
EXOTIC PICARD GROUPS AND CHROMATIC VANISHING
VIA THE GROSS-HOPKINS DUALITY

DOMINIC LEON CULVER AND NINGCHUAN ZHANG

Abstract. In this paper, we study the exotic K(h)-local Picard groups κh when 2p − 1 = h2 and the
homological Chromatic Vanishing Conjecture when p − 1 does not divide h. The main idea is to use the
Gross-Hopkins duality to relate both questions to certain Greek letter element computations in chromatic
homotopy theory. Classical results of Miller-Ravenel-Wilson then imply that an exotic element at height
3 and prime 5 is not detected by the type-2 complex V (1). For the homological Vanishing Conjecture, we
prove it holds modulo the invariant prime ideal Ih−1. We further show that this special case of the Vanishing
Conjecture implies the exotic Picard group κh is zero at height 3 and prime 5. Both results can be thought
of as a first step towards proving the vanishing of κ3 at prime 5.
Keywords. exotic Picard groups, Chromatic Vanishing Conjecture, Gross-Hopkins duality, Greek letter
elements

0. Introduction

0.1. Statement of main results. The study of Picard groups in chromatic homotopy theory was initiated
by Hopkins in [17, 33]. By analyzing the homotopy fixed point spectral sequence for the K(h)-local sphere,
Hopkins-Mahowald-Sadofsky proved the following:

Theorem ([17, Proposition 7.5]). The exotic K(h)-local Picard group κh (see Definition 1.11) is zero when
p− 1 does not divide h and 2p− 1 > h2.

In this paper, we study κh when 2p− 1 = h2. The smallest of such pairs is h = 3 and p = 5. Notice that
this assumption already implies (p− 1) ∤ h.

Remark. It is an open question in number theory whether there are infinitely primes p such that 2p − 1
is a perfect square ([21, page 171]). Using SageMath [36], the authors are able to find 35, 528, 083 positive
integers h less than 109 such that h2+1

2 is a prime number.

Our first main result is:

Theorem (A, Theorem 3.27, Corollary 3.28). Let 2p−1 = h2. Suppose the type-(h−1) Smith-Toda complex
V (h − 2) = S0/(p, v1, · · · , vh−2) exists at prime p. Then an exotic element X ∈ κh cannot be detected by
V (h− 2), i.e.

LK(h) (X ∧ V (h− 2)) ≃ LK(h)V (h− 2).

In particular,
(1) At height 3 and prime 5, an exotic element X in PicK(3) cannot be detected by V (1) = S0/(5, v1).
(2) At height 5 and prime 13, an exotic element X in PicK(5) cannot be detected by V (3) = S0/(13, v1, v2, v3).

When 4p− 3 = h2, we prove a similar statement in Theorem 3.31 for a subgroup κ
(1)
h of the exotic Picard

group κh defined in Section 1.3. In particular at (h, p) = (3, 3) and (5, 7), we show that V (h − 2) cannot
detect elements in this subgroup of κh.
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Our method is also used to study the following special case of the Chromatic Vanishing Conjecture (2.29),
first proposed in [4, 5].

Conjecture (Reduced Homological Vanishing Conjecture, (RHVC)).

Fp
∼= H0(Gh;Fph)

∼−→ H0(Gh;π0(Eh)/p).

Remark. The Vanishing Conjecture was stated in terms of group cohomology in [5, Conjecture 1.1.4]. This
is equivalent to the homological versions when (p− 1) ∤ h by Poincaré duality. See Remark 2.30.

Theorem (B, Theorem 3.26). When (p−1) ∤ h, the RHVC holds modulo the ideal Ih−1 = (p, u1, · · · , uh−2),
i.e. there are isomorphisms:

Fp
∼= H0(Gh;Fph)

∼−→ H0(Gh;π0(Eh)/Ih−1).

Exotic Picard groups and the Vanishing Conjecture are related by:

Theorem (C, Theorem 3.32). If the RHVC holds at height 3, then κ3 = 0 at p = 5 and κ
(1)
3 = 0 at p = 3,

where κ
(1)
3 is a subgroup of κ3 defined in Section 1.3

For general heights and primes, we give some bounds on the divisibility of Greek letter elements that
would imply the RHVC (when (p− 1) ∤ h) and κh = 0 (when 2p− 1 = h2) in Proposition 3.15.

0.2. General strategy. A summary of our strategy to study exotic Picard groups when 2p− 1 = h2 is as
follows. We will show successively each claim below is implied by the following one.

I. κh = 0.

II. Hh2

c (Sh;π2p−2(Eh)) = H2p−1
c (Sh;π2p−2(Eh)) = 0.

III. Hh2

c (Sh;π2p−2(Eh)/p) = 0.

IV. H0
c (Sh;π2h−2p+2(Eh)⟨det⟩/(p, u∞

1 , · · · , u∞
h−1)) = 0, where the determinant twist ⟨det⟩ is defined in

Definition 2.18 and the quotient mod (p, u∞
1 , · · · , u∞

h−1) is explained in Definition 2.19.

V. H0
c

(
Sh;π

2h−2p+2− pN |vh|
p−1

(Eh)/J

)
= 0 for any open invariant ideal J ⊴ π0(Eh) containing p such that

vp
N

h is invariant mod J .

VI. Ext
0,2h−2p+2− pN |vh|

p−1

BP∗BP (BP∗, v
−1
h BP∗/J) = 0 for any invariant ideal J ⊴ v−1

h BP∗ containing p such that

vp
N

h is invariant mod J .

VII. H0,t(Mh−1
1 ) = 0 for any t ≡ 2h− 2p+2− pN |vh|

p−1 mod pN |vh| and all integers N ≥ 0, where Mh−1
1 :=

v−1
h BP∗/(p, v

∞
1 , · · · , v∞h−1).

II =⇒ I: In [11], Goerss-Henn-Mahowald-Rezk defined a map that detects the exotic Picard group κh:

ev2 : κh → H2p−1
c (Gh;π2p−2(Eh)).

Using the same argument as in [17], we will show this map is injective when (p− 1) ∤ h and 4p− 3 > h2 in
Proposition 1.20.1 As a result, κh vanishes if H2p−1

c (Gh;π2p−2(Eh)) = 0 when 2p− 1 = h2. By [9, Lemma
1.32] and [12, page 12], we have

Hs
c (Gh;πt(Eh)) ∼= Hs

c (Sh;πt(Eh))
Gal for any s and t,

1A descent spectral sequence for K(h)-local Picard groups in [13, Example 6.18] implies this map is an isomorphism under
the assumptions. See Proposition 1.25.
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where Sh ≤ Gh is the automorphism group of the height h-Honda formal group. This indicates we just need
to show the relevant group cohomology of Sh is zero.
III =⇒ II: Now suppose 2p − 1 = h2. By Theorem 2.8 of Lazard and the fact Sh has no finite p-
group, cdp(Sh) = h2. When (p − 1) ∤ h, the cohomology we are computing H2p−1

c (Gh;π2p−2(Eh)) =

Hh2

c (Gh;π2p−2(Eh)) is a top degree cohomology. Using a Hochschild-Lyndon-Serre spectral sequence and
the explicit formula of the action by the center Z×

p of Sh, we show in Proposition 2.3 that

Hh2

c (Gh;π2p−2(Eh))
∼−→ Hh2

c (Gh;π2p−2(Eh)/p).

Alternatively, the above isomorphism can be proved using the Poincaré duality between top degree cohomol-
ogy and zero degree homology.
IV =⇒ III: There is another Poincaré duality between top and zero degree cohomology groups for any
p-complete Gh-module M :

Hh2

c (Sh;M) ∼= H0
c (Sh;M

∨)∨,

where (−)∨ := homc(−,Qp/Zp) is the continuous equivariant Pontryagin dual (Definition 2.11). For M =
πt(Eh), the dual M∨ is identified by Gross-Hopkins duality Corollary 2.22:

πt(Eh)
∨ ∼= π2h−t(Eh)⟨det⟩/m∞,

where m = (p, u1, · · · , uh−1) ⊴ π0(Eh) is the maximal ideal, mod m∞ is defined in Definition 2.19, and ⟨det⟩
is the determinant twist defined in Definition 2.18). In the case when t = 2p− 2, we further have:

Hh2

c (Sh;π2p−2(Eh)) ∼= Hh2

c (Sh;π2p−2(Eh)/p)

∼= H0
c (Sh;π2h−2p+2(Eh)⟨det⟩/(p, u∞

1 , · · · , u∞
h−1))

∨.

V =⇒ IV: In [16], Gross-Hopkins identified the determinant twist mod p > 2 with a limit of finite
suspensions:

π0(Eh)⟨det⟩/p ∼= Σ
lim

N→∞

pN |vh|
p−1 π0(Eh)/p.

This is a limit in the algebraic K(h)-local Picard group. More precisely, let J ⊴ π0(Eh) be an open invariant
ideal containing p, such that vp

N

h is invariant modulo J . Then

π0(Eh)⟨det⟩/J ∼= Σ
pN |vh|

p−1 π0(Eh)/J.

By Proposition 2.27, we now have

H0
c (Sh;π2h−2p+2(Eh)⟨det⟩/(p, u∞

1 , · · · , u∞
h−1))

∼= colim
p∈J⊴π0(Eh)

H0
c

(
Sh; π

2h−2p+2− pN |vh|
p−1

(Eh)

/
J

)
.

As a result, to show the left hand side is zero, it suffices to show every single term in the colimit system on
right hand side is zero.
VI =⇒ V Using a Change of Rings theorem, Theorem 3.1, we relate the group cohomology of Gh with
Ext-groups of BP∗BP -comodules:

Hs(Gh;πt(Eh)/J) ∼= Exts,tBP∗BP (BP∗, v
−1
h BP∗/J

′)

for some invariant ideal J ′ ⊴ v−1
h BP∗. When J = (p, uj1

1 , · · · , ujh−1

h−1 ), we can take J ′ = (p, vj11 , · · · , vjh−1

h−1 ).
As a result, we need to compute Ext0,tBP∗BP (BP∗, v

−1
h BP∗/J

′) for certain values of t.
VII =⇒ VI For a BP∗BP -comodule M , we denote Exts,tBP∗BP (BP∗,M) by Hs,t(M). The colimit of the
cohomology groups H0,t(v−1

h BP∗/J) over all invariant ideals J ⊴ v−1
h BP∗ containing p is H0,t(Mh−1

1 ), where
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Mh−1
1 = v−1

h BP∗/(p, v
∞
1 , · · · , v∞h−1). This is the group of mod-p Greek letter elements at height h. Keeping

track of the degree t, we have reduced our computation to the following:

Proposition. Suppose 2p− 1 = h2. If H0,t(Mh−1
1 ) = 0 whenever t ≡ 2h− 2p+ 2− pN |vh|

p−1 mod pN |vh| for
some integer N ≥ 0, then κh = 0.

The argument above can also be used to study the Chromatic Vanishing Conjecture (2.29) in degree
0 homology groups when (p − 1) ∤ h. This conjecture has been verified at all primes at heights 1 and 2
by explicit computations. It plays an essential role in Beaudry-Goerss-Henn’s works in [5] to disprove and
completely understand the Chromatic Splitting Conjecture at h = p = 2. The Vanishing Conjecture is wide
open at h ≥ 3. Using Gross-Hopkins duality and Change of Rings theorem, we can translate the Reduced
Homological Vanishing Conjecture (RHVC) to Greek letter element computations:

Proposition. Suppose p− 1 does not divide h. If H0,t(Mh−1
1 ) = Fp whenever t ≡ 2h− pN |vh|

p−1 mod pN |vh|
for some integer N ≥ 0, then H0(Gh;π0(Eh)/p) = Fp and the RHVC holds.

0.3. Greek letter element computations. Next, we need to compute the Greek letter elements in
H0,t(Mh−1

1 ). Elements in this group are classified into three families in Proposition 3.3.

(1) Family I elements are of the form vs
h

pv1···vh−1
, where (s, p) = 1. In Proposition 3.6, we prove Family I

elements contribute to a copy Fp in Hh2

c (Gh;π0(Eh)/p) via Gross-Hopkins duality, which is predicted
in the RHVC. This family does not contribute to Hh2

c (Gh;π2p−2(Eh)/p).
(2) Family II elements are of the form 1

pv
d1
1 ···v

dh−1
h−1

, where (p, vd1
1 , · · · , vdh−1

h−1 ) is an invariant ideal. In Corol-

lary 3.11, we show this family does not contribute to either Hh2

c (Gh;π0(Eh)/p) or Hh2

c (Gh;π2p−2(Eh)/p).
(3) Family III elements are of the form ys

h,N

pv
d1
1 ···v

dh−1
h−1

, where yh,N is some replacement of vp
N

h , (s, p) = 1 and

(p, vd1
1 , · · · , vdh−1

h−1 , ysh,N ) is an invariant regular ideal. While the precise conditions on the di’s are out of
reach in the general situation, we established some bounds in Proposition 3.12 which would imply this
family does not contribute to either Hh2

c (Gh;π0(Eh)/p) or Hh2

c (Gh;π2p−2(Eh)/p).
Combining the three cases above, we obtain the bounds on divisibility of Greek letter elements that would
imply the RHVC (when (p− 1) ∤ h) and vanishing of κh (when 2p− 1 = h2) in Proposition 3.15.

In [26], Miller-Ravenel-Wilson computed H0,∗(M1
h−1), where M1

h−1 := v−1
h BP∗/(p, v1, · · · , vh−2, v

∞
h−1).

Using Gross-Hopkins duality and Morava’s Change of Rings Theorem, the Miller-Ravenel-Wilson computa-
tion yields when (p− 1) ∤ h,

Hh2

c (Gh;π0(Eh)/Ih−1) = Fp,

Hh2

c (Gh;π2p−2(Eh)/Ih−1) = 0.

It follows from first isomorphism that the RHVC holds modulo the ideal Ih−2 = (p, u1, · · · , uh−2) ⊴ π0(Eh).
This is the statement of Main Theorem B 3.26. The second group cohomology measures if there is an exotic
element in PicK(h) detected by the type-(h − 1) Smith-Toda complex V (h − 2) := S0/(p, v1, · · · , vh−2),
provided the latter exists. Consequently, its vanishing yields Theorem A (3.27). At height 3 and prime 5, we
further show in Theorem C (3.32) that the RHVC implies κ3 = 0. This proof relies on the Miller-Ravenel-
Wilson results.

Remark (3.29 and 3.30). We learned from a referee that it is an open question whether V (h) exists when
h ≥ 4 at any prime. By [20, Corollary 7.11], if X ∧K(h) V ≃ V for all X ∈ κh and finite complexes V of type
n, then κh = 0. Main Theorem A (3.27) can therefore be thought of as a first step towards showing κh = 0
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when 2p − 1 = h2, since it implies X ∧K(h) V for any cofibers V of vh-self maps of V (h − 2). Our choices
of finite complexes are restricted to cofibers of the Smith-Toda complex V (h − 2), because we do not have
better Greek letter element computations beyond H0(M1

h−1) in [26] when h ≥ 3.

0.4. Notations and Conventions. Throughout, we will let Eh denote a fixed Morava E-theory based on
a height h formal group, typically the height h Honda formal group Γh. For a K(h)-local spectrum X, we
will write (Eh)∗X for the completed Eh-homology of X. That is, we write

(Eh)∗X := π∗(LK(h)(Eh ∧X)).

We will also write X ∧K(h) Y for the K(h)-local smash product LK(h)(X ∧ Y ).
Denote by W := WFph the ring of Witt vectors over Fph . We will write Sh for the Morava stabilizer

group, i.e. the automorphisms of a Γh, and we will write Gh for the extended Morava stabilizer group.
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Goerss, Hans-Werner Henn, Guchuan Li, Doug Ravenel, and Vesna Stojanoska for helpful discussions related
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and the second author was at University of Illinois Urbana-Champaign as a visiting scholar. We would like
to thank both institutes for their hospitality and support.
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1. The K(h)-local Picard group

1.1. Definitions. In chromatic homotopy theory, we study the stable homotopy category of spectra Sp via
the height filtration of the moduli stack of formal groups at each prime p. One such layer in this filtration is
the category of K(h)-local spectra SpK(h), where K(h) is the Morava K-theory at h and prime p. Like Sp,
the category SpK(h) also has a symmetric monoidal structure

X ∧K(h) Y := LK(h)(X ∧ Y ).

For Sp, its Picard group is given by

Theorem 1.1 ([17, page 90]). The map Z → Pic(Sp), n 7→ Sn is an isomorphism of groups.

The Picard group PicK(h) for SpK(h), however, is still not fully understood. Here we give a filtration on
PicK(h) via a sequence of algebraic detection maps evi. The first fact is:

Theorem 1.2 ([17, Theorem 1.3]). The followings are equivalent:
• X ∈ SpK(h) is invertible.
• (Eh)∗(X) is an invertible graded (Eh)∗-module.

As Eh is even periodic, an invertible graded (Eh)∗-module is either itself or its suspension. This yields
the zeroth detection map:

ev0 : PicK(h)
X 7→(Eh)∗(X)−−−−−−−−−→ Pic(graded (Eh)∗-modules) = Z/2.

Proposition 1.3. ev0 is a surjective group homomorphism.

Proof. We can check ev0 is a group homomorphism using the Künneth theorem. It is surjective since
ev0(S

1) = π∗(ΣEh) is concentrated in odd degrees. □
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Denote the kernel of ev0 by Pic0K(h). This is the group of invertible K(h)-local spectra whose Eh-homology
is concentrated in even degrees. For any spectrum X, its Eh-homology is not only a graded (Eh)∗-module,
but also a graded π∗(Eh ∧K(h) Eh)-comodule. In the case when X ∈ Pic0K(h), this graded comodule structure
is determined by (Eh)0(X) as an ungraded π0(Eh ∧K(h) Eh)-comodule. This gives rise to the first detection
map:

ev1 : Pic0K(h)

X 7→(Eh)0(X)−−−−−−−−−→ Pic((π0(Eh), π0(Eh ∧K(h) Eh))-comodules).
To identify the target of ev1, we use the following lemma.

Lemma 1.4 ([19]). There is an isomorphism of Hopf algebroids:

(π0(Eh), π0(Eh ∧K(h) Eh)) ∼= (π0(Eh),Mapc(Gh;π0(Eh))),

where Gh = Sh ⋊Gal(Fph/Fp) and Sh is the automorphism group of the height-h Honda formal group.

It follows that a π0(Eh∧K(h)Eh)-comodule M is equivalent to a π0(Eh)-module together with a continuous
Gh-action such that the following diagram commutes for all g ∈ Gh: ([17, page 118])

π0(Eh)⊗M π0(Eh)⊗M

M M

g⊗g

g

The Picard group of such Gh-π0(Eh)-modules is computed by a continuous group cohomology of Gh:

Proposition 1.5 ([17, Proposition 8.4]).

Pic(continuous Gh-π0(Eh)-modules) ∼= H1
c (Gh;π0(Eh)

×).

As a result, the first detection map is a group homomorphism:

(1.6) ev1 : Pic0K(h) → H1
c (Gh;π0(Eh)

×).

Definition 1.7. The Picard group of graded Gh-(Eh)∗-modules is called the algebraic K(h)-local Picard
group, denoted by PicalgK(h). The Picard group of ungraded Gh-π0(Eh)-modules is denoted by Picalg,0K(h).

Thus, by Proposition 1.5, we have

Picalg,0K(h) = H1
c (Gh;π0(Eh)

×).

The first detection map ev1 then extends to the full Picard group PicK(h), which we will also denote by ev1.

Proposition 1.8. The K(h)-local Picard groups we have introduced so far are related by a map of short
exact sequences:

0 Pic0K(h) PicK(h) Z/2 0

0 Picalg,0K(h) PicalgK(h) Z/2 0

ev1 ev1

Remark 1.9. It is known that the short exact sequences do not split at height h = 1 for all primes [17], and
at height 2 for p ≥ 3 [11].

Corollary 1.10. The two ev1 maps in the diagram above have isomorphic kernels and cokernels.

This corollary justifies the usage of ev1 for both detection maps.
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1.2. Exotic Picard groups. Now the question turns to whether ev1 is injective or surjective. The surjec-
tivity problem is hard and involves obstruction theory. In certain cases, we can show ev1 is injective.

Definition 1.11. The exotic K(h)-local Picard group κh is the kernel of ev1 in (1.6).

Theorem 1.12 ([17, Proposition 7.5]). The exotic Picard group κh vanishes when (p−1) ∤ h and 2p−1 > h2.

The detection of elements in κh lies in the homotopy fixed point spectral sequence (HFPSS) to
compute the π∗(X) for X ∈ SpK(h):

(1.13) Es,t
2 = Hs

c (Gh; (Eh)t(X)) =⇒ πt−s (X) .

For any X ∈ κh, the E2-page of the HFPSS to compute its homotopy groups is isomorphic to as that for
S0
K(h). The potential differences between the two spectral sequences are the higher differentials. We will

show that the higher differentials are necessarily zero under the assumption 2p− 1 > h2 and (p− 1) ∤ h. To
see this, we need the following basic facts about the HFPSS:

Lemma 1.14 ([9, Lemma 1.32],[12, Page 12]). For any Gh-π0(Eh)-module M , we have an isomorphism
Hs

c (Gh;M) ∼= Hs
c (Sh;M)Gal.

Lemma 1.15 (Sparseness, [12, Remark 1.4]). The continuous group cohomology Hs
c (Sh;πt(Eh)) is zero

unless 2(p− 1) divides t.

Lemma 1.16 (Horizontal vanishing line, [12, Proposition 1.6]). The p-adic Lie group Sh has cohomological
dimension h2 if (p− 1) ∤ h.

It follows that the HFPSS (1.13) has a horizontal vanishing line at s = h2 when (p− 1) ∤ h.

Lemma 1.17 (0-line, [9, Lemma 1.33]). H0
c (Gh;πt(Eh)) =

{
Zp, t = 0;
0, otherwise.

Proof of Theorem 1.12. We need to show that when (p− 1) ∤ h and h2 < 2p− 1, a K(h)-local spectrum X
is weakly equivalent to S0

K(h) if there is a Gh-equivariant isomorphism (Eh)∗(X) ∼= (Eh)∗.
Under this assumption, HFPSS for X collapses at E2-page by sparseness (Lemma 1.15). As a result,

any unit [ιX ] ∈ E0,0
2 (X) = Zp is a permanent cycle and induces a map S0 → X. This map factors as

S0 → S0
K(h)

ιX−−→ X since X is K(h)-local. As ιX : S0
K(h) → X induces an isomorphism on the E2-page of the

HFPSS, it is a weak equivalence by [8, Theorem 5.3]. □

In the general case, the first possible non-trivial differential in (1.13) for X ∈ κh is d2p−1. Let’s consider
the possible d2p−1-differentials supported by E0,0

2p−1(X) = E0,0
2 (X) = Zp.

Construction 1.18 ([11, Construction 3.2]). Fix an Gh-equivariant isomorphism fX : (Eh)∗
∼−→ (Eh)∗(X)

and let ιX = fX(1) ∈ (Eh)0(X). The differential

dX2p−1 : E
0,0
2p−1(X) −→ E2p−1,2p−2

2p−1 (X)

is determined by the image of ιX . Define a homomorphism ϕX via the following commutative diagram:

H0
c (Gh;π0(Eh)) H2p−1

c (Gh;π2p−2(Eh))

H0
c (Gh; (Eh)0(X)) H2p−1

c (Gh; (Eh)2p−2(X))

ϕX

(fX)∗ ∼= (fX)∗∼=
dX
2p−1

One can check that ϕX(1) is independent of the choice of fX . We define the next detection map ev2 : κh →
H2p−1

c (Gh;π2p−2(Eh)) by setting ev2(X) := ϕX(1).
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Proposition 1.19. The map ev2 : κh → H2p−1
c (Gh;π2p−2(Eh)) is a group homomorphism.

Proof. It suffices to check ev2(X ∧K(h) Y ) = ev2(X) + ev2(Y ). This follows from the Künneth isomorphism
which is compatible with the Gh-actions:

(Eh)∗(X ∧K(h) Y ) ∼= (Eh)∗X ⊗(Eh)∗ (Eh)∗Y.

This implies

Es,t
2p−1(X ∧K(h) Y ) = Es,t

2 (X ∧K(h) Y )

∼= Es,t
2 (X)⊗E0,0

2 (S0) E
s,t
2 (Y )

= Es,t
2p−1(X)⊗E0,0

2p−1(S
0) E

s,t
2p−1(Y ).

Now by the multiplicative structure of the spectral sequence and the Leibniz rule, we have

d
X∧K(h)Y
2p−1 (ιX ∧ ιY ) = dX2p−1(ιX)⊗ ιY + ιX ⊗ dY2p−1(ιY )

=⇒ ev2(X ∧K(h) Y ) = ϕX∧K(h)Y (1) = ϕX(1) + ϕY (1) = ev2(X) + ev2(Y ). □

Proposition 1.20. The map ev2 : κh → H2p−1
c (Gh;π2p−2(Eh)) is injective when 4p−3 > h2 and (p−1) ∤ h.

In particular, it is injective when 2p− 1 = h2.

Proof. For any X ∈ ker ev2, a unit [ιX ] in E0,0
2 (X) does not support a d2p−1-differential. By Sparseness

(Lemma 1.15), the next possible non-trivial differential is dX4p−3 : E
0,0
4p−3(X) → E4p−3,4p−2

4p−3 (X). The target of
this differential is zero, since it is above the horizontal vanishing line at s = h2 under our assumption. The
same argument shows [ιX ] does not support any higher differentials and is thus a permanent cycle. The rest
of the proof is identical to that of Theorem 1.12. □

This finishes the first implication II =⇒ I in Section 0.2. The goal of this paper is to answer the following
question:

Question 1.21. Is κh = 0 when 2p− 1 = h2?

Proposition 1.20 implies this would be true if

H2p−1
c (Gh;π2p−2(Eh)) = Hh2

c (Gh;π2p−2(Eh)) = 0.

1.3. A filtration on K(h)-local Picard groups. The main results of this paper do not depend on this
subsection. Following the construction above, one can define κ

(1)
h := ker ev2 and construct the next algebraic

detection map using the d4p−3-differential:

ev3 : κ
(1)
h −→ E4p−3,4p−4

2p (S0) = E4p−3,4p−4
4p−3 (S0).
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Eventually, we get a descent filtration on PicK(h) (see [3, §3.3]):

(1.22)

· · · · · ·

κ
(m)
h E

2(m+1)(p−1)+1,2(m+1)(p−1)
2m(p−1)+2

· · · · · ·

κ
(1)
h E4p−3,4p−4

2p

κh E2p−1,2p−2
2 = H2p−1

c (Gh;π2p−2(Eh))

Pic0K(h) Pic(Gh-π0(Eh)-modules) ∼= H1
c (Gh;π0(Eh)

×)

PicK(h) Pic(graded (Eh)∗-modules) ∼= Z/2.

⊆

evm+2

⊆
⊆

ev3

⊆

ev2

⊆

ev1

⊆

ev0

Each term in this tower is the kernel of the horizontal detection map right below it.

Remark 1.23. For each fixed p and h, (1.22) is a finite (hence Hausdorff) filtration on κh. This is because
the HFPSS (1.13) for S0

K(h) has a horizontal vanishing line on the Er-page when r is large enough by

[5, Theorem 2.3.9]. As a result, the target of evm will eventually be zero and κ
(m)
h = κ

(m+1)
h = · · · = 0 when

m ≫ 0.

The right column in (1.22) is the 0-stem of a spectral sequence (similar to the one found in [25, Theorem
3.2.1]) to compute the homotopy groups of the Picard spectrum picK(h) for SpK(h). Indeed, π0

(
picK(h)

)
=

PicK(h). In a recent paper [13], Heard has proved the following:

Theorem 1.24 ([13, Example 6.18]). There is a descent spectral sequence (DSS) for picK(h) that converges
when t− s ≥ 0, whose E2-page is:

Es,t
2 =


0, t < 0;
Z/2, s = t = 0;
Hs

c (Gh;π0(Eh)
×), t = 1;

Hs
c (Gh;πt−1(Eh)), t ≥ 2,

=⇒ πt−s

(
picK(h)

)
.

Let’s analyze the −1, 0, 1-columns on the E2-page of the descent spectral sequence Theorem 1.24, illus-
trated below in Adams grading. On this page of the spectral sequence:
• E0,0

2 = H0
c (Gh;Z/2) = Z/2. The non-zero element is a permanent cycle, since it represents S1 in PicK(h).

So E0,0
∞ = E0,0

2 = Z/2.
• E0,1

2 = H0
c (Gh;π0(Eh)

×) = Z×
p . This term does not support any higher differential, because they represent

permanent cycles Z×
p ⊆ π0

(
S0
K(h)

)× ∼= π1

(
picK(h)

)
.

• E1,1
2 = H1

c (Gh;π0(Eh)
×) = Picalg,0K(h). For degree reasons, this term cannot be hit by a differential. But it

may support one. As a result, E1,1
∞ is a subgroup of H1

c (Gh;π0(Eh)
×).

• By Lemma 1.15, the next possibly nonzero terms in the −1, 0, 1-stems are when t = 2p − 1. In the 0-
stem, it is E2p−1,2p−1

2 = H2p−1
c (Gh;π2p−2(Eh)). The only possible differential that could hit this term is

d2p−1 : E
0,1
2 → E2p−1,2p−1

2 . But since elements in E0,1
2 = Z×

p are all permanent cycles, this differential is
zero. On the other hand, there is room for E2p−1,2p−1

2 to support a differential. As a result, E2p−1,2p−1
∞ is

a subgroup of E2p−1,2p−1
2 = H2p−1

c (Gh;π2p−2(Eh)).
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0 Z/2 Z×
p

? H1
c (Gh;π0(Eh)

×) 0

H2
c (Gh;π0(Eh)

×) 0 · · ·

0 · · · 0

· · · 0

0

H2p−2
c (Gh, π2p−2(Eh))

H2p−1
c (Gh, π2p−2(Eh)) 0

H2p
c (Gh, π2p−2(Eh)) 0

d2p−1?

· · ·

0 · · · 0

· · · 0 H4p−4
c (Gh, π4p−4(Eh))

0 H4p−3
c (Gh, π4p−4(Eh)) 0

H4p−2
c (Gh, π4p−4(Eh)) 0 · · ·

d2p−1?

d2p−1?

d4p−3?

t− s = −1 0 1

s = 0

1

2

3

· · ·

2p− 1

2p

2p+ 1

· · ·

4p− 3

4p− 2

Now we can compare the E∞-page of the descent spectral spectral sequence for Picard spaces in Theorem 1.24
and the filtration in (1.22). Notice when t ≥ 2, the Es,t

2 -term in Theorem 1.24 is the the same as Es,t−1
2 in

HFPSS (1.13) for X = S0
K(h). The Picard group PicK(h) = π0

(
picK(h)

)
is an extension of the terms Es,s

∞ in
Theorem 1.24. More precisely, we have a descending filtration PicK(h) = F 0 ⊇ F 1 ⊇ F 2 ⊇ F 3 ⊇ · · · , where
the layers are related by short exact sequences:

0 F s+1 F s Es,s
∞ 0 , s ≥ 0.

As is mentioned in Remark 1.23, this is essentially a finite filtration since Es,s
∞ = 0 when s ≫ 0. In this

filtration, we have F 1 = Pic0K(h) and F 2 = F 3 = · · · = F 2p−1 = κh is the exotic K(h)-local Picard group.
The ev-maps can then be defined as composite maps:

E0,0
∞

F 0 = PicK(h) E0,0
2

ev0

E1,1
∞

F 1 = Pic0K(h) E1,1
2

ev1
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E2p−1,2p−1
∞

F 2p−1 = κh E2p−1,2p−1
2

ev2

E4p−3,4p−3
∞

F 4p−3 = κ
(1)
h E4p−3,4p−3

2p
ev3

For ev3, the only differential that can hit E4p−3,4p−3
2 is d2p−1. So E4p−3,4p−3

2p cannot be hit by a differential,
but it may support one. As a result, E4p−3,4p−3

∞ is a subgroup of E4p−3,4p−3
2p .

From the factorizations above, we can see ev1 and ev2 are surjective precisely when E1,1
2 = E1,1

∞ and
E2p−1,2p−1

2 = E2p−1,2p−1
∞ . This will be the case if the targets of the potential differentials supported at E1,1

2

and E2p−1,2p−1
2 are above the horizontal vanishing line on the E2-page.

Proposition 1.25. Suppose (p− 1) ∤ h. Theorem 1.24 implies:
(1) [28, Remark 2.6] The map ev1 : Pic0K(h) → Picalg,0K(h) := H1

c (Gh;π0(Eh)
×) is an isomorphism when

2p− 1 > h2 and is a surjection when 2p− 1 = h2.
(2) The map ev2 : κh → H2p−1

c (Gh;π2p−2(Eh)) is an isomorphism when 4p − 3 > h2 and is a surjection
when 4p− 3 = h2.

Proof. The injectivity parts are from Theorem 1.12 and Proposition 1.20, respectively.
By sparseness (Lemma 1.15), the first possible non-trivial differentials supported at the two terms are

d2p−1 : E
1,1
2 −→ E2p,2p−1

2 = H2p
c (Gh;π2p−2(Eh)),

d2p−1 : E
2p−1,2p−1
2 −→ E4p−2,4p−3

2 = H4p−2
c (Gh;π4p−4(Eh)).

Under the assumptions, the targets of the two d2p−1-differentials are above the horizontal vanishing line at
s = h2 in the respective cases. As a result, their targets vanish and E1,1

2 = E1,1
∞ , E2p−1,2p−1

2 = E2p−1,2p−1
∞ .

This proves the surjectivity part. □

Remark 1.26. While the proof of Proposition 1.25 depends on Theorem 1.24, the statements have been
verified independent of the descent spectral sequence in many cases, sometimes even without the assumption
that (p− 1) ∤ h:
(1) The map ev1 is known to be surjective when

• h = 1 [17, Corollary 2.6 for p > 2, Lemma 3.4 for p = 2].
• h = 2, p > 2 [11, Theorem 2.9].
• 2(p− 1) > h2 + h for general h and p [28, Theorem 2.5].
It is an open question whether the map ev1 is surjective or not in the h = p = 2 case.

(2) The map ev2 is known to be an isomorphism when
• h = 1, p = 2 [11, Remark 3.3].
• h = 2, p = 3 [11, Theorem 3.4].

Remark 1.27. The filtration (1.22) for κ2 at prime 2 has been completed studied in [3]. In particular, they
showed that the detection maps

ev3 : κ
(1)
2 → E5,4

4 is not surjective;

ev4 : κ
(2)
2 → E7,6

6 is injective.

See [3, Theorem 12.30] for the full details.

We conclude this subsection by noting Theorem 1.24 implies the following:

Corollary 1.28. When 2p− 1 = h2, then the followings are equivalent:
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(1) ev1 : PicK(h)
∼−→ PicalgK(h) is an isomorphism.

(2) ev1 : Pic0K(h)
∼−→ Picalg,0K(h) is an isomorphism.

(3) κh := ker ev1 = 0.
(4) H2p−1

c (Gh;π2p−2(Eh)) = Hh2

c (Gh;π2p−2(Eh)) = 0.

Proof. (1) ⇐⇒ (2) follows from Corollary 1.10. By Proposition 1.25, ev1 is surjective and ev2 is an isomor-
phism when 2p− 1 = h2. This implies (2) ⇐⇒ (3) and (3) ⇐⇒ (4), respectively. □

2. Duality

In Proposition 1.20, we have established that there is an isomorphism

ev2 : κh
∼−→ H2p−1

c (Gh;π2p−2(Eh))

under the conditions that 4p − 3 > h2 and h is not divisible by p − 1. In particular, this is true when
2p− 1 = h2. In light of this injection, we are thus interested in determining the group Hh2

c (Gh;π2p−2(Eh)).
The purpose of this section is reduce this computation using duality argument. We will prove the successive
implications II ⇐= III ⇐= IV ⇐= V mentioned in Section 0.2:

Proposition 2.1. Suppose (p− 1) ∤ h.

(1) (Proposition 2.3) Hh2

c (Gh;π2p−2(Eh)) ∼= Hh2

c (Gh;π2p−2(Eh)/p).
(2) (Proposition 2.27) For a general t ∈ Z, we have

Hh2

c (Gh;πt(Eh)/p) ∼=
[

colim
p∈J⊴π0(Eh)

H0
c

(
Gh; π

2h−t− pN |vh|
p−1

(Eh)

/
J

)]∨
,

where J ⊴ π0(Eh) ranges through all open invariant ideals containing p and N is the smallest integer
such that vp

N

h is invariant mod J . The colimit system is described in Definition 2.19.

2.1. Reduction to mod-p coefficients. The purpose of this subsection is to prove (1) in Proposition 2.1.
This is the second step III =⇒ II in Section 0.2.

Lemma 2.2 (Bounded torsion, [12, page 8]). The cohomology group H∗
c (Gh;π2p−2(Eh)) is p-torsion.

Proposition 2.3. If (p− 1) ∤ h, then we have an isomorphism:

Hh2

c (Gh;π2p−2(Eh))
∼−→ Hh2

c (Gh;π2p−2(Eh)/p).

Proof. Let M = π2p−2(Eh). There is a short exact sequence of Gh-π0(Eh)-modules

(2.4) 0 M M M/p 0.
p

This short exact sequence induces a long exact sequence in cohomology

(2.5) · · · → Hk
c (Gh;M)

p−→ Hk
c (Gh;M) → Hk(Gh;M/p)

δ−→ Hk+1(Gh;M) → · · ·

By Lemma 2.2, all the multiplication-by-p maps in (2.5) are zero. Since p−1 does not divide h, cdp(G) = h2

by Lemma 1.16. As a result, the cohomology groups Hs
c (Gh;−) = 0 when s > h2. This means the long

exact sequence (2.5) ends with

0 → Hh2

c (Gh;M) → Hh2

c (Gh;M/p) → 0

and we get the desired isomorphism. □
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Remark 2.6. Let M = π2p−2(Eh) as above. When s = 0, we have δ : H0
c (Gh;M/p)

∼−→ H1
c (Gh;M). When

1 ≤ s ≤ h2 − 1, there is a short exact sequence instead:

0 → Hs
c (Gh;M) → Hs

c (Gh;M/p)
δ−→ Hs+1

c (Gh;M) → 0.

Since all three groups above are Fp-vector spaces, the short exact sequence splits (non-canonically). As a
result, we have Hs

c (Gh;M/p) ∼= Hs
c (Gh;M)⊕Hs+1

c (Gh;M) for 1 ≤ s ≤ h2 − 1.

Remark 2.7. The claims above hold for any M = πt(Eh), where t = 2m(p− 1) and p ∤ m.

2.2. Poincaré duality. The Morava stabilizer group Gh is not just a profinite group, but is also a compact
p-adic Lie group of dimension h2. This imposes a great deal of more structures on its (co-)homology. In this
section, we review the theory of Poincaré duality for p-adic analytic groups following [35]. Recall that for a
property P , a profinite group G is said to be virtually P if there is an open normal subgroup of G which is
P . A profinite group G has Poincaré duality of dimension d if

Hd
c (G,ZpJGK) ∼= Zp

as abelian groups ([35, (4.4.1)]).

Theorem 2.8 (Lazard, [35, Theorem 5.1.9]). Let G be a compact p-adic analytic group. Then G is a virtual
Poincaré duality group of dimension d = dimG.

In the case of the Morava stabilizer group, Sh is a virtual Poincaré duality group of dimension h2. When
(p − 1) ∤ h, then Sh contains no p-torsion subgroups. In fact, its maximal finite subgroup is cyclic of order
ph − 1 [1, Table 5.3.1]. Under this assumption, Sh is a Poincaré duality group of dimension h2 (as opposed
to a virtual one).

Now G being a profinite group having Poincaré duality of dimension n implies that there is a dualizing
module D(G) such that there are natural isomorphisms [35, Theorem 4.4.3] for continuous G-modules M
that are inverse limits of discrete G-modules:

Hn−k
c (G;M) −→ Hc

k(G;D(G)⊗̂ZpM),

and for discrete p-torsion G-modules

Hc
n−k(G;M) −→ Hk

c (G; homZp(Dp(G),M)).

The dualizing module D(G) is given by

D(G) = Hn
c (G;ZpJGK).

Note that, as the coefficients ZpJGK has a left G-action, the dualizing module D(G) has a corresponding
right G-action. See [6, §4.5] for further details.

In the case when G is the Morava Stabilizer group Gh, Strickland has calculated the dualizing module
D(Gh) along with its Gh-action.

Theorem 2.9 (Strickland, [34]). As a Gh-module, Hh2

c (Gh;ZpJGhK) ∼= Zp has the trivial Gh-action.

Corollary 2.10. Assume (p − 1) ∤ h. The dualizing module Ip for Gh is Z∨
p

∼= Qp/Zp with the trivial
Gh-action. Hence, we have a duality

Hh2−k
c (Gh;M) ∼= Hc

k(Gh;M)

that is natural in p-profinite continuous Gh-modules M .
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Definition 2.11. Write (−)∨ for homc(M, Ip(G)). If M has a continuous G-action, we endow M∨ with a
left G-action via

(g · f)(x) := f(g−1x).

In the case of G = Gh, Corollary 2.10 implies M∨ is the continuous Pontryagin dual M∨ ∼= homc(M,Z/p∞).

As usual, this also induces a version of Poincaré duality for p-profinite Gh-modules M in purely cohomo-
logical terms when (p− 1) ∤ h: ([6, Theorem 4.26])

(2.12) Hk
c (Gh;M) ∼= Hh2−k

c (Gh;M
∨)∨.

Corollary 2.13. Assume (p− 1) ∤ h. We have the following duality:

Hh2

c (Sh;πt(Eh)) ∼= H0(Sh;πt(Eh)), Hh2

c (Sh;πt(Eh)/p) ∼= H0(Sh;πt(Eh)/p);(2.14)

Hh2

c (Sh;πt(Eh)) ∼= H0
c (Sh;πt(Eh)

∨)∨, Hh2

c (Sh;πt(Eh)/p) ∼= H0
c (Sh; (πt(Eh)/p)

∨)∨.(2.15)

Remark 2.16. Using the duality (2.14), we can give another proof of Proposition 2.3 by showing:
(1) The group homology H∗(Gh;π2p−2(Eh)) is p-torsion. This is because the orbit of the action by Z×

p ⊆ Sh

is already p-torsion.
(2) Apply H∗ to the short exact sequence (2.4) to get the a long exact sequence like (2.5). Equivalently, we

are essentially applying (2.14) to every term in (2.5).

2.3. Gross-Hopkins duality. Now we want to use (2.15) to compute Hh2

c (Gh;M/p) where M = Et. To
do so, we have to identify the Gh-equivariant Pontryagin dual of M . This is realized by Gross-Hopkins
duality.

Remark 2.17. For the purpose of Question 1.21, we only need to study the case when t = 2p− 2. Later for
the Vanishing Conjecture, we also need the t = 0 case. So we will give a uniform treatment for all t ∈ Z in
the remainder of this section.

We remind the reader the definition of the determinant twist. The group Sh can be realized as a subgroup
of GLh(W). Thus, taking the determinant, we have a map

det : Sh → W×.

It turns out that this map actually factors through Z×
p . We extend this to the extended Morava stabilizer

group via the composite

det : Gh
∼= Sh ⋊Gal Z×

p ×Gal Z×
p .

proj

This results in a Gh-action on Zp.

Definition 2.18. The Gh-action on Zp above is denoted by Zp⟨det⟩. Given a Morava module M we write
M⟨det⟩ for the Morava module

M⟨det⟩ ∼= M ⊗Zp
Zp⟨det⟩

with the diagonal Gh-action. We refer to M⟨det⟩ as the determinant twist of M .

Definition 2.19. We now describe the quotient mod m∞. Let M be a Gh-π0(Eh)-module, we define

(2.20) M/m∞ := colim
J⊴π0(Eh)

M/J,

where J ranges over all open invariant ideals of π0(Eh). Suppose J ⊆ J ′ is an inclusion of open invariant
ideals of π0(Eh). Then we have a Gh-equivariant isomorphism:

M/J ′ ∼= {[m] ∈ M/J | x · [m] = 0,∀x ∈ J ′}.
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This gives the structure map M/J ′ → M/J in the colimit system. Similarly, in the mod-p case, we have

M/(p, u∞
1 , · · · , u∞

h−1) := colim
p∈J⊴π0(Eh)

M/J,

where J ranges over all invariant ideals of π0(Eh) containing p.

Theorem 2.21 (Gross-Hopkins). Let m ⊴ π0(Eh) be the maximal ideal.
(1) [34] There is a Gh-equivariant perfect pairing of Gh-π0(Eh)-modules:

ρ : π0(Eh)/m
∞ ⊗π0(Eh) Ω

h−1 −→ Qp/Zp,

where Ωh−1 is the top exterior power of the module of continuous Kähler differentials for π0(Eh) relative
to W.

(2) [15] The module Ωh−1 is Gh-equivariantly equivalent to the bundle ω⊗h⟨det⟩ over the Lubin-Tate defor-
mation space, where ω = π2(Eh) is the sheaf of invariant of differentials and ⟨det⟩ is the determinant
twist.

Corollary 2.22 (See [34, Proposition 19]). The Gh-equivariant Pontryagin dual of πt(Eh) is

(πt(Eh))
∨ ∼= (π2h−t(Eh))⟨det⟩/m∞.

Proof. The Gh-equivariant perfect pairing ρ in Theorem 2.21 can be rewritten as:

ρ : π0(Eh)/m
∞ ⊗π0(Eh) Ω

h−1 ∼= πt(Eh)⊗π0(Eh) π−t(Eh)/m
∞ ⊗π0(Eh) Ω

h−1 −→ Qp/Zp.

This implies the Gh-equivariant Pontryagin dual of πt(Eh) is π−t(Eh)/m
∞ ⊗π0(Eh) Ω

h−1, which is Gh-
equivariantly isomorphic to (π2h−t(Eh))⟨det⟩/m∞ by part (2) of Theorem 2.21. □

Applying (2.12), we have proved:

(2.23) Hh2

c (Gh;πt(Eh)) ∼= H0
c (Gh; (π2h−t(Eh))⟨det⟩/m∞)

∨
.

The formula holds with πt(Eh) replaced by πt(Eh)/p. This yields the third implication IV =⇒ III in
Section 0.2 when t = 2p − 2. Notice (2.20) is a filtered colimit, and the group Gh is topologically finitely
generated (since it is a finite dimensional p-adic Lie group), we have

Proposition 2.24. There are isomorphisms:

colim
J⊴Eh

H0
c (Gh;M/J)

∼−→H0
c (Gh;M/m∞),

colim
p∈J⊴Eh

H0
c (Gh;M/J)

∼−→H0
c (Gh;M/(p, u∞

1 , · · · , u∞
h−1)).

Now set M = E2h−2p+2⟨det⟩. In order to prove

H0
c (Gh;M/(p, u∞

1 , · · · , u∞
h−1))

∨ = 0,

it suffices to show H0
c (Gh;M/J) = 0 for a cofinal system of invariant ideals J ⊴ π0(Eh) containing p. To do

that, we need to identify the determinant twist π0(Eh)⟨det⟩ mod p. The following theorem was originally
stated in [16, Corollary 7] and a nice proof appears in [12, Theorem 1.32]:

Theorem 2.25 (Gross-Hopkins). When p > 2, there is an isomorphism of Gh-π0(Eh)-modules:

π0(Eh)⟨det⟩/p ∼= π0

(
Σ

lim
N→∞

pN |vh|
p−1 Eh

)
/p.
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More precisely, let J ⊴ π0(Eh) be an open invariant ideal containing p, such that vp
N

h is invariant modulo
J , then

π0(Eh)⟨det⟩/J ∼= π0

(
Σ

pN |vh|
p−1 Eh

)
/J.

Remark 2.26. Suppose vp
N′

h is also invariant mod J for some N ′ < N . Then

π0(Eh)⟨det⟩/J ∼= π0

(
Σ

pN
′
|vh|

p−1 Eh

)
/J.

This is compatible with the statement in Theorem 2.25. This is because

pN
′ |vh|

p− 1
≡ pN |vh|

p− 1
mod pN

′
|vh|

=⇒ π0

(
Σ

pN
′
|vh|

p−1 Eh

)
/J ∼= π0

(
Σ

pN |vh|
p−1 Eh

)
/J.

For each open invariant ideal J , there is a smallest N such that vp
N

h is invariant mod J . It follows from
this proposition that

M/J = π2h−2p+2(Eh)⟨det⟩/J ∼= π
2h−2p+2− pN |vh|

p−1

(Eh)

/
J.

Combining all the duality arguments in Corollary 2.13 and Corollary 2.22 with the identification of the
determinant twist π0(Eh)⟨det⟩ mod p in Theorem 2.25, we have proved part (2) in Proposition 2.1.

Proposition 2.27. Suppose (p− 1) ∤ h. Then there is an isomorphism:

Hh2

c (Gh;πt(Eh)/p) ∼=

[
colim

p∈J⊴π0(Eh)
H0

c

(
Sh; π

2h−t− pN |vh|
p−1

(Eh)

/
J

)Gal
]∨

,

where J ⊴ π0(Eh) ranges through all opening invariant ideals containing p and N is the smallest integer
such that vp

N

h is invariant mod J .

From this, we get the implication V =⇒ IV in Section 0.2. Consequently, Question 1.21 now reduces to
checking

(2.28) H0
c

(
Gh; π

2h−2p+2− pN |vh|
p−1

(Eh)

/
J

)
= 0

for a cofinal system of invariant ideals J containing p, where N is the smallest number such that vp
N

h is
invariant mod J .

2.4. The Chromatic Vanishing Conjecture. A closely related computation is the Chromatic Vanishing
Conjecture. Consider the natural inclusion ι : W ↪→ π0(Eh), which is Gh-equivariant. Explicit computations
at height 2 in [2, 5, 11, 14, 23, 32] show that this inclusion induces isomorphisms in group cohomology of
G2 for all primes and degrees. At h = p = 2, this isomorphism plays an essential role in disproving and
completely understanding the Chromatic Splitting Conjecture by Beaudry-Goerss-Henn in [5]. Observing this
phenomenon, Hans-Werner Henn first raised the question if there is a conceptual reason for the isomorphisms.
This leads to a more general conjecture:

Conjecture 2.29 (Chromatic Vanishing Conjecture, [4, Conjecture 1.1], [5, Conjecture 1.1.4]). The follow-
ings are true for all heights h, primes p, and (co)-homological degrees s:
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(1) (Integral) The continuous group cohomology and homology of coker(ι) vanish so that

ι∗ : H
s
c (Gh;W)

∼−→ Hs
c (Gh;π0(Eh)), ι∗ : Hs(Gh;W)

∼−→ Hs(Gh;π0(Eh)).

(2) (Reduced) The continuous group cohomology and homology of coker(ι⊗W/p) vanish so that

ι∗ : H
s
c (Gh;Fp)

∼−→ Hs
c (Gh;π0(Eh)/p), ι∗ : Hs(Gh;Fp)

∼−→ Hs(Gh;π0(Eh)/p).

Remark 2.30 ([4, page 692]).
(1) By Corollary 2.10 and (2.12), the cohomological and homological versions of Conjecture 2.29 are equiv-

alent when (p− 1) ∤ h.
(2) The reduced version of conjecture implies the integral version by the Five Lemma and a lim1 exact

sequence.
(3) The conjecture is a tautology when h = 1, since Z×

p acts on π0(E1) ∼= Zp trivially.
(4) At h = 2, the conjecture has been proved for all primes.
(5) The proof for s = 0 at all heights can be found in [9, Lemma 1.33].

Remark 2.31 (Hopkins, [7, Theorem 8.1], [18, §5.3], [24] for p ≥ 5; Karamanov [22] for p = 3). When h = 2
and p ≥ 3, the additive Vanishing Conjecture in cohomological degree 1 can be used to show a multiplicative
version of the conjecture:

H1
c (Gh;W

×)
∼−→ H1

c (Gh;π0(Eh)
×).

From there, we can compute the algebraic K(2)-local Picard groups when p ≥ 3:

Picalg,0K(2)
∼= Zp ⊕ Zp ⊕ Z/(p2 − 1).

Combined with Proposition 1.20 and Remark 1.26, we know PicalgK(2)
∼= PicK(2)

∼= Zp ⊕ Zp ⊕ Z/|v2| when
p ≥ 5. The group is topologically generated by S1

K(2) and S0
K(2)⟨det⟩. Those two generators are related by

Theorem 2.25 and the fact that ev1 : PicK(2)
∼−→ PicalgK(2) is an isomorphism when p ≥ 5:

S0⟨det⟩ ∧K(2) V (1) ≃ S2(p+1) ∧K(2) V (1).

The case of Conjecture 2.29 relevant to Question 1.21 is if the following holds when (p− 1) ∤ h:

ι∗ : Fp = H0(Gh;Fp)
∼−→ H0(Gh;π0(Eh)/p)

⇐⇒ ι∗ : Fp = Hh2

c (Gh;Fp)
∼−→ Hh2

c (Gh;π0(Eh)/p).

As this is the reduced version of Conjecture 2.29 in homological degree 0, we will call it the Reduced
Homological Vanishing Conjecture (RHVC). It follows immediately that

(RHVC) H0(Gh;π0(Eh)/p) ∼= H0(Gh;Fph) ∼= Fp.

This is the formula we want to prove. Setting t = 0 in Proposition 2.27, we get an isomorphism when
(p− 1) ∤ h:

Hh2

c (Gh;π0(Eh)/p) ∼=
[

colim
p∈J⊴π0(Eh)

H0
c

(
Gh; π

2h− pN |vh|
p−1

(Eh)

/
J

)]∨
.

As a result, to prove (RHVC), it suffices to show that

(2.32) H0
c

(
Gh; π

2h− pN |vh|
p−1

(Eh)

/
J

)
= Fp

for a cofinal system of invariant ideals J containing p, where N is the smallest number such that vp
N

h is
invariant mod J , and that the structure maps in the colimit are non-zero.
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3. Greek letter elements

3.1. The change of rings theorem. In this section we will prove the main theorems. The first step is
to translate (2.28) and (2.32) to Greek letter element computations in chromatic homotopy theory. We
refer readers to [26, §1 and §3] and [31, §5.1] for an introduction. The transition from Gh-π0(Eh)-modules
to BP∗BP -comodules is achieved by the following theorem:

Theorem 3.1 (Morava’s Change of Rings Theorem, [10, Theorem 6.5]). Let M be a BP∗BP -comodule such
that InhM = 0 for some n, where Ih = (p, u1, · · · , uh−1). Then there is a natural isomorphism:

r∗ : Exts,tBP∗BP (BP∗, v
−1
h M)

∼−→ Hs
c (Gh;πt(Eh)⊗BP∗ M),

where r∗ is induced by a ring homomorphism r : BP∗ → π∗(Eh) defined below:

r(vi) =


uiu

1−pi

, i < h;

u1−ph

, i = h;
0, i > h.

Let p ∈ J ⊴ π0(Eh) be an open invariant ideal containing p. For our computation, M is a BP∗BP -
comodule such that

π0(Eh)⊗BP∗ M ∼= π0(Eh)/J.

Lemma 3.2. When J = (p, uj1
1 , · · · , ujh−1

h−1 ), we can take M := BP∗/J
′, where J ′ = (p, vj11 , · · · , vjh−1

h−1 ).

The implication VI =⇒ V in Section 0.2 then follows from Theorem 3.1. We now need to compute
Ext0,tBP∗BP (BP∗, v

−1
h BP∗/J

′) for a family of invariant ideals J ′ and certain values of t.

3.2. Families of Greek letter elements. From now on, for a graded BP∗BP -comodule M , we will write

H0,t(M) := Ext0,tBP∗BP (BP∗,M).

Suppose J ′ = (p, vj11 , · · · , vjh−1

h−1 ) for some ji ≥ 0. The right hand term can be more explicitly identified as
the submodule of primitive elements x of degree t in the comodule Mh−1

1 := v−1
h BP∗/(p, v

∞
1 , . . . , v∞h−1), such

that vjii x = 0 for all 1 ≤ i ≤ h− 1. This establishes the final implication VII =⇒ VI in Section 0.2.
As a result, we need to compute H0,t(Mh−1

1 ). The computation of this Ext-group in general heights are
beyond our reach, but we can at least place elements within three distinct families.

Proposition 3.3. Let Mm
h−m = v−1

h BP∗/(p, v1, · · · , vh−m−1, v
∞
h−m, · · · , v∞h−1). Then for 0 ≤ m < h, the

cohomology group H0,∗(Mm
h−m) is generated as an Fp-vector space by elements of the following families:

I. vs
h

pv1···vh−1
, where (s, p) = 1.

II. 1

pv
d1
1 ···v

dh−1
h−1

, where (p, vd1
1 , · · · , vdh−1

h−1 ) is an invariant ideal and d1 = · · · = dh−m−1 = 1.

III. ys
m,N

pv
d1
1 ···v

dh−1
h−1

, where (p, vd1
1 , · · · , vdh−1

h−1 , ysm,N ) is an invariant ideal with d1 = · · · = dh−m−1 = 1, ym,N ≡

ym−1,N mod (p, v1, · · · , vh−m), N ≥ 1 and (s, p) = 1.
Here, the degrees of elements are given by:∣∣∣∣∣ ysm,N

pvd1
1 · · · vdh−1

h−1

∣∣∣∣∣ = spN |vh| −
h−1∑
i=1

di|vi|.
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Proof. We prove this by induction on m. By [31, Proposition 5.1.12], the zeroth cohomology of M0
h =

v−1
h BP∗/Ih is Fp[v

±1
h ]. Identifying the M0

h ⊆ Mh−1
1 as a subcomodule consisting of elements that are

vi-torsion for all 1 ≤ i ≤ h− 1, we have proved the m = 0 case where y0,N = vp
N

h .
The m = 1 case was proved by Miller-Ravenel-Wilson in [26, Theorem 5.10] (see full statements in

Theorem 3.17 and Theorem 3.22). Their inductive step from m = 0 to m = 1 also applies to the m > 1 case,
as summarized below. Recall that there are short exact sequences of BP∗BP -comodules

0 → Mm
h−m −→ Mm+1

h−m−1

·vh−m−1−−−−−→ Mm+1
h−m−1 → 0,

which leads to the vh−m−1-Bockstein spectral sequence

Hs,t(Mm
h−m)⊗ Fp[vh−m−1]/(v

∞
h−m−1) =⇒ Hs,t(Mm+1

h−m−1).

Alternatively, we can consider the long exact sequence of cohomology groups

0 → H0
(
Mm

h−m

)
−→ H0

(
Mm+1

h−m−1

) ·vh−m−1−−−−−→ H0
(
Mm+1

h−m−1

) δ−→ H1
(
Mm

h−m

)
→ · · ·

As a result, H0
(
Mm

h−m

)
is the subgroup of vh−m+1-torsion elements in H0

(
Mm+1

h−m−1

)
. On the other hand,

the Bockstein spectral sequence implies for any element x ∈ H0
(
Mm+1

h−m−1

)
, there is a k such that vkh−m+1x ∈

H0
(
Mm

h−m

)
. We can therefore obtain an additive basis for H0

(
Mm+1

h−m−1

)
from that for H0

(
Mm

h−m

)
by taking

their quotients of powers of vh−m+1.
Let [x] ∈ H0

(
Mm+1

h−m−1

)
. It is can be divided by vh−m+1 in H0

(
Mm+1

h−m−1

)
iff δ([x]) = [0] in the long exact

sequence above. Pick a representative cocycle x for [x]. From the definition of the connecting homomor-
phism in long exact sequence, we know δ([x]) is represented by the cocycle d( x

vh−m−1
), where d is the cobar

differential. This cocycle being zero in H1
(
Mm

h−m

)
means that d( x

vh−m−1
) = d(ε) for some correcting term

ε ∈ Mm
h−m. Now set x′ = x − vh−m−1 · ε. Then x′ ≡ x mod vh−m−1 and x′ can be divided by vh−m−1 in

H0
(
Mm+1

h−m−1

)
.

Then the inductive hypothesis says H0
(
Mm

h−m

)
is generated by the three family of elements

{
vs
h

pv1···vh−1

}
∪{

1

pv
d1
1 ···v

dh−1
h−1

}
∪
{

ys
h,N

pv
d1
1 ···v

dh−1
h−1

}
. Apply the procedure above to those generators [x] until δ([x]/vkh−m−1) ̸=

[0] ∈ H1
(
Mm

h−m

)
, we obtain an additive basis for H0

(
Mm+1

h−m−1

)
. It remains to check the new basis obtained

from Families I and II generators in H0
(
Mm

h−m

)
have the desired forms. For Family II, the claim follows

from the cobar differential d(1) = 0.
For Family I, we can compute the cobar differential using [31, (6.1.13)]

δ

(
vsh

pv1 · · · vh−m−1vh−m · · · vh−1

)
= d

(
vsh

pv1 · · · v2h−m−1vh−m · · · vh−1

)
=

svs−1
h tp

h−m−1

m+1

pv1 · · · vh−1
.

This is a non-zero cocycle in H1(Mm
h−m) by [31, Theorem 6.5.12].2 As a result, the zero cocycle

[
vs
h

pv1···vh−1

]
is not vh−m−1-divisible in H0

(
Mm+1

h−m−1

)
. This proves the form of Family I elements. □

Remark 3.4. To get a full account of H0(Mh−1
1 ) using the method above, we will need to have knowledge

of H0(Mh−2
2 ) and H1(Mh−2

2 ). This in terms requires the knowledge of of H0(Mh−3
3 ), H2(Mh−3

3 ), and
H3(Mh−3

3 ). In the end, we will need to know H∗(M0
h) for 0 ≤ ∗ ≤ h − 1 to compute H0(Mh−1

1 ). These
groups are only the inputs of the Bockstein spectral sequences. We still need to compute the cobar differentials

2Note that the hi,j in the cited theorem is represented by the cocycle tp
j

i .
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to determine the additive bases at each step. This is why getting an additive basis for H0(Mh−1
1 ) is out of

reach using the current technology.
One particular technical point in this computation is to find the correcting terms ε in the proof above.

Without them, Baird’s Lemma 3.8 would have given us the full basis. For a particular computation where
one has to add correcting terms, a classic example arises from the v1-Bockstein spectral sequence

H∗(M0
2 )⊗ Fp[v1]/(v

∞
1 ) =⇒ H∗(M1

1 )

for primes p ≥ 5. For example, as shown in [31] and [26] (cf. [7] for another account) the class vp2

2

pvp2+1
1

in

the E1-page of the v1-BSS is a permanent cycle and so detects a class in H0(M1
1 ). However, the element it

detects is

vp
2

2

pvp
2+1

1

− vp
2−p+1

2

pv21
− v−p

2 vp3
pv1

∈ M1
1 .

We now analyze degrees of elements in the three families in H0(Mh−1
1 ) and study the degrees of cor-

responding elements in Hh2

(Gh;π∗(Eh)) under duality. In Family I, the degrees of elements are given
by:

(3.5)
∣∣∣∣ vsh
pv1 · · · vh−1

∣∣∣∣ = s|vh| −
h−1∑
i=1

|vi| = s|vh|+ 2h− |vh|
p− 1

.

Proposition 3.6. Let J ⊴ π0(Eh) be an open invariant ideal containing p, such that vp
N

h is invariant modulo
J . Then the Family I element vs

h

pv1···vh−1
determines a copy of Fp in Hh2

c (Gh;πt(Eh)/J) via Gross-Hopkins
duality Proposition 2.27 and the change-of-rings Theorem 3.1, where

(3.7) t ≡ −
(
s+

pN − 1

p− 1

)
|vh| mod pN |vh|.

In particular,

• Elements in Family I contribute to Hh2

c (Gh;πt(Eh)/p) only when |vh| divides t.
• Family I elements determine a copy of Fp in Hh2

c (Gh;π0(Eh)/p).

Proof. By Proposition 2.27 and Theorem 3.1, we have isomorphisms

Hh2

c (Gh;πt(Eh)/J) ∼=
(
H0

c

(
Gh; E

2h−t− pN |vh|
p−1

/
J

))∨

∼=
(
H0,2h−t− pN |vh|

p−1 (Mh−1
1 /J ′)

)∨

,

where J ′ ⊴ BP∗ is an invariant ideal corresponding to J as in Lemma 3.2. By construction, elements in
Family I are in H0,∗(Mh−1

1 /J ′) for all J ′. To prove the claim, we need to compare the degrees of Family
I elements (3.5) and the target degree 2h − t − pN |vh|

p−1 above. Notice the BP∗BP -comodule Mh−1
1 /J ′ is

pN |vh|-periodic by assumption. Solving for t in the residue equation:

2h− t− pN |vh|
p− 1

≡ s|vh|+ 2h− |vh|
p− 1

mod pN |vh|,
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we obtain the congruence relation for t in (3.7). In particular, the number t is necessarily divisible by |vh|.
Solving for s when t = 0, we obtain the Famliy I element

vmpN

h · v−
pN−1
p−1

h

pv1 · · · vh−1
∈ H0,2h− pN |vh|

p−1 (Mh−1
1 )

that contributes to a copy of Fp ⊆ Hh2

c (Gh;π0(Eh)/J) for some m. The claims about Hh2

c (Gh;πt(Eh)/p)
then follows by passing to the colimit. □

It follows that we can prove (2.28) and (2.32) by showing elements in Families II and III do not contribute
to Hh2

c (Gh;π0(Eh)/J) and H0(Gh;π2p−2(Eh)/J) for any open invariant ideal J containing p.
Now suppose an element 1

pv
d1
1 ···v

dh−1
h−1

in Family II determines a non-zero element in Hh2

c (Gh;πt(Eh)/J),

where vp
N

h is invariant modulo J . Then we have

−
h−1∑
i=1

di|vi| ≡ 2h− pN |vh|
p− 1

− t mod pN |vh|

=⇒ t ≡ 2h+

h−1∑
i=1

di|vi| −
pN |vh|
p− 1

mod pN |vh|.

To estimate the bounds for t, we use the following lemma.

Lemma 3.8 (Baird, [26, Lemma 7.6]). Let s1, . . . , sh be a sequence of positive integers, and let pei be the
largest power of p dividing si. Then the sequence

p, vs11 , . . . , vsnn

is an invariant ideal if and only if si ≤ pei+1 for 1 ≤ i < n.

In our case sh = pN , so the largest possible values of di is when d1 = d2 = · · · = dh−1 = pN . The smallest
possible value is when all the di’s are 1. From this we get:

(3.9) − (pN − 1)|vh|
p− 1

≤ t ≤ 2h(1− pN ) mod pN |vh|.

Thus we have proved the following result:

Proposition 3.10. Elements in Family II contribute to Hh2

c (Gh;πt(Eh)/J) via Gross-Hopkins duality
Proposition 2.27 and the change-of-rings Theorem 3.1 only when t satisfies (3.9), where vp

N

h is invariant
modulo J .

Corollary 3.11. Elements in Family II do not contribute to Hh2

c (Gh;π0(Eh)/p) or Hh2

c (Gh;π2p−2(Eh)/p).

Proof. This is because the residue class of t = 0 or 2p− 2 never falls into the bounds in (3.9). □

Now it remains to analyze elements in Family III. When h = 2, this was computed by Miller-Ravenel-
Wilson in [26]. In the next subsection, we will study the implications of their computations. Nevertheless, we
can get some general bounds for the di’s that would imply the RHVC and vanishing of κh when 2p−1 = h2.

Proposition 3.12.
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(1) Elements in Family III do not contribute through Gross-Hopkins duality and the change-of-rings theorem
to Hh2

c (Gh;π0(Eh)/p) if for all invariant ideals of the form J = (p, vd1
1 , · · · , vdh−1

h−1 , ysh,N ), we have

(3.13)
h−1∑
i=1

di|vi| <
pN |vh|
p− 1

− 2h.

(2) Similarly, these elements do not contribute through Gross-Hopkins duality and the change-of-rings the-
orem to Hh2

c (Gh;π2p−2(Eh)/p) if for all invariant ideals of the form (p, vd1
1 , · · · , vdh−1

h−1 , ysh,N ), we have

(3.14)
h−1∑
i=1

di|vi| <
pN |vh|
p− 1

− 2h+ 2p− 2.

Proof. Similar to the Family II cases, suppose an element ys
h,N

pv
d1
1 ···v

dh−1
h−1

in Family III corresponds to non-zero

element in Hh2

c (Gh;πt(Eh)/J), where vp
N

h is invariant modulo J . Then we have

s|yh,N | −
h−1∑
i=1

di|vi| ≡ 2h− pN |vh|
p− 1

− t mod pN |vh|

=⇒ t ≡ 2h+

h−1∑
i=1

di|vi| −
pN |vh|
p− 1

mod pN |vh|.

We want to show t cannot be congruent to 0 or 2p− 2 from this residue equation. Similar to the Family II
case, we have di ≥ 1. From this, we get the same lower bound for t as in (3.9):

t ≥ 2h+

h−1∑
i=1

|vi| −
pN |vh|
p− 1

=
(1− pN )|vh|

p− 1
.

The right hand side of this inequality is greater than both −pN |vh| and −pN |vh|+2p−2. The bounds (3.13)
imply t < 0 in the residue equation. The lower and upper bounds together show that t ̸≡ 0 in the residue
equation. Similarly, we can show the other bound (3.14) implies t ̸≡ 2p− 2 in the residue equation. □

The analysis above yields:

Proposition 3.15.
(1) Suppose p− 1 ∤ h. If the bounds (3.13) hold, then the RHVC is true.
(2) Suppose 2p− 1 = h2. If the bounds (3.14) hold, then κh = 0. In particular, the first bounds (3.13) imply

both the RHVC and κh = 0 in this case.

Proof. In Proposition 2.27, we showed there is an isomorphism of groups using the duality theorems:

Hh2

c (Gh;πt(Eh)/p) ∼= colim
p∈J⊴π0(Eh)

H0
c

(
Gh; π

2h−t− pN |vh|
p−1

(Eh)

/
J

)∨

,

where J ⊴ π0(Eh) ranges through all open invariant ideals containing p and vp
N

h is invariant mod J . Recall:
(1) Combining the Poincaré duality between homology and cohomology (2.14) and the isomorphism above,

we proved in (2.32) the RHVC reduces to the computation:

H0
c

(
Gh; π

2h− pN |vh|
p−1

(Eh)

/
J

)
= Fp.
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(2) By Proposition 1.20, κh injects into Hh2

c (Gh;π2p−2(Eh)) when 2p − 1 = h2. The latter is isomorphic
to Hh2

c (Gh;π2p−2(Eh)/p) by Proposition 2.3. In (2.32), we concluded the vanishing of κh would follow
from

H0
c

(
Gh; π

2h−(2p−2)− pN |vh|
p−1

(Eh)

/
J

)
= 0.

By the Change-of-Rings Theorem 3.1, the two degree-zero cohomology groups are identified with Ext-groups
of BP∗BP -comodule BP∗/J

′ in the corresponding internal degrees. They can be further viewed as a sub-
groups of H0,∗(Mh−1

1 ). So we need to show

H0,∗(Mh−1
1 ) =

{
Fp ∗ = 2h− pN |vh|

p−1 , for the RHVC;

0 ∗ = 2h− (2p− 2)− pN |vh|
p−1 , for κh = 0.

By Proposition 3.3, elements in H0,∗(Mh−1
1 ) are classified into three families:

• Proposition 3.6 says elements in Family I contribute a copy of Fp to H0,∗(Mh−1
1 ) when ∗ = 2h − pN |vh|

p−1 .

They have no contribution when ∗ = 2h− (2p− 2)− pN |vh|
p−1 .

• Corollary 3.11 shows elements in Family II do not contribute to H0,∗(Mh−1
1 ) when ∗ = 2h − pN |vh|

p−1 or

2h− (2p− 2)− pN |vh|
p−1 .

• The two bounds (3.13) and (3.14) in Proposition 3.12 would respectively imply Family III elements do not
contribute to H0,∗(Mh−1

1 ) when ∗ = 2h− pN |vh|
p−1 or 2h− (2p− 2)− pN |vh|

p−1 .

Combining the three families above, we conclude the two bounds (3.13) and (3.14) in Proposition 3.12 would
respectively imply

H0,2h− pN |vh|
p−1 (Mh−1

1 ) = Fp =⇒ RHVC,

H0,2h−(2p−2)− pN |vh|
p−1 (Mh−1

1 ) = 0 =⇒ κh = 0.

As the first bound (3.13) is stronger than the second (3.14), it would imply both the RHVC and κh = 0
when 2p− 1 = h2. □

Remark 3.16. Baird’s Lemma 3.8 implies that elements in H0,∗(Mh−1
1 ) with numerator vsp

N

h for some
N ≥ 1 and (s, p) = 1 must be of the form:

vspNh

pvs11 · · · vsh−1

h−1

,

such that the sequence (s1, · · · , sh−1, sp
N ) satisfies si ≤ pvp(si+1). It follows that the largest values of the si’s

are s1 = s2 = · · · = sh−1 = pN . One can then check that

h−1∑
i=1

si|vi| = pN
h−1∑
i=1

|vi| = pN
(
2(ph − 1)

p− 1
− 2h

)
=

pN |vh|
p− 1

− pN · 2h

This is strictly smaller than both bounds (3.13) and (3.14) since N ≥ 1. As is explained in Remark 3.4, we
can add correcting terms in lower Bockstein filtrations to vsp

N

h to increase their vi-divisibility for 1 ≤ i ≤ h−1.
This is why we cannot deduce from Baird’s Lemma 3.8 that the bounds (3.13) and (3.14) are always satisfied
.
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3.3. Consequences of the Miller-Ravenel-Wilson computation. Recall that M1
h−1 is defined to be

v−1
h BP∗/(p, v1, · · · , vh−2, v

∞
h−1). In this subsection, we discuss some consequences of the computations of

H0(M1
h−1) in [26] on the RHVC when (p − 1) ∤ h and the exotic Picard groups when 2p − 1 = h2. The

computations at height 2 are given by:

Theorem 3.17 (Miller-Ravenel-Wilson, [26, Theorem 5.3]).

H0,∗(M1
1 )

∼= Fp

{
vs2
pv1

∣∣∣∣ s ∈ Z, p ∤ s
}⊕

Fp

{
1

pvj1

∣∣∣∣∣ j ≥ 1

}
⊕

Fp

{
xs
N

pve11

∣∣∣∣N ≥ 1, s ∈ Z, p ∤ s, 1 ≤ e1 ≤ pN + pN−1 − 1

}
,

where xN is defined inductively by

x0 = v2,

x1 = xp
0 − vp1v

−1
2 v3,

x2 = xp
1 − vp

2−1
1 v

(p−1)p+1
2 − vp

2+p−1
1 vp

2−2p
2 v3,

xN = xp
N−1 − 2v

(p+1)(pN−1−1)
1 v

(p−1)(pN−1+1)
2 , N ≥ 3.

The internal degree of xs
N is spN |v2| − e1|v1|.

Using Gross-Hopkins duality Proposition 2.27, the results above imply the top degree cohomology groups
of G2 with coefficients in πt(E2)/p are:

Proposition 3.18. Let [α] ∈ H4
c (G2;πt(E2)/p) be a non-zero cohomology class. If [α] corresponds to an

element xs
N

pv
e1
1

∈ H0,∗(M1
1 ) for some N ≥ 1 via the Gross-Hopkins duality, then

t ≡ − (pN − 1)|v2|
p− 1

+ (e1 − 1)|v1| mod pN |v2|.

Proof. By assumption, the element xs
N

pv
e1
1

is in the image of H0,spN |v2|−e1|v1|(M1
1 /J) for some J containing p

where BP∗/J has a vp
N

2 -self map. The Poincaré duality (2.14) gives an isomorphism:

H4
c (G2;πt(E2)/p) ∼= H0

c (G2;π4−t(E2)⟨det⟩/(p, u∞
1 ))∨.

By Theorem 2.25, the determinant twist mod J is identified with:

π4−t(E2)⟨det⟩/J = π4−t

(
Σ

pN |v2|
p−1 E2

)/
J = π

4−t− pN |v2|
p−1

(E2)/J.

The claim now follows by solving for t in the residue equation:

4− t− pN |v2|
p− 1

≡ spN |v2| − e1|v1| mod pN |v2|. □

In this way, we have recovered the patterns of the top-degree cohomology H4
c (G2, πt(E2)/p) in the com-

putation by Behrens in [7, Figure 3.2] when p ≥ 5.



EXOTIC PICARD GROUPS AND CHROMATIC VANISHING VIA THE GROSS-HOPKINS DUALITY 25

Corollary 3.19. H4
c (G2;πt(E2)/p) ̸= 0 iff either |v2| divides t, or |v1| divides t and there is an N ≥ 1 such

that

− (pN − 1)|v2|
p− 1

≤ t ≤ − (pN − 1)|v2|
p− 1

+ |v1|(pN + pN−1 − 2) mod pN |v2|

= −2pN − 2pN−1 − 2p+ 6 mod pN |v2|.

Proof. In degrees divisible by |v2|, we have elements corresponding to vs
2

pv1
. When |v2| ∤ t, this follows from

Proposition 3.18 and the bounds for e1 in Theorem 3.17: 1 ≤ e1 ≤ pN + pN−1 − 1. □

We have therefore recovered the following result of Shimomura and Yabe in [32]:

Corollary 3.20. The RHVC holds and H4
c (G2;π2p−2(E2)) = 0 when h = 2 and p ≥ 5.

Remark 3.21. Shimomura and Yabe proved the cohomological version of Conjecture 2.29 at h = 2 and
p ≥ 5, which is equivalent to the homological version by Poincaré duality Corollary 2.10.

Proof. When |v2| ∤ t, the upper bounds for t above are always negative, which implies when p ≥ 5

H0(G2;π0(E2)/p) ∼= H4
c (G2;π0(E2)/p) = Fp,

H0(G2;π2p−2(E2)) ∼= H4
c (G2;π2p−2(E2)) ∼= H4

c (G2;π2p−2(E2)/p) = 0.

We have therefore verified (RHVC) and the vanishing of the top degree cohomology group H4
c (G2;π2p−2(E2)).

□

At height h ≥ 3, H0(M1
h−1) is described as follows:

Theorem 3.22 (Miller-Ravenel-Wilson, [26, Theorem 5.10]). Define ah,N by the recursive formula: ah,0 = 1,
ah,1 = p, and

ah,N =

{
pah,N−1, 1 < N ̸≡ 1 mod (h− 1);

pah,N−1 + p− 1, 1 < N ≡ 1 mod (h− 1).

Recall M1
h−1 = v−1

h BP∗/(p, v1, · · · , vh−2, v
∞
h−1). Then H0(M1

h−1) is an Fp-vector space generated by

I. vs
h

pv1···vh−1
, where p ∤ s ∈ Z.

II. 1

pv1···vh−2v
j
h−1

, where j ≥ 1.

III. xs
h,N

pv1···vh−2v
eh−1
h−1

, where p ∤ s ∈ Z, 1 ≤ eh−1 ≤ ah,N , and xh,N is is defined inductively by

xh,0 = vp,

xh,1 = vph − vph−1v
−1
h vh+1,

xh,N = xp
h,N−1 for 1 < N ̸≡ 1 mod (h− 1),

xh,N = xp
h,N−1 − v

(pN−1−1)(ph−1)

ph−1−1

h−1 vp
N−pN−1+1

h for 1 < N ≡ 1 mod (h− 1).

Lemma 3.23. The closed formula of ah,N is given by:

ah,N = pN +
(p− 1)(pN−1 − pr−1)

ph−1 − 1
,

where 1 ≤ r ≤ h− 1 is an integer such that N ≡ r mod (h− 1). 3

3r is not the usual residue of N mod h− 1 since r = h− 1 when (h− 1) | N .
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Like Corollary 3.19, we now have:

Proposition 3.24. Assume (p − 1) ∤ h and let Ih−1 = (p, u1, · · · , uh−2) ⊴ π0(Eh). Then the cohomology
group Hh2

c (Gh;πt(Eh)/Ih−1) is zero unless |vh| divides t, or there is an N ≥ 1 such that

t ≡ − (pN − 1)|vh|
p− 1

+ k · |vh−1| mod pN |vh| for some 0 ≤ k ≤ ah,N − 1.

In particular, the closed formula for ah,N in Lemma 3.23 implies the upper bounds for t above are always
negative. Like the h = 2 and p ≥ 5 case in Corollary 3.19, this shows that when (p− 1) ∤ h:

Hh2

c (Gh;π0(Eh)/Ih−1) = Fp,

Hh2

c (Gh;π2p−2(Eh)/Ih−1) = 0.(3.25)

Theorem 3.26 (Main Theorem B). When (p−1) ∤ h, the Homological Vanishing Conjecture is true modulo
the ideal Ih−1 = (p, u1, · · · , uh−2).

3.4. Conclusions at small heights and primes. Recall that by Theorem 1.24, there is an isomorphism
when 2p− 1 = h2:

κh H2p−1
c (Gh;π2p−2(Eh)) Hh2

c (Gh;π2p−2(Eh)/p).
∼

(1.20)
∼

(2.3)

At p = 5 and h = 3, to use our method to compute H9
c (G3;π8(E3)/5), we need to know H0,∗(M2

1 ) at prime
p = 5. It is also needed to verify the RHVC at height h = 3 and p > 2 (which implies (p − 1) ∤ h). This
computation also appears in Yexin Qu’s thesis [29]. By Proposition 3.15, we need to check that for each
1 ≤ e2 ≤ a3,N , if there is element yN

pv
e1
1 v

e2
2

∈ H0(M2
1 ), then

e1 · |v1|+ e2 · |v2| <
pN |v3|
p− 1

− 2 · 3.

When e2 = 1, we have e1 < pN (p2+p+1)−3
p−1 − (p + 1). When e2 attains its maximum a3,N in Theorem 3.22,

this translates to

e1 <
pN−1(p2 + p+ 1)− 3

p− 1
+ pr−1, r =

{
1, N is odd;
2, N is even.

We observe that both bounds are larger (looser) than the bounds a3,N for v2-divisibility itself. However, it
is not clear how to verify them without computing the Greek letter elements in H0(M2

1 ). Nevertheless, the
vanishing result in (3.25) does have concrete implications on exotic elements in PicK(h) when 2p − 1 = h2,
provided the relevant Smith-Toda complexes exist.

Theorem 3.27 (Main Theorem A). Let 2p−1 = h2. Suppose the type-(h−1) Smith-Toda complex V (h−2) =
S0/(p, v1, · · · , vh−2) exists at prime p. Then an exotic element X ∈ κh cannot be detected by V (h− 2); that
is,

X ∧K(h) V (h− 2) ≃ LK(h)V (h− 2).

Proof. Using the topology of PicK(h) described in [20, Proposition 14.3.(d)], we know that if the image of
X ∈ κh under the composite

κ3
ev2−−→ Hh2

c (Gh;π2p−2(Eh)) ↠ Hh2

c (G3;π2p−2(Eh)/Ih−1)

is zero, then X ∧K(h) V (h− 2) = LK(h)V (h− 2), provided V (h− 2) = S0/(p, v1, · · · , vh−2) exists. Since the
target of this map is zero by (3.25), the equivalence above is true for any X ∈ κh when 2p− 1 = h2. □

Corollary 3.28.
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(1) At height 3 and prime 5, an exotic element X in PicK(3) cannot be detected by V (1) = S0/(5, v1).
(2) At height 5 and prime 13, an exotic element X in PicK(5) cannot be detected by V (3) = S0/(13, v1, v2, v3).

Proof. The Smith-Toda complexes V (1) and V (3) have been constructed for p ≥ 3 and p ≥ 7 by Adams-Toda
and Smith-Toda, respectively [30, Example 2.4.1]. □

Remark 3.29. A referee has pointed out to us that it is an open question whether V (4) exists any any
prime (see discussions at the end of [31, §5.6]). Recall that Smith-Toda complexes V (n) are constructed as
cofibers of vn-self maps of V (n − 1) that induce multiplication by vn on BP -homology groups. This means
that we do not know the existence of V (n) for n ≥ 4 at any prime p. As a result, it is unclear whether we
have a similar statement at the next pair of height and prime (h, p) = (9, 41) satisfying 2p − 1 = h2, which
would require the existence of V (7) at the prime p = 41.

In [27], Nave proved the non-existence of the Smith-Toda complex V (h) when 2h = p+ 1. This does not
overlap with our consideration of the potential Smith-Toda complexes V (h− 2) when h2 = 2p− 1.

Remark 3.30. By [20, Corollary 7.11], a K(h)-local spectrum X is equivalent to LK(h)S
0 iff X ∧K(h) V ≃

LK(h)V for all finite complexes of type h. This means if X ∧K(h) V ≃ LK(h)V for all X ∈ κh and finite
complexes V of type n, then κh = 0. Theorem 3.27 can be thought of as a first step towards showing κh = 0
when 2p− 1 = h2, since it implies X ∧K(h) V ≃ LK(h)V for any cofibers V of vh-self maps of V (h− 2). Our
choices of finite complexes are restricted to cofibers of the Smith-Toda complexes V (h − 2), because we do
not have better Greek letter element computation results beyond Theorem 3.22 in [26] when h ≥ 3.

We can also use the same technique to study the subgroup κ
(1)
h of κh when 4p − 3 = h2. Recall from

(1.22), κ(1)
h is the kernel of detection map

ev2 : κh −→ H2p−1
c (Gh;π2p−2(Eh)).

In terms of the homotopy fixed point spectral sequence, it consists of exotic K(h)-local spheres X, such that
E0,0

2 (X) ∼= Zp does not support a d2p−1-differential. Using similar argument as in Proposition 1.20, one can
show that the detection map:

ev3 : κ
(1)
h −→ E4p−3,4p−4

2p

injective because the target of the next detection map is above the horizontal vanishing line at s = h2 = 4p−3
of the E2-page. The target of this detection map is a subquotient of

E4p−3,4p−4
2 = H4p−3

c (Gh;π4p−4(Eh)) = Hh2

c (Gh;π4p−4(Eh)).

By Proposition 3.24, we know Hh2

c (Gh;π4p−4(Eh)/Ih−1) = 0 when (p− 1) ∤ h. This implies:

Theorem 3.31. Let X be an exotic element in PicK(h) where h and p satisfies 4p − 3 = h2. Suppose
the Smith-Toda complex V (h − 2) exists. If X ∈ ker ev2, i.e. the E0,0

2 (X)-term in the HFPSS (1.13) does
not support a d2p−1-differential, then X ∧K(h) V (h − 2) ≃ LK(h)V (h − 2). In particular, this is true when
(h, p) = (3, 3) and (h, p) = (5, 7).

We end this paper with a discussion on the relation between the RHVC and exotic Picard groups.

Theorem 3.32 (Main Theorem C). At height 3, the RHVC implies κ3 = 0 when p = 5 and κ
(1)
3 = 0 when

p = 3.

Proof. We will prove the contra-positive statement at p = 5 first. Suppose κ3 ̸= 0 at p = 5. By Proposi-
tion 1.20 and Proposition 2.3, we know H9

c (G3;π8(E3)/5) ̸= 0. Let x be a nonzero element in this group.
Under the isomorphism in Proposition 2.27, x corresponds to a family of non-zero elements (2.28)

ξJ ∈ H0
c

(
G3; π2·3−(2·5−2)− 5N (2·53−2)

5−1

(E3)

/
J

)
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for cofinal system of open invariant ideals J in π0(E3) that contains 5. By Proposition 3.24:

H0
c

(
G3; π2·3−(2·5−2)− 5N (2·53−2)

5−1

(E3)

/
(5, v1, v

∞
2 )

)
= 0,

which implies the element ξJ cannot be v1-torsion. By Proposition 3.6 and Corollary 3.11, the ξJ ’s are
necessarily Family III Greek letter elements in Proposition 3.3. As result, we obtain a compatible family of
non-zero Family-III elements

ξ′J = v1αJ ∈ H0
c

(
G3; π2·3− 5N (2·53−2)

5−1

(E3)

/
J

)
.

Again by Proposition 2.27, ξ′J corresponds a non-zero element x′ ∈ H9
c (G3;π0(E3)/5). Recall from Proposi-

tion 3.6, this group already has a copy of F5 coming from Family I elements through Gross-Hopkins duality.
The new addition of x′ in this group from Family III elements shows that its dimension is at least 2, which
contradicts the RHVC.

At p = 3, we know κ
(1)
3 injects into the E4p−3,4p−4

2p -term in the HFPSS for the K(3)-local sphere. If
κ
(1)
3 ̸= 0, then neither is E4p−3,4p−4

2p = E9,8
6 . This implies E9,8

2 = H9
c (G3;π8(E3)) ̸= 0, since E9,8

6 ̸= 0 is its
subquotient. The rest of the argument is entirely the same as the p = 5 case.

In this way, we conclude κ3 ̸= 0 at p = 5 and κ
(1)
3 = 0 at p = 3 implies the RHVC is false at the respective

primes. These are the contra-positive statements of the theorem. □

Remark 3.33. This proof relies on Proposition 3.24, a consequence of the Miller-Ravenel-Wilson computa-
tion Theorem 3.22. In general, the implication would hold at height h if we knew

(3.34) H0,2h−(2p−2)− pN |vh|
p−1 (Mh−2

2 ) = 0

for all N . Miller-Ravenel-Wilson have calculated H0,∗(M1
h−1) for all h. To prove (3.34) one would have

to calculate h− 3 many Bockstein spectral sequences, which seems dizzyingly beyond our reach with current
technology.
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