-
crease in RNAPII velocity in senescent cells (Debès et al., 2023) and 
the changes in methylation levels at six senescence-predictive CpGs 
(Franzen et al., 2017). The former showed the expected acceleration 
of RNAPII (Figure 3j), while the latter showed no predictive power 
during a 12-day ICM treatment in contrast to how it performs for RS 
(Figure S5G).

2.4  |  Comparison of replicative and ICM-induced 
senescence at the single cell level

One key motivation behind the pursuit of this system of ICM-
triggered senescence was the need for a more synchronous and ho-
mogeneous induction of senescence in a given cell population, as the 
entry into RS is largely stochastic and heterogeneous at the level of 
individual cells (Zirkel et al., 2018; for RS in HUVECs). This is not only 
due to idiosyncratic cell-intrinsic properties (e.g., telomere attrition), 
but also a result of complex paracrine signaling via the SASP (Coppé 
et al., 2010). Thus, we reasoned that the apparently SASPless ICM 
phenotype would produce homogeneously-senescent populations 
within 6 days of treatment.

To test this, we generated single-cell transcriptomic data from 
proliferating (DMSO-treated), replicative senescent, and 6-day 
ICM-treated IMR90 from the same isolate. We interrogated a total 
of ~26,000 cells (8443 proliferating, 7947 senescent, and 9354 
ICM-treated) using 3′ end single-cell RNA-Seq. Following analysis of 
>1.8 billion reads (mean coverage was >70,000 reads/cell, median 
number of genes detected was 5697 genes/cell), single-cell transcrip-
tomes that met standard quality controls (Figure 4a,b) were used for 
in unsupervised clustering. This produced five clusters, as reflected 
in t-SNE embedding, of which one (Cluster 1) was almost exclusively 
populated by proliferating and one (Cluster 3) exclusively by ICM-
treated cells (Figure  4c). In accordance to RS heterogeneity (Zirkel 
et al., 2018), some proliferating cells clustered among senescent cells 
(mostly in cluster 0) and some senescent cells mixed with proliferating 
ones (in cluster 1). However, ICM-treated cells only mixed with senes-
cent ones (in clusters 0, 2, and 4) and showed overall less dispersion 
in t-SNE plots (Figure 4c). This was also reflected in the distribution of 
known senescence markers. For example, HMGB2 and DNMT1 were 
expressed in proliferating cells of Cluster 1 only and essentially not at 
all in senescent and ICM-treated cells alike, while CDKN1A expression 
was confined to senescent and ICM-treated cells, the latter showing 
significantly higher activation (Figure 4d,e). Largely uniform and low 
CTCF expression levels (as most transcription factors are lowly ex-
pressed) provided a control (Figure 4d,e).

Next, we identified condition-specific differentially expressed 
genes. Using a threshold of log2FC > |0.25| and comparing all pro-
liferating with either senescent or ICM-treated cells, we detected 
>150 differentially expressed genes per condition. Of these, two-
third (i.e., 105 genes; more than expected by chance, p < 0.01) were 
shared between senescent and ICM-treated cells highlighting their 
convergence (Figure 4f) and associated with GO terms central to the 
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senescent phenotype, like cell cycle regulation, chromosome organi-
zation, or DNA metabolism (Figure 4g). Notably, almost all of the 105 
genes were included in the 267 commonly differentially regulated 
genes seen by bulk RNA-Seq measurements (Figure 3h).

Lastly, we asked how SASP regulation manifested in this data. 
Looking among differentially expressed genes for markers identi-
fied in the SASP atlas (http://​www.​saspa​tlas.​com), like SERPINE1 
and PTX3, or genes indirectly controlling SASP production like 

F I G U R E  4 Single-cell analysis of ICM-induced transcriptomes. (a) Scatter plot of the number of unique molecular identifiers (UMIs) versus 
the number of detected genes in each cell analyzed. Cells that passed (red) or not (black) this quality filter and the calculated Spearman's 
correlation coefficient (R2) are indicated. (b) As in panel a, but for the number of UMIs versus the percent of mitochondrial genes detected 
in each cell. (c) Left: t-SNE embedding of gene expression profiles from 25,744 cells clustered in an unsupervised manner. Right: Projection 
of proliferating (DMSO), senescent (RS), and 6-day ICM-treated cells (+ICM) onto the t-SNE map. (d) Projection of selected marker gene 
expression levels onto the t-SNE map of panel c. (e) Violin plots showing expression level distribution of the marker genes from panel d in 
proliferating (prolif), senescent (RS), and 6-day ICM-treated cells (+ICM). *p < 0.01, Wilcoxon-Mann–Whitney test. (f) Venn diagram showing 
the overlap of differentially expressed genes from senescent and ICM-treated cells. (g) GO term/pathway analysis of the 105 shared 
differentially expressed genes from panel f. (h) As in panel e, but for exemplary SASP-related genes. *p < 0.01, Wilcoxon–Mann–Whitney 
test. (i) Heatmap showing transcription factors predicted to regulate genes from panel f based on motif enrichment.
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HMGA2 (Boumendil et al., 2019), we found that they were signifi-
cantly upregulated across senescent cells, but reduced to below 
control levels in ICM-treated IMR90 (Figure  4h). This was also 
reflected in the de-enrichment for genes regulated by RELA and 
NFKB1 in the 105 differentially expressed genes shared by ICM-
treated and senescent cells (Figure  4i) and agreed with our bulk 
RNA-Seq (Figure S5A,B) and TTRUST analysis (Figure  3d). Thus, 
our single-cell data also confirmed the senescence-like features of 
ICM-induced cell growth arrest, as well as the more homogeneous 
nature of the response in IMR90 compared to senescence entry by 
continuous passaging.

2.5  |  ICM-induced changes to the proteome are 
transcriptionally driven

Despite strong indications from our gene expression analyses about 
the similarities between replicative and ICM-induced senescence, 
it remained unclear whether the proteome also responded in the 
manner expected of senescent cells. To address this, we gener-
ated Ribo-Seq and whole-cell mass-spec data from proliferating 
and ICM-treated IMR90 in biological triplicates, and compared 
them to equivalent data generated previously for RS entry (Sofiadis 
et al., 2021). Whole-cell proteome analysis after 6 days of ICM treat-
ment revealed 565 significantly up- and 626 downregulated proteins 
(p < 0.05, log2LFQ > |0.6|; Figure 5a). GO term analysis of these dif-
ferentially expressed proteins identified senescence hallmark path-
ways linked to both up- (e.g., stress response and p53 pathway) and 
downregulated ones (e.g., cell cycle, chromosome organization, and 
RNA metabolism) (Figure 5b and Figure S6A,B). This is in line with 
the differential analysis of RNA-Seq data, with a TTRUST query 
predicting that the genes coding for downregulated proteins were 
controlled by p53, MYC, and E2F-family TFs (Figure S6C), and with 
changes in the proteome of isolated IMR90 nuclei upon ICM treat-
ment (Figure S7A–C).

We next focused on the regulation of translation upon ICM 
treatment. We previously used Ribo-Seq to show that almost none 
of the changes in senescence-related gene expression could be ex-
plained by changes in translation levels only (Sofiadis et al., 2021), 
and that no ribosome stalling, competition by upstream ORFs 
or translational deficiency could be detected (Papaspyropoulos 
et  al.,  2023). Thus, we generated Ribo-Seq data for 6-day 

ICM-treated IMR90 and correlated them to matching mRNA-Seq 
and whole-cell proteome datasets. Much like what we observed 
for RS, all significant changes in translation were explained by an 
analogous change in transcript availability (Figure 5c). These tran-
scripts were linked to key processes for senescence commitment 
like the downregulation of RNA metabolism, cell cycle regulation, 
and telomere organization (Figure 5d). There also were 300 tran-
scripts “buffered” by translation (i.e., transcriptionally suppressed, 
but translationally boosted or vice versa), which could be impli-
cated in pathways like RNA modification or Notch and VEGFA 
signaling (Figure  5c,d). These correlations remained largely un-
changed when ICM mRNA-Seq or Ribo-Seq data were replaced by 
those generated in RS IMR90 (Figure 5e). Thus, the ICM-induced 
expression program is predominantly regulated at the level of 
transcription, just like the one of RS (Sofiadis et al., 2021).

Interestingly, and in line with our mRNA-Seq analysis, the ex-
pression of proteins involved in cytokine stimulation and the inter-
feron response was suppressed by ICM treatment (Figure 5a and 
Figure S6A), and these transcripts were mostly found “buffered” 
when Ribo-Seq was co-considered (Figure 5d). Dot bot analysis 
of intracellular and extracellular levels of HMGB1 and B2 showed 
that, in contrast to what was observed during prolonged IMR90 
passaging, HMGB1 is not released into the growth media as a 
pro-inflammatory “alarmin” (Davalos et  al., 2013) despite its ap-
parent intracellular reduction (Figure  5f). ICM also constrained 
the TNFα-induced secretome of IMR90 (Figure S6D). We assessed 
this more broadly by using a public catalogue of fibroblast SASP 
(http://​www.​saspa​tlas.​com) and overlapping it with ICM-induced 
proteome changes. Of ~600 bona fide SASP factors, <15% over-
lapped our data, with 52 being significantly down-  and only 34 
significantly upregulated (Figure 5g). However, even those upreg-
ulated by ICM, were not induced to the full extent observed in 
senescent fibroblasts (Figure 5g). Taken together, the above anal-
yses confirm that ICM triggers a mostly SASP less senescence-like 
phenotype.

2.6  |  ICM triggers 3D genome reorganization 
reminiscent of RS

RS has been linked to extensive reorganization of 3D chroma-
tin folding (Mizi et  al., 2020), with entry into senescence already 

F I G U R E  5 Proteomic changes induced by ICM treatment of IMR90. (a) Volcano plot showing whole proteome up- (orange, >0.6 log2LFQ) 
and downregulated proteins (turquoise, <−0.6 log2LFQ) upon 6 days of ICM treatment. The number of proteins (N) in each set is indicated. 
(b) GO term/pathways analysis of all downregulated proteins from panel a. (c) Left: Scatter plots showing correlation between mRNA-Seq 
(transcription) and Ribo-Seq levels (translation) of transcripts differentially expressed upon 6-day ICM treatment. Right: Correlation between 
mRNA-Seq and whole proteome levels for the same set of genes. The number of genes/proteins (N) in each set and Pearson's correlation 
coefficient (ρ) are indicated. (d) Heatmap showing GO terms/pathways associated with transcripts in the different quadrants of panel c 
(color-coded the same way). The number of transcripts in each subgroup (N) is indicated. (e) As in panel c, but using differentially expressed 
genes from replicative senescence. (f) Dot blot showing intracellular HMGB1 and HMGB2 and secreted HMGB1 levels across passages (left 
panel) and days of ICM treatment. Histone H4 levels provide a control. (g) Left: Venn diagram showing up- and downregulated proteins 
from whole-cell proteomics crossed with all known fibroblast SASP factors. Right: Box plot showing changes in SASP-related protein levels 
(log2LFQ). *p < 0.01, unpaired two-tailed Student's t test.
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characterized by changes at the level of compartments and TADs 
(Sati et  al., 2020; Zirkel et  al., 2018). Therefore, as a last element 
in the characterization of ICM-induced senescence, we addressed 
the extent of 3D genome reorganization after 6 days of treatment. 
We generated high-resolution Micro-C data (Hsieh et al., 2020) from 
proliferating (DMSO-treated) and ICM-treated IMR90. Replicates 
form each condition were sequenced to >1.1 billion read pairs gen-
erating maps with >614 and >711 million contact pairs for proliferat-
ing and ICM-treated cells, respectively. Of these, >50% represented 
long-range contacts (separated by >10 kbp; see Table S1 for details). 
As a result, we obtained dense 5-kbp resolution contact maps with 
differences between conditions (Figure 6a).

In more detail, interaction decay plots showed reduced contact 
frequency at the Mbp scale, in parallel with increased frequency 
at sub-Mbp separation distances (Figure  6b). The former is rem-
iniscent of the “better compartment definition” we previously ob-
served in lower resolution Hi-C data from senescent IMR90 and 
HUVECs (Zirkel et al., 2018), and was corroborated by reduced inter-
compartmental interactions in ICM-treated cells (Figure 6c). This can 
be explained in part by the ICM-induced transcriptional suppression 
(Figure  3a) leading to chromatin compaction at the sub-TAD level 
(Criscione, De Cecco, et al., 2016).

We also generated CUT&Tag data for the two key architec-
tural factors giving rise to chromatin loops (Figure  6a), the insu-
lator protein CTCF and the ring-shaped cohesin complex via its 
SMC1A subunit (Hansen et  al.,  2017). Analysis of CTCF CUT&Tag 
returned 4652 CTCF peaks in proliferating, 8440 in senescent, and 
6666 in ICM-treated IMR90 (using the top 1% of peaks and filtering 
for the presence of a consensus CTCF motif under each peak; see 
Section 4) (Figure 6d,e). For SMC1A, 14,884 peaks were called in 
proliferating cells, 12,928 in senescent, and 17,810 in ICM-treated 
ones (Figure 6d,f). Overall, ICM CTCF peaks overlapped more peaks 
from senescent rather than proliferating IMR90, but the converse 
was true for SMC1A (Figure 6e,f). Nevertheless, inspection of sig-
nal distribution in genome browser tracks and in heatmaps showed 
that there were indeed numerous strong CTCF peaks emerging in 
both ICM-induced and replicative senescence, while for SMC1A 
this mostly held true in ICM-treated cells (Figure 6d–f). However, 

SMC1A signal at shared CTCF peaks was reduced by at least 36% in 
ICM-induced as well as in RS cells (Figure 6g).

The emergence of condition-specific CTCF-  and cohesin-
occupied positions along IMR90 chromosomes in combination 
with reduced cohesin levels led to a decrease in overall contact in-
sulation around CTCF peaks (Figure 6h). This effect should trans-
late into formation of condition-specific loops from the 22,871 
and 14,995 called in proliferating and ICM-treated IMR90, respec-
tively. After stratifying loops as CTCF- or nonCTCF-anchored, we 
indeed found 613 CTCF (out of 1801; 34%) and 4303 nonCTCF 
loops (out of 13,194; 33%) that were unique to ICM-treated cells 
and showed increased contact frequency (Figure 6i,j). Notably, and 
despite the fewer loops called in ICM data, loop length was signifi-
cantly increased following ICM treatment (Figure 6k). This again 
agreed with previous observations from Hi-C and CTCF HiChIP 
data in RS (Zirkel et al., 2018), and may be linked to the formation 
of senescence-induced CTCF clusters (SICCs). Last, we exploited 
the fact that Micro-C signal contains information about nucleo-
some positioning (Hsieh et  al.,  2020) to examine their density 
genome-wide. We plotted 1-D Micro-C signal around CTCF peaks 
and found that, despite an overall signal decrease in ICM-induced 
cells, nucleosomes were positioned in better defined arrays fol-
lowing ICM treatment (Figure 6l). Nucleosome signal decrease is 
characteristic of senescence (Debès et al., 2023), while the more 
defined positioning is reminiscent of that seen after RNAPII de-
pletion from human cells (Zhang et  al., 2023). Thus, 3D genome 
reorganization in ICM-induced senescence also aligns well with RS 
entry.

3  |  DISCUSSION

Senescence is essentially hard-wired in the homeostatic pro-
gram of proliferating cells grown in  vivo and in  vitro (Hayflick & 
Moorhead,  1961). However, its emergence in cell populations is 
nonhomogeneous and heavily influenced by various waves of parac-
rine signaling (Kirschner et al., 2020; Martin et al., 2023). This poses 
several issues when studying cell commitment to senescence. For 

F I G U R E  6 3D genome reorganization at 6 days post-ICM treatment. (a) Heatmap showing Micro-C contacts at 10-kbp in an exemplary 4-
Mbp segments from chr1. Differences in loop formation between proliferating (DMSO) and ICM-treated IMR90 (+ICM) are denoted (circles). 
(b) Plots showing decay of contact frequency as a function of genomic distance (top) and its first derivative (bottom) for proliferating and 
ICM-treated cells. (c) Saddle plots showing contact distribution among and between inactive (top left corner) and active compartments 
(bottom right corner) in proliferating (DMSO) and ICM-treated Micro-C data (+ICM). (d) Representative genome browser views of CTCF 
and SMC1A CUT&Tag signal along a 100-kbp region of chr17 from proliferating (grey), ICM-treated (green) or senescent IMR90 (purple). (e) 
Left: Venn diagram showing the overlap of CTCF peaks (top 1%) in CUT&Tag data from proliferating, ICM-treated, and senescent IMR90. 
Right: Heatmaps showing scaled CUT&Tag signal in the 4 kbp around the peaks. (f) As in panel e, but for SMC1A CUT&Tag data. (g) Line plots 
showing mean CTCF or SMC1A CUT&Tag signal coverage in the 4 kbp around all shared peaks from proliferating (grey), ICM-treated (green) 
or senescent IMR90 (purple). (h) Insulation plot averaging Micro-C contacts in the 600 kbp around CTCF peaks from proliferating (DMSO) 
and ICM-treated IMR90 (+ICM). (i) Aggregate plots showing average Micro-C signal in the 100 kbp around CTCF loop summits called at 
5-kbp resolution from unique to or shared by proliferating and ICM-treated IMR90. (j) As in panel i, but for nonCTCF-anchored loops. (k) 
Box plots showing the distribution of CTCF loop lengths in proliferating (DMSO) and ICM-treated IMR90 (+ICM). *p < 0.01, Wilcoxon–
Mann–Whitney test. (l) Heatmaps showing nucleosome distribution signal derived from Micro-C data in the 2 kbp around CTCF motifs under 
CUT&Tag peaks from proliferating (DMSO) or ICM-treated IMR90 (+ICM).
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example, the core transcriptional program responsible for senes-
cence entry might be obscured by differential gene induction and 
silencing due to SASP and secondary Notch signaling in a cell popu-
lation. Similarly, studying the temporal order of molecular events 
leading up to senescence commitment can be obscured by the non-
synchronous manner by which it occurs in individual cells.

Here, we present a phenotypic and multi-omics characterization 
of senescence induced in the popular IMR90 cellular model following 
treatment with the small molecule inhibitor ICM. We showed that, 
within 6 days of treatment with 10 μM ICM, a senescence-like state 
is stably and irreversibly instated in the cell population in a synchro-
nous and largely homogeneous manner. Most notably, senescence 
emerges in the absence of apparent paracrine signaling by the SASP 
that turns on pro-inflammatory genes (Coppé et al., 2010). However, 
at first glance this seems to contrast the original characterization 
of the ICM mode-of-action (Lee et al., 2014). ICM was indeed de-
veloped and selected for its robust anti-inflammatory capacity. This 
stemmed from its presumed ability to constrain the release of HMGB 
proteins, especially HMGB1, from the cell nucleus by interfering 
with their posttranslational modification (Lee et al., 2014). HMGB1 
has a pronounced role as an “alarmin” released from cells to trigger 
inflammation in its niche in vitro and in vivo (Davalos et al., 2013; 
Papantonis, 2021; Salminen et al., 2012; Vénéreau et al., 2015). ICM 
treatment constrained neuroinflammation in cell cultures and animal 
models (Lee et al., 2014) and HMGB1-related secretion and signaling 
from pancreatic cells (Chung et al., 2019) much like it constrains the 
SASP in IMR90 in our hands. However, the compound was never 
tested for treatment periods longer than 24 h, which would have 
allowed its full effects to deploy—namely, the synchronous and 
near-complete depletion of both HMGB1 and B2 from nuclei, but 
without their apparent rerouting to the secretory pathway. Thereby, 
ICM does permanently restrict HMGBs in the nucleus, but can block 
secretion in favor of degradation, likely via the crosstalk of HMGB1 
with the autophagy pathway (Kim et  al., 2018). It would, thus, be 
interesting to eventually examine multi-tissue effects following sys-
tematic in vivo ICM administration in animal models in more detail, 
while factoring in our observations from IMR90.

Having said this, ICM does produce some phenotypic and mo-
lecular effects that do not fully align with those of replicative se-
nescence. Our single-cell imaging and RNA-Seq data support the 
resemblance of ICM-treated IMR90 with those reaching senescence 
by passaging, but ICM treatment does not, for instance, give rise to 
a typical spindle-like cell morphology of senescent cells, lead to the 
accumulation of DNA damage or to a senescence-specific methyl-
ation signature. Such discrepancies discriminate ICM-induced from 
replicative senescence, although this is the type of cell ageing phe-
notype that ICM-treated cells resemble the most.

In summary, we wished to share ICM-induced senescence with 
the broader community as a new tool for accelerating research into 
the cell-intrinsic core of the senescent transcriptional program and 
the different components that mediate its irreversible nature (or 
allow for its sporadic bypass). Such rapid and synchronous pharma-
cological induction of senescence, devoid of paracrine influence, 

might even serve as a controllable in vitro system for testing antiag-
ing (Browder et al., 2022; Roux et al., 2022) or senolytic approaches 
(Chaib et al., 2022; Robbins et al., 2020), and we provide a compre-
hensive characterization of it.

4  |  METHODS

4.1  |  Cell culture and senescent assays

Single IMR90 isolates (I90-83, passage 5; Coriell Biorepository) were 
continuously passaged at 37°C under 5% CO2 in Minimal Essential 
Medium l-Glutamine without HEPES (MEM 1×) (Gibco™ Life 
Technologies GmbH, 31095052) supplemented with 10 % FBS (Life 
Technologies, 10500064), 1× (1%) MEM Non-essential Amino Acid 
Solution without l-glutamine (Sigma-Aldrich, M7145-100ML) and 
1% Penicillin/Streptomycin (Gibco™ Life Technologies, 15140122). 
The senescent state of the cells was addressed by senescence-
associated β-galactosidase assay (Cell Signaling) according to the 
manufacturer's instructions. Cells were driven into senescence ei-
ther by continuously passaging them to replicative exhaustion or 
by using ICM (concentration and period of treatment is depicted 
on individual experiments). Cell proliferation was monitored using 
the Sartorius IncuCyte S3 Live-Cell Analysis System and acquiring a 
picture every 8 h for a total of 11 days. Finally, DNA methylation at 
six selected CpG islands was measured by isolating genomic DNA 
at the different cell states and performing targeted pyrosequencing 
(Cygenia GmbH) as previously detailed (Franzen et al., 2017).

4.2  |  Immunofluorescence and image analysis

Cells treated with ICM-C6-610CP were cultured on coverslips for 
3 days and DNA was subsequently stained with 5-SiR-Hoechst 
(Bucevičius et  al., 2020) and fixed via incubation with 4% para-
formaldehyde (PFA) in Dulbecco's Phosphate-Buffered Saline 
(DPBS). For every other staining, cells grown on coverslips were 
fixed via incubation with 4% PFA in DPBS at RT for 10 min and then 
permeabilized with 0.5% Triton-X in PBS for 10 min. Blocking was 
performed with 1% Bovine Serum Albumin (BSA) in PBS at RT for 
1 h. Cells were then incubated with the primary antibody (diluted 
in 0.5% BSA/PBS) at RT for 1 h at the indicated dilution: mouse 
monoclonal anti-HMGB1 (1:1000; Abcam ab190377-1F3); rabbit 
polyclonal anti-HMGB2 (1:1000; Abcam ab67282); rabbit poly-
clonal anti-CTCF (1:500; Active motif 61311); rabbit polyclonal 
anti-H3K27me3 (1:1000; Diagenode C15410069); rabbit poly-
clonal anti-p21 (1:500; Abcam EPR362—ab109520). The primary 
antibody was washed with PBS twice for 5 min per wash. Cells 
were incubated with the secondary antibody (diluted in 0.5% BSA/
PBS) at RT, in the dark for 1 h at the indicated dilution: anti-rabbit 
Alexa488 (1:1000, Abcam ab150077); anti-mouse Cy3 (1:1000, 
Abcam ab97035). Cells were then washed with PBS twice for 5 min 
per wash. ProLongTM Gold antifade reagent with DAPI (#P36931) 
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was added to the cells. For visualizing nascent transcripts, cells 
were pre-incubated with 2.5 mM 5-ethynyl uridine (EU) for 40 min 
at 37°C in their growth medium, fixed and processed with the 
Click-iT EdU chemistry kit (Thermo Fisher). For image acquisition, 
a widefield Leica DMI8 with an HCX PL APO 63×/1.40 (Oil) objec-
tive was used. The acquired images were subsequently analyzed 
with the FIJI software (Schindelin et al., 2012). Measurements of 
nuclear immunofluorescence signal were generated using a mask 
drawn on DAPI staining to define nuclear bounds. Background 
subtractions were then implemented to precisely determine the 
mean intensity per area of each immune-detected protein.

4.3  |  Automated cell imaging and feature 
classification

50–70 × 103 IMR90 cells were seeded onto coverslips in 6-well plates 
and left to grow at 37°C, with 5% CO2 in MEM (M4655), supplemented 
with 1% penicillin/streptomycin (Pen/Strep, P4333) and 1% nones-
sential amino acids (M7145) all from Sigma Aldrich, and 10% fetal bo-
vine serum (FBS, F7524, LOT: BCBX5319) for 24 h before fixation and 
staining. For ICM-treated cells, we exchanged the medium to one sup-
plemented with 7.5 μM ICM after 24 h and left them to grow for 3, 6 or 
9 days before fixation, exchanging the medium daily. The cells treated 
with ICM for 6 and 9 days were split once and twice, respectively. Cells 
were then prepared for immunofluorescence as described above, but 
also incubated in a SiR-DNA (Lukinavičius et al., 2015) staining solu-
tion (2 μM in PBS-T) for 90 min at room temperature. Afterward, cells 
were rinsed and washed twice for 5 min with PBST. Finally, coverslips 
with cells were mounted onto glass slides in MOWIOL. Thirty min-
utes after mounting, coverslips were sealed with clear nail varnish and 
dried for 20 min at room temperature.

We acquired confocal and STED images on an on a 3D STED mi-
croscope system from Abberior Instruments (Göttingen, Germany) 
using a 100× UPlanSApo 1.4 NA oil immersion objective (Olympus, 
Japan) and pulsed 640 nm excitation and 775 nm depletion lasers. 
To acquire a large number of super resolution images in an unbiased 
fashion, we automated the operation of the microscope using the 
specpy Python Interface to the Imspector microscope control soft-
ware. In our automation pipeline, we first continuously imaged con-
focal overview stacks with 20% overlap in a spiral. Following the 
acquisition of each overview, we detected nuclei in the maximum 
intensity projection of the tile and adjacent tiles (stitched based on 
their stage coordinates) via unsupervised clustering of pixels based 
on their intensities and Gaussian and Sobel filter responses using 
k-Means followed by binary erosion of radius = 3 to remove small 
background detections. For all connected foreground regions, we 
acquired a STED image of the middle z-plane before continuing with 
the next overview tile. All acquired images as well as microscope 
metadata were saved in custom HDF5-based files during the auto-
mated acquisitions. Using this pipeline, we could run the microscope 
unsupervised for prolonged periods of time and we typically imaged 
each sample for 12–24 h.

To extract features from STED images, we proceeded as follows: 
For each STED detail image, we first normalized the intensities to 
the 0.025 and 0.995 quantiles and then performed a simple seg-
mentation by Li thresholding on a strongly blurred (Gaussian blur 
with σ = 16 px) version of the image followed by removing small 
objects <512 px2 and filling holes smaller than 512 px2. Within the 
foreground area we calculated grey level co-occurrence matrices 
(GLCMs) at distances ∈ {2, 4, 7, 12, 16} and angles ∈ {0, π/2} and cal-
culated all summary statistics available in scikit-image's greycoprops 
function (“contrast,” “dissimilarity,” “homogeneity,” “energy,” “cor-
relation” and “ASM”) from slightly blurred (σ = 0.5 px) versions of the 
normalized images. In addition, we calculated the mean foreground 
intensity in both the original and normalized image, the standard 
deviation of the foreground intensity, the number of pixels of the 
segmented area, the low and high quantiles of raw image intensi-
ties used in normalization, as well as the image width and height 
and number of rows and columns composed wholly of zeroes (an 
indication of images acquired outside the scanner's field of view or 
shutdown of the detector due to too high light exposure, which we 
aimed to remove in a subsequent quality control step). To distinguish 
good STED images from erroneous detections during the automated 
imaging we used machine learning-based quality control. We man-
ually sorted 493 images as good (i.e., containing a single complete 
and in-focus nucleus) or bad and trained a Random Forest classifier 
on their features (normalized to zero mean and unit variance). Using 
fivefold cross-validation, we determined the probability threshold 
for the good class necessary to achieve 95% precision (true-positive 
rate) and applied the classifier with this threshold to all uncatego-
rized images. For the subsequent steps, we only used the images 
classified as good.

We then used the features of each cell (except auxiliary ones like 
the number of blank rows/columns or image size) and performed a 
two-dimensional embedding using t-SNE. Furthermore, we used the 
features of all young and senescent samples to train a SVM classi-
fier and applied it to all treated samples to see whether they would 
be preferentially classified as young or senescent. However, in both 
approaches, we arrived at inconclusive results and saw a strong de-
pendence on individual replicates. We reasoned that at the fine scale 
captured by STED nanoscopy, small changes, for example, in SiR-
DNA staining intensity, have a stronger effect on nuclear texture 
than senescence state. The code for our image analysis pipeline was 
implemented in Python using the numpy/scipy (Harris et al., 2020), 
scikit-image (Van Der Walt et al., 2014), and scikit-learn (Pedregosa 
et  al., 2011) libraries and is freely available at https://​github.​com/​
hoerl​team/​chrom​atin-​textu​re-​senes​cence/​​. Due to sample-to-
sample variation seems to overshadow biological effects on the na-
noscale in STED images, we decided to also analyze the confocal 
overview images we initially acquired as auxiliary data during the 
automated imaging. We extracted individual overview tiles from the 
combined HDF5 files, saved them as TIFF stacks and used BigStitcher 
(Hörl et al., 2019) to stitch (refining the stage positions recorded by 
the microscope) and fused them into one volume per acquisition run. 
We then used Cellpose to detect individual nuclei in a z-maximum 
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projection and calculated GLCM texture features and summary sta-
tistics (with distances ∈ {2, 4, 8, 16} px and angles ∈ {0, π/2}) as well as 
shape and intensity features (area, eccentricity, and mean intensity) 
in the z-projection for each detected nucleus individually. We nor-
malized intensities for each image to the (0.025, 0.998) quantiles and 
applied a small amount of Gaussian blur (σ = 0.5 px) before extracting 
features. We then proceeded to perform t-SNE embedding as well as 
SVM-based classification of ICM-treated cells based on young and 
old samples as described for the STED data above.

4.4  |  RNA isolation, sequencing, and analysis

Proliferating, senescent and ICM-treated IMR90s were harvested in 
TRIzol LS (Life Technologies) and total RNA was isolated and DNase 
I-treated using the DirectZol RNA miniprep kit (Zymo Research). 
Following selection on poly (dT) beads, barcoded cDNA libraries 
were generated using the TruSeq RNA library Kit (Illumina) and were 
paired-end sequenced to >50 million read pairs on a HiSeq4000 plat-
form (Illumina). Default settings of STAR aligner (Dobin et al., 2013) 
were used to map the raw reads to human reference genome (hg19) 
and quantification of unique counts was done via featureCounts (Liao 
et al., 2014). The RUVs function of RUVseq (Risso et al., 2014) was 
used to further normalize the counts, prior to differential gene ex-
pression estimation using DESeq2 (Love et al., 2014). Genes with an 
FDR < 0.01 and an absolute (log2) fold change of >0.6 were deemed 
as differentially expressed. GO term enrichment plots were gener-
ated using Metascape (http://​metas​cape.​org/​gp/​index.​html) (Zhou 
et al., 2019). For RNA that was later used for qPCR the isolation pro-
cedure was the same as the one described above. cDNA was syn-
thesized with SuperScript™ II Reverse Transcriptase (Invitrogen™ 
Life Technologies, 18064071) and random primers (Sigma-Aldrich, 
11034731001) according to the manufacturer's protocol. Full list of 
primers used for qPCR can be found in Table S2. Finally, for analy-
sis of nascent RNA in IMR90 the “factory RNA-Seq” approach was 
applied on 5mil ICM-treated cells (Melnik et  al.,  2016), RNA was 
isolated and sequenced as above, and intronic read counts were ob-
tained and differentially analyzed for the two conditions using the 
iRNAseq package (Madsen et  al.,  2015). Differentially expressed 
genes from all our RNA-Seq experiments are listed in Table S3.

For RNAPII elongation rates calculated from “factory” RNA-Seq 
data, annotation files were downloaded from Ensembl (https://​www.​
ensem​bl.​org/​; version hg19). The following filtering steps were ap-
plied on the intronic ENSEMBL annotation files. First, we removed 
overlapping regions between introns and exons to avoid confound-
ing signals due to variation in splicing or transcription initiation and 
termination. Overlapping introns were merged to remove duplicated 
regions from the analysis. In the next step, we used STAR to detect 
splice junctions and compared them with the intronic regions. Introns 
with at least five split reads bridging the intron (that is, mapping to 
the flanking exons) per condition were kept for subsequent analyses. 
When splice junctions were detected within introns, we further sub-
divided those introns accordingly. The slope of the intronic coverage 

was calculated in these introns across all samples as described (Debès 
et al., 2023). To avoid artefacts due to the different numbers of in-
trons used per sample, we always contrasted the same sets of introns 
for each comparison of different conditions, only using negative 
slopes across all samples. The Wilcoxon signed-rank test with conti-
nuity correction was used for statistical testing in R.

4.5  |  Chromatin immunoprecipitation and qPCR

Proliferating and ICM-treated IMRO90s were cultured to 80% con-
fluence in 15-cm plates and they were cross-linked in 15 mM EGS/
PBS (ethylene glycol bis(succinimidyl succinate); Thermo) for 20 min 
at room temperature, followed by fixation for 40 min at 4°C in 1% 
PFA. Cells were then processed with the ChIP-IT High Sensitivity 
kit (Active motif) according to the manufacturer's instructions. 
Chromatin was sheared to 200–500 bp fragments via sonication 
using a Bioruptor Plus (25 cycles, 30 s on/30 s off, high input), im-
munoprecipitation was done using 4 μg of anti-HMGB2 antibody 
(Abcam ab67282) to approx. 30 μg of chromatin and the samples 
were incubated overnight in a rotor at 4°C. DNA was captured on 
protein A/G agarose beads and purified using the ChIP DNA Clean 
& Concentrator kit (Zymo) and used for qPCR. Oligos used in qPCR 
are listed in Table S4.

4.6  |  Ribo-Seq and data analysis

High-throughput ribosome profiling (Ribo-Seq) on proliferating, se-
nescent and ICM-treated IMR90s was performed in collaboration with 
EIRNA Bio Ltd (https://​eirna​bio.​com) according to their established 
protocol (Ivanov et  al., 2018). Three independent replicas of prolif-
erating, senescent or ICM-treated IMR90 were grown, harvested in 
ice-cold polysome isolation buffer supplemented with cycloheximide, 
and shipped to Ribomaps for further processing and library prepara-
tion. Roughly 15% of each lysate was kept for RNA isolation and used 
for RNA-Seq of poly(A)-enriched fractions on a HiSeq2500 platform 
(Illumina). After sequencing of both Ribo-  and mRNA-Seq libraries, 
the per base sequencing quality of each replicate passed the quality 
threshold, raw read counts were assigned to each protein-coding open 
reading frame (CDS) for Ribo-Seq and to each transcript for mRNA-
Seq, and replicate correlations were tested. Read length distribution 
for Ribo-Seq datasets fell within the expected range (25–35 nt), show-
ing strong periodic signals and an enrichment in annotated CDSs. For 
mRNA-Seq, read lengths ranged between 47 and 51 nt and distributed 
uniformly across transcripts. For differential gene expression analysis, 
anota2seq (Oertlin et al., 2019) was used. Changes in Ribo-Seq data 
depict changes in the ribosome occupancy of the annotated protein-
coding CDS, and thus, only ribosome-protected fragments that map 
to the CDS were used in the analysis. VST normalized counts output-
ted using DESeq2 (Love et al., 2014) and inputted into anota2seq were 
used for all subsequent downstream analysis. Differences in genes 
that pass a default FDR threshold of 15% were considered regulated. 
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Such significant differences are then categorized into one of the fol-
lowing three modes: (i) translational: Changes in Ribo-Seq that are not 
explained by changes in RNA-Seq and imply changes at the protein 
level are due to changes at the translational level; (ii) mRNA abun-
dance: Matching changes in RNA-Seq and Ribo-Seq that infer changes 
at the protein level are predominantly induced by changes at the tran-
scriptional level; (iii) buffering: changes in RNA-Seq that are not ex-
plained by changes in Ribo-Seq and suggest maintenance of constant 
protein levels induced by changes at the transcriptional level and vice 
versa. Differentially translated/buffered mRNAs from Ribo-Seq ex-
periments are listed in Table S5.

4.7  |  Protein extraction, western blotting, and 
mass spectrometry

Proliferating and ICM-treated IMR90s (approx. 2 × 106 per condition) 
were gently scraped off 15-cm dishes. Cells were then pelleted for 5 min 
at 1200 rpm. The supernatant was discarded and pellets were lysed in 
150 u of RIPA lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM 
EDTA pH 8.0, 1 mM EGTA pH 8.0, 1% NP-40, 1% sodium deoxycho-
late) containing 1× protease inhibitor cocktail (Roche) for 30 min on ice. 
Sample were then sonicated in low input for three cycles (30 s on/30 s 
off) and centrifuged for 15 min at >15,000 × g. Then the supernatant 
was collected and the protein concentration was measured using the 
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Rabbit poly-
clonal anti-HMGB2 (1:1000; Abcam ab67282); rabbit polyclonal anti-
CTCF (1:500; Active motif 61311); rabbit polyclonal anti-EZH2 (1:500; 
Active motif 39901); rabbit polyclonal anti-H3 (1:500; Abcam ab1791); 
mouse monoclonal anti-tubulin (1:1000; Abcam ab7291) were used for 
blotting. For whole-cell proteomics, protein extracts in RIPA buffer were 
analyzed by the CECAD proteomic core facility in biological triplicates 
on a Q-Exactive Plus Orbitrap platform (Thermo Scientific) coupled to 
an EASY nLc 1000 UPLC system with column lengths of up to 50 cm. 
All proteins discovered via whole-cell mass spectrometry are listed in 
Table S6. For mass spectrometry of fractionated nuclear and cytosolic 
IMR90 extracts, the same procedure was followed with the addition of 
a standard nuclear isolation prep as described (Zirkel et al., 2018), and 
all proteins discovered are listed in Table S7.

4.8  |  Cleavage under targets and tagmentation 
(CUT&Tag)

0.5 million cells were lifted from plates using Accutase, fixed with 
0.3% PFA/PBS for 2 min at RT and then quenched with 0.125 M ice 
cold glycine for 5 min at RT. Samples were then processed accord-
ing to manufacturer's instructions (Active Motif). Samples were 
paired-end sequenced to obtain more than 5 × 106 reads, which 
were then processed exactly as described in https://​yezhe​ngstat.​
github.​io/​CUTTag_​tutor​ial/​. Briefly, paired-end reads were trimmed 
for adapter removal and mapped to human (hg38) and Escherichia 
coli reference genomes (ASM584v2) using Bowtie 2 (Langmead & 

Salzberg, 2012). E. coli mapped reads were then quantified and used 
for calibrating human-mapped reads. Peak calling was performed 
using a multi-FDR-tryout method (FDR <0.01 to <0.1). For CTCF 
and SMC1A, an FDR <0.01 was selected and only CTCF peaks 
with a canonical CTCF motif were considered (Grant et al., 2011). 
Motif search was conducted by utilizing Fimo 5.4.1 of the MEME 
suite (https://​meme-​suite.​org/​meme/​doc/​fimo.​html) against a ran-
dom Markov background model which was created by running the 
fasta-get-markov command of the aforementioned suite, on random 
sequences that corresponded to the length and the chromosome of 
the query CTCF peaks, for each sample. Heatmaps were generated 
using deepTools (Ramírez et al., 2014), while shared and condition-
specific CTCF and SMC1A peaks were called using signal in the 
100 bp around the summit of each peak (as calculated via SEACR).

4.9  |  Micro-C and data analysis

Micro-C was performed using the Micro-C v1.0 kit in collaboration 
with Dovetail Genomics as per manufacturer's instructions. Micro-C 
libraries (at least three per each biological replicate) that passed QC 
criteria were pooled and paired-end sequenced on a NovaSeq6000 
platform (Illumina) to >600 million read pairs per replicate. Micro-C 
contact matrices were produced using Dovetail Genomics pipeline 
(https://​micro​-​c.​readt​hedocs.​io/​en/​latest/​fastq_​to_​bam.​html). In brief, 
read pairs were mapped to human reference genome hg38 using 
BWA, after which low mapping quality (<40) reads and PCR dupli-
cates were filtered out using the MarkDuplicates function in Picard 
tools (v2.20.7), and read coverage tracks (BigWig) were generated and 
normalized with the RPCG parameter using the bamCoverage function 
of deepTools2 v3.5.1 (Ramírez et al., 2014). Compartment boundaries 
for each sample corresponded to the 1 bp of adjacent bins on which 
compartment changed from A to B or from B to A. The interaction 
decay plot was created by cooltools 0.5.1 (https://​coolt​ools.​readt​he-
docs.​io/​en/​latest/​noteb​ooks/​conta​cts_​vs_​dista​nce.​html). The eigen-
values, needed for the saddle plots, were computed with the cooltools 
call-compartments command at 10-kbp resolution and the expected 
interactions were computed with cooltools compute-expected com-
mand at the same resolution. The saddle plot was created with cool-
tools compute-saddle using 100 bins as described: https://​coolt​ools.​
readt​hedocs.​io/​en/​latest/​noteb​ooks/​compa​rtmen​ts_​and_​saddl​es.​
html. Finally, we used coolpuppy 0.9.5 (https://​coolp​uppy.​readt​hedocs.​
io/​en/​latest/​) to generate all aggregate plots. For loop calling, we used 
a multi-tool (HiCCUPS, SIP, and mustache) and a multi-resolution (5- 
and 10-kbp) approach as previously described (Hsieh et  al.,  2020; 
Krietenstein et  al., 2020). Loop lists coming from each of the three 
different tools and across the two resolutions were merged using the 
pgltools intersect command with a distance tolerance of 1 bp. This pro-
cedure results in considering loops that were called in adjacent bins 
across different resolutions or tools as being shared, while unique 
loops are considered those that exhibit a distance corresponding to 
at least one bin size (5- or 10-kbp) across the different loop-calling 
approaches. In cases of shared loops across the two resolutions, the 
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5 kb resolution coordinates were kept for further analysis. In order to 
find condition-specific loops we furtherly annotated them with ICM-
specific CTCF peaks. To detect ICM enriched CTCF peaks, we fur-
therly filtered peaks based on the control and ICM CUT&TAG signal 
enclosed in regions around the summits of ICM CTCF peaks. In more 
detail, we extracted the control and ICM depth-normalized CUT&TAG 
signal of regions 100 bp around the summits of peaks by utilizing the 
multiBigwigSummary command of Deeptools. The CTCF peaks that 
we considered in the downstream analysis were those that exhibited 
less than the mean control CUT&TAG signal with higher or equal to 1-
fold difference compared to the corresponding ICM signal. 2628 ICM 
CTCF peaks fulfilled these criteria and were furtherly used to annotate 
both control and ICM loops. All intersections were performed using 
pgltools intersect1D without any distance tolerance for CTCF anchors. 
We considered loops as CTCF-associated when at least one of the 
anchors overlapped a CTCF peak of the subset described above. The 
rest of the loops were annotated as non-CTCF. We furtherly divided 
the loops into condition-specific and shared loops. Condition-specific 
loops had at least one unique anchor. This analysis was done, as de-
scribed before, by utilizing the pgltools intersect command with 1 bp 
tolerance distance for both the shared and the unique loops. All code 
for Micro-C analysis can be found at https://​github.​com/​shuzh​angco​
urage/​​Micro​-​C-​CUT-​tag/​tree/​v1.0.​0.

4.10  |  Single-cell RNA-Seq

Proliferating, ICM-treated, and senescent IMR90s (8 × 105 cells/
condition) were grown to 80% confluency, harvested with trypsin 

and froze at −80°C. Single-cell RNA-Seq was performed using the 
10× Genomics kit in collaboration with Active Motif. Libraries that 
passed QC criteria were paired-end sequenced to at least 250 mil-
lion reads per library. All downstream analysis was performed using 
Seurat (Satija et al., 2015).

4.11  |  610CP-C6-ICM synthesis

Synthesis was performed as described previously with the minor 
modifications (Isomura et  al., 2001). 0.25 g (1.15 mmol) tert-butyl 
(6-hydroxyhexyl) carbamate (Molecule 2 in the scheme below) was 
dissolved in 3.2 mL dichloromethane under an argon atmosphere 
and cooled to 0°C in an ice bath. Next, 242 μL (1.73 mmol) of trieth-
ylamine and 98 μL (1.26 mmol) of mesyl chloride were added. The 
reaction mixture was then allowed to warm to room temperature 
and stirred for 2 h. After the reaction was complete, it was washed 
with distilled water, saturated NaCl solution, dried over Na2SO4, 
filtered, and the solvent removed on a rotary evaporator yielding 
yellow oil (359 mg). The residue was dissolved in 4.8 mL of dry ace-
tonitrile under argon, 863 mg (5.76 mmol) of sodium iodide added at 
room temperature; the mixture stirred for 18 h, and the solvent was 
then removed on a rotary evaporator. The residue was dissolved 
in 20 mL ethyl acetate, washed with saturated NaCl solution, dried 
over Na2SO4, filtered and the solvent removed on a rotary evapora-
tor to obtain 321 mg of crude product as a yellow oil. Next, flash 
chromatography was performed in n-hexane/EtOAc (91:9) to obtain 
tert-butyl (6-iodohexyl) carbamate (mol. 3) 294.8 mg (0.90 mmol, 
78.3%) as a colorless oil.
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Next, 12.5 mg (33.1 μmol) inflachromene (Mol. 1) was dissolved in 
200 μL dry DMF under argon, cooled to 0°C, and 1.7 mg (42.5 μmol) 
of NaH (60% in mineral oil) added followed by stirring for 10 min. 
Next, 13 mg (40 μmol) tert-butyl (6-iodohexyl) carbamate (Mol. 3) in 
40 μL dry DMF was added dropwise, and the mixture stirred over-
night at room temperature. After the reaction was complete, 30 μL 
of distilled water were added, the reaction mixture diluted with 
2 mL saturated aq. NaCl solution and extracted with dichlorometh-
ane. The combined organic phase was washed with saturated NaCl 
solution, dried over Na2SO4, filtered, and the solvent removed on a 
rotary evaporator to obtain 26.7 mg of crude product as a yellow oil. 
Next, Flash chromatography was performed using Biotage HC Duo 
silica column and 15%–50% EtOAc in n-Hexane gradient to obtain 
7.5 mg (13.0 μmol, 39.3% yield) ICM-C6-NBoc (Mol. 4) as a pale yel-
low solid.

2.0 mg (3.47 μmol) ICM-C6-NBoc (Mol. 4) was dissolved in 
17.3 μL of dry ethyl acetate under argon, cooled to 0°C using an 
ice bath, and 34.7 μL (34.68 μmol) of 1 M HCl in ethyl acetate were 
added followed by stirring for 6 h at room temperature. After the 
reaction was complete, the solvent was removed on the Speedvac 
to obtain 0.7 mg of yellow-green oil and further HPLC purified using 
Interchim puriFlash® C18-AQ 5 μm, 21.2 × 250 mm column with a 
solvent gradient from water with 0.1% TFA to acetonitrile, and ob-
tained ICM-C6-NH2 (5) as a white solid (0.18 mg, 0.35 μmol, 10% 
yield).

Finally, 144 μg (255 nmol) 6-610CP-NHS was dissolved in 25 μL 
dry DMSO under argon. Next, 3.5 μL (2.04 μmol) 10% (v/v) DIPEA 
in dry DMSO and 180 μg (305 nmol) ICM-C6-NH2 (Mol. 5) in 25 μL 
dry DMSO were added, and the reaction mixture stirred for 3 h at 
room temperature. After the reaction was complete, the mixture 
was frozen, lyophilized and separated using preparative HPLC: 
Interchim puriFlash® C18-AQ 5 μm, 21.2 × 250 mm column with a 
solvent gradient from water with 0.1% TFA to acetonitrile, obtaining 
160 μg (175 nmol, 69% yield) ICM-C6-610CP (Mol. 6) as a blue solid. 
Compound purity characterization in shown in Figure S8.

4.12  |  Statistical testing

p-values associated with Student's t tests, Fischer's exact tests and 
with the Wilcoxon–Mann–Whitney tests were calculated using 
GraphPad (https://​graph​pad.​com/​). Unless otherwise stated, p-
values <0.01 were deemed as statistically significant.
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