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We show that the rainbow state, which has volume law entanglement entropy for most choices of
bipartitions, can be embedded in a many-body localized spectrum. For a broad range of disorder
strengths in the resulting model, we numerically find a narrow window of highly entangled states
in the spectrum, embedded in a sea of area law entangled states. The construction hence embeds
mobility edges in many-body localized systems. This can be thought of as the complement to many-
body scars, an ‘inverted quantum many-body scar’, providing a further type of setting where the
eigenstate thermalization hypothesis is violated.

When physical systems thermalize, most of the infor-
mation about their initial state is lost. In the context of
quantum mechanics, thermalization is explained through
the eigenstate thermalization hypothesis [1, 2], which
essentially states that an eigenstate encodes thermody-
namic observables characteristic of its energy density.
Settings in which quantum systems violate the eigen-
state thermalization hypothesis are presently attracting
much attention, both for understanding the foundations
of many-body physics, and for utilizing their unusual
properties, possibly even to store and control the flow
of quantum information [3].

The entanglement entropy of states in the bulk of the
spectrum of thermalizing quantum many-body systems
is expected to scale with the volume of the system [4, 5].
Strong disorder, however, affects all states in the spec-
trum through the mechanism of many-body localization
(MBL) inducing area-law entanglement in the eigenstates
and hence nonthermal behavior [6]. MBL turns out to be
a fragile phenomenon in the sense that there is no agree-
ment of whether it persists beyond a (possibly very long)
prethermal timescale [7–9]. The regime of finite systems
and finite time scales is, however, by itself interesting and
relevant for current experiments [10].

A weaker violation of the eigenstate thermalization
hypothesis occurs in systems with quantum many-body
scars [11–13]. Conventionally, scarred states are weakly
entangled with subthermal scaling of the entanglement
entropy [14–20], and procedures to embed these special
states in the bulk of an otherwise thermal spectrum have
been developed [21].

These studies raise the question, whether one can also
have the converse situation, namely volume law entan-
gled states embedded in a spectrum of MBL states, which
we will refer to as inverted quantum many-body scars.
Constructing such a model would lead to a different type
of nonthermal system beyond MBL and quantum many-
body scars. The construction is also interesting from the
point of view of mobility edges in MBL. A mobility edge
separates localized from delocalized states as a function
of energy density, and its existence in the thermodynamic
limit, as a matter of principle, is also in question [22–25].

First steps toward constructing inverted quantum
many-body scars were taken in [26, 27], where a crit-
ical state with logarithmic scaling of the entanglement
entropy was embedded in an MBL spectrum, albeit in a
model with a highly non-local Hamiltonian and a state
with sub-volume law entanglement. A simpler, but still
non-local, Hamiltonian was also proposed, but for that
case the embedded state was the ground state or a low-
lying excited state.

In this paper, we present a local Hamiltonian that al-
lows us to embed a volume law state inside an MBL spec-
trum. The volume law state is an exact eigenstate for
all disorder realizations and hence remains intact even
for strong disorder. We specifically consider the rainbow
state, which has volume law entanglement for almost all
bipartitions. This state is also referred to as an infinite
temperature thermofield state [28].

In quantum many-body scar models, it is quite com-
mon that states with energies close to a scar state also
have lower entanglement than the thermal part of the
spectrum [15, 29, 30]. Here, we similarly find that states
in the immediate vicinity of the inverted scar state have
higher entropy than the MBL states. The number of high
entropy states scales exponentially with system size, but
with a small enough exponent that the number of high
entropy states has measure zero in the large system limit.

The high entropy states produce mobility edges in
the localized spectrum. While mobility edges have been
observed numerically at the transition from thermal to
MBL behavior in several moderate size systems [31], the
mobility edges produced by inverted scars are different,
as they occur over a broad range of disorder strengths
and are particularly sharp as a function of energy den-
sity. These properties may be appealing for experimental
investigations and practical utilization.

It is well-known that Anderson localized single-particle
spectra of non-interacting systems can contain a few de-
localized states, as happens, e.g., in quantum Hall sys-
tems, when interactions can be neglected [32]. The model
presented here differs from that phenomenon in several
ways. First, we are here considering a strongly inter-
acting system, and the delocalized states appear in the
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middle of the many-particle spectrum, while the quan-
tum Hall effects happen at low temperature. Second, the
rainbow state is volume law entangled, while the delocal-
ized quantum Hall states are less entangled. Third, the
quantum Hall effects are eventually destroyed by strong
disorder, while in our case the rainbow state is immune
to the added disorder.

The model that we investigate also raises interesting
questions from a fundamental perspective. The model
is generic, except that the disorder must fulfil a par-
ticular mirror symmetry. As long as this symmetry is
obeyed, the volume law eigenstate persists for all disor-
der strengths and system sizes. It is well-known that
symmetry can lead to delocalization [33–35]. The special
property here is that the symmetry only produces a nar-
row window of delocalized states rather than delocalizing
the entire spectrum. As is generally the case for MBL
systems, our finite size numerics is not capable of judg-
ing whether the disorder strength at which the transition
to MBL takes place remains finite in the thermodynamic
limit. If MBL persists in the thermodynamic limit, we
expect our (symmetry protected) mobility edges to do
likewise.

Finally, we investigate what happens if the mirror sym-
metry is broken. For a particular system size and disorder
strength, we find the inverted scarring to be quite fragile,
disappearing already for an admixture of about 0.3% of
non-symmetric disorder.

Model—The starting point for our construction of an
inverted quantum many-body scar is the so-called rain-
bow model [36–38] for a chain of 2N sites. Here, we
consider the general rainbow Hamiltonian

H = H1 ⊗ I − I ⊗H2 + c Vint (1)

proposed in [39]. H1 acts on the sites 1 to N , and H2 acts
on the sites N +1 to 2N . H2 =MH∗

1M , where M is the
mirror operation that maps site i into site 2N+1−i, and
the complex conjugation is performed in a chosen product
state basis. We shall here consider spin-1/2 particles with

H1 =

N−1∑
i=1

(JxS
x
i S

x
i+1 + JyS

y
i S

y
i+1 + JzS

z
i S

z
i+1)

+

N∑
i=1

(hxS
x
i + hyS

y
i + wiS

z
i ) + Jp

N−2∑
i=1

Sz
i S

z
i+2 (2)

and choose the basis states to be products of eigenstates
of the Sz

i operators. Here, Sa
i are the spin-1/2 oper-

ators for the spin at site i. The terms with strengths
Jx, Jy, and Jz describe spin interactions, the terms with
strengths hx, hy, and wi represent a magnetic field, and
we include the next-nearest neighbour term of strength
Jp to avoid integrability. We take the interaction term

in (1) to be Vint = S⃗N · S⃗N+1.
It was shown in [39] that the rainbow state

|ψRB⟩ = 2−N/2
N⊗
i=1

(|↑, ↑⟩i,2N+1−i + |↓, ↓⟩i,2N+1−i) (3)
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FIG. 1. (a) Disorder averaged half-chain entanglement en-
tropy divided by the Page [4] value SPage = [2N ln(2) − 1]/2
for the eigenstate closest to the energy density ϵ = 0.4 plotted
against the disorder strength δ for different system sizes. The
transition from thermal behavior at weak disorder to MBL
behavior at strong disorder is seen. The number of disorder
realizations is 104 for N ∈ {4, 5, 6}, 5000 for N = 7, and
1500 for N = 8. (b) The standard deviation of the half-chain
entanglement entropy ∆s computed for the same set of data
shows a peak at the transition point. (c) The finite-size scal-
ing collapse for ∆s suggests that the transition happens at
δ ∼ 8 for large systems.

is an exact eigenstate of H with energy ERB = c/4. The
rainbow state is a product of Bell states between pairs
of spins on opposite halves of the system. The von Neu-
mann entanglement entropy is ln(2) times the number
of Bell pairs that are cut by the chosen bipartition, and
hence most choices lead to volume law entanglement [39].
The maximal entanglement entropy is achieved for the
half-chain bipartition.
We introduce disorder of strength δ by choosing wi

from a uniform distribution in the interval [−δ, δ]. The
rainbow state is an exact eigenstate independent of the
disorder realization. Disorder does, however, affect other
states, driving an eigenstate transition from a thermal
to an MBL behavior in Hamiltonians with local terms.
We show in the following that the disorder indeed many-
body localizes the system, except for a set of states near
the rainbow state of measure zero. Unless stated oth-
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FIG. 2. (a) Adjacent gap ratio rave at strong disorder δ = 10
computed for the 13, 50, 100, or 800 energy levels closest to
the considered energy density for N = 4, 5, 6, or 7, respec-
tively, and averaged over 3000 disorder realizations. As the
system size 2N increases, rave gets close to the Poisson (POI)
value, which signals that the majority of the states in the
spectrum are many-body localized. (b) The same data, but
plotted as a function of system size for different energy den-
sities.

erwise, we take Jx = 1, Jy = 1.5, Jz = 1.8, hx = 1.5,
hy = 0.8, Jp = 0.1, and c = 0.5 in the computations
below. We do not expect the results to be specific to
this choice of parameters. The values have been cho-
sen in part to reduce the symmetry of the model and to
have the rainbow state close to the middle of the spec-
trum. The computations for N ≤ 6 are performed by
employing full exact diagonalization. For N > 6, we use
the shift-invert spectral transformation, implemented by
PETSc [40, 41], SLEPc [42], and MUMPS [43] to perform
Lanczos iteration on the transformed matrix via parallel
sparse LU factorization as a direct solver.

Many-body localization—We first show that the disor-
der many-body localizes most of the states in the spec-
trum. We do this by computing the mean and variance
of the half-chain entanglement entropy [44] and the level
spacing statistics [5].

We first consider the half-chain von Neumann entan-
glement entropy SN = −Tr[ρN ln(ρN )] of an exact eigen-
state |ψ⟩ of the system, where ρN = TrN+1:2N (|ψ⟩⟨ψ|) is
the reduced density matrix obtained after tracing over
the spins N + 1 to 2N . When averaging the entan-
glement entropy over disorder realizations, we choose
the state with energy density closest to a chosen value

in each realization. The energy density is defined as
ϵ = (E−Ei

min)/(E
i
max−Ei

min), where E
i
min and Ei

max are
the minimum and maximum energies in the spectrum of
the ith disorder realization and E is the energy of the
state |ψ⟩.

In Fig. 1(a), we plot the mean of the entanglement en-
tropy as a function of the disorder parameter δ for the
state closest to the energy density ϵ = 0.4. We have
chosen this value to consider states close to the middle
of the spectrum, while not being too close to the rain-
bow state, which for most disorder realizations has an
energy density close to 0.5. For weak disorder, the mean
entanglement entropy is comparable to the Page value
[4], which signals thermal behavior. For strong disorder,
the mean entanglement entropy is independent of system
size, which signals MBL. The standard deviation of the
entanglement entropy, plotted in Fig. 1(b), shows a peak
at the transition point, and the finite-size scaling collapse
in Fig. 1(c) suggests that the transition happens at δ ∼ 8
for large systems.

The level spacing statistics is another diagnostics
to identify whether a system is MBL. Define the en-
ergy spacing ∆n = En+1 − En and the ratio rn =
min(∆n,∆n+1)/max(∆n,∆n+1), where En is the nth
energy in the spectrum, and let rave be the average of
rn over a selected part of the spectrum and over disor-
der realizations. Arguments from random matrix theory
predict that rave ≈ 0.59 for thermal states in systems
with broken time reversal symmetry, while rave ≈ 0.386
in MBL systems.

Figure 2 shows rave as a function of energy density and
system size. When the system size increases, the Hilbert
space dimension increases, and we hence also average over
a larger number of states in the spectrum as detailed in
the caption. It is seen that rave approaches the Poisson
value rave ≈ 0.386 for large system sizes, which signals
that most of the states in the spectrum are many-body
localized.

Highly entangled states—The entanglement entropy of
the rainbow state is N ln(2) for the half-chain biparti-
tion. Since the rainbow state remains unchanged upon
introducing disorder, it has a high entropy compared to
the many-body localized states, which are area law en-
tangled. We now take a closer look at the behavior of
the states in the spectrum that have energies close to the
energy of the rainbow state.

Figure 3(a) shows the half-chain entanglement entropy
as a function of disorder strength. To probe the states
in the vicinity of the rainbow state, we here perform dis-
order averaging over states that have the same n− niRB,
where n labels the states in the spectrum from lowest to
highest energy and niRB is the n for the rainbow state for
the ith disorder realization. The figure shows a narrow
band of high entropy states. Crucially, this band is also
present for disorder strengths for which the other states
in the spectrum are many-body localized. Upon increas-
ing energy, one hence finds a mobility edge followed by an
inverted mobility edge. It is interesting to note that the
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FIG. 3. (a) The disorder averaged half-chain entanglement
entropy ⟨SN ⟩ as a function of disorder strength δ and energy
density relative to the rainbow state ϵ−ϵiRB for N = 6. We av-
erage states with the same value of n−ni

RB over 2000 disorder
realizations, where ni

RB denotes the index of the rainbow state
which lies at energy density ϵiRB = (ERB − Ei

min)/(E
i
max −

Ei
min) for the ith disorder realization. The dark horizontal

line at zero is produced by the rainbow state, and other highly
entangled states are seen in its vicinity. Within the strongly
disordered regime where the rest of the spectrum is many-
body localized, these highly entangled states produce a mo-
bility edge. (b) A zoom of panel (a) showing the band of high
entropy states. Most of the high entropy states have energies
below the rainbow state, but a few of them are at energies
higher than the rainbow state. (c) ⟨SN ⟩ for a fixed δ = 7 as
a function of additional disorder of strength δp on the second
half of the chain only. The high entropy states disappear for
δp ≈ δ/300. (The symmetric case, δp = 0, also provides a
magnified version of the mobility edges at the cut denoted by
the short, vertical, green line in panel (b).)

entanglement entropy changes much faster with energy
density when crossing the band of high entropy states
than it does when crossing the white arc in the left half
of the figure that separates the thermal region (red) from
the MBL region (blue). We also note that the transition
from high to low entropy when crossing the band of high
entropy states is particularly sharp as seen in Fig. 3(b).

To count the number of high entropy states in the spec-
trum, we introduce a cutoff fc and count how many states
have an entropy higher than Sc = fcN ln(2). This num-
ber is plotted as a function of system size for fixed dis-
order strength and different cutoffs in Fig. 4. It is seen
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FIG. 4. Scaling of the number of atypical eigenstates with
high entanglement entropy as a function of system size for
δ = 10. The number of atypical eigenstates is obtained by
counting the number of eigenstates with entropy higher than
a certain cutoff value, Sc = fc N ln(2), in each disorder real-
ization, and this number is then averaged over 2000 disorder
realizations for N = 3, 4, 5, 6 or 1090 for N = 7. For all
considered fc, the number of atypical eigenstates scales ex-
ponentially with N , and the dashed lines indicate the best
fit with the function 2aN+b. The inset shows a as a function
of fc. Note that a < 2 for all considered fc, which means
that the fraction of atypical states approaches zero for large
system sizes.

that the number of high entropy states scales exponen-
tially with system size, but the exponent is small enough
that the fraction of high entropy states to the total num-
ber of states goes to zero in the large system limit.

Sensitivity to symmetry breaking—We test the stabil-
ity of the observed behaviour to a perturbation which
distinguishes between the two half-chains in the Hamil-
tonian (1), and thereby violates the symmetry under-
pinning the rainbow state. Concretely, we add further
disorder −wi + χi to the second half of the chain, i.e.
sites 2N +1− i, where χi is uniformly distributed within
[−δp, δp]. We find, for N = 6 and δ = 7 (Fig. 3(b)), that
high entropy states are formed for δp ≲ 0.02, which is
about 0.3% of δ.

Conclusion—We have demonstrated a scenario in
which an inverted quantum many-body scar with vol-
ume law scaling of entanglement entropy is embedded in
a spectrum of many-body localized states. The construc-
tion does not depend on the microscopic details of the
Hamiltonian, except that a specific symmetry constraint
needs to be obeyed. Similarly to many quantum scar
models, the states in the vicinity of the scar state have
modified entanglement compared to the remainder of the
spectrum. The number of high entropy states scales ex-
ponentially with system size, but not as fast as the di-
mension of the Hilbert space. The high entropy states
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thus form a narrow band in the spectrum, demarcated by
sharp mobility edges. From our finite-size numerics, we
cannot conclude whether the disorder strength at which
the transition to MBL happens remains finite in the ther-
modynamic limit, but if it does, we expect the mobility
edges to also remain. The sharp mobility edges over a
broad range of disorder strengths in the finite systems
may additionally be appealing for experiments and ap-
plications. We have also shown that the symmetry con-
straint does not need to be exactly obeyed to see inverted
quantum many-body scarring.

Multiple exact volume law scars may be built by in-
cluding further symmetries in the Hamiltonian [39] and
this can lead to an interesting phase with multiple vol-
ume law states within a spectrum of MBL states. It
would also be interesting to investigate the dynamics in

these multiple inverted scar models and study the late
time behavior of some simple initial states.
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