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Abstract

Consider the following toy problem. There are m rectangles and n points on the plane. Each
rectangle R is a consumer with budget BR, who is interested in purchasing the cheapest item
(point) inside R, given that she has enough budget. Our job is to price the items to maximize
the revenue. This problem can also be defined on higher dimensions. We call this problem the
geometric pricing problem.

In high dimensions, the above problem is equivalent to the unlimited-supply profit-maximizing
pricing problem, which has been studied extensively in approximation algorithms and algorith-
mic game theory communities. Previous studies suggest that the latter problem is too general
to obtain a sub-linear approximation ratio (in terms of the number of items) even when the
consumers are restricted to have very simple purchase strategies.

In this paper, we study a new class of problems arising from a geometric aspect of the pricing
problem. It intuitively captures typical real-world assumptions that have been widely studied
in marketing research, healthcare economics, etc. It also helps classify other well-known pricing
problems, such as the highway pricing problem and the graph vertex pricing problem on planar
and bipartite graphs. Moreover, this problem turns out to have close connections to other
natural geometric problems such as the geometric versions of the unique coverage and maximum
feasible subsystem problems.

We show that the low dimensionality arising in this pricing problem does lead to improved
approximation ratios, by presenting sublinear-approximation algorithms for two central versions
of the problem: unit-demand uniform-budget min-buying and single-minded pricing problems.
Our algorithm is obtained by combining algorithmic pricing and geometric techniques. These
results suggest that considering geometric aspect might be a promising research direction in
obtaining improved approximation algorithms for such pricing problems. To the best of our
knowledge, this is one of very few problems in the intersection between geometry and algorithmic
pricing areas. Thus its study may lead to new algorithmic techniques that could benefit both
areas.
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1 Introduction

This paper studies a geometric version of two central unlimited-supply pricing problems. We are
given a set I of n consumers and a set C of m items. Every item I ∈ I is represented by a
point I = (I[1], . . . , I[d]) ∈ Rd≥0, where R≥0 denotes the set of non-negative reals and I[j] expresses
the quality of item I in the j-th attribute. Every consumer C ∈ C is represented by a point
C = (C[1], . . . ,C[d]) ∈ Rd≥0, where C[j] is the criterion of consumer C ∈ C in the j-th attribute.
Each consumer C is additionally equipped with budget BC ∈ R≥0 and a consideration set

SC = {I : I[j] ≥ C[j], for all 1 ≤ j ≤ d} . (1)
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Figure 1: Problem visualization

In the d-dimensional uniform-budget unit-demand min-buying pric-
ing problem (d-UUDP-MIN), once we assign prices to items, each
consumer C will buy the cheapest item I in SC if the price of
item I is at most BC. In the d-dimensional single-minded pric-
ing problem (d-SMP), consumer C will buy the all items in SC
if the total price of those items is at most BC. The objective
is to set the price of items in I in order to maximize the rev-
enue. That is, we want to find p : I → R≥0 that maximizes∑

C∈C,minI∈SC p(I)≤BC
minI∈SC

p(I) in the case of d-UUDP-MIN and∑
C∈C,

∑
I∈SC

p(I)≤BC

∑
I∈SC

p(I) in the case of d-SMP. Fig. 1 illus-

trates the problem: Each item corresponds to a point in the plane.
The consideration set of each consumer C is represented by an (un-
bounded) axis-parallel rectangle with point C as a lower-left corner.

The above problems when d is unbounded (called UUDP-MIN and SMP) have been widely
studied recently (e.g., [44, 32, 45, 14, 15, 1, 6]) and are known to be O(logm)-approximable [1];
so we have a reasonable approximation guarantee when there are not many consumers. However,
in many cases, one would expect the number of consumers to be much larger than the number
of items n. In this case, we are still stuck at the trivial O(n) approximation ratio, and there are
evidences that suggest that getting a sub-linear approximation ratios might be impossible: Unless
NP ⊆ DTIME(npoly logn), these problem are hard to approximate within a 2log1−ε n for any constant
ε > 0 [15]. Moreover, assuming a stronger (but still plausible) assumption, these problems are hard
to approximate to within a factor of nε for some ε > 0 [14].

Motivated by various types of assumptions, the pricing problems with special structures have
been studied (e.g., when there is a price-ladder constraint [44, 1, 45, 46, 14], consideration sets are
small [6, 14] or consideration sets correspond to paths on graphs [6, 23, 31, 22, 27]). In these cases,
better approximation ratios are usually possible.

In this paper we consider the geometric structure of pricing problems arising naturally from
real-world scenarios, which turns out to be quite general. Our motivation is two-fold: We hope that
the geometric structures will lead to better approximation algorithms, and we found these problems
interesting on their own as they have connections to other pricing and geometric problems.

Our problems are motivated by the following simple observation on the consumers’ behavior.
Consider a setting where we sell cars. If a consumer has car A with horse power 130HP in her
consideration set, she would not mind buying car B with horse power 150HP. Maybe she does not
want B because it is less energy-efficient or has lower reputation. But, if we list all attributes of
the cars that people care about and it happens that B is not worse than A in all other aspects,
then B should also be in the list.
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In particular, instead of looking at a full generality where each consumer C considers any set of
items SC, it is reasonable to assume that each consumer has some criterion in mind for each attribute
of the cars, and her consideration set consists of any car that passes all her criteria, i.e. consumers
judge items according to their attributes. This natural assumption has been a model of study in
other fields such as marketing research, healthcare economics and urban planning. It is referred
to as the attribute-based screening process. In particular, using criteria to define consideration sets
as in Eq. (1) is called conjunctive screening rule. Besides being natural, this assumption has been
supported by a number of studies where it is concluded that consumers typically use a conjunctive
screening rule in obtaining their consideration sets (see further detail in Section 1.2).

It is also interesting that d-SMP captures many previously studied problems as special cases.
For example, 2-SMP generalizes the highway pricing problem [32, 6, 23, 31] and thus our algorithmic
results on 2-SMP can immediately be applied to this problem. Moreover, 3-SMP generalizes the
upward case of the tollbooth pricing problem [22, 40] as well as the graph vertex pricing problem
on planar graphs [6, 16]. 4-SMP generalizes the unlimited-supply version of the exhibition problem
[19], the graph vertex pricing problem on bipartite graphs [6, 39], and the “rectangle version” of
the unique coverage problem (UC) [20], which are the geometric variants of UC studied recently
in [24, 37].

Moreover, SMP is a special case of the maximum feasible subsystem with 0/1 coefficients problem
(Mrfs) [22]. Elbassioni et al. [22] showed that a very special geometric version of Mrfs (the
“interval version”) admits much better approximation ratios than the general one. A geometric
Mrfs can be seen as a special case of “2-Mrfs” in our terminologies, and it is thus interesting
whether “d-Mrfs” is easier than general Mrfs for other values of d. Our geometric SMP is a
special case of d-Mrfs. Thus, solving d-SMP serves as the first step towards solving d-Mrfs.

1.1 Our Results and Techniques

We show that geometric structures lead to breaking the linear-approximation barrier: While the
pricing problems are likely to be hard to approximate within a factor of n1−ε in the general cases,
we obtain an o(n)-approximation algorithms in the geometric setting, as follows.

Theorem 1.1. For any d > 0, there is an Õd
(
n1−ε(d)

)
-approximation algorithm for d-UUDP-MIN

and d-SMP where function ε(d) := 1
4d−1 and Õd treats d as a constant and hides a polylog(n) factor.

The essential idea behind our algorithm is to partition the problem instance into sub-instances
without decreasing the optimal revenue (we call this consideration-preserving decomposition). This
is done by using Dilworth’s Theorem (partitioning items into chains and anti-chains) and epsilon-
nets to find subsets of items satisfying certain structural properties. Subsequently, we show that the
dimensions of these sub-instances can be reduced through the notion of consideration-preserving
embedding. In the end of our algorithm, we are left with a sub-linear number of sub-instances, each
of which can be solved almost optimally in polynomial time. Returning the best solution among
the solutions of these sub-instances guarantees a sub-linear approximation ratio.

The spirit of our technique is in some sense in a similar flavor to Chan’s algorithm [17]
which computes a conflict-free coloring of d-dimensional points (w.r.t. rectangle ranges) using

O(n1−0.632/(2d−3−0.368)) colors. In particular, in the 2-dimensional cases of both our geometric pric-
ing and Chan’s conflict-free coloring problems, the upper bounds of O(

√
n) can be obtained by a

simple application of Dilworth’s theorem (Ajwani et al. [3] obtained a better bound in this case for
the latter problem). However, the techniques of the two results are different in higher dimensions.
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Problem d = 1 d = 2 d = 3 d = 4 large d {range }

d-UUDP-MIN
Upper bound Polytime QPTAS n

1− 1
4d−1 {constant d}

Lower bound NP-hard APX-hard d
1
4
−ε {d = ω(logn)}

d-SMP
Upper bound Polytime QPTAS n

1− 1
4d−1 {constant d}

Lower bound NP-hard APX-hard d
1
4
−ε {d = ω(logn)}

Table 1: Results of d-UUDP-MIN and d-SMP for small values of d.

QPTASs We also obtain QPTASs for 2-UUDP-MIN and 2-SMP. We present this in Appendix B
and C. These results, together with a widely-believed assumption that the existence of a QPTAS
for any problem implies that PTAS exists for the same problem (e.g., [9, 23]), imply that the value
of ε(d) in Theorem 1.1 could be improved slightly to 1/4d−2. As a by-product of these results, we
show a QPTAS for 2-SMP which subsumes the previous QPTAS for highway pricing [23].

Hardness We also study the hardness of approximation of our problems. We show that 3-UUDP-
MIN and 2-SMP are NP-hard, and 4-UUDP-MIN and 4-SMP are APX-hard. Hence, our problem
is already non-trivial for small d. Our hardness proofs establish a cute connection between our
problem and the vertex cover problem on graphs of low order dimensions [47, 48]. Moreover, we
show that the hardness of our problem tends to increase as we increase d, and the whole generality
is captured when d = n. In particular, we show that when the dimension is sufficiently high (i.e.
d ≥ log2 n), the problems are hard to approximate to within a factor of d1/4−ε for any ε > 0.
Table 1 concludes our results for d-UUDP-MIN and d-SMP.

1.2 Related Work

Rusmevichientong et al. [44, 45, 46] defined the non-parametric multi-product pricing problem, mo-
tivated by the possibility that the data about consumers’ preferences and budgets can be predicted
based on previous data, which can be gathered and mined by web sites designed for this purpose,
e.g., [33, 46]. This problem is what we call uniform-budget unit-demand pricing problem (UUDP).
Rusmevichientong et al. proposed many decision rules such as min-buying, max-buying and rank-
buying and showed that UUDP-MIN allows a polynomial-time algorithm, assuming the price-ladder
constraint, i.e., a predefined total order on the prices of all products. Aggarwal et al. [1] later showed
that the price ladder constraint also leads to a 4-approximation algorithm for the max-buying case,
even in the case of limited supply.

We note that the price ladder constraint is closely related to our notion of attributes in the
following sense. It can be shown that 1-UUDP-MIN satisfies the price ladder constraint (this is the
reason we can solve it in polynomial time). Moreover, although 2-UUDP-MIN does not satisfy this
constraint, it partially satisfies the constraint in the sense that if one item is better than another
item in all attributes then we can assume that it has a higher price. This property plays an
important role in obtaining QPTAS for 2-UUDP-MIN and also holds for general d.

Other variants defined later include non-uniform and utility-maximizing unit-demand, single-
minded (SMP), tollbooth and highway models [1, 32]. These problems were later found to have
important connections to algorithmic mechanism design [2, 7, 32] and online pricing problems [6, 13].
As we mentioned in the introduction, many problems can be approximated within the factor of
O(logm+ log n) and O(n), and these seem to be tight.

The observation that consumers make decisions based on attributes has been used in other areas
outside computer science. For example, most pricing models are captured by the two-stage consider-
then-choose model (e.g., [29, 42, 43, 30, 33, 38, 34, 41]) in marketing research: Each consumer first
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screens out some undesirable items (screening process) and is left with the consideration set which is
used to make a final decision. Pricing problems such as UUDP-MIN are the case where consideration
sets are arbitrary (as defined in, e.g. [50, 35]) while the final decision is simplified to, e.g., buying
the cheapest item.

The idea of using the consideration sets defined from attributes is called attribute-based screening
process [30] in marketing research where it was shown to be a rational choice for trading off between
accuracy and cognitive effort [10, 11, 12, 51]. Our model is equivalent to the attribute-based
screening process with conjunctive screening rules (e.g., [30, 41]). This type of rules was justified
by many studies that it is what consumers typically use when making decisions (e.g., [10, 30, 34]).

2 Sub-linear Approximation Algorithm (Proof of Theorem 1.1)

To simplify the presentation, we present the algorithm for d-UUDP-MIN in this section. The
algorithm for d-SMP is almost identical. Let C and I be the set of points in Rd, where every
consumer C ∈ C has budget BC and consideration set SC which is specified by coordinates of
the input point. For any subset C′ ⊆ C and I ′ ⊆ I, let P(C′, I ′) be the d-UUDP-MIN problem
with input C′ and I ′. Moreover, for any C′ and I ′, we use OPT(C′, I ′) to express the optimal
revenue of the instance (C′, I ′). At a high level, our algorithm proceeds in an inductive manner
and obtains a solution of d-UUDP-MIN problem by invoking the algorithms for (d− 1)-UUDP-MIN
and 1-UUDP-MIN as a subroutine. Our result is summarized in the following theorem.

Theorem 2.1. For any ε ∈ (0, 1], if there is an Õd(n
1−ε)-approximation algorithm for (d − 1)-

UUDP-MIN then there is an Õd(n
1−ε/4)-approximation algorithm for d-UUDP-MIN as well.

Theorem 1.1 then follows from the fact that 1-UUDP-MIN can be solved optimally in polynomial
time (see Appendix A.5). As we noted earlier, it can be improved slightly since 2-UUDP-MIN admits
QPTAS (see Appendix B).

2.1 Consideration-preserving Decomposition

Our algorithm partitions the input instance into many subinstances and tries to collect the profit
from some of them. The notion of consideration-preserving decomposition, defined below, allows
us to do so without losing revenue.

Definition 2.2. We call a collection {(C′1, I ′1), . . . , (C′k, I ′k)} a consideration-preserving decomposi-
tion of the problem (C, I) if and only if for any C ∈ C and I ∈ SC, there exists (not necessarily
unique) i such that C ∈ C′i and I ∈ I ′i.

By definition, for any consumer C and item I the fact that consumer C considers item I is
preserved by at least one instance (C′i, I ′i). The following lemma says that this decomposition
preserves the total revenue.

Lemma 2.3. For any consideration-preserving decomposition {(C′1, I ′1), . . . , (C′k, I ′k)} of (C, I), it

holds that
∑k

i=1 OPT(C′i, I ′i) ≥ OPT(C, I) . Moreover, any price function for P(C′i, I ′i) can be ex-
tended to a price function for the original problem P(C, I) that gives revenue at least OPT(C′i, I ′i).

This is simply by applying the optimal price function of one problem to the other (see Ap-
pendix A.1 for the full proof). In the rest of our discussion, we mainly use two different types of
consideration-preservation decomposition, as explained in the following observation.
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Observation 2.4. Given an input instance (C′, I ′), let C′ =
⋃k
i=1 C′i. Then {(C′1, I ′), . . ., (C′k, I ′)}

is a consideration-preserving decomposition of (C′, I ′). Similarly, if I ′ =
⋃k
i=1 I ′i, then we have that

{(C′, I ′1), . . . , (C′, I ′k)} is a consideration-preserving decomposition of (C′, I ′).

2.2 Algorithm

𝐶, 𝐼  

𝐶, 𝐵1  … (𝐶, 𝐵𝑡) 𝐶, 𝐴1  … 𝐶, 𝐴𝑖 … (𝐶, 𝐴𝑠) 

𝐶1, 𝐴𝑖  𝐶2, 𝐴𝑖  

𝐶𝐼1
, 𝐴𝑖 … 𝐶𝐼∗ , 𝐴𝑖 … (𝐶𝐼 𝐻

, 𝐴𝑖) 

∀𝐼 ∈ 𝐻 (hitting set) 
𝐻 = 𝑂(𝑛2𝜖) 

𝑑-dimensional 

(𝑑 − 1)-dimensional 

𝑛1−2𝜖/4-approximation 
(Balcan-Blum’s algorithm) 

1-dimensional 

𝐶𝐼∗ , 𝐴𝑖
1 … 𝐶𝐼∗ , 𝐴𝑖

𝑑  

Step 1 

Step 2 

Step 3 

Step 4 

Figure 2: Decomposition overview

At a high level, the algorithm proceeds in four
steps where each step involves consideration-
preserving decomposition (see Fig. 2 for an
overview). In Step 1, we partition I into dif-
ferent subsets where every subset satisfies cer-
tain properties, i.e. the elements in each subset
either form a chain or an antichain. The prob-
lem on those subsets in which elements form a
chain can be solved easily, and we deal with
the antichains in later steps. In Step 2, we
partition consumers in C into two types, those
with large and small consideration sets. We use
the algorithm of [6, 14] to deal with consumers
with small consideration sets and handle the
rest consumers in later steps. In Step 3, we find a subset of items, i.e. a “hitting set”, and
partition consumers further into several sets. Each set of consumers has the following property:
There is some item desired by all consumers in the set. Using this property, we show in Step 4 that
the problem can be further partitioned into a few problems where each of them can be viewed as
a (d− 1)-UUDP-MIN problem. (We call this a “consideration-preserving embedding”.)

Step 1: Partitioning items into chains and antichains Let (C, I) be an input of d-UUDP-
MIN. First we define a partially ordered set (I,≤) on the item set as follows. We say that I1 ≤ I2

if and only if I1 has a lower quality than I2 in every attribute, i.e. I1[d′] ≤ I2[d′] for all d′ ∈ [d].
We say that a subset I ′ ⊆ I is a chain if I ′ can be written as I ′ = {I1, . . . , Iz} such that Ij ≤ Ij+1

for all j ∈ [z − 1]. We say that I ′ ⊆ I is an antichain if and only if for any pair of items I, I′ ∈ I ′,
neither I ≤ I′ nor I′ ≤ I.

Lemma 2.5. For any ε > 0 and any s = nε/4, t = n1−ε/4, we can partition I into A1, . . . , As and
B1, . . . , Bt in polynomial-time. Moreover, each Ai is an antichain and each Bj is a chain.

Proof Idea. (See Section A.2 for detailed definitions and proofs.) By Dilworth’s theorem [21, 26],
the minimum chain decomposition equals to the maximum antichain size. We will use the fact that
both minimum chain decomposition and maximum-size antichain can be computed in polynomial
time as follows: As long as the maximum-size antichain is bigger than nε/4, we repeatedly extract
such an antichain out of the input; otherwise, we would have the decomposition into at most nε/4

chains, so we stop.

By Observation 2.4, the collection {(C, A1), . . . , (C, As), (C, B1), . . . , (C, Bt)} is a consideration-
preserving decomposition of (C, I). It follows by Lemma 2.3 that

∑s
i=1 OPT(C, Ai)+

∑t
j=1 OPT(C, Bj) ≥

OPT(C, I). Further, observe that if there exists j such that OPT(C, Bj) ≥ OPT(C, I)/(2n1−ε/4),
then we would be done: the d-UUDP-MIN problem P(C, Bj) can be seen as a 1-UUDP-MIN problem
(since Bj is a chain) and hence can be solved optimally! (See Lemma 2.11 for detailed anal-
ysis) Otherwise OPT(C, Bj) ≤ OPT(C, I)/(2n1−ε/4) for every j. Therefore

∑t
j=1 OPT(C, Bj) ≤
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n1−ε/4 · OPT(C, I)/(2n1−ε/4) < OPT(C, I)/2. If this is not the case then we know that there must
be an antichain Ai such that OPT(C, Ai) ≥ OPT(C, I)/2nε/4 .

x 

x 

x 

x 

x 

x 

x 

x 

x = Items 
= Consumers 

x 

x 

x 

x 

Antichain 
(Proceed to Step 2) 

x 

x 

x 

x 

Chain 
(Solvable in polynomial time) 

Figure 3: Example of Step 1

Step 2: Dealing with small consider-
ation sets For simplicity, let us assume
that we know i such that OPT(C, Ai) ≥
OPT(C, I)/(2nε/4). Now we focus on collect-
ing revenue from the subproblem P(C, Ai). Let
C1 ⊆ C be the set of consumers who are in-
terested in at most n1−2ε/4 items in Ai, i.e.
C1 =

{
C ∈ C : |SC ∩Ai| ≤ n1−2ε/4

}
, and define

C2 = C\C1. Since {(C1, Ai), (C2, Ai)} is a consideration-preserving decomposition of (C, Ai), we have

OPT(C1, Ai)+OPT(C2, Ai) ≥ OPT(C, Ai) ≥ OPT(C,I)

2nε/4
. Now we need an algorithm of [6, 14]. Balcan

and Blum give an approximation algorithm for SMP whose approximation guarantee depends on
the sizes of consideration sets. Briest and Krysta, by using a slight modification of this algorithm,
give an approximation algorithm with the same guarantee for UDP-MIN. Their result, stated in
terms of UUDP-MIN, is summarized in the following theorem. (For completeness, we provide the
proof in Appendix A.3.)

Theorem 2.6. [6, 14] Given a UUDP-MIN instance (C, I, {SC}C∈C), there is a deterministic O(k)-
approximation algorithm of UUDP-MIN, where k := maxC∈C |SC|.

We remark that we extend this technique to deal with any pricing problem with subadditive
revenue in the full version of this paper.

If OPT(C1, Ai) ≥ OPT(C, I)/(4nε/4), then we could invoke the algorithm in Theorem 2.6 on
(C1, Ai) to get a solution with approximation ratio O (maxC∈C1 |SC ∩Ai|) = O(n1−2ε/4). This yields
a solution that gives a desired revenue of Ω

(
OPT(C1, Ai)/n

1−2ε/4
)

= Ω
(
OPT(C, I)/n1−ε/4) . Oth-

erwise we have OPT(C1, Ai) < OPT(C, I)/4nε/4. Then OPT(C2, Ai) = Ω
(
OPT(C, I)/nε/4

)
. We will

deal with this case in the next steps.

Step 3: Partitioning consumers using a small hitting set First, we apply the epsilon net
theorem [18, 36] to derive the following lemma.

Lemma 2.7. We can find a set H ⊆ Ai of size Õ(n2ε) in randomized polynomial time such that
for any C ∈ C2, there exists I ∈ H such that I ≥ C.

Proof. The instance (C2, Ai) defines a set system {SC}C∈C2 over Ai, where SC = {I ∈ Ai | I ≥ C}.
We note that each set SC has descriptive complexity at most d, i.e. set SC can be described by d
linear inequalities of the form SC =

⋂d
d′=1 {I ∈ I : I[d′] ≥ C[d′]}. In this case, this set system has

VC dimension O(d), c.f. [49]. More specifically, it is well known (e.g., [5]) that any collection of d-
dimensional axis-parallel boxes has VC dimension O(d). We will not formally define VC-dimension
here. The following theorem is all we need.

Theorem 2.8. ([18, 36]; Epsilon net theorem) Let X be a set system of VC-dimension at most d′

over N . Then for any δ ∈ (0, 1), we can find a set H ⊆ N with |H| = O(d
′

δ log d′

δ ) in randomized
polynomial time such that, for all Xi ∈ X with |Xi| ≥ δ |N |, it holds that H ∩Xi 6= ∅.

Using the theorem with δ = n−2ε/4, we can find a set H ⊆ Ai of size at most Õ(n2ε/4), and
since we have |SC ∩Ai| ≥ δn for all C ∈ C2, we are guaranteed that H ∩SC 6= ∅ for all C ∈ C2.
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Figure 4: (a) Example of Step 4. (b) Example of Step 4 when we view the instance CI∗ , Aji as a (d− 1)-UUDP-MIN
instance.

We call H a hitting set of C2 since H intersects SC for all C ∈ C2. We use H to decompose
(C2, Ai) into a small number of subproblems and show in Step 4 that each of these problems can
be viewed as a (d− 1)-UUDP-MIN problem.

For each I ∈ H, let CI = {C ∈ C2 | I ∈ SC}, i.e., CI consists of all consumers in C2 that consider
item I. Observe that

⋃
I∈H CI = C2, and therefore by Lemma 2.3, we have

∑
I∈H OPT(CI, Ai) ≥

OPT(C2, Ai) ≥ Ω
(
OPT(C, I)/nε/4

)
. Since |H| = O(n2ε/4), there exists I∗ ∈ H such that

OPT(CI∗ , Ai) = Ω̃
(
OPT(C, I) · n−ε/4/|H|

)
= Ω̃

(
OPT(C, I)/n3ε/4

)
.

Now we, again, assume that we know I∗ and turn our focus to the subproblem P(CI∗ , Ai).
Step 4: Reducing the dimension We have now reached the most crucial step. We will (cru-
cially) rely on the fact that all consumers in CI∗ consider item I∗, and that Ai is an antichain. For
each j ≤ d, define Aji as the set of items in Ai that are at least as good as I∗ in the j-th coordinate,

i.e., Aji = {I ∈ Ai | I[j] ≥ I∗[j]}. See Fig. 4(a) for an example in the case of 2-UUDP-MIN.

Lemma 2.9. Ai =
⋃d
j=1A

j
i .

This lemma holds simply because Ai is an antichain (in any antichain, no item can completely
dominate the others, so at least one coordinate of any I ∈ II∗ has to be at least as good as I∗;
see detailed proof in Appendix A.4). Then {(CI∗ , A1

i ), . . . , (CI∗ , Adi )} is a consideration-preserving

decomposition of (CI∗ , Ai) and thus there exists j such that OPT(CI∗ , Aji ) ≥ OPT(CI∗ , Ai)/d =

Ω̃d(OPT(C, I)/n3ε/4). Observe that, for all C ∈ CI∗ and I ∈ Aji , C[j] ≤ I∗[j] ≤ I[j]. This implies

that we can ignore the j-th coordinate when we solve P(CI∗ , Aji ). (In particular, for any C ∈ CI∗ , the

consideration set SC =
{

I ≥ C | I ∈ Aji
}

remains the same even when we drop the j-th coordinate

of all points.) In other words, the problem can be viewed as a (d − 1)-UUDP-MIN problem (see
Fig. 4(b) for an idea). We defer the formal statement and proof of this claim to Section 2.3. Finally,
we can invoke the Õd(n

1−ε)-approximation algorithm for (d− 1)-UUDP-MIN to collect the revenue
of Ω̃d

(
OPT(C, I)n−3ε/4/n1−ε) = Ω̃d

(
OPT(C, I)/n1−ε/4) . Therefore we obtain an approximation

ratio of Õd(n
1−ε/4) in all cases. Algorithm 1 summaries our algorithm for solving d-UUDP-MIN.

2.3 Consideration-preserving Embedding

To formally discuss the reduction of dimensions, we introduce the notion of consideration-preserving
embedding. For any d, let (C, I) be any instance of d-UUDP-MIN. For any d′, consider one-to-one
functions f and g that map points in Rd to the ones in Rd′ . We say that (f, g) is a consideration-
preserving embedding if, for any item I ∈ I and consumer C ∈ C, we have that I ≥ C if and only
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Algorithm 1 UUDP-MIN-APPROX(d)

1: if d = 1 then
2: Solve the problem P(C, I) optimally using an algorithm for 1-UUDP-MIN (cf. Appendix A.5)
3: else
4: Partition I into antichains A1, . . . , As and chains B1, . . . , Bt where s ≤ nε/4 and t ≤ n1−ε/4 as in Step 1.
5: We claim that the problems P(C, B1), . . . ,P(C, Bt) are equivalent to 1-UUDP-MIN problems (cf. Section A.2).

Solve them optimally using an algorithm for 1-UUDP-MIN (cf. Appendix A.5).
6: for i = 1, . . . , s do
7: Partition C into C1 and C2 as in Step 2. Find an O(maxC∈C1 |SC ∩Ai|)=O(n1−2ε/4) approximate solution

of problem P(C1, Ai).
8: Find a hitting set H of (C2, Ai) as in Step 3
9: for each I ∈ H do

10: Define CI as in Step 3
11: Define A1

i , . . . , A
d
i as in Step 4

12: Solve problem P(CI, A1
i ), . . . ,P(CI, Adi ) using an O(n1−ε)-approximation algorithm for (d−1)-UUDP-MIN

13: end for
14: end for
15: end if
16: return the solution with highest revenue among the solutions of all solved problems

if g(I) ≥ f(C). That is, the fact that consumer C is considering or not considering item I must be
preserved in f(C) and g(I).

Given a consideration-preserving embedding (f, g), we can naturally define a d′-UUDP-MIN
problem P(f(C), g(I)) where f(C) = {f(C) | C ∈ C}, g(I) = {g(I) | I ∈ I} and the budget Bf(C)

is BC for any C ∈ C.
Observe that, although (C, I) and (f(C), g(I)) correspond to points on different spaces, they

represent the same pricing problem (i.e., the consumers’ consideration sets and budgets are exactly
the same). Thus, we sometimes say that (C, I) and (f(C), g(I)) are equivalent. The following
observation follows trivially.

Observation 2.10. For any instance (C, I), let (f, g) be a consideration-preserving embedding
of (C, I) into Rd′. Then we have that OPT(C, I) = OPT(f(C), g(I)). Moreover, if f and g are
polynomial-time computable then a solution for P(f(C), g(I)) can be efficiently transformed into
one for P(C, I) that gives the same revenue.

The transformation in the above lemma is trivial: For any price function p for (f(C), g(I)),
we simply price item I ∈ I to p(g(I)). Observe that we will receive the same revenue from both
problems using this pricing strategy.

In Step 1, we claimed that when the items form a chain, our instance would be equivalent to
1-UUDP-MIN. Now we prove this fact formally below.

Lemma 2.11. Let (C, I) be a d-UUDP-MIN instance where (I,≤) is a chain. Then (C, I) is equiv-
alent to a 1-UUDP-MIN instance. Moreover, the corresponding consideration-preserving embedding
(f, g) can be computed in polynomial time.

Proof. Order items in I by I1 ≤ I2 ≤ . . .. Now map each item into a one-dimensional point:
g(Ii) = (i). Moreover, map each consumer according to f(C) = g(Ii), where i is the minimum
number such that Ii ≥ C. Observe that (f, g) is a consideration-preserving embedding since
SC = {Ii, Ii+1, . . .} while Sf(C) = {g(Ii), g(Ii+1), . . .} for any C ∈ C. (Note that this embedding
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might create redundancy since it is possible that f(C) = f(C′) for some C 6= C′. This can be fixed
easily by slightly perturbing the points.)

In Step 4, we also claimed the dimension reduction of sub-instances (CI∗ , Aji ), and we now prove

the claim formally. Recall that the item I∗ ∈ Aji has the property that I∗ ≥ C for all C ∈ CI∗ and

I∗[j] ≤ I[j] for all I ∈ Aji .

Lemma 2.12. The instance (CI∗ , Aji ) is equivalent to a (d − 1)-UUDP-MIN instance. Moreover,
the corresponding consideration-preserving embedding (f, g) can be computed in polynomial time.

Proof. Consider “ignoring” the j-th coordinate as follows. For any C ∈ CI∗ and I ∈ Aji , let f(C) =
(C[1],C[2], . . . ,C[j − 1],C[j + 1], . . . ,C[d]) and g(I) = (I[1], I[2], . . . , I[j − 1], I[j + 1], . . . , I[d]).
Observe that for any C ∈ CI∗ and I ∈ Aji , I ≥ C trivially implies that g(I) ≥ f(C). Conversely,
if g(I) ≥ f(C) then I ≥ C since I[j] ≥ I∗[j] ≥ C[j]. Thus, (f, g) is a consideration-preserving
embedding.

3 Hardness

We provide hardness results in both scenarios when the number of attributes d is small and when
d is large. We sketch our results here. More details can be found in Appendix D.

Few attributes First we discuss the NP-hardness of 3-UUDP-MIN and APX-hardness of 4-UUDP-
MIN. These hardness results hold even when the consumer budgets are either 1 or 2. We perform a
reduction from Vertex Cover [28, 4], essentially using the same ideas as in [32], except for the fact
that we use Schnyder’s result [47, 48] to “embed” the instance into posets of low order dimensions.

First, let us recall the reduction in [32]. We start from a graph G = (V,E), which is an
input instance of Vertex Cover. We create two types of consumers: (i) poor consumer Ce for each
edge e with budget 1 and (ii) rich consumer Cv for each vertex v with budget 2. The items are
I = {Iv : v ∈ V }. Each poor consumer Ce has a consideration set containing two items Iu and
Iv where e = (u, v) and each rich consumer Cv considers only one item Iv. Using the analysis
essentially the same as [32], one can show that the problem is NP-hard if we start from Vertex
Cover on planar graphs and APX-hard if we start from Vertex Cover on cubic graphs.

Therefore, it only remains to map consumers and items to points in Rd≥0 (where d = 3, 4)
such that for each consumer C, the set of items that pass her criteria (i.e., {I ∈ I | I[i] ≥
C[i] for all 1 ≤ i ≤ d}) is exactly her consideration set. The main idea is to first embed the
problem into an adjacency poset of the input graph. Then, we invoke Schnyder’s theorem [47, 48]
to again embed this poset into a Euclidean space.

An adjacency poset of a graph can be constructed as follows. First we construct a 2-layer poset
with minimal elements in the first layer and maximal elements in the second layer. For each edge
e ∈ E, we have a minimal element in the poset corresponding to e (for convenience, we also denote
the poset element by e). For each vertex v ∈ V , we have a maximal poset element corresponding
to v. There is a relation e � v if and only if vertex v is an endpoint of e.

The last task is to “embed” poset elements into points in the Euclidean space in such a way
that, for any poset elements e1 and e2, e1 � e2 if and only if qe1 [i] ≥ qe2 [i] for all i where qe1 and qe2
are points that e1 and e2 are mapped to, respectively. If we can do this, we would be done, simply
by defining the coordinates of each consumer Ce to be qe, and the coordinates of each consumer
Cv to be qv. Similarly, we define the coordinates of each item Iv as qv. In order to obtain such
an embedding, we use part of Schnyder’s theorem [47] which states that any planar graph has an
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adjacency poset of dimension three, and any 4-colorable graph (including cubic graphs) has an
adjacency poset of dimension four. Moreover, embedding these graphs into Euclidean spaces can
be done in polynomial time [48].

Finally we note that 2-SMP is strongly NP-hard and 4-SMP is APX-hard. The proof follows
from the fact that these problems generalize Highway pricing and graph vertex pricing on bipartite
graphs, respectively, and can be found in the full version.

Many attributes We establish a connection between the UUDP-MIN with bounded-size consider-
ation sets and our problem. This connection immediately implies hardness results for d-UUDP-MIN
when d is at least poly-logarithmic in n. Our main result in this section is the following:

Theorem 3.1. (Informal) Let A = (C, I, {SC}C∈C) be an instance of UUDP-MIN where B =
maxC∈C |SC|. We can (with high probability of success) create an instance A′ = (C′, I ′) of d-UUDP-
MIN, where d = O(B2 log n), that is “equivalent” to A.

In other words, the above theorem shows that any UUDP-MIN instance with consideration sets
of size bounded by B, can be realized by a d-UUDP-MIN instance for d = O(B2 log n). Combining
this with the result in [15], we have a hardness of Ω(d1/4−ε) for any ε > 0.

We remark that our reduction here in fact works independently of the decision model, so this
result works for SMP and UDP-Util as well.

4 Open Problems

Several interesting problems are open. The most important problem is whether we can obtain
better approximation factors for d-UUDP-MIN and d-SMP. We tend to believe that there is an
f(d)-approximation algorithm for d-UUDP-MIN and d-SMP where f(d) is a function that depends
on d only. However, it seems to be a very challenging task to obtain approximation ratio like
logO(d) n or Od(log1−ε(d)m), for some constant ε(d) > 0 depending on d.

One promising direction in attacking the above problems is to improve Theorem 2.1, e.g., getting
Od(ρ · polylog(n)) for d-UUDP-MIN using a ρ-approximation algorithm of (d− 1)-UUDP-MIN as a
blackbox. A positive resolution to this problem would imply (logO(d) n)-approximation algorithm
for d-UUDP-MIN. We believe that, even resolving this problem would require some new insights on
geometric and poset structures.

There are two special cases that can be thought of as barriers in dealing with standard versions
of SMP and UUDP-MIN, and we believe that these two special cases serve as good starting points
in attacking our problems. The first problem is the geometric version of the Maximum Expanding
Subsequence (Mes) problem which is the key problem to show the hardness of UUDP-MIN [14]. The
second problem is the Unique Coverage problem [20] when the sets have constant VC-dimension.
Another interesting problem is to obtain PTASs for 2-UUDP-MIN and 2-SMP (e.g., by extending
the techniques in [31]).
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Appendix

A Proof Omitted from Section 2

A.1 Proof of Lemma 2.3

Let p∗ be the optimal price function for P(C, I). For each i = 1, . . . , k, we define p∗i : I ′i → R by

p∗i (I) = p∗(I) if I ∈ I ′i, and p∗i (I) =∞ otherwise.

Let ri be the total revenue made by p∗i in P(C′i, I ′i). We argue below that

k∑
i=1

ri ≥ OPT(C, I). (2)

Let C∗ ⊆ C be the set of consumers who make a positive payment with respect to p∗. For each
consumer C ∈ C∗, denote by ϕ(C) ∈ I the item that consumer C buys with respect to the price
p∗. So we can write OPT(C, I) as

OPT(C, I) =
∑
C∈C∗

p∗(ϕ(C)). (3)

For each i = 1, . . . , k, let C∗i ⊆ C′i be the set of consumers C ∈ C′i such that ϕ(C) ∈ I ′i. That is, C∗i
is a set of consumers whose item she bought in OPT(C, I) is in I ′i. Notice that

ri ≥
∑
C∈C∗i

p∗(ϕ(C)). (4)

Since {(C′i, I ′i)}
k
i=1 is a consideration-preserving decomposition, we have that

k⋃
i=1

C∗i ⊇ C∗, (5)

since for any C ∈ C∗, we must have ϕ(C) ∈ Ii for some i. By summing Eq.(4) over all i = 1, . . . , k,
we have

k∑
i=1

ri ≥
k∑
i=1

∑
C∈C∗i

p∗(ϕ(C)) (by Eq.(4))

≥
∑
C∈C∗

p∗(ϕ(C)) (by Eq.(5))

= OPT(C, I) (by Eq.(3))

This proves Eq.(2) and thus the first claim.
Now suppose we have a price p′ : Ii → R that collects revenue r′ in P(C′i, I ′i). We define a

function p : I → R by p(I) = p′(I) for I ∈ I ′i and p(I) = ∞ otherwise. We can use p′ to obtain a
revenue of r′ from P(C, I). This proves the second claim.
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A.2 Decomposing items into small number of chains and antichains

We will use the following theorem, first proved by Dilworth [21], and its polynomial computability
follows from the equivalence between Dilworth’s theorem and König’s theorem [26].

Theorem A.1. Let (S,≤) be a partially ordered set, and Z be the maximum number of elements
in any antichain of S. Then there is a polynomial-time algorithm that produces a partition of S
into Z chains S1, . . . , SZ .

We now use the theorem to prove Lemma 2.5.

of Lemma 2.5. Initially, let i = 1. In iteration i, we check if the size of maximum antichain in I is
at least t = n1−ε/4. If so, we find the maximum antichain Ai, update I = I \Ai, and proceed to the
next iteration; otherwise, we stop the iterations. Notice that the number of iterations is at most
s = nε/4, and when the iteration stops, the size of maximum-size antichain is at most t ≤ n1−ε/4.
We apply the above theorem to compute a decomposition of I into t chains, denoted by B1, . . . , Bt.
This concludes the proof of Lemma 2.5.

A.3 Proof of Balcan-Blum Theorem for UUDP-MIN (cf. Theorem 2.6)

We first explain a randomized algorithm, and then we discuss how to derandomize it. This part
is essentially the same as [6, 14]. First, we randomly construct a set I∗ ⊆ I ′ where each item I is
independently added to I∗ with probability 1/k (recall that k = maxC∈C |SC|). Then let C∗ be a
set of consumer C such that |SC ∩ I∗| = 1 (i.e. consumers who care about exactly one item in I∗).
We show that the problem P(C∗, I∗) has expected revenue at least Ω(OPT(C, I)/k).

Let p be the optimal price function for (C, I) and ϕ : C → I ∪{⊥} be a function that maps each
consumer to the item she buys with respect to p (let ϕ(C) =⊥ if consumer C buys nothing and
p(⊥) = 0). Therefore, we have that OPT(C, I) =

∑
C p(ϕ(C)). We denote by p∗ the price function

p restricted to I∗. For each C, if C ∈ C∗ and ϕ(C) ∈ I∗, the revenue created by p∗ in (C∗, I∗)
would be at least p(ϕ(C)). Therefore,

E [OPT(C∗, I∗)] ≥
∑
C∈C

Pr[ϕ(C) ∈ I∗ and C ∈ C∗]× p(ϕ(C)) .

Notice that, for any C ∈ C and I ∈ SC,

Pr[I ∈ I∗ and C ∈ C∗] ≥ 1

k

(
1− 1

k

)k−1

≥ 1

ke
,

which implies that E [OPT(C∗, I∗)] ≥ 1
ke · OPT(C, I).

Derandomization: First, note that we can assume that k = O(logm + log n). Otherwise,
we can use the result of [1, 32, 8] (see [8, Section 4] for the result in a general setting) to obtain
O(logm+ log n) approximation algorithm for UUDP-MIN, which will also be O(k)-approximation.

Now, assuming that k = O(logm+ log n), we follow the argument of Balcan and Blum [6]. In
particular, we observe that we need only k-wise independence among the events of the form “I ∈ I∗
and C ∈ C∗”, for any I and C, in order to get the above expectation result. In this case, we can use
the tools from Even et al [25] to derandomize the above algorithm while blowing up the running
time by a factor of 2O(k) = poly(m,n). For more details, we refer the readers to [6].
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A.4 Proof of Lemma 2.9

Recall that each Ai is an antichain, i.e., for any distinct I1, I2 ∈ Ai, there exists 1 ≤ d1, d2 ≤ d such
that I1[d1] < I2[d1] and I1[d2] > I2[d2]. In particular, if I1 = I∗, then we have that for any I ∈ Ai,
there exists coordinate j such that I[j] ≥ I∗. This means that I ∈ Aji . The lemma follows.

A.5 Polynomial-Time Algorithm for 1-UUDP-MIN

We provide a polynomial-time algorithm for solving 1-UUDP-MIN. Let I1, . . . , In be a sequence of
items ordered non-increasingly by their coordinates. We can assume without loss of generality that
their coordinates are different (by slightly perturbing their values), and we say that consumer C
is at level j if her coordinate lies between Ij−1 and Ij . Notice that, for any consumer C at level j,
we have SC = {I1, . . . , Ij}.

Claim A.2. Let p∗ be an optimal price. Then we can assume that p∗(I1) ≥ p∗(I2) ≥ . . . ≥ p∗(In).

Proof. Suppose that p∗(Ii) < p∗(Ij) for some i < j. Recall that Ii ≥ Ij , so for each consumer C
such that C ≤ Ij , we know that C does not buy item Ij with respect to this solution. Thus, we
can reduce p∗(Ii) slightly, while maintaining the same revenue.

The claim will ensure that consumers at level j only buy item Ij but not any other items
in {I1, . . . , Ij−1}, and this allows us to solve the problem by dynamic programming. For each
j = 1, . . . , n, for each price P ∈ R we have a table entry T [j, P ] that keeps the maximum revenue
achievable from consumers at levels 1, . . . , j and items {I1, . . . , Ij} where the price of Ij is set to P .
Notice that it is easy to compute the profit from consumers at level j if we know p(Ij) = P . Denote
such value by γ. Then we have that T [j, P ] = γ+ maxP ′≥P T [j−1, P ′]. Finally, we note that there
are at most |C| possibilities of prices P because one can assume without loss of generality that, for
UUDP-MIN, the prices always belong to {BC}C∈C .

B QPTAS for 2-UUDP-MIN

We note that we will write O(logm) instead of O(log n + logm) since we assume that n ≤ m in
this paper. (Otherwise, we already have approximation ratio of O(logm) = O(log n).)

We explain the main idea first. The intuition can be realized by solving the following simple
case: Assume for now that we have Θ(n2) items, which form a set {(2i− 1, 2j − 1) : 1 ≤ i, j ≤ n}.
In this case it is possible to have two different consumers at the same coordinate, i.e. C = C′,
while there is exactly one item at each point (2i− 1, 2j − 1). Assume further that each consumer
has budget either 1 or 2. We show below how to solve this case in polynomial time.

Note that there is an optimal solution such that each item is priced either 1 or 2: otherwise
we could increase the price by small amount to collect more revenue. Now, for any item point
(2i− 1, 2j − 1) and any price assignment p, define

rp(i, j) := min
I[1]≥2i−1,I[2]≥2j−1

I∈I

{p(I)}

to be the minimum price among the items dominating (2i− 1, 2j − 1). This quantity immediately
tells us how much revenue we will get from consumers at point (2i− 2, 2j − 2): each consumer will
buy an item at price rp(i, j) if and only if she has budget at least rp(i, j).

By the definition of rp, we know that for any fixed value j, rp(i, j) is non-decreasing in terms
of i. In other words, for any pricing p and integer j, there exists a “threshold” γ(p, j) such that
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rp(i
′, j) = 1 for all i′ ≤ γ(p, j) and rp(i

′, j) = 2 for all i′ > γ(p, x). Additionally, for any j,
γ(p, j) ≥ γ(p, j + 1). Using these observations, we are ready to define the dynamic programming
table. The table entry T [i, j] is defined to be the maximum revenue we can get among the price
assignment p such that rp(i

′, j) = 1 for all i′ ≤ i and rp(i
′, j) = 2 for all i′ > i. The table T can be

computed as follows.

T [i, j] = max
i′≤i
{T [i′, j + 1] +m1(i′, j) + 2m2(i′, j)} (6)

where m1(i′, j) is the number of consumers of the form (2i′′ − 2, 2j − 2) for i′′ ≤ i′ with budget 1
and m2(i′, j) is the number of consumers of the form (2i′′ − 2, 2j − 2) for i′′ > i′ with budget 2.
Moreover, let T [i, n+ 1] = 0 for all i. The optimal solution is then maxi T [i, 1].

The above discussion captures almost all the key ideas for solving the general 2-UUDP-MIN
problem. To get a QPTAS in the general case, we extend these ideas in the following way.

• Consider a slight generalization when there is only one item in each column and row of grid
cells (cf. Lemma B.1) while each budget is still 1 and 2. In this case, we cannot pick arbitrary
value of i′ when we compute T [i, j] as in Eq.(6) since it might not correspond to any pricing.
Through some additional observations, table T can be computed as follows: Let Ij be the item
whose y-coordinate is j. If i = Ij [1] then we can use Eq.(6); otherwise, T [i, j] = T [i, j + 1] +
m1(i, j) + 2m2(i, j). This algorithm runs in O(n3) time.

• When there are q different budgets, say B1, B2, . . . , Bq, we can solve the problem in nO(q) time.
This is done by defining T [i1, . . . , iq−1, j] to be the maximum revenue we can get among the
price assignment p such that, for all q′ : 1 ≤ q′ ≤ q, rp(i′, j) = Bq′ for all iq′−1 < i′ ≤ iq′ (where
we let i0 = −1 and iq = n).

• Finally, we obtain a QPTAS by “discretizing” the prices so that there are not many choices of
item prices (cf. Lemma B.2). This enables us to assume that the prices are in Γ = {0, (1 +
ε)0, (1 + ε)1, ..., (1 + ε)q} where q = O(log1+εm), and we can get the algorithm running in time
nO(|Γ|) = nO(logmn).

B.1 Preprocessing

The following lemma says that we can assume the input lies on the grid where each row and column
of the grid contains exactly one item.

Lemma B.1. We are given an instance (C, I) of 2-UUDP-MIN. Then we can, in polynomial time,
transform (C, I) into an “equivalent” instance (C′, I ′) such that

• Each consumer C′ ∈ C′ has even coordinates (2i, 2j) for 0 ≤ i, j ≤ n.

• Each item I′ ∈ I ′ has odd coordinate (2i− 1, 2j − 1) for 1 ≤ i, j ≤ n.

• For each odd number 2i − 1, 1 ≤ i ≤ n, there is exactly one item I′ ∈ I ′ with I′[1] = 2i − 1
and exactly one item I′ with I′[2] = 2i− 1.

Proof. We sweep the horizontal line from top to bottom, and whenever the line meets the items
I′1, . . . , I

′
z such that I′1[1] < I′2[1] < . . . < I′z[1] with the same y-coordinate y′, we break ties as

follows. Let δ be the vertical distance from the line to the next item point below the line. We
set the new y-coordinates of these items to I′j [2] = y′ − (z − j)δ/2z. Notice that some consumers
whose y-coordinates lie in [y′, y′ − δ) get affected by this move. We also change the y-coordinates
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of those consumers to y′ − δ/2. Then we add the horizontal grid lines between the space of every
consecutive items, while making sure that consumer points are on the line passing y − δ/2. It is
easy to see that this process preserves the consideration set of every consumer. We repeat the
above steps until the sweeping line passes the bottommost item.

We do a similar sweep of vertical line from right to left, inserting the grid lines along the way.
In the end, each consumer lies on the intersection of the grid lines and each item in its cell, which
guarantees that no two items appear in the same row or column of the grid.

B.2 Detail of QPTAS for UUDP-MIN

First, we can make the following simple assumption.

Lemma B.2. We can assume that the prices are in the form (1 + ε)0, (1 + ε)1, ..., (1 + ε)q or zero
where q = O(log1+εm) by sacrificing (1 + ε) in the approximation factor.

Proof. We use the following standard arguments. Consider an optimal price p∗. For each item Ij ,
if the price is non-zero, we round down the price p∗(Ij) to the nearest scale of (1 + ε)q

′
, so the price

of each item gets decreased by at most a factor of (1 + ε). Consider a consumer C who bought Ij
with price p∗. After the rounding, she can still afford Ij , so we can still collect at least (1− ε)p∗(Ij)
from C.

Now, assuming that the optimal price p∗ has the above structure, we show how to solve the
problem in quasi-polynomial time. First, we reorder the items based on their y-coordinates in
descending order, so we have I1[2] > I2[2] > . . . > In[2]. A consumer C is said to belong to level
j if it lies between the row of Ij and that of Ij+1, so each consumer belongs to exactly one level.
Moreover, observe that a consumer C at level j is only interested in (a subset of) items in {I1, . . . , Ij}
(since Ij′ [2] < C[2] for any j′ > j). We define a subproblem Pj as the pricing problem with items
{I1, . . . , Ij} and consumers at levels 1, . . . , j. We use the dynamic programming technique to solve
this problem.

Profiles We will remember the profile for each subproblem Pj . A profile Π of Pj consists of
O(logm) item indices π1, . . . , πq ∈ {1, . . . , j}. Each value πi is supposed to tell us the index of the
item I of price (1 + ε)i with maximum value I[1]. That is, we say that a price p for Pj is consistent
with profile Π = (π1, . . . , πq) if, for each i, the item Iπi has the highest value in the first coordinate
among the items with price at most (1 + ε)i, i.e., for all i,

πi = arg max
j′
{Ij′ [1] | p(Ij′) ≤ (1 + ε)i} .

Since {Ij′ | p(Ij′) ≤ (1 + ε)i} ⊆ {Ij′ | p(Ij′) ≤ (1 + ε)i+1} for any i,

Iπ1 [1] ≤ Iπ2 [1] ≤ . . . ≤ Iπq [1] .

Observe that if two prices p′ and p′′ have the same Pj profile, then consumers at level j see no
difference between these two prices, as shown formally by the following lemma. We say that an
item Ik is a profile item for profile Π = (π1, . . . , πq) if and only if k = πq′ for some q′ ∈ [q].

Lemma B.3. Let Π be a profile for subproblem Pj, and let p be any price function for Pj that is
consistent with profile Π. Then we can assume without loss of generality that every consumer at
level j only purchases profile items.
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Proof. Suppose that a consumer C buys an item I in I with p(I) = (1 + ε)q
′

which is not a profile
item. Then consider the profile item Iπq′ , which satisfies I′[1] ≥ I[1], so we must have Iπq′ ∈ SC.
We can therefore assume that consumer C buys Iπq′ instead of I.

Let Π = (π1, . . . , πq) be a profile for Pj and Π′ = (π′1, . . . , π
′
q) be a profile for Pj−1. We say that

Π is consistent with Π′ if for any price p′ : {I1, . . . , Ij−1} → R that is consistent with Π′, we can
extend p′ to p by assigning value p(Ij) such that p is consistent with Π. Notice that consistency
between any two profiles can be checked in polynomial time by trying all q possibilities of prices.

We recall that we use p∗ to denote the optimal price.

Lemma B.4. There are profiles Π1, . . . ,Πn for P1, . . . ,Pn respectively such that for each j ∈
{1, · · · , n− 1}, Πj is consistent with Πj+1. Moreover, all such profiles are consistent with price p∗.

Proof. For each subproblem Pj , we define the profile Πj = (πj1, . . . , π
j
q) based on the price p∗ (there

is only one possible profile consistent with p∗). It is clear that Πj is always consistent with Πj+1.

Dynamic Programming Table For each j = 1, . . . , n and for each profile Π of Pj , we use a
table entry T (j,Π) to store the maximum revenue achievable among the price function for Pj that
is consistent with the profile Π. Since there are nO(logm) possibilities for the profile Π, the table
size is nO(logm). We now show the computation of the table. To compute T (j,Π), we recall that
given the profile Π, the revenue from consumers at level j can be computed efficiently. Denote such
revenue by rj(Π). The following equation holds:

T (j,Π) = rj(Π) + max
Π′ consistent with Π

T (j − 1,Π′)

Computing the Solution For each table entry T (j,Π), we can keep track of the profile Π′ such
that T (j−1,Π′) is the entry that is used to compute T (j,Π). Let T (n,Π) be the entry that contains
the maximum value over all Π. The value in this entry represents the revenue we can get from the
optimal pricing p∗, so it is enough to reconstruct the price function p∗. We first obtain a sequence
of profiles Π1, . . . ,Πn = Π such that Πj is a profile for Pj and that Πj is consistent with Πj−1 for
any j = 1, . . . , n. This sequence allows us to reconstruct a price function that is consistent with all
the profiles in polynomial time.

C QPTAS for 2-SMP

In this section, we show that QPTAS for 2-SMP.

C.1 Overview

We sketch the key ideas here and leave the details in next sections. First, consider the special case
where each consumer has budget 1 or 2 and each item must be priced either 0 or 1. The exact
optimal solution of this case can be found in nO(log2mn) time. We later show how to extend the
idea to the general cases, which turns out to be easy for the case of highway problem but need a
few more ideas for the case of 2-SMP.

Algorithm for highway pricing problem reviewed: Let us first start with the highway
pricing problem which can be casted as a special case of 2-SMP where items are in the form
(1, n), (2, n − 1), . . . , (n, 1). The main idea used in [23], casted in our language of “partition tree”
(for convenience in explaining our 2-SMP algorithm later) is the following.

We first construct a balanced binary tree called a partition tree and denoted by T . We define the
vertical gridline in the middle to be a level-0 line, denoted by `r, dividing the items equally to left
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Figure 5: A partition tree

and right sides. This line corresponds to the root node r of the tree. We also assign the consumers
whose consideration set contains items on both sides to the root node. Then we recursively define
the subtrees on the subproblems on the two sides of line `r as shown in Figure 5 until we reach the
subproblem containing only one item. For any node v ∈ T , let Cv be the set of consumers assigned
to v, and `v be the line associated with node v.

Now we show a top-down recursive algorithm to solve this problem. This algorithm can be con-
verted to a dynamic program by working bottom-up instead. At the root node r of T , we would like
to compute fr(IL,1, IL,2, IL,3, IR,1, IR,2, IR,3) which is defined to be the optimal revenue that we can
collect from consumers in C \Cr when we price the items in such a way that IL,1, IL,2 and IL,3 (IR,1,
IR,2 and IR,3, respectively) are the first, second, and third closest items on the left (respectively,
right) of `r that have price 1. To avoid long notation, let us denote {IL,1, IL,2, IL,3, IR,1, IR,2, IR,3}
by Γr and fr(IL,1, IL,2, IL,3, IR,1, IR,2, IR,3) by fr(Γr). If we can compute fr(Γr) for all Γr then the
optimal revenue can be obtained via the following formula.

Optimal revenue = max
Γr

fr(Γr) +m1(Γr) + 2m2(Γr) (7)

where, for any node v, m1(Γv) is the number of consumers in Cv whose consideration sets contain
exactly one item in Γv, and m2(Γv) is the number of consumers in Cv with budget 2 whose consid-
eration sets contain exactly two items in Γv. The point is that we can calculate the revenue from
consumers in Cr as m1(Γr) + 2m2(Γr) and use fr(Γr) to compute the revenue obtained from the
rest of the consumers.

It is left to compute fr(Γr). Let u and v be the left and right children of r, respectively. In order
to compute fr(Γr), we will compute fu(Γr,Γu) which is the maximum revenue we can collect from
consumers assigned to the descendants of u (excluding u) where Γr is the set of six items of price 1
that are closest to `r as defined earlier. And, similarly, Γu = {I′L,1, I′L,2, I′L,3, I′R,1, I′R,2, I′R,3} is the
set of six items of price 1 that are closest to `u. Moreover, we require that Γu must be consistent
with Γr in the sense that there is some price assignment such that items in Γu are the items closest
to `u of price 1 and items in Γr are the items closest to `u of price 1 as well. (For example, if we
let Γr = {IL,1, IL,2, IL,3, IR,1, IR,2, IR,3} then an item I with property IL,3[1] < I[1] < IL,2[1] cannot
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be in Γu since this item must have price 0.) We use Γu ./ Γr to denote “Γu is consistent with Γr”.
We define fv(Γr,Γv) in a similar way.

Once we have fu(Γr,Γu) and fv(Γr,Γv) for all Γu ./ Γr and Γv ./ Γr, we can compute fr(Γr):

fr(Γr) = max
Γu./Γr

{fu(Γr,Γu) +m1(Γu) + 2m2(Γu)}+ max
Γv./Γr

{fv(Γr,Γv) +m1(Γv) + 2m2(Γv)} . (8)

The main point here is that there is no consistency requirement between Γu and Γv so we have two
independent subproblems. We define the function fz, for all nodes z in T similarly: Let r = v0,
v1, v2, ..., vq−1 be the ancestors of z and vq = z. We have to compute fz(Γv0 ,Γv1 , . . . ,Γvq) for all
Γv0 ,Γv1 , . . . ,Γvq such that Γvi ./ Γvj for all i 6= j.

The computation of fz(Γv0 ,Γv1 , . . . ,Γvq) is done in the same way as Eq.(8) for every non-leaf
node z. At leaf node z, fz(Γv0 ,Γv1 , . . . ,Γvq) can also be easily computed: fz(Γv0 ,Γv1 , . . . ,Γvq) =
m1(Γz) + 2m2(Γz).

Observe that q = O(logm + log n) and there are n6 choices for each Γvi . Therefore, we can
precompute fz(Γv0 ,Γv1 , . . . ,Γvq) for all nO(logm+logn) combinations of Γv0 ,Γv1 , . . . ,Γvq . By working

bottom-up from the leaf nodes, the running time becomes poly(m)nO(logm+logn).

Algorithm for 2-SMP (special case): To solve the special case of 2-SMP defined above, we
need to modify a few definitions in a right way. Let us again consider the top-down algorithm and
start at the root node r of the partition tree T . (Recall that we can assume that there is at most
one item in each row and column so we can still define the paritition tree by drawing the vertical
line through the point in the middle when sorted by the first dimension.)

One problem immediately appears: fr(Γr) cannot be used to compute the optimal revenue as we
did in Eq.(7). The reason is that we cannot compute the revenue from Cr using m1(Γr) + 2m2(Γr)
anymore. To fix this, we have to redefine Cr in the following way: We assign all consumers lying on
the left (respectively, right) of Ir to the left (respective, right) child and keep only those consumers
lying exactly on the vertical line going through Ir in Cr.

Now we can compute the revenue from the newly defined Cr and a function that computes the
total revenue. To do this, we define fr(I1, I2, I3) to be the total revenue we can get from consumers
in C \ Cr by pricing the items in such a way that, among the items on the right side of Ir, items
I1, I2, and I3 are the items with price 1 that have the highest, second highest, and third highest
values in the second dimension, respectively. Again, let Γr denote a possible choice of {I1, I2, I3}
and write fr(Γr) instead of fr(I1, I2, I3). If we can compute fr(Γr) then we can get the optimal
revenue by Eq.(7), where m1(Γr) and m2(Γr) is as defined earlier (with the new definition of Cr).

Some more complications lie in computing fr(Γr), for any Γr. As before, we will compute
fu(Γr,Γu) and fv(Γr,Γv) where u and v are the left and right children of r, respectively. Howerver,
we have to carefully define fu(Γr,Γu) and fv(Γr,Γv), in a different way.

We define fu(Γr,Γu), for any Γu = {I1, I2, I3}, to be the maximum revenue from the consumers
assigned to the descendants of u when we price the items in such a way that, among the items
lying on the right side of Iu and left side of Ir, items I1, I2, and I3 are the items with price 1 that
have the highest, second highest, and third highest values in the second dimension, respectively.
Note that we do not need to check any consistency between Γr and Γu: For any choice of Γr and
Γu, there is always a price assignment such that items in Γr and Γu are the items of price 1 that
have the highest values in the second dimension in their respective regions. In this case, we say
that Γr ./ Γu is always true for any Γr and Γu.

On the other hand, we define fv(Γr,Γv), for any Γv = {I1, I2, I3}, to be the maximum revenue
from the consumers assigned to the descendants of v when we price the items in such a way that,
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Figure 6: Approximating the revenue from consumer C assigned to node z in T .

among the items lying on the right side of Iv, items I1, I2, and I3 are the items with price 1 that
have the highest, second highest, and third highest values in the second dimension, respectively. In
this case, we have to make sure that Γv is consistent with Γr, i.e., there is some price assignment
such that items in Γr and Γu are the items of price 1 that have the highest values in the second
dimension in their respective regions.

Now we have defined fu(Γr,Γu) and fv(Γr,Γv), we compute fr(Γr) using Eq.(8). As in the case
of the highway pricing problem, we can extend the definition to other nodes. In particular, at a
leaf node z we have to compute fz(Γv0 ,Γv1 , . . . ,Γvq) where q = O(logm+ log n). Hence, this case

can be solved in poly(|C|) · |I|polylog(|I|) time.

Algorithm for general 2-SMP: We now remove the restrictions that each item must be priced
0 or 1 and each budget must be 1 or 2. The removal of the restriction on item price does not affect
the case of highway pricing problem since this can be easily assumed (see, e.g., [31]). Moreover,
we can still assume that the maximum budget is O(mn). Now we can deal with the general
highway problem by redefining fr(Γr): Let Γr = {IL,0, IL,1, . . . , IL,q, IR,0, IR,1, . . . , IR,q} where q =
O(logmn). For any i ≤ q, we want to price in such a way that IL,i is the item closest to Ir on the
left such that the sum of the price of all items between Ir and IL,i is at least (1 + ε)i. Computing
fr(Γr) can be done in the same manner as before and consistency checking is easy to deal with.
Function fvq(Γv0 ,Γv1 , ...,Γvq), for any node vq at level q in T , can be defined in a similar manner.

For 2-SMP, we may not in general assume the item prices to be 0/1. Instead, we show that it
can be assumed that each item must have price 0, or (1 + ε)j , for any j = 0, 1, . . . , O(logm). A
natural extension of the above idea is to define the notion of “volume of regions”: For each item
I, let HI and VI denote the horizontal and vertical line cutting through item I, respectively. Any
rectangle resulting from drawing some horizontal and vertical lines through some items are called
regions and the regions that do not contain other regions are called minimal regions. For any price
assignment, we define the volume of a region to be the sum of the price of all items within the
region.

Now, similar to the highway problem, we define Γr = {I0, I1, ..., Ik} (note that k = O(logm)) as
the “region guess”: We define fr(Γr) to be the maximum revenue from C \Cr when we price in such
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a way that, for any i, item Ii is the highest item (in the second dimension) such that the volume of
the region on the right of the vertical line VIr and above the horizontal line HIi (including Ii) is at
least (1 + ε)i. Using these volume guesses, we can approximate the upper and lower bounds of the
revenue from each consumer C at node z by looking at Γv for all ancestors v of z. This is because
each consumer’s consideration set will contain some set of regions B1, B2, ... with volume guesses
(1+ε)i1 , (1+ε)i2 , ..., respectively (such as the blue regions in Figure 6). Also, this consideration set
will also be contained in some set of regions R1, R2, ... with volume guesses (1+ε)i1+1, (1+ε)i2+1, ...
(such as the blue and red regions together in Figure 6).

However, in contrast to the case of highway problem, the consistency between the guesses (e.g.,
between Γr and its children Γu and Γv) is harder to guarantee. In order to guarantee the consistency,

we add another parameter, denoted by ∆r = {δ0, δ1, . . . , δO(k2)} ⊆ R
O(k2)
≥0 (recall that |Γr| = k+ 1).

∆r is used as a “volume guess”. That is, we define fr(Γr,∆r) to be the maximum revenue from
C \ Cr when we price in such a way that the restriction on Γr is as before and, additionally, the
volumn of the i-th minimal region is exactly δi (where we make any order of the minimal regions).
We can now guarantee the consistency by making sure that the sum of the volume guesses in smaller
regions defined by Γu and ∆u (as well as Γv and ∆v) is exactly the volume guesses in the bigger
regions defined by Γr and ∆r.

For any node z, we also define a function fz(Γv0 ,Γv1 , . . . ,Γvq ,∆z) where v0, v1, . . . , vi−1 are
ancestors of z and vq = z. In this case, we consider the minimal regions obtained by drawing
vertical lines VIv0 , VIv1 , . . . , VIvq and horizontal lines HI for I ∈ Γvi , for all i. We use ∆z to store the
numbers that are the “volume guesses” of all these regions. We also check the consistency in terms
of volume, i.e., Π = {Γv0 ,Γv1 , . . . ,Γvq ,∆vq} is consistent with Π′ = {Γv0 ,Γv1 , . . . ,Γvq−1 ,∆vq−1} if
the volume guesses of the smaller regions defined by lines in Π add up to the volume guesses of the
bigger regions defined by lines in Π′.

C.2 Preprocessing

Fix some ε > 0. Given an instance (I, C), our goal is to compute a price that collects a revenue of at
least (1−O(ε))OPT. Recall that we can assume that the consumers are on the intersection of grid
lines, and the items are in the grid cells (cf. Lemma B.1). First we process the input so that the
budgets and prices are polynomially bounded. Moreover, the optimal solution only assigns prices
of the form (1 + ε)j for some j ≤ O(logm). The proof of this fact only uses standard arguments
(along the same line as in [6]).

Lemma C.1. Let M = O(mn/ε). The input instance P can be reduced to P ′ with the following
properties.

• For each consumer C, the budget of C in P ′ is between 1 and M .

• Any price p′ that α-approximates the optimal pricing of P ′ can be transformed in polynomial
time into another price p that gives (1 + 3ε)α-approximation for P.

• There is a (1 + ε)-approximate solution p̃ satisfying the following: For all I ∈ I, 1 ≤ p̃(I) ≤M ,
and p̃(I) is in the form (1 + ε)j for some j ≤ O(logm).

Proof. Let Bmax be the maximum budget among all consumers. We first remove all consumers
whose budgets are less than εBmax/mn. Notice that we only lose the revenue of at most εBmax ≤
εOPT by this removal. We denote the new set of consumers by C′. Now look at the optimal price
p∗ for the resulting instance. If for some I ∈ I, the price p∗(I) is less than εBmax/mn, we change
its price to p′(I) = 0 and remove item I completely from the instance. Again, since each such item
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can only be sold to at most m consumers, discarding it only decreases the revenue by εBmax/n.
There are at most n such items, so we lose a revenue of at most εOPT in total. Let I ′ denote the
resulting set of items.

Next we scale each consumer budget by M ′ = mn/εBmax to get a new budget, i.e. B′C = M ′BC .
Now we have a complete description of the instance P ′ in which consumer budgets are between 1
and M . Let OPT′ be the optimal value of the new instance. First we try to lower bound the value
of OPT′. Consider the same price p∗ : I ′ → R scaled up by a factor of M ′. The revenue from this
price is at least (1− 2ε)M ′OPT, so we have that OPT′ ≥ (1− 2ε)M ′OPT.

We are now ready to prove the second part. Assume that we have a price p′ that gives α-
approximation for P ′, so the revenue collected by p′ is at least OPT′/α. We construct the price p by
scaling down the price of p′ by M ′. Notice that for each consumer C who can afford his consideration
set in P ′ with price p′(SC), he can also afford his set in P with price p′(SC) = p(SC)/M ′. Therefore,
the revenue collected by p is at least OPT′/αM ′ ≥ (1 − 2ε)OPT/α. This argument also implies
that OPT ≥ OPT′/M ′.

Finally we show that there is a good solution p̃ that only assigns prices in the form (1 + ε)j , as
follows. We round down the price of p∗ to the nearest scale of (1+ε)j for some j. For each consumer
C who purchases item I w.r.t. price p∗, by scaling down every item price, she can still afford her
consideration set SC, whose new price is at least p∗(SConsumer)/(1 + ε) ≥ (1− ε)p∗(SC).

From now on, we assume that our input instance and its optimal price are in such format.
Our goal is to devise a QPTAS for this instance. We note here that in some special cases of
single-minded pricing problems, especially the Highway problem, an even stronger statement can
be assumed; namely, that the optimal price is integral [32]. It seems that such a nice property may
not hold in our case, and we anyway do not need it.

C.3 Partition tree

We first construct a (almost balanced) binary tree T where each node in T is associated with a
rectangular region in the plane (from now on, whenever we talk about region, we always mean a
rectangular one). We call this tree the partition tree. It can be constructed recursively as follows.
In the beginning, we have T = {r} where r is the root of the tree whose region Ar is the whole
grid. We repeat the following process: For each leaf v ∈ T , if the region Av of v contains at least
two items, we choose a vertical grid line `v dividing the items in a balanced manner to the left and
right side. We then add the left child v′ of v with the region Av′ being the region of Av on the left
side of `v. We also add the right child v′′ of v associated with the region Av′′ on the right side of
`v. We repeat the process until every leaf is associated with a region containing only one item; see
Figure 7(a).

For each node v ∈ T , we define the item set Iv to be the set of all items in the region Av. Fix
a price p : I → R. For any region A, we define the “volume” volp(A) to be the total price among
all items in the region, i.e. volp(A) =

∑
I∈A p(I). The following simple claim is crucial in designing

our algorithm.

Claim C.2. Let p∗ be an optimal price. Then for any region A, there are only nO(logm) possible
values of volp∗(A).

Proof. Let xj denote the number of items I in A with price p∗(I) = (1 + ε)j . Notice that we can
write the volume of A as

∑q
j=1 xj(1 + ε)j where xj only takes non-negative integer values at most

n. So we have at most nO(logm) possibilities for the volume.

24



C.4 Horizontal partition and local profile

From the construction, each node v of the partition tree, is associated with a vertical line `v which
divides the plane into two region. We further partition the right region using vertical line, as
follows.

Consider a non-leaf node v ∈ T with left child v′ and right child v′′. A horizontal partition
for node v, denoted by Hv, is a collection of (not-necessarily distinct) horizontal lines `v1, . . . , `

v
q ,

partitioning the region of Av′′ into many pieces; note that the left endpoints of these lines are on
`v. The line `vj is supposed to mark the highest y-coordinate such that the volume inside Av′′ above

`vj is at least (1 + ε)j . Notice that each node v has at most nO(logm) feasible partitions since there
are at most n possibilities for the choice of each `vj .

Now if we fix a horizontal partition of every non-leaf node in the partition tree, we can define
minimal regions for each non-leaf node v as follows. For each node v, we consider all vertical and
horizontal lines associated with v and all its ancestors (i.e., all lines in `u and Hu where u = v or
u is an ancestor of v). Let Lv denote the set of these lines. Lv naturally defines minimal regions:
We say that a region A is minimal with respect to Lv if and only if A is a rectangle whose four
boundaries are the lines in Lv, and there is no line in Lv that intersects with the interior of A.

Now, we define a local profile of a node v. It consists of (i) horizontal partitions for v and for all
its ancestors, and (ii) numbers on every minimal region resulting from vertical and horizonal lines.
The numbers are supposedly the “volume guesses” of every minimal region of v.

Now we try to guess the “right” local profile of every node in the partition tree. We show that
if this guess is right, then we get a good approximation of the optimal solution. Moreover, we can
use dynamic programming to make the right guess.

C.5 Dynamic Programming Solution

A global profile (or just profile in short) of a node v consists of the local profile of v and all its
ancestors in such a way that the volumes of minimal regions of v is consistent with its ancestors.
More formally, fix a node v. A profile Πv for v consists of, for any ancestor v′ of v, Πv,v′ which is
the local profile that node v wants its ancestor v′ to have (we also think of v has an ancestor of
itself for convenience). As a reminder, for each ancestor v′ of v, local profile Πv,v′ some horizontal
partition Hv′ and the “volume guess”of each minimal region of v. In addition, we restrict that these
local profiles Πv,v′ have to be consistent in themselves in the following sense. For each vertex v′,
for any minimal region A′ of Πv,v′ that is further partitioned into minimal regions A′1, A

′
2, . . . , A

′
γ

of Πv,v′′ for some descendant v′′ of v′, the number zA′ at Πv,v′ is equal to the sum of the numbers
z′Aj of Πv,v′′ .

We argue that the number of global profiles for each node is not too large, i.e. only npoly logm.
There are nO(logm) horizontal partitions for each ancestor v′ of v, making a total of nO(logm logn)

possibilities of the lines `v
′
j . Now fix a choice of such horizontal partitions. If we draw all lines `v

′
j

involved in the global profiles, we will see a number of regions formed by intersections between these
lines and the vertical lines `v′′ . Since there are O(logm log n) such horizontal lines and O(log n)
vertical lines involved, we have at most O(logm log2 n) minimal rectangular regions. Each region

has at most nO(logm) possible volumes, so there are at most nO(log2m log2 n) global profiles for each
node v.

Now we define a valid tree profile Π for T as the set of global profiles {Πv}v∈T such that Πv is a
global profile for node v. Moreover, for every parent-child pair v, v′ where v is a parent of v′ in T ,
the profile Πv′ agrees with Πv. That is, all profiles about ancestors of v in Πv and Πv′ are exactly
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Figure 7: Computing the cost of consumer C

the same.
Given a valid tree profile Π, we have the notion of cost of the profile Π (denoted by Cost(Π))

which is supposed to approximate the total revenue we can collect by a price function consistent
with Π. The cost of a profile can be computed as follows. For each node v ∈ T , let Cv be the set of
all consumers on line `v. For each consumer C ∈ Cv, the rectangular region enclosed by horizontal
line C[2] and vertical line `v is the actual amount the consumer needs to pay. This is the amount
we do not know, but we can approximate: We let v0, v1, . . . , vα be a sequence of ancestors of v such
that v is on the left subtree of vi (in the order from v to the root), where v0 = v. And we let for
each i, ji be the maximum number such that `viji does not lie below C[2]. The cost of consumer C

is just the sum
∑α

i=0(1 + ε)ji if BC ≤
∑α

i=0(1 + ε)ji and zero otherwise. The cost at node v is just
the total cost of all consumers in Cv, and the cost of the profile is the sum of the cost over all nodes
v ∈ T .

Lemma C.3. There is a valid tree profile Π∗ such that the cost is at least (1− ε)OPT.

Proof. We start from the optimal price p∗ and construct the valid profile as follows. For each
node v, we define a feasible partition of v by choosing the line `vj to be at the highest y-coordinate

such that the total volume enclosed is at least (1 + ε)j . Then we create a profile Π∗v for each
node v according to the actual volume of each minimal region. Notice that this gives a valid tree
profile.

Our goal now is to compute the valid profile Π of maximum cost by dynamic programming,
and the profile will automatically suggest a near-optimal pricing.

Computing the Solution: Let v ∈ T . We say that a price p : Iv → R is consistent with global
profile Πv if and only if for every minimal region A of Πv that is completely contained in Av, we
have volp(A) = zA. The minimum cost profile can be computed in a bottom-up fashion, as follows.
For a leaf node v, a global profile for v automatically determines the price of the only item in Av;
discard a profile which does not have consistent price.

The following lemma shows that a price p consistent with a valid tree profile Π can be computed
from Π.
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Lemma C.4. For each node v with left child v′ and right child v′′, let p′ : Iv′ → R and p′′ : Iv′′ → R
be the prices that are consistent with the profile Πv′ and Πv′′ respectively. Then the price p : Iv → R
defined to agree with p′ on Iv′ and with p′′ on Iv′′, is consistent with Πv.

Proof. Consider a minimal region A ⊆ Av and a volume guess zA in Πv. If A ⊆ Av′ where A is the
union of minimal regions A′1, . . . A

′
γ of Πv′ (similar argument can be made in case A ⊆ Av′′), then

by assumption that Πv is consistent with Πv′ , we know that the total value zA =
∑γ

j=1 z
′
A′j

. Since

p′ is consistent with the profile Πv′ , we have that volp(A) = volp′(A) =
∑

j volp′(A
′
j) =

∑
j z
′
A′j

= zA

as desired.

We have shown that a valid tree profile Π always has a price p consistent with it. The following
lemma basically says that this price p gives a revenue close to the cost of the profile, which will in
turn imply that the maximum cost profile gives the revenue of at least (1−O(ε))OPT.

Lemma C.5. For any valid tree profile Π, let p be a price consistent with Π and let p′ = p/(1 + ε).
Then p′ collects revenue at least (1− ε) fraction of the profile cost.

D Omitted hardness results

D.1 Hardness of 3-UUDP-MIN and 4-UUDP-MIN

In this section we show that 3-UUDP-MIN is NP-hard, and 4-UUDP-MIN is APX-hard by a reduction
from Vertex Cover. Our reduction relies on the concepts of adjacency poset and its embedding into
Euclidean space. We describe basic terminologies here. Given a graph G = (V,E), an adjacency
poset (V ∪E,�G) of graph G can be constructed as follows: First we define a poset with its maximal
elements corresponding to vertices in V and its minimal elements corresponding to edges E. For
each vertex v and each edge e, we have the relation e �G v if and only if vertex v is an endpoint
of e. We say that a map ϕ : V ∪ E → Rd is an embedding of adjacency poset (V ∪ E,�G) into Rd
if and only if it preserves the relations �G, i.e., for any two elements a, b ∈ V ∪ E, we have that
a �G b iff ϕ(a)[i] ≤ ϕ(b)[i] for all coordinates i ∈ [d].

Now we describe our reductions. Since two reductions are essentially the same, we give a general
procedure which will imply both results. Given an instance G = (V,E) of Vertex Cover, we first
construct an adjacency poset (V ∪ E,�G) for G, and then we compute the embedding ϕ of this
poset into Euclidean space Rd. We will use the graph G, as well as the embedding ϕ, to define the
instance of d-UUDP-MIN as follows:

• Consumers: We have two types of consumers, i.e. the rich consumers and the poor ones.
For each vertex v ∈ V , we create a rich consumer Cv with budget 2 at coordinates ϕ(v). For
each edge e ∈ E, we create a poor consumer Ce with budget 1 at coordinates ϕ(e).

• Items: For each vertex v ∈ V , we create item Iv at coordinates ϕ(v).

Note that for each e = (u, v), each poor consumer Ce has SCe = {Iv, Iu}, while each rich consumer
Cv has SCv = {Iv}. We denote the resulting instance by (C, I).

The following lemma gives a characterization of the optimal solution for (C, I). It says that we
may assume without loss of generality that every poor consumer gets some item.

Lemma D.1. For any price p that is a solution for (C, I) constructed above, we can transform p
to p′ such that every poor consumer buys some item with respect to p′, and the revenue of p′ is at
least as much as the revenue of p.
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Proof. Consider edge e = (u, v). Suppose poor consumer Ce does not get any item, so it implies
that both items Iu and Iv have price p(Iu) = p(Iv) = 2 (recall that, since budgets are 1 or 2, the
optimal prices would never set prices that are not in {1, 2}). We define the price function p′ by
setting p′(Iu) = 1 while p′(Iw) = p(Iw) for all other vertices w ∈ V \ {u}. The only rich consumer
that gets affected is Cu, whose payment may decrease by one. However, we earn the revenue of one
back from poor consumer Ce. For e′ ∈ E : e′ 6= e, poor consumer Ce′ is never affected because his
budget is one. Overall, changing the price from p to p′ never decreases revenue.

Let p∗ be the optimal price for (C, I) and VC(G) denote the size of minimum vertex cover of
G. We show the following connection between the size of minimum vertex cover and the optimal
revenue collected by p∗.

Theorem D.2. The optimal revenue collected by p∗ is exactly 2n− VC(G) +m.

Proof. From the previous lemma, we can assume that the pricing p∗ sells items to every poor
consumer. In other words, if V ′ = {v : p∗(Iv) = 1}, it must be the case that V ′ is a vertex cover:
otherwise, let e = (u,w) be an edge which is not covered by any vertex in V ′, so Ce is only interested
in items with price 2, which he cannot afford. This contradicts the assumption that p∗ sells items
to every poor consumer.

The revenue collected from poor consumers is exactly m. Each rich consumer Cv in the vertex
cover gets the item with price 1 while others get the items with price 2, so the total revenue is
m+ VC(G) + 2(n− VC(G)).

This theorem immediately implies the gap between Yes-Instance and No-Instance for d-
UUDP-MIN. The only detail we left out is the computation of the embedding ϕ, and this is where the
hardness proofs of 3-UUDP-MIN and 4-UUDP-MIN depart (other steps are exactly the same). For
3-dimensional case, we start from planar graphs whose adjacency poset can be embedded into R3.
Since planar vertex cover has a polynomial-time approximation scheme, we only get NP-hardness
here. For 4-dimensional case, we start from vertex cover in cubic graphs, which is known to be
APX-hard, but unfortunately we can only embed its adjacency poset into R4, thus obtaining the
hardness of 4-UUDP-MIN.

NP-Hardness of 3-UUDP-MIN To show the NP-hardness, we start from Vertex Cover in pla-
nar graphs, which is known to be NP-complete [28]. We will use the following theorem, due to
Schnyder [47].

Theorem D.3. Let (V ∪ E,�G) be an incident poset of planar graph G. Then there exists an
embedding ϕ from the poset into R3.

Schnyder shows later that the crucial step in the theorem can be computed in polynomial time
[48], which immediately implies the following theorem.

Theorem D.4. 3-UUDP-MIN is NP-hard even when the consumer budgets are either 1 or 2.

APX-Hardness of 4-UUDP-MIN We will be using the fact that Vertex Cover in cubic graphs is
APX-hard [4], stated in the language convenient for our use below.

Theorem D.5. For some 0 < α < β < 1, it is NP-hard to distinguish between (i) the graph that
has a vertex cover of size at most αn, and (ii) the graph whose minimum vertex cover is at least
βn.
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Now we assume that our input graph G is a cubic graph and use the following theorem to embed
the adjacency poset of G into R4.

Theorem D.6 (Schnyder). An adjacency poset of any 4-colorable graph can be embedded into R4.
Moreover, the embedding is computable in polynomial time.

It only requires a straightforward computation to prove the following theorem.

Theorem D.7. 4-UUDP-MIN is APX-hard even when the consumer budgets are either 1 or 2.

Proof. In the Yes-Instance, we can collect the revenue of (2 − α)n + m. However, in the No-
Instance, the revenue is at most (2 − β)n + m. Since the graph is cubic, we may assume that
m = γn for some 1 ≤ γ < 2. Hence we have a gap of (2− α+ γ)/(2− β + γ).

D.2 NP-hardness of 2-SMP

Highway problem can be defined as follows: We are given a line P = (v0, . . . , vn) consisting of n
edges and n+1 vertices and a set of consumers C where each consumer C corresponds to a subpath
PC of P and is equipped with budget BC. Our goal is to set price to edges so as to maximize the
revenue, where each consumer C buys a path PC if she can afford the whole path; otherwise she
buys nothing.

Lemma D.8. There is a polynomial-time algorithm that transforms an instance of Highway problem
to an instance of 2-SMP.

Proof. For each i = 1, . . . , n, each edge (vi−1, vi), we create an item Ii at coordinates (i, n+ 1− i).
Then for each consumer C whose path is PC = (vs, . . . , vt), we create a consumer point at (s +
1, n+ 1− t). It is easy to see that the consideration set remains unchanged.

D.3 APX-hardness of 4-SMP

We perform a reduction from Graph Vertex Pricing on bipartite graphs. In this problem, we are
given a graph G = (V,E), where each vertex corresponds to item and each edge e ∈ E corresponds
to a consumer, additionally equipped with budget Be. Each consumer edge is interested in items
that correspond to her incident vertices. Our goal is to set a price p : V → R so as to maximize
our revenue.

Given an instance (G, {Be}e∈E) of Graph Vertex Pricing where graph G is a bipartite graph
(U ∪W,E), we create an instance of 4-SMP as follows. Suppose we have U =

{
u1, . . . , u|U |

}
and

W =
{
w1, . . . , w|W |

}
. For each vertex ui ∈ U , we have a corresponding item Iui with coordinates

(i, |U | + 1 − i,∞,∞). Similarly, for each vertex wj ∈ W , we have a corresponding item Iwj with
coordinates (∞,∞, j, |W | + 1 − j). Finally, for each edge (ui, wj) ∈ E, we have a consumer
Cij = (i, |U |+ 1− i, j, |W |+ 1− j), whose budget is the same as the budget of edge (ui, wj). The
following claim is almost immediate.

Claim D.9. For each consumer Cij, we have that SCij =
{

Iui , I
w
j

}
Proof. It is easy to see that

{
Iui , I

w
j

}
⊆ SCij . Notice that for i′ < i, we have Cij [1] > Iui′ [1], so any

such item Iui′ cannot belong to SCij . Similarly for i′ > i, we have Cij [2] > Iui′ [2], so such an item
cannot belong to SCij . By using similar arguments for items of the form Iwj′ for j′ 6= j, we reach

the conclusion that SCij =
{

Iui , I
w
j

}
.
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Since the 4-SMP instance is equivalent to the instance of Graph Vertex Pricing, the maximum
revenue is preserved. Using the APX-hardness result of Graph Vertex Pricing on bipartite graphs [39],
we conclude that 4-SMP is APX-hard.

D.4 Hardness Results in Higher Dimensions

In this section, we present the proof of Theorem 3.1. Let A = (I, C) be an instance of UUDP-MIN
where every consumer C has its consideration set SC of size at most B. Let I = {I1, . . . , In}. For
each i ∈ [d], we pick a random permutation πi : [n] → [n], so we have d permutations π1, . . . , πd.
The function ϕ on items I can be defined as ϕ(Ij)[i] = πi(j), and we extend the function to the
set of consumers as follows: ϕ(C)[i] = minj∈SC πi(j). Now we have a well-defined function ϕ.

Lemma D.10. With probability at least 1− 1/n, for all consumer C ∈ C, the consideration set S′C
defined by S′C = {Ij : ϕ(Ij) dominates ϕ(C)} is exactly SC.

Proof. Since we define ϕ(C) to be the minimum of ϕ(Ij) over all items in SC, we have SC ⊆ S′C.
Let k be the index of an item that does not belong to SC. We show the following claim.

Claim D.11. The probability that ϕ(Ik) dominates ϕ(C) is at most 1/nB+2.

Proof. Fix some i ∈ [d]. The bad event that πi(k) ≥ minj∈SC πi(j) happens only if πi does not
put k in the last position among SC ∪ {k}. This probability is exactly (1− 1/(B + 1)). Therefore,
the bad event happens for all values of i with probability at most (1 − 1/(B + 1))d ≤ 1/nB+2 for
d = O(B2 log n).

This claim immediately implies the lemma: By the union bound, the probability that ϕ(Ik)
dominates ϕ(C) is at most 1/nB+1. So we have that Pr [SC 6= S′C] ≤ 1/nB+2. There are at most
nB possible consideration sets of size at most B, so by union bounds, the probability that a bad
event SC 6= S′C happens for some consumer C is at most 1/n.

n attributes capture general problem Finally, we end this section with the proof that n-
UUDP-MIN captures the whole generality of UUDP-MIN: Consider an instance (C, I, {SC}C∈C) of
UUDP-MIN. Denote the set of items by I = {I1, . . . , In}. Notice that we can define the coordinates
of each consumer by C[i] = 0 if Ii ∈ SC, and C[i] = 1 otherwise. We define the coordinates of
each item as Ii[i] = 0 and Ii[j] = 1 for all j 6= i. It is easy to check that the consideration sets are
preserved by this reduction.
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