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A MODEL FOR THE HIGHER CATEGORY OF HIGHER CATEGORIES

NIMA RASEKH

ABSTRACT. We use fibrations of complete Segal spaces as introduced in [Ras17b, Ras21a] to construct four com-
plete Segal spaces: Reedy fibrant simplicial spaces, Segal spaces, complete Segal spaces, and spaces. Moreover, we show
each one comes with a universal fibration that classifies Reedy left fibrations, Segal coCartesian fibrations, coCarte-
sian fibrations and left fibrations and prove these are representable fibrations in the sense of [Ras17a]. Finally, we
use equivalences between quasi-categories and complete Segal spaces constructed in [JT07, Ras21b] to present
analogous constructions using fibrations of quasi-categories.

INTRODUCTION

0.1 The (Higher) Category of (Higher) Categories. Category theory has been very effective in the study
of a very diverse range of mathematical objects and their relation to each other. We can deduce various
formal properties about different mathematical objects (such as the existence of free objects or preservation
of universal properties) by using formal categorical results. A key illustration of these powerful methods is
the study of sets via the category Set, which can be realized as the free cocompletion of the category with
one object and so interesting properties, such as the fact that algebraic structures in sets are preserved by
limits, follows formally [ML98, Rie16].

This powerful perspective has been turned on category theory itself via the study of the (large) category
of categories with objects small categories and morphisms functors, and we can similarly now deduce many
valuable properties of categories, such as the construction of free categories, by analyzing properties of the

category of categories.1

While categories are a powerful tool in the study of classical mathematics, they are less suitable for
objects that arise in homotopical mathematics. This starts with homotopy types of topological spaces or Kan
complexes (which can be thought of as homotopical analogues of sets), but also A∞-groups [Sta63] (which, up
to homotopy, have a group structure) and even further derived schemes [Toë14]. In order to effectively study
such homotopical objects various notions of weak or homotopical categories have been developed, now
known as higher categories or (∞, 1)-categories or simply ∞-categories [Ber10]. The most popular model are
quasi-categories [BV73], and other important models are Kan enriched categories [DK80, Ber07a] and complete
Segal spaces [Rez01], which are related to each other via various equivalences [JT07, Ber07b, Lur09]. These
various models of ∞-categories give us the appropriate framework to study concepts such as homotopical
algebra and derived geometry.

The analogy with classical category theory would suggest that similar to the category of sets, there is an
easily constructed higher category of spaces that can be studied using higher categorical methods. While
there is such a higher category, the construction is by no means immediate. The situation gets worse when
trying to construct the higher category of higher categories. It is in fact a cruel joke of higher categorical
mathematics that the construction of the higher category of higher categories requires us to change models,
making the construction quite complicated.

0.2 Strict Categories and Nerves. The easiest way to construct an (∞, 1)-category is via Kan enriched
categories and so our first way to approach this problem is by constructing a Kan enriched category. Con-
structing the Kan enriched category of Kan complexes is fairly straightforward and has been known at
least since work of Quillen [Qui67]. We can use a similar line of thinking to construct an (∞, 1)-category of
(∞, 1)-categories. Indeed, following work of Rezk, the category of complete Segal spaces is in fact enriched
over Kan complexes [Rez01]. On the other hand the category of quasi-categories is not directly enriched

Date: February 2022.
1We can in fact deduce all properties of categories by studying the 2-category of categories, which is known as formal category theory

[Gra74].
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over Kan complexes but rather over quasi-categories themselves, however, we can easily construct a Kan
enriched category by taking the underlying Kan complexes of the mapping quasi-categories [RV22]. On
the other side, as suggested by the slogan above, there is no immediate way to enrich the category of Kan
enriched categories over Kan complexes.

While the construction of the Kan enriched category of spaces and (∞, 1)-categories might initially ap-
pear to be a satisfactory answer, we are quickly confronted with various challenges. First of all most of

(∞, 1)-category theory has not been developed in the context of Kan enriched categories2. Historically
speaking most of higher category theory has been developed using quasi-categories [Joy08a, Joy08b, Lur09].
Moreover, in an effort to move beyond one specific model Riehl and Verity developed a new method to ap-
proach higher category theory model-independently via the notion of an ∞-cosmos, which can then in par-
ticular be applied to quasi-categories, but also complete Segal spaces, Segal categories and even 1-complicial
sets, but notably not Kan enriched categories [RV22].

This motivates a construction of the higher category of spaces and (∞, 1)-categories using more estab-
lished models, such as quasi-categories and complete Segal spaces. One first approach might be to simply
translate the construction from Kan enriched categories to these models using various nerve constructions,
which take a Kan enriched categories to (bi)simplicial sets. In particular, we can use the simplicial nerve

[Lur09] to construct quasi-categories out of Kan enriched categories. Similarly we can use the Rezk nerve3

or its variant due to Barwick and Kan to construct complete Segal spaces out of Kan enriched categories
[BK12, Mei16]. These constructions are theoretically very satisfying, however, are computationally very
challenging. Indeed, the construction due to Rezk requires a fibrant replacement in the Reedy model struc-
ture [Rez01, Section 8], which, while preserving the level-wise homotopy type of the complete Segal space,
complete changes the point-set structure. The simplicial nerve [Lur09, Proposition 1.1.5.10] and the nerve
by Barwick-Kan [BK12, Theorem 6.1] do not require such additional steps, however, are by definition far

more complicated constructions.4

0.3 Higher Categories via Fibrations. What makes the nerve constructions so complicated is the fact
that maps of spaces (and functors of ∞-categories) are by definition strict functors and so we either need
to use a very complicated nerve construction (such as the Rezk nerve or simplicial nerve) or use a naive
construction and then apply a Reedy fibrant replacement, both with the goal of “destrictifying” the functors
in order to allow for the possibility of higher categorical pseudo-functors, whose functoriality only holds
up to higher equivalences. Ideally, we could have directly constructed a Kan-enriched category of spaces
or ∞-categories where the morphisms directly correspond to some notion of pseudo-functors. However,
directly defining pseudo-functors would require specifying an infinite tower of data and so we need to find
a way to circumvent this dilemma. We need to choose a notion of functor of spaces (and ∞-categories)
that is by definition weaker, yet still manageable. Fortunately, there is already an excellent solution in the
category theory literature: Fibrations.

The idea of using fibrations as a replacement for functors goes back to work of Grothendieck and Bour-
baki, who used the (now called) Grothendieck fibrations to study set-valued and category-valued functors
[gro03]. In particular, Grothendieck opfibrations over a category C correspond to a pseudo-functor C → Cat.
Following the definition of a pseudo-functor [Bén67], a pseudo-functor [0] → Cat, is the data of a category
C and an automorphism that is naturally isomorphic to the identity. Similarly, a pseudo-functor [1] → Cat
is the data of a functor C → D, and choices of automorphisms of C and D, that all interact with each other in
the appropriate manner. These examples already illustrate that by taking Grothendieck opfibrations over
the categories [n], we obtain a much less rigid object than we would if we use the classical nerve, which is
defined as NCatn = Fun([n],Cat) i.e. strict functors out of [n].

This philosophy expands to the ∞-categorical setting. We hence want to construct a quasi-category and
complete Segal space of spaces and ∞-categories by choosing an appropriate notion of fibration over the
representable diagrams (i.e. the appropriate analogue to [n]). This requires use to use the vast literature on
fibrations of ∞-categories. Concretely, for many theories of ∞-categories (such as quasi-categories, complete
Segal spaces and in fact every other ∞-cosmos) ∞-categorical functors from an ∞-category C into spaces

2In fact even the construction of a simple over-category can be a challenge in this setting [Hor19, Appendix A]
3Called classifying diagram in [Rez01].
4Indeed, there are several papers dedicated to understanding the left adjoint C to the simplicial nerve [DS11, Rie11].
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correspond to left fibrations5 [BdB18, HM15, Ras17b, Cis19]. Similarly, functors valued in ∞-categories are
classified by coCartesian fibrations over C [Ras21a, Ras21b, AF20, Lur09, RV22].

0.4 Constructing Complete Segal Spaces via Fibrations. The goal of this paper is to make the intuition
outlined in the previous section into precise mathematical statements. In particular, we prove that the
bisimplicial set S, which is characterized level-wise as left fibrations of bisimplicial sets over the repre-
sentables ∆[n, l] (Notation 1.2), satisfies the following conditions.

Theorem 2.13. There is an equivalence between the complete Segal space S and the strict Segal category N∆Kan
(2.11). Moreover, we have a natural bijection LF ib ∼= Hom(−,S) (2.1).

This corresponds to a similar result by Kazhdan and Varshavsky [KV14] (Remark 2.4) and generalizes a
result by Kapulkin and Lumsdaine [KL21] (Remark 2.17).

Having used left fibrations of simplicial spaces to construct the complete Segal space of spaces we next
generalize our result in order to construct an ∞-category of ∞-categories. We in fact obtain a far more
general result. Using the observation that every complete Segal space is a Reedy fibrant simplicial space,
we first use the theory of Reedy left fibrations to construct the ∞-category of Reedy fibrant simplicial spaces.

Theorem 3.20. There is an equivalence between the complete Segal space sS and the strict Segal category N∆Ree
(3.18). Moreover, we have a bijection ReeLF ib ∼= Hom(−, sS).

While the construction of the complete Segal space of simplicial spaces could have relevance in the
study of certain type theories that arise in the work of Riehl and Shulman [RS17] (as further discussed in
Remark 3.22) our main focus here is to restrict to the sub-complete Segal space of (complete) Segal spaces.

Theorem 3.24. We have a diagram of fully faithful functors of complete Segal spaces

CSS →֒ Seg →֒ sS,

with Seg having elements Segal spaces and CSS complete Segal spaces. Moreover, we have bijections

SegcoCart ∼= HomssSet(−,Seg),

coCart ∼= HomssSet(−,CSS).

The existence of the desired complete Segal spaces of (simplicial) spaces and (complete) Segal spaces
with the universal property outlined above implies the existence of universal fibrations, which is the focus
of Section 4. We in particular establish that the universal left fibration is represented by the terminal object
(Theorem 4.5) and that the universal Reedy left fibration, Segal coCartesian fibration and coCartesian fibration
are represented, in the sense of [Ras17a], by the cosimplicial object ∆ → Cat∞ taking [n] to n composable
morphisms (Theorem 4.10/Corollary 4.11), which has also been discussed in [Ras17a, Ste20] (Remark 4.12).

While most of our work focuses on constructing complete Segal spaces, in the last section we use equiv-
alences constructed by Joyal and Tierney [JT07] and its fibrational analogue [Ras17b, Ras21b] to construct
various quasi-categories, beginning with the quasi-category of spaces:

Theorem 5.7. The maps T : SQCat → i∗1S (5.5) and I : i∗1S → SQCat (5.6) are inverses of quasi-categories.

This hence recovers a result by Cisinski [Cis19] (Remark 5.8), who uses a similar idea to construct the
quasi-category of spaces using left fibrations of simplicial sets. As a next step, we can further generalize the
result to quasi-category of simplicial spaces.

Theorem 5.13. The maps sT : sSQCat → i∗1 sS and sI : i∗1 sS → sSQCat (5.12) are inverses of quasi-categories.

We can restrict this equivalence easily to (complete) Segal spaces to obtain further equivalences (Corollary 5.14).

5Also called groupoidal coCartesian fibration over C in [RV22].
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0.5 Background and Notation. We will assume familiarity with standard category theory as can be found
in [ML98, Rie16]. Also some familiarity with complete Segal spaces [Rez01] and quasi-categories [Rez17]
would be helpful. Moreover, we make extensive use of left and coCartesian fibrations as studied in [Ras17b,
Ras17a, Ras21a, Ras21b], however, key results have been reviewed when necessary.

Throughout, ∆ denotes the simplex category. We both use the functor category and the set of functors
and hence denote the functor category by Fun, whereas the set of functors is Fun. Moreover for a given
functor F : C → D, the set of objects in the category Fun(C,D)/F is also denoted by Fun(C,D)/F.

Finally, we will have a category of small sets, denoted Setsm, and for every category C and functor
X : C → Set, we use (Fun(C, Set)/X)

sm to denote the full subcategory of Fun(C, Set)/X with objects maps
α : Y → X with small fiber.

0.6 Acknowledgments. I would like to thank William Balderrama for many helpful conversations and
in particular for making me aware of [Cis19, Definition 5.2.3]. I also would like to thank Emily Riehl for
many helpful conversations and in particular for making me aware of the non-functoriality of pullbacks.
I also would like to thank Hoang Kim Nguyen for discussion regarding minimal fibrations. Moreover, I
would like to thank Denis-Charles Cisinski for several helpful explanations regarding his results in [Cis19].
Finally, I would also like to thank the referee for many helpful suggestions.

BACKGROUND & TECHNICALITIES

As explained in Subsection 0.3, we want to construct a complete Segal space of spaces S (which we will
do in Section 2) which is level-wise given by a set of left fibrations over representable objects. However,
there are two significant theoretical challenges that we need to overcome. First of all, if we naively define
Snl as the set of left fibrations over ∆[n, l] (Notation 1.2), then the functoriality needs to follow from pulling
back left fibrations. However, a pullback is only determined up to isomorphisms, hence a functor ∆

op ×
∆

op → Set that takes each pair ([n], [l]) to the set of left fibrations over ∆[n, l] and each morphisms to
the pullback would only be pseudo-functorial. In order to avoid this problem we associate functors to our
fibrations that can then be strictly composed, which is the goal of Subsection 1.2.

Having taking care of the pseudo-functoriality, we can in fact directly define a bisimplicial set S with Snl

given by left fibrations over ∆[n, l] and we would like to prove that this is in fact a complete Segal space.
Here the next problem arises. In order to prove that S is a complete Segal space we need to show that for
every trivial cofibration in the complete Segal space model structure i : A →֒ B the map

i∗ : Hom(B,S) → Hom(A,S)

is surjective (Remark 1.6). As we will establish in 2.1 this is equivalent to i∗ : LF ib(B) → LF ib(A) being
surjective, which means we need to prove that every left fibration over A can be obtained as a pullback of a
left fibration over B. By 1.11 it is immediate that every left fibration is a homotopy pullback of a left fibration
over B, however we need a strict pullback. In order to guarantee we can obtain this strict pullback we need
to review the theory of minimal fibrations, which is the goal of Subsection 1.3.

Remark 1.1. There are alternative ways to the ones introduced in Subsection 1.2 to avoid the pseudo-
functoriality of the pullback of fibrations. For example we can choose well-orderings on all the fibers of
the fibrations as has been done in [KL21, Subsection 2.1] or one can make a choice of a collection of pull-
backs as has been done in [Cis19, Subsection 2.1]. On the other hand all these sources also rely on minimal
fibrations (similar to Subsection 1.3) to guarantee the existence of strict lifts.

1.1 Simplicial Objects and Fibrations. In this short section we give a quick review of the necessary sim-
plicial objects, relevant notation and their fibrations.

Notation 1.2. Denote the category of simplicial sets by sSet with generators ∆[−]. Moreover, use ∂∆[−] to
denote its boundary and Λ[−] its horn [GJ09, Subsection I.3]. Similarly, denote the category of bisimplicial
sets by ssSet and the generators by ∆[−,−]. Notice both categories are simplicially enriched and we denote
the enrichment by Map(−,−) [GJ09, Subsection I.V].

For a given bisimplicial set X•• we use the notation Xn to denote the simplicial set (Xn)l = Xnl . Our first
important fibration of bisimplicial sets are Reedy fibrations.
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Definition 1.3. A Reedy fibration is a map of bisimplicial set p : Y → X that has the right lifting property
with respect to the maps

∆[n, 0]× Λ[0, l]i ∐
∂∆[n,0]×Λ[0,l]i

∂∆[n, 0]× ∆[0, l] → ∆[n, 0]× ∆[0, l] ∼= ∆[n, l],

for all n, l ≥ 0 and 0 ≤ i ≤ l. A Reedy fibration is moreover trivial if it satisfies the right lifting property
with respect to all inclusions of bisimplicial sets.

The Reedy fibrancy condition is equivalent to the map Yn → Xn ×MnX MnY being a Kan fibration of
simplicial sets, where MnY, MnX are the matching spaces, which in the particular case of bisimplicial sets
are given by the simplicial set MnX = MapssSet(∂∆[n, 0], X). Reedy fibrations are part of a model structure
with cofibrations given by inclusions of bisimplicial sets and equivalences given by level-wise Kan equiv-
alences. In particular all trivial Reedy fibrations as Reedy weak equivalences. See [Rez01, Subsection 2.4]
and [Hov99, Subsection 5.1] for more details. Reedy fibrations can be used to define a prominent model of
(∞, 1)-categories, complete Segal spaces, which are defined by Rezk [Rez01] and proven to be models of
(∞, 1)-categories in [Ber07b, JT07, Toë05].

Definition 1.4. A complete Segal space W is a Reedy fibrant simplicial space that satisfies the following two
conditions:

• Segal Condition: The restriction map

Wn → W1 ×W0
... ×W0

W1

is a Kan equivalence for all n ≥ 2.
• Completeness Conditions: The map W0 → W0 ×W0 ×W1×W1

W3 is a Kan equivalence.

Complete Segal spaces are can be used to do (∞, 1)-category theory. Here we think of the objects as the
set W00 and for two objects x, y in W, the mapping space is defined as

(1.5) MapW(x, y) = ∆[0]×W0×W0
W1.

For more details regarding the category theory of complete Segal space see [Rez01, Section 5]. Complete
Segal spaces are in fact fibrant objects in a model structure, the complete Segal space model structure on ssSet,
defined originally by Rezk [Rez01, Theorem 7.2].

Remark 1.6. This in particular implies that a bisimplicial set W is a complete Segal space if and only if for
every trivial cofibration i : A → B in the complete Segal space model structure, the map i∗ : Hom(B, W) →
Hom(A, W) is surjective, meaning every map f : A → W lifts along i.

Next we have left fibrations.

Definition 1.7. A left fibration is a Reedy fibration of bisimplicial sets p : L → X that satisfies the right
lifting property with respect to maps

∆[n, 0]× ∂∆[0, l] ∐
∆[0,0]×∂∆[0,l]

∆[0, 0]× ∆[0, l] → ∆[n, 0]× ∆[0, l] ∼= ∆[n, l],

induced by the map {0} : ∆[0, 0] → ∆[n, 0] i.e. the morphism that corresponds to 0 ∈ Hom(∆[0, 0], ∆[n, 0]) =
∆[n, 0]00 = {0, ..., n}. By [Ras17b, Proposition 3.7] this is equivalent to being a Reedy fibration and for all n,
the map

(1.8) Ln → Xn ×X0
L0

being a trivial Kan fibrations.

Remark 1.9. If X = ∆[0, 0] then the condition 1.8 implies L is homotopically constant, meaning Ln ≃ L0 for all
n ≥ 0, and so L is (homotopically) uniquely determined by the Kan complex L0.

Remark 1.10. Notice if L → X is a map of bisimplicial sets, such that Ln
∼= Xn ×X0

L0, meaning Ln is

a strict pullback, then the Reedy fibrant replacement L̂ → X of L over X is both a Reedy fibration and

Ln ≃ Xn ×X0
L0, meaning L̂ → X is a left fibration.
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Left fibrations and complete Segal space equivalences interact well with each other. Concretely, for every

complete Segal space equivalence i : A → B and left fibration L → A, there exists a left fibration L̂ → B and
a homotopy pullback square

(1.11)
L L̂

A B

p

i

given by the derived unit of the Quillen equivalence constructed in [Ras17b, Theorem 5.1], meaning A is
Reedy equivalent to i∗B.

Remark 1.12. Analogous to the definition of left fibrations (1.8) we can also define right fibrations as Reedy
fibrations R → X such that Rn → Xn ×X0

R0 is an equivalence, this time induced by the map {n} : ∆[0, 0] →
∆[n, 0] [Ras17b, Remark 4.24]. Right fibrations are completely determined by left fibrations. Indeed, let
(−)op : ssSet → ssSet be the automorphism induced by the unique non-trivial automorphism σ × σ from
∆× ∆ to itself. Then a map R → X is a right fibration if and only if Rop → Xop is a left fibration.

1.2 Fibrations vs. Functors. In this subsection we construct a precise way to translate between functors
and fibrations to avoid the pseudo-functoriality that arises when using pullback (as discussed in the begin-
ning of Section 1). We will start by reviewing basic facts regarding functors and fibrations as discussed in
[MLM94] or [Joh02a, Joh02b].

Recall that a discrete Grothendieck fibration is a functor p : D → C such that for every morphism f : c → c′

and chosen lift d′ in D (meaning p(d′) = c′) there exists a unique f̂ : ĉ → ĉ′ in D such that p( f̂ ) = f .
Following the convention from Subsection 0.5, we use Groth(C) to denote the full subcategory of Cat/C

with objects discrete Grothendieck fibrations with small fibers and Groth(C) for the large set of discrete
Grothendieck fibrations with small fibers. It is well established that Groth(C) is equivalent to the functor

category Fun(Cop, Set)6, however, we need an isomorphism and hence state the desired result explicitly.

Lemma 1.13. Let C be a small category. There is an isomorphism of categories

Fun(Cop, Set) Groth(C)

∫
C

∼=

F ibC

Proof. We take the proof of the equivalence as given in [LR20, Theorem 2.1.2] and show it is in fact an
isomorphism. First we review the construction of the relevant functors. For a given functor F : Cop → Set,
define

∫
C

F as the category with objects the disjoint union ∐c∈ObjC F(c) and morphisms f : x ∈ F(c) → y ∈

F(d) if there exists a morphism f : c → d in C such that F( f )(y) = x. On the other hand, let F ib(P : D →
C) : Cop → Set be the functor that takes c to the fiber F ib(c) = P−1(c), which is indeed a functor using the
unique extension property of discrete Grothendieck fibrations.

Now, F ib
∫
C

F is a functor with value the fiber of
∫
C

F over c, which by construction of the disjoint union

is F(c). On the other side,
∫
C
F ibP is a functor over C with objects over an object c in C given by the value

F ibP(c), which by definition is just the fiber of P over c. �

This lemma has two important corollaries. Let Groth = ∐C∈Cat Groth(C) be the large set of all discrete
Grothendieck fibrations with small fibers. Moreover, recall the notation convention from Subsection 0.5
regarding Fun(Cop, Set)/F.

Corollary 1.14. Let F : Cop → Set be a functor. Then the isomorphism in Lemma 1.13 induces a bijection of large
sets

(Fun(Cop, Set)/F)
sm ∼= Groth(C)/F.

Corollary 1.15. The isomorphism in Lemma 1.13 induces a bijection of sets

6In fact we have far more general results for Grothendieck fibrations [Joh02a, Theorem B1.3.6].
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∐
C∈Cat

Fun(Cop, Set) Groth

Cat

∫
∼=

π

F ib
.

We can now move on to construct a functor with value fibrations that avoids the pseudo-functoriality of
the pullback. Let All : ssSetop → Set be defined as the composition

(1.16) Fun(∆op × ∆
op, Set)op

(
∫
∆×∆

)op

−−−−−−→ Groth(∆× ∆)op πop

−−→ Catop Fun(−,Set)
−−−−−−−→ Set,

meaning All(X) = Fun(
∫
∆×∆

X, Set). Now, we have the following key lemma with regard to All.

Lemma 1.17. For every bisimplicial set X there is a bijection of sets

ΓX : All(X)
∼=
−→ (ssSet/X)

sm.

Proof. First of all, by restricting the bijection in Corollary 1.15 to the fiber over
∫
∆×∆

X, we have the bijection

All(X) ∼= Groth(
∫
∆×∆

X).

Now, there is an evident discrete Grothendieck fibration
∫
∆×∆

X → ∆×∆ and so every discrete Grothendieck

fibration
∫
∆×∆

X is simply a discrete Grothendieck fibration into ∆×∆ that factors through
∫
∆×∆

X, meaning

we have the bijection

Groth(
∫
∆×∆

X) ∼= Groth(∆× ∆)/
∫
∆×∆

X .

Finally, by Corollary 1.14, we have the bijection

Groth(∆× ∆)/
∫
∆×∆

X
∼= (Fun(∆op × ∆

op, Set)/X)
sm = (ssSet/X)

sm.

Combining these three bijections gives us the desired bijection All(X) ∼= (ssSet/X)
sm. �

This bijection is in fact quite well-behaved as we can easily witness by tracing through the definition.

Lemma 1.18. Let f : X → Y be a morphism of bisimplicial sets. Then the following square commutes.

All(Y) (ssSet/Y)
sm

All(X) (ssSet/X)
sm

ΓY

∼=

All( f ) f ∗

ΓX

∼=

.

As a result of this lemma we can think of elements in All(X) as simplicial spaces over X. Now, we want
to prove that All is representable. Define sSet as the bisimplicial set obtained by precomposing All with the
Yoneda embedding ∆

op ×∆
op → ssSetop. Concretely, as we can immediately compute

∫
∆×∆

Hom∆×∆(−, ([n], [l])) =

∆/[n] × ∆/[l], we have ssSet(n, l) = Fun(∆/[n] × ∆/[l], Set). We now have the following key result.

Corollary 1.19. There is a natural isomorphism All ∼= HomssSet(−, ssSet).

Proof. The functor Hom(−, ssSet) preserves colimits by definition and All preserves colimits as the three
functors in 1.16 defining All preserve colimits. Hence, it suffices to observe a natural isomorphism at the
level of representables. However, we have

All(∆[n, l]) = Fun(∆/[n] × ∆/[l], Set) ∼= HomssSet(∆[n, l], ssSet)

where the last step follows from the Yoneda lemma, giving us the desired natural isomorphism. �

The construction of All and ssSet is too broad and we often want to restrict it appropriately. We have
the following simple observation.

Lemma 1.20. Let S be a (possibly large) set of morphisms in ssSet. The following are equivalent.

(1) The pullback of a morphism in S (along any morphisms) is in S.
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(2) Let F :
∫
∆op×∆op X → Set be a functor such that ΓX(F) is in S, then for any morphism of bisimplicial sets

f : Y → X, ΓY(All( f )(F)) is in S.

Proof. Condition (1) corresponds to f ∗ : (ssSet/Y)
sm → (ssSet/X)

sm restricting to the full sub set of mor-
phisms in S, whereas condition (2) corresponds to All( f ) : All(Y) → All(X) restricting similarly. By
Lemma 1.18 these two conditions are equivalent as the horizontal morphisms ΓX , ΓY are bijections. �

We say S is pullback stable if it satisfies the equivalent conditions in Lemma 1.20. For a given pullback

stable set of morphisms S, let AllS be the subfunctor of All with F ∈ AllS(X) if and only if ΓX(F) is in S. The

functoriality immediately follows from Lemma 1.20. We can similarly define ssSetS as the sub-bisimplicial
set of ssSet. We now want to deduce a result analogous to Corollary 1.19. For that we need the following
additional condition.

Lemma 1.21. Let S be a pullback stable set of morphisms in ssSet. The following are equivalent.

(1) A morphism Y → X is in S if and only if for all ∆[n, l] → X, the pullback is in S.
(2) For a functor F :

∫
∆op×∆op X → Set we have ΓX(F) in S if and only if every functor G : ∆/[n] × ∆/[l] → Set

that factors through F we have Γ∆[n,l](G) is in S.

Proof. For a given morphism f : ∆[n, l] → X, Lemma 1.18 gives us the following diagram

All(∆[n, l]) (ssSet/∆[n,l])
sm

All(X) (ssSet/X)
sm

Γ∆[n,l]

∼=

All( f ) f ∗

ΓX

∼=

.

The assumptions are now direct translations along the bijections Γ∆[n,l] and ΓX , using the fact that
∫
∆×∆

∆[n, l] =
∆/[n] × ∆/[l]. �

A set of morphism that satisfies the equivalent conditions of Lemma 1.21 is called local.

Lemma 1.22. If S is local, then the bijection given in Corollary 1.19 restricts to a bijection AllS ∼= HomssSet(−, ssSetS).

Proof. As S is local, the sub-functor AllS ⊆ All : ssSetop → Set is again colimit preserving. The result now
follows from the same argument in Corollary 1.19. �

It useful to have a quick criterion to determine local classes of morphisms with a proof analogous to
[Ras17b, Lemma 3.10].

Corollary 1.23. Let S be a set of morphism of bisimplicial sets determined by a right lifting property with respect to
a set of morphisms A →֒ ∆[n, l]. Then S is pullback stable and local.

We end this subsection with an elegant example of the previous corollary.

Example 1.24. By Definition 1.3, the large set of Reedy fibrations with small fiber satisfies the condition of

Corollary 1.23. We denote AllRee by Ree and ssSetRee by Ree and notice that by Lemma 1.22 we have a
natural bijection

Ree ∼= HomssSet(−,Ree).

1.3 Minimal Fibrations. In this subsection we introduce minimal Reedy and left fibrations, which play
a key role in the construction of strict pullbacks (as discussed in the beginning of Section 1). Recall that a
Kan fibration p : Y → X is a minimal fibration if for any two maps f , g : ∆n → Y, such that f is homotopic
to g relative to ∂∆n and p f = pg, then f = g. For more details see [GJ09, Diagram I.10.1]. We can now
generalize this definition directly.

Definition 1.25. A Reedy fibration of simplicial spaces Y → X is minimal if the Kan fibration Yn → Xn ×MnX

MnY is a minimal Kan fibration for all n ≥ 0.

Remark 1.26. The minimality of a Reedy fibration is determined via equality over a representable ∆[n, l],
meaning a Reedy fibration p : Y → X is minimal if and only if its pullback along any map ∆[n, l] → X is
minimal, proving that minimal Reedy fibrations are also pullback stable (Lemma 1.20) and local (Lemma 1.21).
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One key result regarding minimal Kan fibrations is that every Kan fibration p : Y → X can be restricted
to a minimal subfibration Min(p) : Min(Y) → X, such that the inclusion i : Min(Y) → Y has a retract
r : Y → Min(Y) over X that is a trivial Kan fibration [GJ09, Proposition 10.3]. We now have the following
generalization.

Proposition 1.27. Every Reedy fibration of bisimplicial sets p : Y → X can be restricted to a minimal subfibration
Min(p) : Min(Y) → X, such that the inclusion i : Min(Y) → Y has a retract r : Y → Min(Y) over X that is a
trivial Reedy fibration.

Proof. Using the result for Kan fibrations [GJ09, Proposition 10.3] inductively, we fix Min(Y)0 →֒ Y0 ։

Min(Y)0, using the fact that Y0 → X0 is a Kan fibration. Now, assume we have chosen Min(Y)k → Yk →
Min(Y)k for k ≤ n − 1, which in particular means we can define the matching object MnMin(Y), as it
is characterized as a limit of objects Min(Y)k for k ≤ n − 1 [Hov99, Definition 5.2.2]. We now have the
following diagram (here arrows labeled with min are minimal fibrations)

Min(Y)n Yn MnY ×MnX Min(Y)n Min(Y)n

MnY ×MnX Xn MnMin(Y)×MnX Xn Xn

MnY MnMin(Y) MnX

≃

pn ≃

min

p

min

≃

p p

≃

.

Here Min(Y)n is chosen as a factorization of the fibration Yn ։ MnMin(Y)×MnX Xn (using [GJ09, Propo-
sition 10.3]), meaning Min(Y)n → MnMin(Y)×MnX Xn is a minimal fibration, and notice the map pn is in
fact a Kan fibration as it obtained as the limit of the diagram

Yn Yn Yn

MnY ×MnX Xn MnMin(Y)×MnX Xn Mn

and is in fact a trivial fibration by 2-out-of-3. Hence, we have obtained Min(Y)n →֒ Yn with all desired
conditions, which completes our induction step. �

Our construction works well for an individual Reedy fibration, however, we would like to have a con-
struction of the minimal Reedy fibration that is consistent with pullback. This requires us to make a globally
consistent choice of minimal fibrations for all Reedy fibrations at once, which we achieve in the following
way.

Let Reemin ⊆ Ree be the subset of minimal Reedy fibration with small fiber and denote the correspond-

ing subobject of the bisimplicial set of Ree by Reemin. By Remark 1.26 minimal Reedy fibrations are local
and so we have a bijection

(1.28) Reemin ∼= HomssSet(−,Reemin)

and in particular we have a bijection of sets Reemin(Ree) ∼= HomssSet(Ree,Reemin). Now, applying
Proposition 1.27 to the Reedy fibration over Ree that corresponds to the identity map in Example 1.24 we
obtain a minimal Reedy fibration over Ree that by 1.28 corresponds to a map of bisimplicial sets

(1.29) Min : Ree → Reemin.

Let Min : Ree → Reemin be the map represented by Min. This map sends every Reedy fibration to its
corresponding minimal Reedy fibration constructed in Proposition 1.27. Indeed, for every Reedy fibration
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Y → X, we have the following diagram, where Ree∗ → Ree is the Reedy fibration corresponding to the
identity morphism in Example 1.24

Y Ree∗

Min(Y) Min(Ree∗)

X Ree

≃
p

≃

min
p

min

,

where we are using the fact that both minimal Reedy fibrations and trivial fibrations are stable under pull-
back.

How does the minimality construction interact with left fibrations?

Lemma 1.30. Let L → X be a left fibration, then Min(L) → X is also a left fibration.

Proof. We already know that Min(L) → X is a Reedy fibration, hence, by Definition 1.7 it suffices to observe
that Min(L)n → Min(L)0 ×X0

Xn is an equivalence, which follows directly from the fact that L is a left
fibration and Ln ≃ Min(L)n for all n ≥ 0 (Proposition 1.27). �

Finally, the key concept that makes minimal Kan fibrations so useful is that every equivalence between
two minimal Kan fibrations is in fact an isomorphism [GJ09, Lemma 10.4] and we have the following anal-
ogous result.

Lemma 1.31. Let p : Y → X, q : Z → X be two minimal Reedy fibrations and f : Y → Z a map over X. Then f is
a Reedy equivalence if and only if it is an isomorphism.

Proof. For all n ≥ 0 we have the following commutative diagram

(1.32)

Yn Zn

MnY ×MnX Xn MnZ ×MnX Xn

fn

,

where the two vertical morphisms are minimal Kan fibrations. We now prove the statement by induction.
f0 is an isomorphism by [GJ09, Lemma 10.4]. Now assuming it holds for all k < n it follows that the bottom
map in 1.32 is an isomorphism and hence [GJ09, Lemma 10.4] implies again that fn is an isomorphism. �

THE COMPLETE SEGAL SPACE OF SPACES

In this section we finally make the intuition outlined in Subsection 0.3 precise and construct the desired
complete Segal space of spaces using left fibration. Let LF ib be the large set of left fibrations with small
fibers. By Definition 1.7 and Corollary 1.23, LF ib is local (Lemma 1.21) and so we can take the sub-functor
of All : ssSetop → Set with value left fibrations that we denote by LF ib(−) : ssSetop → Set, which, by
Lemma 1.22, is represented by a bisimplicial set that we denote by S, meaning we have a natural bijection

(2.1) LF ib(−) ∼= HomssSet(−,S).

We now want to prove that S is a complete Segal space of spaces. Before we can get to the main result we
need the appropriate lemma that helps us understand extension properties of trivial fibrations. For that we
can directly generalize [Cis19, Lemma 5.1.20] to bisimplicial sets.

Lemma 2.2. Let p : Y → A be a trivial Reedy fibration of bisimplicial sets and i : A → B an inclusion of bisimplicial

sets. Then i∗p is a trivial Reedy fibration and p
∼=
−→ i∗i∗p.

Proposition 2.3. The bisimplicial set S is a complete Segal space.

Proof. The argument is analogous to [KL21, Theorem 2.2.1] and [Cis19, Theorem 5.2.10]. By Remark 1.6,
we need to prove that for every trivial cofibration i : A → B in the complete Segal space model structure,
the induced map HomssSet(B,S) → HomssSet(A,S) is surjective. By 2.1, this is equivalent to LF ib(B) →
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LF ib(A) being surjective, which concretely means proving that every left fibration over A is the pullback
of a left fibration over B via i.

Fix a left fibration p : L → A. We now have the following diagram

L (r̂j)∗L

Min(L) L̂ Min(L̂)

A B

p

≃r

p

≃ (r̂j)∗r

Min(p)

j

≃

p

p̂

≃
r̂

Min( p̂)

i

,

where Min(p) is a minimal left fibration (Lemma 1.30) and r a trivial fibration (Proposition 1.27), p̂ is a left
fibration and j a trivial complete Segal space equivalence (1.11), r̂ a trivial fibration, Minp̂ a minimal left
fibration (again by Proposition 1.27) and (r̂j)∗r is a trivial fibration (Lemma 2.2). Now, by the properties

of the homotopy pullback square 1.11, the map Min(L) → i∗Min(L̂) induced by the pullback is a Reedy
equivalence and hence, by Lemma 1.31, a bijection and, by Lemma 2.2, the top rectangle is a pullback.
Hence p is the pullback of the left fibration Min( p̂) ◦ (r̂j)∗r : (r̂j)∗L → B and we are done. �

Remark 2.4. There is a similar result in [KV14, Theorem 2.2.11] without addressing the functoriality of the
construction given that their definition of the simplicial space uses pullbacks [KV14, Main construction
2.2.3].

We now want to understand the mapping spaces of S. For that we need the following strictification.
Combining the locality of left fibrations (2.1) and minimal Reedy fibrations (1.28) it follows, by Lemma 1.22,
that the set of minimal left fibrations is local and so we have a sub bisimplicial set of S, that we denote by

Smin →֒ S, and natural bijection

(2.5) LF ibmin(−) ∼= HomssSet(−,Smin).

On the other hand the map Min : Ree → Reemin defined in 1.29, by Lemma 1.30, restricts to a map

Min : S → Smin. We now have the following result with regard to these two maps.

Lemma 2.6. The maps Smin → S → Smin are equivalences of complete Segal spaces.

Proof. First of all the composition Smin → S → Smin is the identity as it takes every minimal left fibration

to itself. Hence, Smin is a retract of S and so a complete Segal space, Next, we prove that S → Smin is a
trivial fibration and this implies that the inclusion is an equivalences as well. Following Definition 1.3, we
need to prove for every inclusion of simplicial spaces i : A → B the following diagram has a lift

A S

B Smin

i
p

Min ,

which, by 2.1 and 2.5, is equivalent to the map

LF ib(B) → LF ib(A)×
LF ibmin(A)

LF ibmin(B)

being surjective. Unwinding the definitions this means we have the data of the following diagram
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L

Min(L) L̂

A B

r≃

p̂∗i

p p p̂

i

,

where r is a trivial fibration and p, p̂ are minimal fibrations and we need to find a left fibration p̃ : L → B,

such that i∗ p̃ = pr and Min( p̃) = p̂. However, by Lemma 2.2, this is given by ( p̂∗i)∗r : ( p̂∗i)∗L → L̂. �

We now want to use Lemma 2.6 to better understand the mapping spaces (1.5) of S. This requires us to
better understand minimal left fibrations over ∆[1, 0]. First we introduce a notation that will be useful in
the next proofs.

Notation 2.7. Let X → ∆[1, l] be a map of bisimplicial sets. We use the following three notational conventions

• X/0 = Map/∆[1,l](d
1 : ∆[0, l] → ∆[1, l], X)

• X/1 = Map/∆[1,l](d
0 : ∆[0, l] → ∆[1, l], X)

• X/01 = Map/∆[1,l](id, X)

Notice, the two maps d0, d1 : ∆[0, l] → ∆[1, l] induce maps of simplicial sets s : X/01 → X/0 and t :
X/01 →/1.

Lemma 2.8. Let L and L′ be two left fibrations over ∆[1, l] such that the two morphisms tL : L/01 → L/1, tL′ :
L′

/01 → L′
/1 are Kan equivalent morphisms. Then Min(L) = Min(L′).

Proof. By Lemma 1.31 the result will follow if we can prove that L and L′ are equivalent over ∆[1, l]. Now,
the projection map ∆[1, l] → ∆[1, 0] is a level-wise equivalence and so we, can without loss of generality
assume that l = 0. Denote the equivalence tL → tL′ by α.

We now use the adjunction (s
∫
[1], sH[1]) as defined in [Ras17b, Lemma 4.9]. Concretely, by definition of

sH[1] we have sH[1](L) = tL, sH[1](L′) = tL′ and by [Ras17b, Theorem 4.18] the counit of the adjunction

gives us a level-wise equivalence and so we have

L ≃ s
∫
[1]

sH[1]L = s
∫
[1]

tL

s
∫
[1] α

−−−→
≃

s
∫
[1]

tL′ = s
∫
[1]

sH[1]L
′ ≃ L′

and hence we are done. �

As explained in Subsection 0.2 one easy way to construct an (∞, 1)-category of spaces is via nerves of
Kan enriched categories. We hence want to compare S to the nerve of the Kan enriched category of Kan
complexes. Following the notational convention of Subsection 0.5, let Kan be the Kan enriched category of
Kan complexes, which has objects Kan complexes and for two objects K, L we have

(2.9) Map
Kan(K, L)n = HomKan(K × ∆[n], L) ∼= Hom/∆[l](K × ∆[n], L × ∆[n])

For further details regarding this Kan enriched category see [GJ09, Subsection I.5].

Remark 2.10. Analogous to Lemma 2.6 we say a Kan complex K is minimal if K = Min(Y)0 (1.29) for

some Reedy fibrant simplicial space Y and define Kanmin as the full Kan enriched subcategory of Kan

with objects the minimal Kan complexes and notice the inclusion Kanmin → Kan is an equivalence of Kan
enriched categories, in the sense of [Ber07a], as every Kan complex is equivalent to a minimal Kan complex
(Proposition 1.27).

We now want to apply the nerve to these Kan enriched categories. For a given simplicially enriched
category C, let N∆C be the bisimplicial set with N∆C0 = Obj

C
and

(2.11) N∆Cn = ∐
X0,...,Xn

Map
C
(X0, X1)× ... × Map

C
(Xn−1, Xn).

While N∆C is not a complete Segal space it is in fact a Segal category [Ber07b, Proposition 8.3] (where
the nerve N∆ is denoted R instead) and we can characterize their equivalences via Dwyer-Kan equivalences
meaning we have the following special instance of [Ber07b, Theorem 7.1].
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Proposition 2.12. Let C be a Kan enriched category and W a complete Segal space. A map F : N∆C → W is an
equivalence in the complete Segal space model structure if Obj

C
→ W00 is surjective and for objects x, y in C, the

induced map Map
C
(x, y) → MapW(Fx, Fy) is a Kan equivalence.

We now have the necessary pieces to prove the main result.

Theorem 2.13. There is an equivalence between the complete Segal space S and the strict Segal category N∆Kan.
Moreover, we have a natural bijection LF ib ∼= Hom(−,S).

Proof. We have established that S is a complete Segal space in Proposition 2.3 and the bijection in 2.1 and
so we only need to prove the equivalence with N∆Kan. Let L → N∆Kan be the map of bisimplicial sets
with

(2.14) Ln = ∐
X0,...,Xn

X0 × Map(X0, X1)× · · · × Map(Xn−1, Xn)

with boundary maps given by composition and projection. The evident projection map π1 : L → N∆Kan
gives us the strict pullback of simplicial set Ln

∼= L0 ×Obj
Kan

N∆Kann and so, by Remark 1.10, the Reedy

fibrant replacement π1 : L̂ → N∆Kan is a left fibration. By 2.1, this induces a functor N∆Kan → S. We
want to prove it is a complete Segal space equivalence.

By Lemma 2.6, it suffices to prove that the composition N∆Kan → Smin is an equivalence. Moreover, by

Remark 2.10, we can further reduce it to showing that Lift : N∆Kanmin → Smin is a Dwyer-Kan equivalence.
By Remark 1.9 and Lemma 1.31 every left fibration over L → ∆[0, 0] is uniquely determined by the minimal
Kan complex L0 and so Lift is surjective on object and so, by Proposition 2.12, it suffices to prove Lift
induces an equivalence of mapping spaces. We will in fact show Lift1 induces a bijection on mapping
spaces.

Before we proceed, we will understand this map better. By construction, Lift corresponds under the

bijection 2.5 to the minimal left fibration L̂min = Min(L̂) ×Kan Kanmin over Kanmin, meaning Lift(σ) =

σ∗L̂min → ∆[n, l], for every σ : ∆[n, l] → N∆Kanmin. By definition of the simplicial nerve (2.11) (N∆Kanmin)1l

is the set of l-morphisms in the simplicially enriched category Kanmin and, by the explanation above, Lift
will take f : X × ∆[l] → Y × ∆[l] over ∆[l] to the minimal left fibration Lift( f ) → ∆[1, l] with the following
characteristics (using Notation 2.7):

• Lift( f )/0 = X,Lift( f )/1 = Y,
• Lift( f )/01 is the minimal Reedy fibration over X × Y equivalent to the map (id, f ) : X → X × Y,

which determines Lift( f )/01 uniquely.

The equivalence X ≃ Lift( f )/01 in particular implies that

(2.15) Min(Lift( f )/01) = X

and X = Min(Lift( f )/01) → X ×Y
π2−−→ Y is given by f .

We will now prove Lift1 is a bijection by constructing an inverse Sec : (Smin)1 → N∆Kanmin
1 . For a

given minimal left fibration L → ∆[1, l], let Sec(L) = Min(L/01) → L/1 over ∆[l]. We now prove that Sec
is injective and that Sec is a left inverse of Lift1 which will prove they are inverses.

The statement of Lemma 2.8 and the definition of Sec(L) as L/01 → L/1 immediately implies that Sec is
injective on minimal left fibrations. Moreover, we observed in 2.15 that for a given morphism of minimal
left fibrations f : X × ∆[l] → Y × ∆[l] over ∆[l], X = Min(Lift( f )/01) and the composition

X = Min(Lift( f )/01) →֒ Lift( f )/01 → Lift( f )/1 = Y

is given by f . This proves that Sec ◦ Lift1 is the identity and hence we are done. �

Remark 2.16. We constructed a complete Segal space of spaces using left fibrations. However, based on

Remark 1.12, we could have also used right fibrations to construct a bisimplicial set SR with SR
nl given by

right fibrations over ∆[n, l]. Now, Remark 1.12 implies that (−)op induces a bijection between S and SR

that flips the directionality of the morphisms, immediately implying that SR is just the opposite complete
Segal space of spaces, Sop.



14 NIMA RASEKH

Remark 2.17. One implication of Theorem 2.13 is that S is complete, which in particular implies the space
of equivalences from X to Y is equivalent to the space of left fibrations over ∆[0, •] from X to Y. As left
fibrations L → ∆[0, n] are uniquely determined by Kan fibrations over ∆[n] [Ras17b, Theorem 3.17], this
means we are getting an equivalence between the space of equivalences and the space of Kan fibrations
with specific fibers, meaning we get an alternative proof to the simplicial univalence of the universe of Kan
fibrations [KL21, Theorem 3.4.1].

THE COMPLETE SEGAL SPACE OF (COMPLETE) SEGAL SPACES

We now want to generalize the results from the previous section from a complete Segal space of spaces
to a complete Segal space of complete Segal spaces. Here we rely on the complete Segal object approach
to Cartesian fibrations as outlined in the beginning of [Ras21b]. The benefit of this approach is that we can
use the results of the previous sections level-wise to immediately deduce the desired results.

Let us start with the appropriate generalizations of Subsection 1.1. The category of trisimplicial sets is
denoted by sssSet and the generators are denoted by ∆[−,−,−]. We can, analogous to Definition 1.3, char-
acterize Reedy fibrations via right lifting properties against certain morphisms with codomain ∆[k, n, l].
Again, Reedy fibrations are part of a model structure with cofibrations given by inclusions of trisimplicial
sets and equivalences given by level-wise Kan equivalences. In particular all trivial Reedy fibrations are
Reedy weak equivalences. See [Ras21a, Subsection 1.8] for more details.

Notation 3.1. For a trisimplicial set X, we use Xk to denote the bisimplicial set with (Xk)nl = Xknl and use
Xkn to denote the simplicial set with (Xkn)l = Xknl .

We have analogous generalizations of left fibrations (Definition 1.7).

Definition 3.2. Let ιst : ssSet → sssSet, the standard embedding, take a bisimplicial set X to the trisimplicial
set ιst(X) characterized as ιst(X)knl = Xnl . Moreover, for a map of trisimplicial sets p : Y → ιstX, we denote
by pk : Yk → X the map of bisimplicial sets defined as (pk)nl = pknl.

Definition 3.3. Let X be a bisimplicial set and p : L → X be a Reedy fibration of trisimplicial sets.

• p is a Reedy left fibration if pk : Lk → X (Notation 3.1) is a left fibration for all k ≥ 0.
• p is a Segal coCartesian fibration if it is a Reedy left fibration and it satisfies the Segal condition, meaning

the map
Lkn → L1n ×L0n

... ×L0n
L1n

is a Kan equivalence for all k ≥ 0 and n ≥ 2.
• p is a coCartesian fibration if it is a Segal coCartesian fibration and it satisfies the completeness condition,

meaning the map
Lk0 → Lk3 ×Lk1×Lk1

Lk0 × Lk0

is a Kan equivalence for all k ≥ 0.

The Segal condition and completeness condition are evident analogues to the ones used to define com-
plete Segal spaces (Definition 1.4) and so we would expect a close connection. Indeed we have the following
remark.

Remark 3.4. By [Ras21a, Theorem 4.7], if p : L → X is a Reedy left fibration, then p is Segal coCartesian
fibration if and only if for every x : ∆[0, 0] → X, the fiber x∗L0 is a Segal space and similarly between
coCartesian fibrations and complete Segal spaces.

Remark 3.5. Following Remark 1.9 a Reedy left fibration over ∆[0, 0] is a homotopically constant trisimplicial
set. Similarly, a (Segal) coCartesian fibration over ∆[0, 0] is a homotopically constant trisimplicial set L such
that L0 is a (complete) Segal space.

We have a similar interaction between Reedy left fibrations and complete Segal equivalences as in 1.11,
meaning every Reedy left fibration L → A can be obtained as a homotopy pullback square of a Reedy left

fibration L̂ → B

(3.6)
L L̂

A B

p

i
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where A → B is a trivial complete Segal space cofibration [Ras21a, Theorem 4.12]

Remark 3.7. Generalizing Remark 1.12, we can analogous to Definition 3.3 define Reedy right fibrations as
Reedy fibrations p : R → X, such that for all k, pk : Rk → X is a right fibration. Moreover, we then define
(Segal) Cartesian fibrations as Reedy right fibrations that satisfy the Segal and completeness condition, as
described in Definition 3.3. Moreover, by Remark 1.12, a map R → X is a Reedy right, Segal Cartesian
or Cartesian fibration if and only if Rop → Xop is a Reedy left, Segal coCartesian or coCartesian fibration,
respectively. Here (−)op : sssSet → sssSet takes (−)op defined in Remark 1.12 level-wise, meaning it is
defined as Fun(∆op, (−)op).

We move on to appropriate generalizations of Subsection 1.2. Let All : sssSetop → Set be the functor
All(X) = Fun(

∫
∆×∆×∆

X, Set). We can restrict this functor by precomposing with the standard embedding

(ιst)op : ssSetop → sssSetop to define sAll : ssSetop → Set. Similar to Lemma 1.17 for every bisimplicial set
X we have a bijection

sAll(X) ∼= (sssSet/ιstX)
sm.

Now, define sssSet : ∆
op × ∆

op → Set as sAll precomposed with the Yoneda embedding and, analogous to
Corollary 1.19 we have a natural isomorphism

(3.8) sAll(−) ∼= HomssSet(−, sssSet).

Finally, if S is a local set of morphisms, then, similar to Lemma 1.22, this bijection restricts to a bijection

(3.9) sAllS(−) ∼= HomssSet(−, sssSet),

where sAllS(X) ⊆ sAll(X) is the sub-functor of objects over ιstX that are in S and sssSetS is again the

restriction of sAllS along the Yoneda embedding. Finally, we have the analogue of Corollary 1.23 for trisim-
plicial sets.

Corollary 3.10. Let S be a set of morphism of trisimplicial sets determined by a right lifting property with respect to
a set of morphisms A →֒ ∆[k, n, l]. Then S is pullback stable and local.

We can use the corollary to generalize 2.1. By Definition 3.3, Reedy left fibrations are local and so we get

a bisimplicial set sssSetReeLF ib that we denote by sS and a natural bijection

(3.11) ReeLF ib(−) ∼= HomssSet(−, sS).

We want to prove that sS is a complete Segal space of Reedy fibrant simplicial spaces. This requires us
to understand minimal Reedy fibration and minimal Reedy left fibrations of trisimplicial sets, similar to
Subsection 1.3. A Reedy fibration of trisimplicial sets Y → X is minimal if for all k, n ≥ 0 the induced map
of simplicial sets (using Notation 3.1)

Ykn → MknY ×MknX Xkn

is a minimal Kan fibration. Now using the same inductive argument used in Proposition 1.27 (now on two
variables k, n ≥ 0), we have the following result.

Proposition 3.12. Every Reedy fibration of trisimplicial sets p : Y → X can be restricted to a minimal subfibration
Min(p) : Min(Y) → X, such that the inclusion i : Min(Y) → Y has a retract r : Y → Min(Y) over X that is a
trivial Reedy fibration.

Applying Proposition 3.12 to 1.29 we obtain a natural morphism

(3.13) sMin : Ree → Reemin

that naturally takes each Reedy fibration of trisimplicial sets to a minimal Reedy fibration.
It follows from Lemma 1.30 that if L → X is a Reedy left fibration, then Min(L) → X is a Reedy left

fibration. We can now use this result to study the bisimplicial set sS. Before that we need the following last
lemma, which follows analogous to Lemma 2.2.

Lemma 3.14. Let p : Y → A be a trivial Reedy fibration of trisimplicial sets and i : A → B an inclusion of

trisimplicial sets. Then i∗p is a trivial Reedy fibration and p
∼=
−→ i∗i∗p.

Proposition 3.15. The bisimplicial set sS is a complete Segal space.
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Proof. We will follow the steps given in Proposition 2.3. The bijection 3.11 allows us to again reduce the
proof to showing that every Reedy left fibration L → A can be obtained as the pullback of a Reedy left
fibration R → B along a trivial complete Segal space cofibration i : A → B. We can obtain this lift using
the same diagram as in the proof of Proposition 2.3 this time relying on Proposition 3.12 whenever we need
a minimal Reedy left fibration, 3.6 when we need to extend L along i : A → B and Lemma 3.14 when we
need a trivial Reedy fibration. �

Now analogous to 2.5, we get a complete Segal space sSmin → sS consisting of minimal Reedy left

fibrations over ∆[n, l] with a retract sS → sSmin along with a bijection

(3.16) ReeLF ibmin(−) ∼= HomssSet(−, sSmin).

Using this bijection along with Lemma 3.14 in the proof of Lemma 2.6 we obtain the following result.

Lemma 3.17. The maps sSmin → sS → sSmin are equivalences of complete Segal spaces.

We now want to use these result to finally prove that sS is in fact the complete Segal space of Reedy
fibrant bisimplicial sets. Let Ree denote the Kan enriched category of Reedy fibrant simplicial spaces,
where, by analogy with 2.9, the mapping spaces for two Reedy fibrant simplicial spaces are defined as
follows:

(3.18) MapRee(K, L)n = HomRee(K × ∆[0, n], L) ∼= Hom/∆[0,n](K × ∆[0, n], L × ∆[0, n]).

Remark 3.19. Similar to Remark 2.10 a Reedy fibrant simplicial space K is minimal if K = Min(Y)0 (3.13) for

some Reedy fibration Y → ∆[0, 0, 0]. Let Reemin →֒ Ree be the (Dwyer-Kan equivalent) full subcategory,
by Proposition 3.12.

Using 2.11 we obtain a Segal category N∆Ree. We now have the following result.

Theorem 3.20. There is an equivalence between the complete Segal space sS and the strict Segal category N∆Ree.
Moreover, we have a bijection ReeLF ib ∼= Hom(−, sS).

Proof. S is a complete Segal space by Proposition 3.15 and the bijection follows from 3.11. Hence, we only
need to prove the equivalence. Let

(3.21) sLn = ∐
X0,...,Xn

X0 × Map(X0, X1)× ... × Map(Xn−1, Xn)

be the trisimplicial set with evident projection map π1 : sL → N∆Ree and notice this map induces a
strict pullback sLn

∼= N∆Reen
∼=ObjRee

sL0, and so, by applying Remark 1.10 level-wise, the Reedy fibrant

replacement over N∆Ree is a Reedy left fibration. The bijection 3.11 gives us a functor N∆Ree → sS.
We want to prove this is a Dwyer-Kan equivalence. Now, combining Lemma 3.17 and Remark 3.19, this

proof reduces to showing that sLift : N∆Reemin → sSmin is a Dwyer-Kan equivalence, which follows from
establishing the conditions in Proposition 2.12.

By Remark 3.5 Reedy left fibrations over ∆[0, 0] are determined by a Reedy fibrant simplicial space and
so functor is surjective, meaning we only need to show it is an equivalence of mapping spaces. We can

now follow the same steps as in Theorem 2.13 to deduce that sLift1 : N∆Reemin → sSmin
1 is a bijection by

constructing an explicit inverse. �

Remark 3.22. General Reedy fibrant simplicial spaces are too broad to give us ∞-categories, however, bisim-
plicial sets with the Reedy model structure do give us a model topos [Rez10], which have been estab-
lished as models for homotopy type theories [Shu19], and so have been studied extensively by Shulman
[Shu15a, Shu15b, Shu17]. In particular bisimplicial sets are the key example of a model of type theories with
shapes introduced by Riehl and Shulman with the goal of ∞-category theory internal to type theories [RS17].
From this perspective an explicit construction of a complete Segal space for Reedy fibrant simplicial spaces
is an important step towards better understanding its properties as a model of type theories.

We can now restrict this construction in the following two ways to get the results we wanted. Using

the fact that (Segal) coCartesian fibration are local (by Definition 3.3) we denote sssSetSegcoCart by Seg and

sssSetcoCart by CSS. We now have the following lemma and theorem, giving us a complete Segal space of
(complete) Segal spaces.
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Lemma 3.23. Let W be a complete Segal space. Let V00 ⊆ W00 be a subset of objects in W closed under equivalences,
meaning any object in W equivalent to an element in V00 is already in V00. Define V ⊆ W as the sub bisimplicial set
of W with elements in σ ∈ Vnl ⊆ Wnl if for all d : Wnl → W00, d(σ) ∈ V00. Then V is a complete Segal space and
V → W is fully faithful.

Proof. Let i : A → B be a trivial cofibration in the complete Segal space model structure and let f : A → V

be a map. Then there exists a map f̂ : B → W lifting i. Now, every trivial cofibration in the complete
Segal space model structure is surjective on equivalence classes of objects [Ras21c, Lemma 3.54]. Hence,

the objects in W that lie in the image of f̂ are all equivalent to objects in the image of f : A → V ⊆ W and
hence in V themselves. This proves that the lift factors through V and hence V is a complete Segal space.
Finally, for given objects x, y, by the definition of V and mapping spaces of complete Segal spaces (1.5),
MapV(x, y) → MapW(x, y) is the identity and so we are done. �

Theorem 3.24. We have a diagram of fully faithful functors of complete Segal spaces

CSS →֒ Seg →֒ sS,

with Seg having elements Segal spaces and CSS complete Segal spaces. Moreover, we have bijections

SegcoCart ∼= HomssSet(−,Seg),

coCart ∼= HomssSet(−,CSS).

Proof. The bijections follow directly from 3.9 and the fact that (Segal) coCartesian fibrations are local (Definition 3.3).
Now, by Theorem 3.20, sS is a complete Segal space of bisimplicial sets and, by Lemma 3.23 and Remark 3.4,
Seg →֒ sS is a fully faithful inclusion of complete Segal spaces. Here we are using the fact that the Segal
condition in Definition 3.3 is by definition up to equivalence and so any Reedy left fibration equivalent to a
Segal coCartesian fibration is in fact a Segal coCartesian fibration, proving that the condition in Lemma 3.23
is in fact satisfied. Finally, by Remark 3.5, the objects in Seg are Segal spaces. We can use the same argu-
ments to prove that CSS → Seg is a fully faithful functor of complete Segal spaces with CSS having
objects complete Segal spaces. �

Remark 3.25. Combining Remark 2.16 and Remark 3.7 directly implies that the bisimplicial set with (k, n)-
simplices given by Reedy right fibrations over ∆[n, l] is precisely the opposite complete Segal space of
Reedy fibrant simplicial spaces, sSop. Moreover, restricting those to (Segal) Cartesian fibrations gives us
the opposite complete Segal spaces of (complete) Segal spaces as constructed in Theorem 3.24, Segop and
CSSop.

UNIVERSAL FIBRATIONS

Up until this point we have constructed various complete Segal spaces that have relevant universal
properties in the sense that functors into them correspond to various fibrations over them. This in particular
implies the existence of a universal fibration corresponding to the identity map. In this section we want to
focus on these universal fibrations.

We will start with the case for spaces. Denote by pssSet : ssSet∗ → ssSet the map that corresponds to
the identity map under the bijection in Corollary 1.19. Notice, a map ∆[n, l] → ssSet∗ corresponds to a map
σ : ∆[n, l] → ssSet along with a section of the pullback diagram σ

∗pssSet : σ
∗ssSet∗ → ∆[n, l]. This means

we have a bijection of sets

(4.1) (ssSet∗)nl
∼= ∐

p∈ssSetnl

Hom/∆[n,l](id, p),

with pssSet being the evident projection to p. Moreover, the naturality of the bijection Corollary 1.19 implies
the following helpful result.

Lemma 4.2. The bijection All ∼= HomssSet(−, ssSet) is induced by pulling back along pssSet.

Now, for every local class of morphisms S, we can obtain pssSetS : ssSetS
∗ → ssSetS by using the bijection

Lemma 1.22. This map satisfies the following simple, yet useful, lemma that helps us better understand it.

Lemma 4.3. Let S be a local class of morphisms of bisimplicial sets. Then we have the following pullback square
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ssSetS
∗ ssSet∗

ssSetS ssSet

p .

In particular, elements in (ssSetS
∗)nl are morphisms p : X → ∆[n, l] that are in S along with a choice of section.

We can now in particular apply this to S = LF ib and deduce that the universal left fibration, that we
denote by pS : S∗ → S, has as elements in (sS∗)nl diagrams of left fibrations ∆[n, l] → L over ∆[n, l]. We
now want to study the representability of this left fibration. Recall that a left fibration L → W is representable
if there exists an object x in W such that

(4.4) L ≃ Wx/ = W∆[1,0] ×W ∆[0, 0].

See [Ras17b, Subsection 3.3] for a more detailed analysis of representable left fibrations of bisimplicial sets.

Theorem 4.5. The universal left fibration pS : S∗ → S is a representable left fibration, represented by the terminal
object. Moreover the bijection 2.1 is induced by pulling back the universal left fibration pS.

Proof. The fact that the bijection 2.1 is induced by pulling back pS follows directly from Lemma 4.3 and
Lemma 4.2. We now want to prove that pS : S∗ → S is representable and concretely represented by the
object id∆[0,0] in S. By [Ras17b, Theorem 3.55] it suffices to prove that S∗ has an initial object in the fiber of

pS over id∆[0,0].

By Theorem 2.13, we have an equivalence N∆Kan → S, which is induced by a left fibration L̂ over
N∆Kan, which implies that L → N∆Kan, as constructed in 2.14, is equivalent to the homotopy pullback of
pS along the complete Segal space equivalence N∆Kan → S. Hence, by [Ras17b, Theorem 4.31], we have
a complete Segal space equivalence L ≃ S∗ that takes (∆[0], 0) to id∆[0,0], where we used the fact that by

2.14, L00 = ∐X∈Kan X0, meaning objects in L are of the form (X, x ∈ X0), where X is a Kan complex.
This implies that in order to finish the proof we only need to observe that (∆[0], {0}) is initial in L. By def-

inition L1 = ∐X,Y X×Map
Kan(X, Y) and so for an object (X, x), by 1.5 the mapping space Map

L
((∆[0], 0), (X, x))

is given via the following pullback

Map
L
((∆[0], 0), (X, x)) ∆[0]× Map

Kan(∆[0], X)

∆[0] X

∼=
p

ev∼=

x

Now the map on the right hand side is a bijection and so Map
L
((∆[0], 0), (X, x)) is bijective to ∆[0] as well,

finishing the proof. �

Remark 4.6. One of the main results regarding left fibration of bisimplicial sets is that they are always
fibrations in the complete Segal space model structure [Ras17b, Corollary 5.11]. Using Theorem 4.5 we can

deduce the following result more simply. Indeed, Theorem 4.5 and 4.4 imply that S∗ ≃ S∆[1,0] ×S ∆[0, 0]
is a complete Segal space as the complete Segal model structure is Cartesian (see [Ras17b, Lemma 3.43] for
a more detailed argument). As a result, pS is a Reedy fibration between complete Segal spaces and so a
complete Segal fibration [Rez01, Theorem 7.2]. Now, by Theorem 4.5, every left fibration is a pullback of
the complete Segal space fibration S∗ → S and so a complete Segal space fibration as well.

We now want to generalize Theorem 4.5 to trisimplicial sets. Let psssSet : sssSet∗ → sssSet be the map
that corresponds to the identity map under the bijection 3.8. First we want to generalize 4.1.

Lemma 4.7. There is a bijection

(sssSet∗)knl
∼= ∐

p∈sssSetnl

Hom/∆[n,l](∆[k, n, l], p),

meaning an element in (sssSet∗)knl corresponds to a choice of trisimplicial set X → ∆[n, l] along with a choice of
section for the map of bisimplicial sets Xk → ∆[n, l].
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Proof. An element in (sssSet∗)knl is given by a map ∆[k, n, l] → sssSet∗, which is given by a map ∆[k, n, l] →
sssSet along with a lift. By 3.8 an element in sssSetknl is given by a map of trisimplicial sets X → ∆[0, n, l].
Now for such a fixed map, a lift precisely corresponds to a choice of element in Xknl , which is precisely the
data of a section Xk → ∆[n, l]. �

This also has the following useful implication.

Lemma 4.8. The bijection sAll ∼= HomssSet(−, sssSet) is induced by pulling back along psssSet.

Now, for every local class of morphisms S, we can obtain psssSetS : sssSetS
∗ → sssSetS by using the

bijection 3.9 and again we have a result analogous to Lemma 4.3.

Lemma 4.9. Let S be a local class of morphisms of bisimplicial sets. Then we have the following pullback square

sssSetS
∗ sssSet∗

sssSetS sssSet

p .

In particular, elements in (sssSetS
∗)knl are morphisms p : X → ∆[n, l] that are in S along with a choice of section of

pk : Xk → ∆[n, l].

We can now apply this lemma to the case S = ReeLF ib to obtain the universal Reedy left fibration
pReeLF ib : sS∗ → sS. We want to observe that this Reedy left fibration is representable, as defined in
[Ras17a, Definition 2.1].

Theorem 4.10. The universal Reedy left fibration psS : sS∗ → sS is a representable Reedy left fibration represented
by the cosimplicial object ∆[•, 0]. Moreover the bijection 3.11 is induced by pulling back the universal left fibration
pS.

Proof. The fact that the bijection is induced by pullback follows from combining Lemma 4.9 and Lemma 4.8.
Now, in order to prove that psS : sS∗ → sS is representable, by [Ras17a, Lemma 4.1], it suffices to prove
that the left fibration (psS)k : (sS∗)k → sS is represented by ∆[k, 0] for all k ≥ 0. From here one we can
follow the steps of the proof of Theorem 4.5.

We need to show that (sS∗)k has an initial object over ∆[k, 0]. By Theorem 3.20, we have an equivalence

N∆Ree → sS, which is induced by the Reedy left fibration ˆsL over N∆Ree, which implies that the Reedy
left fibration sL → N∆Ree, as constructed in 3.21, is the homotopy pullback of the Reedy left fibration

sS∗ → sS, and, in particular, the left fibration ˆsLk → N∆Ree is the homotopy pullback of the left fibration
(sS∗)k → sS. Hence, by [Ras17b, Theorem 4.31], we have a complete Segal space equivalence sLk ≃ (sS∗)k

that takes (∆[k, 0], idk) to id∆[k,0]. Here we used the fact that by 3.21, sLk00 = ∐X∈Ree Xk0, meaning objects

in sLk are of the form (X, x ∈ Xk0), where X is a Reedy fibrant simplicial space.
This implies that in order to finish the proof we only need to observe that (∆[k, 0], idk) is initial in sLk.

By definition sLk1 = ∐X,Y∈Ree Xk × MapRee(X, Y) and so for an object (X, x ∈ Xk0), by 1.5 the mapping

space MapsLk
((∆[k, 0], idk), (X, x)) is given via the following pullback

MapsLk
((∆[k, 0], idk), (X, x)) ∆[k, 0]k × MapRee(∆[k, 0], X)

∆[0] ∆[k, 0]k × Xk

∼=
p

ev∼=

(idk ,x)

Now, the map on the right hand side is a bijection, as MapRee(∆[k, 0], X) ∼= Xk by 3.18. As a result, the

mapping space MapsLk
((∆[k, 0], idk), (X, x)) is bijective to ∆[0] as well, finishing the proof. �

We now use Theorem 3.24 to get the universal Segal coCartesian fibration, that we denote by pSeg :
Seg∗ → Seg and the universal coCartesian fibration, that we denote by pCSS : CSS∗ → CSS. Lemma 4.9
and Theorem 4.10 now immediately give the following result.

Corollary 4.11. The universal (Segal) coCartesian fibration pCSS (pSeg) is represented by ∆[•, 0]. Moreover, we
have pullback squares
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CSS∗ Seg∗ sS∗

CSS Seg sS

pCSS

p
pSeg

p psS .

Finally, pulling back along the universal fibrations induces bijections

HomssSet(−,Seg) ∼= SegcoCart,

HomssSet(−,CSS) ∼= coCart.

Remark 4.12. The representability of the universal left fibration is well-established (and has for example been
studied in [Cis19, Subsection 5.2],) however, the representability of the the universal coCartesian fibration
is a more modern phenomena and can be found in [Ras17a, Subsection 4.2] and [Ste20, Example 3.26]. The
representability of the universal Reedy left fibration was not studied before.

COMPARISON WITH QUASI-CATEGORIES

Up until here we constructed various complete Segal spaces of spaces and (complete) Segal spaces. In
this last section we want to use the fact that we can translate between complete Segal spaces and quasi-
categories, another important model of (∞, 1)-categories, to construct quasi-categories of spaces and (com-
plete Segal) spaces. This requires us to review left fibrations of simplicial sets [Joy08b, Lur09, Cis19], the
translation results between quasi-categories and complete Segal spaces due to Joyal and Tierney [JT07] and
their generalization to left fibrations in [Ras17b, Appendix B].

Definition 5.1. A left fibration of simplicial sets is map that satisfies the right lifting property with respect to
horn inclusions Λ[n]i →֒ ∆[n], for 0 ≤ i < n.

Left fibrations of simplicial sets can be translated to left fibrations of bisimplicial sets (Definition 1.7) and
vice versa. Let i∗1 : ssSet → sSet be the functor that takes a bisimplicial set X•• to the simplicial set X•0 [JT07,

Section 4]. Moreover, let t! : sSet → ssSet be the functor that takes a simplicial set X to the bisimplicial set

t!Xnl = HomsSet(∆[n]× N(I[l]), X) [JT07, Theorem 2.12]. Here I[l] is the groupoid with l + 1 objects and a
unique morphism between any two objects.

These two functors are both right adjoints of Quillen equivalences [JT07, Theorem 4.11, Theorem 4.12],
which in particular has the following implications:

Lemma 5.2. i∗1 takes complete Segal spaces to quasi-categories and t! takes quasi-categories to complete Segal spaces.

Moreover, i∗1 t! : sSet → sSet is the identity map and t!i∗1 : ssSet → ssSet is equivalent to the identity. Finally, i∗1
reflects equivalences between complete Segal spaces.

These results have been generalized in [Ras17b, Appendix B] to a comparison between left fibrations of
simplicial sets and bisimplicial sets, giving us the following valuable result.

Lemma 5.3. i∗1 takes left fibrations of bisimplicial sets to left fibrations of simplicial sets and t! takes left fibrations of
simplicial sets to left fibrations of bisimplicial sets.

We now use the ability to translate between quasi-categories and complete Segal spaces to construct ad-
ditional (∞, 1)-categories of spaces. First of all we can apply i∗1 to the complete Segal space S (Theorem 2.13)
to obtain the following result.

Corollary 5.4. i∗1S is a quasi-category of spaces with i∗1Sn given by left fibrations of bisimplicial sets over ∆[n, 0].

We now want to illustrate how we can use left fibrations of simplicial sets internally to construct a quasi-
category of spaces, using analogous steps to Section 2. Let SQCat be the simplicial set with (SQCat)n given
by left fibrations of simplicial sets over ∆[n] (where we are using the translation to functors as given in
Lemma 1.17 to take care of functoriality).

Now, by Lemma 5.3, t! preserves left fibrations and moreover we have t!(∆[n]) = ∆[n, 0]. Hence t!

induces a morphism of quasi-categories

(5.5) T : SQCat → i∗1S,
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that takes a left fibration of simplicial sets L → ∆[n] to t!L → t!∆[n] = ∆[n, 0]. Similarly, by Lemma 5.3,
i∗1 also preserves left fibrations and i∗1(∆[n, 0]) = ∆[n] and so i∗1 similarly induces a morphism of quasi-
categories

(5.6) I : i∗1S → SQCat,

that takes a left fibration of bisimplicial sets L → ∆[n, 0] to i∗1(L) → i∗1(∆[n, 0]) = ∆[n]. We now have the
following result.

Theorem 5.7. The maps T : SQCat → i∗1S and I : i∗1S → SQCat are inverses of quasi-categories.

Proof. First we prove SQCat is a quasi-category. By Lemma 5.2, t! ◦ i∗1 is the identity and so IT is the identity
as well, meaning SQCat is a retract of the quasi-category i∗1S (Corollary 5.4) and so a quasi-category as
well. We now move to prove T and I are inverses of quasi-categories. As IT is the identity we only
need to show TI : i∗1S → i∗1SCSS is equivalent to the identity. By Lemma 5.2 and Lemma 2.6, the two

morphisms ı∗1S
min → i∗1S → ı∗1S

min are equivalences of quasi-categories, hence it suffices to prove that

T ◦ I ◦ (i∗1Min) : i∗1S
min → i∗1S

min is equal to the identity.
Let L → ∆[n, 0] be a left fibration. By Lemma 5.2, there is an equivalence of complete Segal spaces

t!i∗1 L → L over ∆[n, 0], which implies they are equivalent left fibrations [Ras17b, Theorem 5.11] and so

Min(t!i∗1 L) and Min(L) are equal (Lemma 1.31) finishing the proof. �

Remark 5.8. The elements in the quasi-category SQCat are precisely left fibrations over ∆[n]. Hence this
constructions coincides with the construction of the quasi-category of spaces by Cisinski [Cis19, Theorem
5.2.10, Corollary 5.4.7] and hence gives us an independent proof thereof.

We can take the opposite route to Corollary 5.4 to get the following result.

Corollary 5.9. t!SQCat is a complete Segal space of spaces with (t!SQCat)nl given by left fibrations of simplicial sets
over ∆[n]× N(I[l]).

We can now use this to generalize to quasi-categories of complete Segal spaces.

Corollary 5.10. i∗1sS is a quasi-category with i∗1 sSn given by Reedy left fibrations of trisimplicial sets over ∆[0, n, 0].
Moreover, we have inclusions of quasi-categories

i∗1CSS →֒ i∗1Seg →֒ i∗1 sS,

where i∗1CSS and i∗1Seg are characterized analogously.

There is also a result analogous Theorem 5.7 by changing the elements of the complete Segal space of
complete Segal spaces. A Reedy fibration of bisimplicial sets L → ∆[0, n] is a Reedy left fibration if for
all k ≥ 0 the restricted map Lk → ∆[0, n]k = ∆[n] (Notation 1.2) is a left fibration of simplicial sets. Let

st! : ssSet → sssSet be defined as Fun(∆op, t!) and similarly, let si∗1 = Fun(∆op, i∗1) : ssSet → sssSet. We now

have the following fact about si∗1 and st!.

Lemma 5.11. si∗1 takes Reedy left fibrations of trisimplicial sets to Reedy left fibrations of bisimplicial sets and st!

takes Reedy left fibrations of bisimplicial sets to Reedy left fibrations of trisimplicial sets. Moreover, si∗1 st! is the

identity and st!si∗1 takes a Reedy left fibration of trisimplicial sets to an equivalent one.

See [Ras21b, Theorem 1.35] for further details about these functors. Using this result we can generalize
the maps of quasi-categories T, I to maps

(5.12)
sT : sSQCat → i∗1 sS,

sI : i∗1 sS → sSQCat,

and following the same steps of the proof of Theorem 5.7 (this time with the construction of minimal Reedy
left fibrations given in 3.13) gives us the following result.

Theorem 5.13. The maps sT : sSQCat → i∗1sS and sI : i∗1 sS → sSQCat are inverses of quasi-categories.
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Finally, we can use the same conditions as in Definition 3.3 to define (Segal) coCartesian fibrations of
bisimplicial sets over ∆[0, n]. As a result we get the subsimplicial sets CSSQCat →֒ Seg

QCat →֒ sSQCat of

(Segal) coCartesian fibrations. Now, by [Ras21b, Theorem 1.35], st! and si∗1 preserve (and in fact reflect) (Se-
gal) coCartesian fibrations, meaning, our functors sT and sI restrict appropriately, giving us the following
result.

Corollary 5.14. We have the following diagram of quasi-categories, where the horizontal maps are inclusions and the
vertical maps equivalences.

i∗1CSS i∗1Seg i∗1sS

CSSQCat Seg
QCat sSQCat

i∗1CSS i∗1Seg i∗1sS

sI≃ sI≃ sI≃

sT≃ sT≃ sT≃

Finally, we have the following result analogous to Corollary 5.9

Corollary 5.15. t!CSSQCat is a complete Segal space of complete Segal spaces spaces with (t!CSSQCat)nl given by
coCartesian fibrations of bisimplicial sets over ∆[0, n]× N(I[l]).
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[Toë05] Bertrand Toën. Vers une axiomatisation de la théorie des catégories supérieures. K-Theory, 34(3):233–263, 2005. (On p. 5)
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