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ABSTRACT
Typically, the parameters entering a physical simulation model carry some kind of uncertainty, e.g., due to the intrinsic approximations in a
higher fidelity theory from which they have been obtained. Global sensitivity analysis (GSA) targets quantifying which parameter uncertainties
impact the accuracy of the simulation results, e.g., to identify which parameters need to be determined more accurately. We present a GSA
approach based on the Cramérs–von Mises distance. Unlike prevalent approaches, it combines the following properties: (i) it is equally suited
for deterministic as well as stochastic model outputs, (ii) it does not require gradients, and (iii) it can be estimated from numerical quadrature
without further numerical approximations. Using quasi-Monte Carlo for numerical integration and a first-principles kinetic Monte Carlo
model for the CO oxidation on RuO2(110), we examine the performance of the approach. We find that the results agree very well with
what is known in the literature about the sensitivity of this model and that the approach converges in a modest number of quadrature points.
Furthermore, it appears to be robust against even extreme relative noise. All these properties make the method particularly suited for expensive
(kinetic) Monte Carlo models because we can reduce the number of simulations as well as the target variance of each of these.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0160873

I. INTRODUCTION

Most models of physicochemical behavior depend on a number
of parameters, which are characteristic of the problem we want to
describe. Typically, these parameters carry a non-negligible uncer-
tainty or variability. This might result from the actual problem
setting. For instance, in materials screening, we are interested in the
behavior of a class of materials, where the particular choice of the
parameter values distinguishes between different materials in that
class. Even for one particular material, we typically know the para-
meter values only approximately as these need to be determined
from either experimental data or from higher fidelity models, e.g.,
quantum chemical methods. In these cases, parameter uncertainty
arises either due to the unavoidable noise on experimental data
or due to the intrinsic approximations in the high-fidelity model.
Consequently, the model’s output is uncertain itself, and it is of
interest which parameter uncertainties are most responsible for this

variability. Such sensitivity information would allow for a purposeful
distribution of resources by a more accurate determination of only
the most important parameters or a qualitative interpretation of the
crucial factors controlling the behavior of a material class.

In the context of chemical kinetics, the uncertainties can be
assigned to the reaction energies and barriers or the rate constants,
respectively. Here, the sensitivity information is closely related to
the notion of rate-determining steps (RDS). Commonly, RDSs are
determined by local sensitivity analyses (LSAs), i.e., by the gradi-
ent of the model output at the default parameter values.1,2 However,
the intrinsic linear approximation behind LSA is only appropri-
ate for typically highly nonlinear kinetic models if the parameter
uncertainties are small. Global sensitivity analyses (GSAs) over-
come this problem by sampling the parameter space according to
the error distribution and thereby the nonlinear response. Such
analyses have been applied to numerous mean-field microkinetic
models.3–5 In contrast, there exist only very few studies of GSA for
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the more accurate kinetic Monte Carlo (kMC) models6,7 as estab-
lished GSA approaches require complex sampling strategies of the
parameter domain, kMC simulations are comparatively costly, and
their numerical error converges only slowly.

We present a novel approach to GSA based on the
Cramérs–von Mises (CvM) distance, which, while being generally
applicable, is particularly suited for the use with kMC and other
Monte Carlo models. This approach requires neither any gradi-
ent information, which is notoriously difficult to estimate from
kMC simulations, nor a specialized sampling strategy for the para-
meter space or surrogate models. Instead, almost any numerical
integration method can be employed, and with a suitable integra-
tion method, reasonably accurate sensitivity index estimates can be
obtained with only a modest number of kMC simulations. More-
over, the approach seems to be rather robust against the noise in
the kMC estimates, and therefore, every kMC simulation can be run
with a modest computational footprint. Using quasi-Monte Carlo
integration for the parameter space, we demonstrate this on a first-
principles kinetic Monte Carlo (1p-KMC) model for CO oxidation
on RuO2(110).8 Such models have attracted much attention during
the last years because of their predictive quality.9,10 The downside
is the relatively high error of ∼0.2 eV for the underlying den-
sity functional theory derived energetics.11 This error accounts for
uncertainties of orders of magnitude for the rate constants at typical
temperatures. For these large uncertainties, LSA might provide only
limited insight or even misleading results,12 and GSA will be a more
appropriate choice.

II. UNCERTAINTY MODELING AND GLOBAL
SENSITIVITY ANALYSIS

The goal of every GSA is to determine a set of numbers, the sen-
sitivity indices (SInds), which quantify how strongly the output y of
a model depends on the different input parameters. The model itself
can be characterized by the conditional distribution of the output y,
given the parameters values x ∈ RD, represented by its cumulative
distribution function (CDF) F(y∣x). For the methodology below, no
explicit knowledge of this distribution is required but only a compu-
tational model that draws samples from F(y∣x) for given parameters
x, e.g., a kMC simulation. In general, this allows the treatment of
stochastic outputs, of which deterministic input–output relations are
a special case.

Next to the model itself, we need a probability distribution
[CDF F(x)] of the input parameters x, which represents the uncer-
tainty of x. This distribution must be interpreted in an information
theoretical setting, i.e., it represents our knowledge about the val-
ues of the parameters. For instance, if we can determine a parameter
directly from an experiment, there will be an unavoidable noise in
the experimental data, and we would repeat this several times to
average out this noise and estimate the standard deviation. Then, by
the central limit theorem, we would expect that this average will be
Gaussian distributed. In contrast, the parameters might have been
determined from a high-fidelity model by some numerical method
for which we have error bounds. We would then employ a uniform
distribution between these bounds because this would maximize the
entropy of the distribution. In the context of 1p-kMC, the error pri-
marily originates from the modeling assumptions in the employed
density functional, which is none of the above-mentioned cases.

However, for adsorption energies and barriers in heterogeneous
catalysis, it is commonly assumed that the employed functionals in
the generalized gradient approximation produce errors, which are
not much worse than 0.2 eV.11

From F(y∣x) and F(x), we form the joint distribution of output
and input [CDF F(y, x)]. Our approach to GSA is based on ana-
lyzing the joint marginal distribution of the output y and only one
input parameter xi [CDF F(y, xi)], that is, the distribution of y and
xi after averaging over all remaining input parameters. This will be
compared to the marginal distribution of only y [CDF F(y)] and
the marginal distribution of only xi [CDF F(xi)]. For later use in
computations, it is useful to express the CDFs in terms of integrals
over the probability measure dF(y, x) of the non-marginal distribu-
tion F(y, x) of output and all inputs. Since F(y) is nothing than the
probability for the output to be below the value y, this is given by

F(y) =
y

∫
−∞

dF(y′)

= ∫ H(y − y′)dF(y′) = ∫ H(y − y′)dF(y′, x′), (1)

where H(⋅) is the Heaviside step function. Here, we exploited that
the marginal measure dF(y) can be obtained from the joint measure
dF(y, x) by integrating over x. Using the same arguments, the CDF
F(xi) is given by

F(xi) = ∫ H(xi − x′i)dF(y′, x′). (2)

The joint marginal CDF, F(y, xi), is simply the probability that the
output is below y and the ith input is below xi. In terms of Heaviside
functions, this means

F(y, xi) = ∫ H(xi − x′i)H(y − y′)dF(y′, x′). (3)

We will employ Eqs. (1)–(3) to formulate the global sensitivity mea-
sure and an estimator for it. The goal of GSA is to identify those
parameters that uncertainty has the most impact on the uncertainty
of the output. If a parameter xi is unimportant, that means the out-
put y is statistically independent of this parameter. The idea behind
our and other distribution-based approaches to GSA3 is to measure
the statistical dependence of these two random variables. In terms of
distributions, statistical independence means that the joint marginal
distribution is of product form and its CDF, Fs.t.(y, xi), obeys

Fs.t.(y, xi) = F(xi)F(y), (4)

where F(y) and F(xi) are the marginal distribution of the output
y, Eq. (1), and the ith input xi, Eq. (2). If we have a significant
statistical dependence between y and xi, the true joint marginal dis-
tribution F(y, xi), Eq. (3), will strongly deviate from this product
form Fs.t.(y, xi). Therefore, we will base the SInd, Si, on some dis-
tance measure between these two distributions, for which we will
employ the Cramérs–von Mises distance Di (CvM).13 We define the
SInd Si by

Di = ∫ ∣F(y, xi) − F(xi)F(y)∣2dF(y, x),

Si ∶=
Di

∑
j
D j

,
(5)
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where the normalization of the CvM ensures that all Si add up to
one, as is the case for the degree of rate control.14

At this point, there is nothing special about the CvM-based
GSA (CvM-GSA). Any other distance measure between probabil-
ity distributions would define a similarly valid SInd, e.g., the already
employed total variation.15 The benefit of the CvM is in more prac-
tical terms as it can directly be estimated from numerical integration
without any further approximation. For this, we assume that we
have a numerical rule for integrating over of the input variables with
N nodes {xn}

N
n=1 and weights {wn}

N
n=1 for which

N

∑
n=1

wn = 1, (6)

lim
N→∞

N

∑
n=1

t(xn)wn = ∫ t(x)dF(x), (7)

lim
N→∞
∣wn∣

2
= 0 (8)

for a function t, which can be discontinuous. The properties (6)
and (7) are minimal requirements for a numerical quadrature rule,
whereas Eq. (8) holds for many practical rules, but it is easy to
construct a valid quadrature rule that violates this.

With this rule, we now approximate the CDFs (1)–(3),

F̃N(y) =
N

∑
n=0

wnH(y − yn), (9)

FN(xi) =
N

∑
n=0

wnH(xi − xi,n), (10)

F̃N(y, xi) =
N

∑
n=0

wnH(y − yn)H(xi − xi,n), (11)

where yn is a single sample drawn from F(y∣xn) by the use of
our model. For Eqs. (9)–(11), we first rewrote ∫ . . . dF(y′, x′)
= ∫ ∫ . . . dF(y′∣x′)dF(x′). Then, we discretized the integration over
x, which left us with the conditional integrals ∫ . . . dF(y′∣xn). With-
out explicit knowledge of F(y∣x), these integrals must be approxi-
mated using samples drawn by our model. By Eq. (8), it now suffices
to draw only a single sample yn per node xn for (9)–(11) to con-
verge to the true CDFs. For the deterministic case, where y is a
function of x, this is obviously true because all samples would take
the same value [and the constraint (8) can be dropped]. For the
general stochastic case, the constraint (8) ensures that the sampling
noise averages out in the limit N →∞. For details, we refer to the
Appendix.

We now take the approximate CDFs (9)–(11) and insert them
into the definition of the CvM. We then conduct the same steps as
for obtaining (9)–(11). This results in the estimator for the CvM,

Di ≈
N

∑
m=1

wm∣(
N

∑
n=1

h(x)i,mnh(y)
mn wn)

− (
N

∑
n=1

h(x)i,mnwn)(
N

∑
n=1

h(y)
mn wn)∣

2

, (12)

with h(x)i,mn = H(xi,m − xi,n) and h(y)
mn = H(ym − yn).

Estimating the CvM thus requires only choosing a quadrature
rule and running the model once for each node. From these data, we
can calculate all SInds of the input variables. The downside of CvM-
GSA is that the SInd from CvM-GSA has no intuitive interpretation
as other approaches, such as variance-based GSA,16 Wasserstein
metric-based GSA (W-GSA),12 or gradient-based GSA.17 However,
compared with other existing approaches, the CvM-GSA has sev-
eral advantages. Unlike gradient-based GSA, it does not require
derivative information, which can be demanding to estimate from
Monte Carlo simulations.3 GSA based on an Analysis Of Variances
(ANOVA) also is derivative-free.16 However, this requires either a
surrogate model, which can be demanding to obtain especially when
dealing with dozens of parameters and non-smooth input–output
relations,7,12 or a specialized parameter sampling strategy is needed
with an extra dataset for each SInd.18 Both become computation-
ally inefficient if the parameter space is high-dimensional. The CvM
has also been applied to generalize the ANOVA-based GSA.19 While
this approach can generally address more complex questions than
our CvM-GSA, it also requires similar sampling strategies as the
ANOVA-based approach. As the CvM-GSA, other distribution-
based approaches do not require a deterministic input–output rela-
tion and can work on only a single dataset to estimate all SInds
and no surrogate.6,15 However, these approaches require some kind
of random quadrature, and they achieve the single dataset prop-
erty only by introducing additional numerical approximations. In
contrast, the quadrature rule is the only source of error for the CvM-
based approach, and we can employ (almost) arbitrary quadrature
rules.

Besides these properties, the CvM-GSA is invariant with respect
to monotone component-wise transformations of y and x. This is
not the case for gradient-based GSA, which is neither invariant with
respect to a transformation of the output y nor a transformation of
the input x. In particular, the latter is problematic because the GSA
will assign different importance to the, in principle, same parameter
depending on how we choose to represent this, e.g., linear against
logarithmic representation. However, in both representations, we
have the same uncertainty encoded by the transformed probability
distribution, and thus, the importance of a certain parameter should
be invariant. Variance-based GSA, but also our W-GSA, is invariant
under the componentwise monotone transformation of the input,
but not for the output. Whether this is a disadvantage or not depends
on the application, where a certain representation might have been
established for interpretation purposes. However, we have the prob-
lem that two transformations of the output might give contradicting
results, and it requires expert knowledge to decide which one is cor-
rect. Completely invariant approaches, such as the CvM-GSA and
the total variation GSA, remove this ambiguity. Loosely speaking,
such approaches provide a balanced representation assigning those
subdomains of the joint input–output space a higher importance
for the sensitivity, where most of the probability is located. Non-
invariant approaches are instead prone to be dominated by outlier
domains, where the output takes large absolute values, even though
the probability for such values can be extremely low. Another advan-
tage of this invariance is again in practical terms. We can simply
choose the transformation such that we obtain a good numerical
performance. For instance, the logarithm of the turnover frequency
(TOF) is typically considered in catalysis, especially in the setting
of first principles kMC because of the high parametric uncertainty.
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Therefore, it would make sense to consider the sensitivity of this log-
arithm. However, in practice, a kMC might return zero for the TOF
for some parameter settings due to a too short kMC trajectory, even
though the real TOF will typically be larger than zero (albeit very
small). The logarithm is then not defined, and the GSA must fail.
Because of the invariance of the CvM, we can work on a linear scale,
and a zero TOF is unproblematic.

The dimensionality of typical microkinetic models is in the
order of a few tens, and classical integration approaches will suffer
from the curse of dimensionality. For problems where F(x) can be
mapped onto a uniform distribution on a hypercube, Quasi-Monte
Carlo (QMC) approaches20 likely are the best choice for numerical
integration over the parameter domain. This is because they provide
a good balance between the sampling and the numerical error, i.e.,
the error due to the use of only a finite number of samples per node
and the error that comes from the discretization in the parameter
domain. First, QMC are equal weight quadrature rules as classical
Monte Carlo integration. Among all possibilities, such rules mini-
mize the sum of the squared weights and, thereby, the sampling error
(see the Appendix). Second, the more even distribution of the nodes

in QMC typically leads to lower numerical integration errors when
compared to classical Monte Carlo integration, even though the inte-
gration is discontinuous, and we cannot expect the optimal QMC
convergence order. On the other hand, higher order approaches,
such as sparse grids,7,12 require a high degree of smoothness and,
therefore, will likely be of no benefit. We are currently working on
a more mathematical justification for the above arguments together
with convergence proofs for the proposed estimator, which will be
the subject of a subsequent publication.

In Sec. III, we target at the sensitivity of the expected turnover
frequency from a kinetic Monte Carlo simulation. This means we are
after a deterministic input–output relation as expectations carry no
randomness. However, we need to estimate such expectations from a
finite number of kMC simulations. The employed empirical averages
necessarily carry some random error, and the CvM-GSA can only
give the SInds of those averages. Employing the strategy from this
section then ensures that the estimated SInd will converge against
those SInds and that any deviation of the converged results from
the targeted SInd is not due to a failure of the CvM estimator but
only due to the approximation by empirical averages. In the language

TABLE I. Reaction mechanism for the CO oxidation on RuO2(110) and corresponding nominal barriers Eα
a , as well as the

ranges for the rate constants for a temperature of 600 K and CO and oxygen partial pressures of 1 bar.

Process Eα
a (eV) Rate constant (s−1) Abbreviation

CO + ∗ cus → COcus 0.0 2 × [106, 108
] CO ad. cus

CO + ∗ br → CObr 0.0 2 × [106, 108
] CO ad. br

O2 + 2 ∗ cus → Ocus +Ocus 0.0 9.7 × [105, 107
] O2 ad. cus

O2 + 2 ∗ br → Obr +Obr 0.0 9.7 × [105, 107
] O2 ad. br

O2 + ∗ cus + ∗ br → Obr +Ocus 0.0 9.7 × [105, 107
] O ad. br/cus

COcus → CO + ∗ cus 1.3 9.2 × [104, 108
] CO des. cus

CObr → CO + ∗ cus 1.6 2.8 × [102, 106
] CO des. br

Ocus +Ocus → O2 + 2 ∗ cus 2.0 2.8 × [10−1, 103
] O2 des. cus

Obr +Obr → O2 + 2 ∗ br 4.6 4.1 × [10−23, 10−19
] O2 des. br

Obr +Ocus → O2 + ∗ cus + ∗ br 3.3 3.4 × [10−12, 10−8
] O2 des. br/cus

COcus + ∗ cus → ∗ cus + COcus 1.7 6.6 × [10−4, 1] CO diff. cus

CObr + ∗ br → 217 ∗ br + CObr 0.6 1.1 × [106, 1010
] CO diff. br

COcus + ∗ br → ∗ cus + CObr 1.3 1.5 × [1, 104
] CO diff. cus/br

CObr + ∗ cus → ∗ br + COcus 1.6 0.5 × [10−2, 102
] CO diff. br/cus

Ocus + ∗ cus → ∗ cus +Ocus 1.6 0.5 × [10−2, 102
] O diff. cus

Obr + ∗ br → ∗ br +Obr 0.7 1.6 × [105, 109
] O diff. br

Ocus + ∗ br → ∗ cus +Obr 1.0 4.9 × [102, 106
] O diff. cus/br

Obr + ∗ cus → ∗ br +Ocus 2.3 6.0 × [10−9, 10−5
] O diff. br/cus

COcus +Ocus → CO2 + 2 ∗ cus 0.9 1.7 × [103, 107
] Ocus/COcus

CObr +Obr → CO2 + 2 ∗ cus 1.5 1.6 × [10−2, 102
] Obr/CObr

COcus +Obr → CO2 + ∗ br + ∗ cus 1.2 5.2 × [1, 104
] Obr/COcus

CObr +Ocus → CO2 + ∗ br + ∗ cus 0.8 1.2 × [104, 108
] Ocus/CObr
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of this section, such deviations will only be due to drawing samples
from a slightly different conditional distribution than the targeted.

III. NUMERICAL TESTS AND DISCUSSION
To be able to compare with our previous studies, we will

demonstrate the methodology on the 1p-kMC model for the CO
oxidation on RuO2(110) by Reuter and Scheffler.8 This is a very
well investigated model,21–23 particularly in the context sensitivity
analysis.6,14,24 Furthermore, the TOF is highly nonlinear in the con-
sidered parameter domain with close to discontinuous behavior,
which makes it particularly suited for testing methodologies. This
model considers bridge (br) and coordinately unsaturated (cus) sites
that are arranged on a rectangular lattice in alternating rows and
where CO and atomic oxygen can bind. On these sites, the model
allows for dissociative oxygen adsorption and non-dissociative CO
adsorption as well as the corresponding desorption processes. Fur-
thermore, diffusion of adsorbed CO and O is considered between all
neighboring sites. Adsorbed CO and O on adjacent sites can react to
form gaseous CO2. The supporting data25 contains the results of an
additional simple model.

To make the results comparable, we considered exactly the
same error model as in our previous study on W-GSA.6 This model
is centered around the default settings for the reaction rate constants
(RRC) at 600 K and CO and oxygen partial pressures of 1 bar using
the rate expression and barriers from Ref. 8. As before, we assume
a log-uniform distribution of all 22 RRC, which bounds are con-
sistent with a possible error of ∼0.25 eV for the reaction barriers.
As a consequence, almost all RRCs can be up to a factor of 100
larger or lower than the default values, i.e., these RRCs can vary
by four orders of magnitude. The only exceptions are the RRC for
adsorption processes, which have a default barrier of zero. As nega-
tive barriers make no sense, these RRCs therefore can only be lower
than the default values, and therefore, their uncertainty spans only
two orders of magnitude. The list of all elementary reactions, default
values for the barriers, the resulting ranges for the RRC, and the
employed abbreviations are compiled in Table I.

Using this error model, we investigate the sensitivity of the sta-
tionary CO oxidation turnover frequency (TOF), i.e., the expected
rate of CO molecules converted to CO2 molecules normalized
per surface unit cell. Numerical integration has been conducted
using Sobol’s Quasi-Monte Carlo (QMC) sequence26 with up to
217
≈ 1.3 × 105 nodes. For each node, an independent kMC simula-

tion has been performed using the KMCOS toolbox27,28 using a lattice
of 20 × 20 surface unit cells and 107 kMC steps each for relaxation
to steady-state and subsequent time averaging amounting to ∼10
CPU seconds per node and 300 CPU hours in total. Using this
dataset, we find that the TOF varies within the covered domain of
RRC by 12 orders of magnitude, i.e., between values of ∼10−6 s−1

and ∼106 s−1. Moreover, these values are no extreme outliers, but
the marginal distribution of the TOF is very broad, showing a simi-
larly high probability for a large range of possible TOF values. This
becomes evident from Fig. 1, where we show the marginal density of
log10(TOF) as obtained from a histogram with 28 bins for the range
log10(TOF) ∈ [−7, 7].

In Sec. III A, we test the approach with respect to its con-
vergence with the number of quadrature nodes. Because the kMC
estimates for the expected TOF of a given RRC are never perfect but

FIG. 1. Marginal density of log10(TOF) for the CO oxidation on RuO2(110), which
has been obtained from a histogram with 28 bins for the range log10(TOF) ∈
[−7, 7].

contain a sampling noise, we investigate the influence of noise on
the final results in Sec. III B. In Sec. III D, we turn to the question of
what is the effect if we modify the error distribution by reducing the
error of one variable and/or correlating two variables.

A. Convergence
A crucial measure of the quality of a GSA approach is the con-

vergence with the number of integration nodes N, i.e., with a total
number of simulated kMC trajectories. Figure 2 displays this con-
vergence for the proposed approach. The methodology will reach
convergence when N approaches its maximum value. Most notably,
the essential information can already be extracted at a compara-
tively low N of around a thousand, where the SInds deviate by a
few percent from their converged numbers. This means we are able
to conduct a GSA at a total cost in the order of a few CPU hours.
These cost are comparable to or even below the computational
effort that is needed to conduct a local sensitivity analysis for the
very same 1p-kMC model using the advanced gradient estimation
approaches.14 At these low N, we also get the relative importance of
the different RRC correct, with CO des. cus having the most impact.
This is followed by O2 des. cus and CO ad. cus. O2 ad. cus and
Ocus/COcus sensitivities are a little lower and almost the same. We

FIG. 2. Convergence with the number of QMC integration nodes. The stationary
TOF has been obtained from kMC trajectories with 107 relaxation and sampling
steps.
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find the smallest SInd, which still differs significantly from zero, for
the Obr/COcus reaction. All other SInds are close to zero. To inves-
tigate the influence of the kMC simulation settings, we have repeated
the analysis with 108 relaxation and sampling steps per integration
node. The convergence behavior is almost identical, and the final
values for the SInd differ by less than 2%.

B. Noise tolerance
We are often interested in the sensitivity of an expected value,

such as the stationary TOF in this study, i.e., the result that we would
obtain if we average over, for a single quadrature node, infinitely
many samples from our Monte Carlo model or an infinite trajec-
tory for stationary data. In reality, we have to average over a finite
number of samples or trajectories. Our estimates only approximate
the true expected value and, therefore, always carry some random
noise. If we conduct a GSA on the basis of these data, we are there-
fore addressing the sensitivity of these estimates and not that of the
real expected values. We would expect that improving the accuracy
per node would bring us closer to the SInd of the expected value.

Therefore, besides obtaining reasonable results with modest
numbers of nodes, a critical factor for an efficient GSA of a Monte
Carlo model is how accurately the model needs to be sampled at
every quadrature point. A GSA method that is the least sensitive to
such errors would allow a further reduction of the computational
costs by running only cheap, low accurate simulations per node. To
obtain an understanding of the effect of the sampling noise, we took
our dataset and added independent, zero-mean Gaussian random
noise αN(0, 1) to the TOF. Here, N(0, 1) is a zero mean Gaussian
noise with a standard deviation (STD) of 1 and α is the noise power.
The results were rather disappointing, as can be seen in Fig. 3(a).
Even modest noise, which STD is five orders of magnitude lower
than the maximum TOF in our dataset, resulted in non-converging
SInd. This seems to indicate that our methodology is useless and
contradicts our findings where a recalculation of all results with
108 kMC steps produced almost indistinguishable results from the
case with 107 steps. However, in kMC models, the sampling STD is
not the same for each point in parameter space. We would rather
expect it to be low when the expected TOF is low and high when
the expected TOF is high. The simplest such noise model is rela-
tive noise, where the STD is proportional to the TOF. The results of
adding this kind of noise αTOFN(0, 1) are shown in Fig. 3(b). Here,
the noise power α is the ratio between the STD and the TOF, i.e.,
the inverse signal-to-noise ratio. The picture is now completely the
opposite of the previous case. The correct SInd is reproduced for all
noise powers, even when the noise is several orders of magnitude
larger than the actual signal.

Motivated by this invariance, we tested how much we can
decrease the number of sampling steps without affecting the CvM-
GSA outcome. By this decrease, the sampling variance of our kMC
estimates increases. While the sampling noise will not be purely rel-
ative noise, we expect this to hold approximately true and the SInd
to be rather robust against a rather coarse sampling. The results for
different numbers of sampling steps in the range [102, 107

] are dis-
played in Fig. 4. While the ideal behavior cannot be obtained, the
results seem to be rather robust. Even for 103 steps, only minor
quantitative deviations are obtained. Only if we lower the sampling
even further, significant differences will show up. This is especially

FIG. 3. Effect of adding independent noise to the TOF at each data point. (a)
Independent zero-mean Gaussian noise, where the noise power is the standard
deviation. (b) Relative zero-mean Gaussian noise, where the noise power is the
proportionality constant between the standard deviation and the TOF.

remarkable as even for 107 sampling steps, the root-mean-square rel-
ative deviation from reference calculations with 108 sampling steps,
i.e., a rough estimate for the average noise power, is already in the
order of 1013. This is, however, caused by only a few parameter
points in our dataset; for 99%, the relative deviation is below one.

FIG. 4. The sensitivity indices by using different numbers of sampling steps for
the elementary steps with significant SInd. Each group of bars corresponds to one
elementary reaction, and the colors differentiate the employed number of sampling
steps.
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Thus, our data substantially deviate from the ideal relative noise
behavior, but this is not such severe as to corrupt the performance
of the approach.

Hence, we could reduce the computational time for sampling
by 3–4 orders of magnitude compared to our nominal setting with
107 sampling steps. For the employed model, this cannot be trans-
lated into a significant reduction of the overall costs because for
that, we need to also reduce the number of relaxation steps. This
introduces a bias and leads to significant deviations already for 106

relaxation steps. For 105 relaxation steps, the most important para-
meter is then falsely identified. However, for many models, the
relaxation is not as critical as the sampling as it is for the here
employed kMC model. Using the same number of relaxation steps
and sampling steps, the signal-to-noise ratio might then be substan-
tially worse, and the above cases with artificially low numbers of
samplings steps mimic this behavior. Thus, our results indicate that
the methodology should also work for much more challenging cases.
Examples, where high noise is expected in the target TOF are sys-
tems that require artificial slow down of the fastest processes, e.g.,
using acceleration schemes.29,30 In the supporting data,25 we provide
a simple example for a model, which allows the parallel reduction of
relaxation and sampling steps.

C. Comparison with other methods
As already mentioned, the CvM lacks an intuitive interpre-

tation, and it is therefore interesting to compare it with GSA
approaches that possess such interpretation. In a previous study,6
we have developed the Wasserstein metric-based approach to GSA
(W-GSA) and compared it with the main effect, which is the lead-
ing order term in a variance-based GSA.16 Both sensitivity indices
possess the interpretation as a measure for the error in the output
variable caused by the uncertainty of the respective input. These two
approaches have been applied to the same 1p-kMC model and the
same error model, as discussed in Subsections III A and III B. For
comparison, we, however, have to note the slightly different foot-
ing of W-GSA and CvM-GSA. While both are based on some kind
of distance between cumulative distributions, the Wasserstein met-
ric is simply a norm, whereas the CvM is a squared norm. In Fig. 5,
we, therefore, compare the results from CvM-GSA with the squared
W-GSA and main effect for the log10(TOF) of CO oxidation on
RuO2(110). In this representation, all three methods lead to the same
picture. Only for the six displayed elementary steps, the SInds dif-
fer noticeably from zero and their values almost quantitatively agree
between the three methods. Hence, CvM-GSA provides the same
insight as the other two methods for the model at hand.

When it comes to numerical performance, CvM-GSA shows its
advantages. All three methods work on a single set of QMC points.
However, compared with the convergence results from our previ-
ous study,6 CvM-GSA shows a faster convergence with the number
of QMC points, especially for those SInds that are close to zero
when converged. Already at a few hundred points, the qualitative
picture has been established with an accuracy that is comparable to
the differences between the converged SInd from the three meth-
ods. It should also be noted that W-GSA and the main effect require
an additional numerical discretization on top of the QMC integra-
tion. This discretization counteracts convergence with the number
of QMC points, i.e., the more accurately we set this, the slower

FIG. 5. Comparison of the CvM-GSA with Wasserstein metric based GSA and
the variance based main Effect.6 Note that the later have been squared and sub-
sequently normalized to ensure a somehow equal footing of all three methods.
Therefore, the numbers deviate from Ref. 6.

the convergence will be, and both need to be balanced. In terms of
robustness against noise in the simulation results, our tests showed
very similar behavior for the normalized W-GSA, main effect, and
CvM-GSA. The former two have here the slight disadvantage that
the noise must be such that the TOF values stay positive due to the
use of the logarithm.

Other approaches to GSA as the variance-based total sensitiv-
ity index16 or gradient-based GSA31 cannot be expected to be able
to compete with CvM-GSA in the kMC setting. The direct sam-
pling of the former requires an independent set of simulations for
every SInd, which roughly multiplies the computational costs by the
number of parameters.32 For the case at hand, CvM-GSA achieves
a reasonable accuracy already with ∼1000 simulations. For compa-
rable costs, we would need to be able to estimate a SInd from as
few as ∼50 points. The challenge of gradient-based GSA is that para-
meter derivatives cannot be formulated as simple expected values in
kMC (unlike equilibrium Monte Carlo). While there has been quite
some progress in sampling approaches for such derivatives, these
still require substantial computational efforts.3

D. Modifying the error distribution
We now turn to the question what is the effect if we change

the error distribution. We look at the effect on the sensitivities and
the distribution of the log10TOF if we assume that we can reduce
the uncertainty of a single barrier. We will also address the case
when two barriers are correlated and the combination thereof with
improving barriers. For demonstration purposes, we will only mod-
ify the (joint) distributions of the most important barrier, CO des.
cus, and a single of the unimportant barriers, O diff. br/cus in Fig. 2.
The errors for the remaining barriers remain independent of those
two, obeying the original uniform distribution with a bound of
0.25 (eV). Reduced uncertainties are incorporated using Bayesian
updates, i.e., it is assumed that they improve upon existing knowl-
edge encoded in a prior distribution.33 The density of the updated
distribution is the product of the prior density and the likelihood,
which encodes the additional knowledge.
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Starting from the original error model as prior, we first
investigate the case, when we improve a single barrier, either for
O diff. br/cus or CO des. cus. For simplicity, we assume that these
improved barriers take their nominal value and that we have an
improved bound for their errors, which we set to 0.05 eV. Without
no further information, the likelihood must be chosen proportional
to an indicator function, which is one when the respective barrier
is within [−0.05, 0.05] eV around the nominal values and zero else.
The resulting distribution is again uniform but now on the respec-
tive smaller domain. These domains are displayed in Fig. 6(a) in the
plane spanned by ECO des. cus

a and EO diff. br/cus
a in dark turquoise and

orange for the two cases. Such improved values might, for instance,
come from higher fidelity quantum chemical methods or some kind
of experiment. In any case, improved barriers come at substantial
additional costs. Suppose now that we ignore the results from the
GSA and, therefore, choose to improve O diff. br/cus. The resulting
marginal density of the log10TOF and the effect on the sensitiv-
ity are shown in Figs. 7 and 8, respectively, using the same color
code as in Fig. 6. For comparison, both figures also contain the
results for the prior distribution in dark gray, i.e., the case that we

have investigated in Subsections III A–III D. For both, marginal
distribution and SInd, the effect of the improved O diff. br/cus is
negligible and the extra effort for improving this barrier was wasted.
If we would instead follow the hierarchy of errors that results from
the GSA, we would choose to improve the CO des. cus barrier. Now,
the situation is much different and the marginal distribution in Fig. 7
is substantially changed. Interestingly, this does not reflect in the
variance of log10(TOF), which remains almost unchanged at a value
of 5.96.

This is due to the bimodal nature of the distribution and
that, in our example, reducing the error has the effect that the
probability weight is moved from intermediate to higher values of
the TOF. However, we can argue that the uncertainty has been
reduced because the probability weight now concentrates around
these two modes, whereas the original distribution is more smeared
out. Besides the marginal distribution, the SInd also changes signifi-
cantly. The SInd of the CO des. cus is now almost negligible, which
is to be expected because now the error of this barrier is very small.
The qualitative picture of the remaining SInds does not change dra-
matically and suggests now putting the effort into determining either

FIG. 6. Schematic representation of the modified error distributions for ECO des. cus
a and EO diff. br/cus

a : (a) reduced uncertainty for ECO des. cus
a (orange) and EO diff. br/cus

a (dark
turquoise), (b) correlated errors (green), (c) correlated errors with a reduced uncertainty of ECO des. cus

a (yellow), and (d) correlated errors with a reduced uncertainty of
EO diff. br/cus

a (brown).
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FIG. 7. Marginal densities of log10(TOF) for the different error models (cf. Fig. 6).
The densities have been obtained from a histogram with 28 bins in the range
log10(TOF) ∈ [−7, 7].

FIG. 8. CvM-GSA sensitivity indices for the different error models (cf. Fig. 6). Addi-
tionally, to the six most important steps in the uncorrelated reference case (cf.
Fig. 4), the sensitivity with respect to the O diff. br/cus step was added.

the CO ad. cus or the O2 des. cus/cus with higher accuracy instead
of further improving upon CO des. cus.

We now consider that we have information on the statisti-
cal dependence between the errors of ECO des. cus

a and EO diff. br/cus
a . To

allow for a comparison with the original error model, we assume
that this dependence is given by a uniform distribution, which sup-
port is displayed in Fig. 6(b) in light green. This distribution has the
same bounds for the barriers as the original distribution and also
the marginal distribution of a single barrier, respectively, the loga-
rithm of the respective RC, are very close to uniform, else it encodes
a strong dependence between the two barrier errors, where one error
deviates from the other only within a rather small margin. Hence,
the support of the distribution is a stripe, which width we have cho-
sen to be 0.05 eV, and is essentially a rotated version of those from
the previous two cases with lowered variance. The distribution of
log10(TOF) in Fig. 7 hardly deviates from the uncorrelated case.

This is expected because one of the two correlated errors has no
influence on the TOF when varied independently. The marginal dis-
tribution of log10(TOF)will not depend on whether we average over
EO diff. br/cus

a or not, and the marginal distribution of the other errors is
almost identical to the uncorrelated original case. In contrast to the
marginal distribution, the SInds are strongly affected by the correla-
tion, as shown in Fig. 8. Particularly, the sensitivity of CO des. cus is
reduced, and we have now a large sensitivity on the O diff. br/cus of
almost the same value. This importance of the O diff. br/cus arises
because if we know the value of this barrier, we also know the barrier
of the CO des. cus within a narrow margin because of the statisti-
cal dependence between the two. Since the TOF is most sensitive to
the latter already in the original case, this leads to a sensitivity with
respect to the O diff. br/cus in the correlated case.

To investigate the effect of improved uncertainties in the pres-
ence of correlation, we have repeated the experiments with lowered
uncertainties for ECO des. cus

a and EO diff. br/cus
a but now using the corre-

lated distribution [cf. Fig. 6(b)] as prior. The support of the resulting
distributions is displayed in yellow in Fig. 6(c) for a reduced error of
ECO des. cus

a and in brown in Fig. 6(d) for a reduced error of EO diff. br/cus
a ,

respectively. For the case with the reduced error of ECO des. cus
a , we

observe that the marginal distributions of the log10(TOF) in Fig. 7
using the correlated and uncorrelated priors, respectively, agree per-
fectly and also the effect on the sensitivity is almost identical. The
reason for this is again that averaging or not over EO diff. br/cus

a has no
influence, and the marginal distribution of the other errors is identi-
cal for the uncorrelated case. In contrast, the correlation between
the two barriers induces a lower uncertainty of ECO des. cus

a when
the uncertainty of EO diff. br/cus

a reduced. This is reflected in Fig. 6(d)
where the support of the distribution extends much less in the
ECO des. cus

a -direction in the correlated case without improved uncer-
tainties. As a consequence, the uncorrelated and the correlated case
significantly differ for a reduced error of EO diff. br/cus

a . In particular,
the latter rather resembles the cases with a lowered error of ECO des. cus

a
than the former (cf. Figs. 7 and 8). However, the marginal distribu-
tion of ECO des. cus

a encodes a slightly higher uncertainty of ECO des. cus
a

than when directly introducing the bounds for ECO des. cus
a . Therefore,

the effect on the distribution of log10(TOF) and the sensitivity is
slightly less pronounced. To some extent, this is expected because
for the correlated case without improved uncertainties, the O diff.
br/cus has a smaller SInd than the CO des. cus. Thus, the correlation
induced sensitivity is not simply an artifact but is fully consistent
with the very purpose of sensitivity analysis, namely, to identify fac-
tors, for which an improved accuracy reduces the uncertainty of the
model output.

IV. CONCLUSION
We have presented an approach to the global sensitivity analy-

sis of Monte Carlo models on the basis of the Cramérs–von Mises
distance and demonstrated its value on a 1p-kMC model for CO
oxidation on RuO2(110). It is purely based on numerical integra-
tion and can be implemented with a few lines of code. Comparing
with other approaches to global sensitivity, the new approach deliv-
ers very comparable results, while it is more efficient in terms of the
number of required 1p-kMC simulations and particularly easy to
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use. Moreover, it also seems to be very robust against kMC sam-
pling noise and sufficient accuracy can be obtained already with
very inaccurate kMC sampling and large noise to signal ratios. Both
together pave the way to the computationally efficient treatment of
very challenging models where it is difficult to obtain accurate simu-
lation results, which would be needed for more classical approaches
to sensitivity analysis.

Besides testing efficiency, we have investigated the effect of
changing the underlying error distribution mimicking selective
reduction of parameter errors, error correlation, and a combination
thereof. In all cases, the approach showed the expected behavior,
namely, to identify those parameters for which the reduction of the
respective error has the most positive impact on the accuracy of the
model’s output.

Future improvement might employ randomized quadrature
rules such that the quadrature error in the SInd can be estimated
using statistical approaches. Open points, which we currently inves-
tigate, are a proof of the invariance under relative noise and con-
vergence rates for the proposed estimator with general quadrature
rules.
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APPENDIX: INTEGRATION OF MONTE CARLO MODELS

The estimator for the CvM requires to numerically solve
integrals I of the type

I ∶=∫ t(y, x)dF(y, x)

=∬ t(y, x)dF(y∣x)dF(x)

= ∫ Ey∣x(t(y, x))dF(x), (A1)

where dF(y, x) is the measure for the joint distribution F(y, x) of
output y and input x introduced in Sec. II. Correspondingly, dF(x)
is the measure of the distribution F(x) of only the input x and
dF(y∣x) is the measure of the distribution F(y∣x) of the output y con-
ditioned on the input x. The conditional expectation Ey∣x(t(y, x))
= ∫ t(y, x)dF(y∣x) is a function of the input x. For the following,
we want to assume that the conditional variance is bounded by an
(unknown) constant V , i.e.,

Vary∣x(t(y, x)) = ∫ t(y, x)2
− Ey∣x(t(y, x))2dF(y∣x) ≤ V , ∀x,

(A2)
which holds for the integral formulation of the marginal CDFs
(1)–(3) and also for the CvM because in both cases, the integrands
are bounded and therefore the conditional variance. For the case
that we estimate the CvM using the approximate CDFs (9)–(11),
this bounding can be guaranteed if these are obtained from quadra-
ture rules with positive weights. For general rules, the approximate
CDFs can, in principle, take arbitrary positive and negative values,
depending on the problem and the employed rule.

We assume no explicit knowledge on F(y∣x) and only require
a (Monte Carlo) model that draws statistically independent sam-
ples from F(y∣x) for a given x. To obtain a numerical estimate
of the integral, we suppose that we have a quadrature rule with
N nodes {xn}

N
n=1 and weights {wn}

N
n=1 for the integration over the

distribution of the input parameters F(x), for which

N

∑
n=1

wn = 1, (A3)

lim
N→∞

N

∑
n=1

s(xn)wn = ∫ s(x)dF(x), (A4)

lim
N→∞
∣wn∣

2
= 0 (A5)

hold all N and for any reasonable s(x), especially for
s(x) = Ey∣x(t(y, x)). We employ the (Monte Carlo) model to
draw a single sample yn from F(y∣xn) for each note xn. Then, the
estimator

ĨN =
N

∑
n=1

t(yn, xn)wn (A6)

converges against the true integral, and its expected square error is
bounded by

E[(I − Ĩ N)
2
] ≤ (I − IN)

2
+ V

N

∑
n=1

w2
n, (A7)

where the expectation is taken with respect to the randomness of
output samples {yn}

N
n=1 and
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IN ∶=
N

∑
n=1

Ey∣xn(t(y, xn))wn (A8)

is the numerical approximate of the integral I if we could perform
the inner expectation exactly. Convergence follows then from the
bound (A7) and that (I − IN)

2 and ∑N
n=1 w2

n converge against zero
for N →∞.

Proof of the error bound (A7): To prove the error bound, we
decompose the expected square deviation between the true integral
I and the estimator ĨN ,

E[(I − Ĩ N)
2
] =E[(I − IN + IN − Ĩ N)

2
]

= (I − IN)
2
+Var (ĨN)

= (I − IN)
2
+

N

∑
n=1

w2
nVary∣xn(t(y, xn))

≤ (I − IN)
2
+ V

N

∑
n=1

w2
n, (A9)

where in the first line, we added a zero IN − IN and exploited for the
second line that In is the expected value of Ĩn. The third line results
from explicitly formulating the latter. The subsequent inequality
arises from exploiting the upper bound for the conditional variance
(A2). (I − IN)

2 represents the numerical error due to the discretiza-
tion using a quadrature rule of finitely many nodes {xn}

N
n=1. Corre-

spondingly, Var (ĨN) ≤ V ∑N
n=1 w2

n is the sampling error due to using
just a single sample yn per node. Among all possibilities, equal weight
quadrature rules minimize the bound V ∑N

n=1 w2
n for the sampling

error, which then becomes V/N. Thus, these are particularly suited
for estimating such integrals and, in higher dimensions, we would
therefore choose random Monte Carlo or quasi-Monte Carlo for
numerical quadrature. For dimensionality in the order of few tens,
quasi-Monte Carlo rules are the method of choice if we can map
F(x) onto a uniform distribution on a hypercube. For such cases,
they typically perform better than usual Monte Carlo integration
rules because the nodes cover the cube more evenly. For determin-
istic models (or low V) and smooth integrates t(y, x), higher order
rules with unequal weights might be better suited, e.g., sparse grids.
For the problem at hand, t(y, x) cannot be considered smooth, and
thus, quasi-Monte Carlo is the method of choice.
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