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We study the direct laser drive of infrared-active phonons that are quadratically coupled to a
spinless fermion chain. Feedback is incorporated by phonon dressing of the electronic dispersion,
which enables effective non-linearities in the phonon dynamics. We uncover a first-order phase
transition in the phononic steady state in which hysteretic effects allow either large or small phonon
occupation depending on the drive protocol. We discuss the implications of these findings for probing
phase transitions in real driven materials.

Introduction.—Despite a considerable ongoing effort
to understand quantum systems, uncovering nonequilib-
rium phenomena without an apparent equilibrium ana-
logue is one of the outstanding scientific challenges in
modern condensed matter physics. Recent developments
in the ultrafast dynamics of quantum materials have at-
tracted interest in exploring novel nonequilibrium many-
body phenomena [1–7]. Interacting light-matter systems
with competing interactions emerged as a useful exper-
imental platform since they allow to study the inter-
play between coupling to an environment and external
drives [8–10]. Moreover, they play a central role in the
study of photovoltaics [11, 12], light-induced phase tran-
sitions [13, 14], and laser processing [15].

Direct laser driving of an infrared (IR)-active phonon
is the main light-matter interaction channel; it couples
to the electron degree of freedom by modifying its envi-
ronment. In a typical setup, phonons couple to the elec-
tron number operator in a nonlinear manner [16]. Over
the last decade, a considerable effort has been devoted
to studying the role of electron-phonon coupling on the
dynamical properties of high-temperature cuprate super-
conductors [17, 18] and Mott or charge-density-wave in-
sulators [19–22]. For a driven electron-phonon system
to avoid heating (e.g., with the goal to store and trans-
mit information), the latter needs to be counterbalanced
by dissipation from undriven phonon modes. This has
been studied in spin lattices [23–25], coupled quantum-
electrodynamics cavities and circuits [26–28], lattice Ry-
dberg atoms [29–31], driven-dissipative superfluids [32],
nonlinear photonic modes [33, 34], etc. Although dissi-
pation is widely captured in the dynamics of local ob-
servables, a detailed understanding of the process is still
an outstanding challenge.

Studies of interacting systems, exposed to an external
laser field and coupled to a thermal bath, have until re-
cently mostly focused on the “bare” dispersion of degrees
of freedom in dissipation processes. However, it remains
to be understood how the backaction of transient exci-
tations can be incorporated into the dissipation process.
To the best of our knowledge, this has not been addressed
so far in phononically driven materials. This mainly re-
quires a deep scan of the “dressed” electronic dispersion
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FIG. 1. Nonequilibrium first-order phase transition in
a phononically driven fermion chain. (a) Drive-period-
averaged time evolution of absorbed power for a driven-
dissipative chain of spinless fermions, sketched in the in-
set, starting from the ground state at half filling. The sys-
tem reaches a nonequilibrium steady state (NESS) which
undergoes a first-order phase transition at laser amplitude
A0 ≈ 3.6× 10−2 THz [solid line in (b)] due to phononic mod-
ification of the electronic dispersion. The dashed line in (b)
shows a second stable NESS which can be created by modify-
ing either the initial state or drive protocol. The parameters
are chosen to be ω = 4.44 THz, ω0 = 4.8 THz, gq = 9.6 THz,
γph = 0.24 THz, and γe = 0.0024 THz; see text for details.

through a time-dependent damping rate, which results in
a novel physical insight.

In this Letter, we show that a driven-dissipative
fermion chain with a dressed dispersion, exhibits a dy-
namical first-order phase transition due to local depopu-
lation of the electrons in the spirit of quadratic electron-
phonon coupling (QEPC). One experimental signature of
the transition is a sharp spike in the long time-evolution
of the absorbed power, accompanied by a discontinu-
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ity in its value in the long-time nonequilibrium steady
state (NESS), as shown in Fig. 1. We analyze and iden-
tify accessible parameter regimes to provide a clear path
for experimental verification.

Model.—Consider an infinite half-filled chain of spin-
less fermions with periodic boundary conditions, as illus-
trated in Fig. 1(a), inset. We drive the chain by a contin-
uous field coupled to the IR-active optical phonons, which
illuminates the entire system until it reaches a NESS. The
model Hamiltonian reads [35–37]

H(t) = −t0
∑
ℓ

(
c†ℓcℓ+1 +H.c.

)
+ ω0

∑
ℓ

a†ℓaℓ

+ gq
∑
ℓ

(
a†ℓ + aℓ

)2
(c†ℓcℓ − 1/2) + E(t)

∑
ℓ

(
a†ℓ + aℓ

)
,

(1)

where c†ℓ (cℓ) and a†ℓ (aℓ) are respectively the electron
and phonon creation (annihilation) operators at lattice
site ℓ; t0 is a constant hopping amplitude setting the
energy scale of our model, ω0 is the optical phonon fre-
quency, c†ℓcℓ − 1/2 is the electron number operator rel-
ative to half filling, and gq is the strength of QEPC. In
the laser-phonon coupling, the laser field is described by
E(t) = A0 cos(ω t) with frequency ω and amplitude A0.
In momentum space, we have the bare electronic disper-
sion ωk = −2t0 cos k and a k-independent phonon fre-
quency; the full k-space Hamiltonian and details of the
model are provided in Sec. S1 of the Supplemental Ma-
terial [38].

We focus our simulations on the dynamics of the ap-
proximate dispersionless phonon since, in most materials,
the average ω0 is much larger than the phonon band-
width. Due to the relatively long wavelength of the drive
phonons compared to the lattice spacing, the phonon
response is dominated by the zero-momentum mode,
a0. We also neglect linear and higher electron-phonon
coupling effects, since in target centrosymmetric struc-
tures [36, 37] the dominant coupling is quadratic; the
contribution of linear electron-phonon coupling is negli-
gible due to a vanishing average of linear oscillations. For
comparison to experiments on materials with nonlinear
electron-phonon coupling, we choose to consider a repre-
sentative hopping energy t0 = 10meV ≈ 2.4THz, which
can also be chosen to be similar to (Pb,Bi)2Sr2CaCu2O8,
YBa2Cu3O6+x, and K3C60 [36, 39–41] without qualita-
tively modifying the results.

The system is coupled to a phononic bath (given by in-
dependent phonon modes not subject to the drive) which
allows the formation of a NESS. To model the dynamics
of the dissipation process, we use the Lindblad master
equation for an arbitrary observable O(t):

⟨Ȯ⟩(t) = i⟨[H, O(t)]⟩

+
1

2

∑
ℓ

γℓ

〈[
L†
ℓ, O(t)

]
Lℓ + L†

ℓ

[
O(t),Lℓ

]〉
,

(2)

where the summation ℓ describes a bounded set of
operators for a separable (system-bath) Hilbert space.

The relevant observables are net electron density
ne(t) = L−1

∑
k⟨c

†
kck⟩(t), phonon displacement qph(t) =

L−1/2⟨a†0 + a0⟩(t), momentum pph(t) = L−1/2⟨i(a†0 −
a0)⟩(t), occupation nph(t) = L−1⟨a†0a0⟩(t), as well as
squeezing-related observables Qph(t) = L−1⟨(a†0a

†
0 +

a0a0)⟩(t) and Pph(t) = L−1⟨i(a†0a
†
0 − a0a0)⟩(t). We con-

sider conventional phenomenological relaxation processes
given by conventional local jump operators Lℓ = a†0, a0,
c†k, and ck with rates γph N0, γph[1 + N0], γeÑk, and
γe(1 − Ñk), respectively [25, 42–44], where where N0 =
1/[eω0/kBT −1] is the average number of phonons in equi-
librium and Ñk = 1/[eω̃k/kBT +1] is the equilibrium elec-
tron filling at momentum k.

Crucially, in defining the equilibrium electron occu-
pation, we use the dressed electron dispersion ω̃k(t) =
ωk+gqq

2
ph(t) rather than the bare dispersion. Therefore,

as the phonon fluctuations q2ph become large, they shift
the chemical potential of the electrons downward, modi-
fying the NESS electron density in the region where the
laser drive couples. As we will see, this dressed dispersion
gives rise to a nonlinearity that is crucial in understand-
ing the steady state. Note that, by allowing relaxation
of the electron density due to a dressed thermal bath, we
are assuming that the electrons are connected to some
external reservoir, such as metallic leads or the undriven
region of the sample. Moreover, we assume that the chain
is in touch with a cooling apparatus [25] to remediate the
heating created by the continuous drive. Although our
results are robust to the parameters chosen, we consider
the experimentally relevant ω0 = 4.8 THz, γph = 0.24
THz, and γe = 0.0024 THz throughout the text, unless
otherwise specified. While certain parameters are ratio-
nally related, we have confirmed that resonances are ir-
relevant to the phenomena we describe below.

We initialize the system in its ground state (electrons
at half filling, phonons in the vacuum state), and let it
evolve in time following the Lindblad formalism [42, 43].
The expectation value of the phonon occupation is pro-
portional to the number of sites L, thus, the relative
quantum fluctuations which are proportional to 1/

√
L

tend to zero in the thermodynamic limit (L → ∞). Ad-
ditionally, the phonon only couples to electrons via the
site-averaged electron density, averaging out on-site elec-
tronic fluctuations. We, therefore, employ a mean-field
approximation [25] to decouple the QEPC acting on the
phonon and electron, factorizing expectation values ac-
cording to ⟨AphBe⟩ ≈ ⟨Aph⟩⟨Be⟩. The equations then
reduce to

q̇ph(t) = + ω0 pph(t)−
γph
2

qph(t) , (3a)

ṗph(t) = − ω̃2
0(t)

ω0
qph(t)−2E(t)− γph

2
pph(t), (3b)

ṅph(t) = − E(t) pph(t)− 2gq[ne(t)− 1/2]Pph(t)

− γphnph(t) , (3c)
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FIG. 2. Origin of nonequilibrium first-order phase transition. Dynamical response of dressed (a) electron and (b) phonon
occupations in the nonequilibrium steady state for various quadratic electron-phonon couplings and driving frequencies (axes
are swapped in (b) to improve visibility of jumps at the phase transition). Depopulation of the electrons leads to shifting of
the phonon resonance, a nonlinearity which enables a first-order phase transition in the NESS at strong gq. (c) Nonequilibrium
effective force (see text) for various gq at driving frequency ω = 4.44 THz, which is below the bare phonon frequency. Shaded
blue dots indicate the numerical steady state. Red dots indicate the two predicted phase transitions (see text), with bistability
for 3/2 < gq/ω0 < 2. Parameters are ω0 = 4.8 THz, A0 = 0.036 THz, γph = 0.24 THz, and γe = 0.0024 THz.

Q̇ph(t) = +
[
ω0 +

ω̃2
0(t)

ω0

]
Pph(t) + 2E(t) pph(t)

− γphQph(t) , (3d)

Ṗph(t) = −
[
ω0 +

ω̃2
0(t)

ω0

]
Qph(t)− 2E(t) qph(t)

− 4gq
[
2nph(t) +

1/L
]
[ne(t)− 1/2]− γphPph(t) , (3e)

ṅe,k(t) = − γe[ne,k(t)− Ñk(t)] , (3f)
where the electron occupation shifts the effective phonon
frequency to ω̃0(t) = ω0

√
1+4gq[ne,k(t)−1/2]/ω0 [45].

We consider T = 0, such that Ñk equals 1 (filled states)
for |k| < k̃F and 0 (empty) otherwise, where k̃F is the
Fermi momentum for the dressed dispersion ω̃k. Despite
the complexity of these equations, they can be solved
efficiently on a computer; we do so for chain lengths up
to L = 1001 sites.

As the QEPC gq plays an essential role in deter-
mining the dynamics of the model, it is worth noting
that the renormalization of the phonon frequency in our
model, i.e., ω̃0 = ω0

√
1 + 4gq[⟨ne,ℓ⟩ − 1/2]/ω0 does not

lead to instabilities in the simulation, in contrast to
other works [36, 37] where the system is unstable for
|gq| > ω0/2. The reason for this is our mean-field-type
approximation, which replaces the quantized on-site elec-
tron occupation by an average value that only weakly de-
viates from 1/2. Crucially, this lack of instability is also
physical, suggesting that our results will survive fluctua-
tions. This is because the constraint |gq| > ω0/2 comes
from the assumption of dispersionless Einstein phonons;
in reality, there will always be some finite dispersion,
causing excitations of the phonons to be spread over at
least a few sites. If the minimal spatial dispersion is
ℓ sites, the instability threshold should be roughly in-
creased by a factor of ℓ, which brings it well above the
value for gq in real materials. Hence, our approxima-
tion allows us to simulate the model for arbitrary QEPC
strength.

Results.—In addition to microscopic quantities such as

electron and phonon occupation, we consider the NESS
energy flow from the drive into the final stage of dissi-
pation among various degrees of freedom. Of particular
importance is the absorbed power

P(t) = −waρω0E(t)pph(t) . (4)

We use parameters from the YBCO sample [46], namely
thickness w = 10 nm, area a = 1 mm2, and molar density
ρ ≈ 0.007 mol.cm−3. This power is related to experimen-
tally measurable quantities such as reflectance [47–54].

Upon quenching on the drive and solving the dynam-
ics, the system evolves into a NESS as seen in Fig. 1(a).
For the majority of parameters, it takes around 600 ps
to reach the NESS, which is within the current techno-
logical capabilities of laser sources in ultrafast experi-
ments. In the presence of a strong QEPC, as laser ampli-
tude A0 is increased, the smooth transient process of the
time-evolved absorbed power suddenly becomes a sharp
peak at a critical value of A0 = 0.036 THz. At this
point, observables including the absorbed power undergo
a non-analytic change and a first-order phase transition
occurs, which comes from the depopulation of the elec-
tronic modes via feedback from the phonons in the dis-
sipation process, i.e., from Ñk(t) in Eq. (3f). This can
also be confirmed by focusing on the NESS in Fig. 1(b),
i.e., by averaging an observable O(t) over one drive pe-
riod, denoted by O. As we show later, modifying either
the initial state or the drive protocol leads to a different
NESS, as shown by the dashed red line in Fig. 1(b) and
supported by the data in Fig. 4.

To explain the origin of phase transition and to check
its robustness against changing model parameters, we
continue by discussing the response of the electrons and
phonons to changing drive frequency ω and QEPC gq
[Figs. 2(a) and 2(b)]. In the absence of QEPC, there is
a resonant peak at ω = ω0, more clearly visible in the
phonon occupation. As gq is increased, the peak shifts
to a lower frequency due to the depopulation of the elec-
tron density via feedback from the phonons. Surprisingly,
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above a critical value of gq, the smooth peak suddenly
becomes a sharp jump, suggestive of a first-order phase
transition.

The main origin of the phase transition is dissipation-
induced nonlinearity. The dressed electron dispersion
ω̃k(t) = ωk + gqq

2
ph(t) will yield an average shift of

the electron chemical potential given by gqq2ph (note
that qph = 0). Linearizing the electron density around
the Fermi surface via L−1

∑
k Ñk(t) = k̃F(t)/π, where

k̃F(t) = π/2 − gqq
2
ph(t)/2t0, we predict a steady state

electron density of

ne =
1

2
−

gqq2ph
2πt0

. (5)

Since the steady state to which the electrons attempt to
relax to depends on the phonon state, whose dynamics,
in turn, depend on the electron density, this results in
effective nonlinearities in the dynamics. This backaction
was not considered in previous works [36, 37] because
the electron was assumed to relax to its undriven ground
state. While reasonable for linear electron-phonon cou-
pling, the presence of a finite q2ph makes this backaction
crucial for QEPC [55].

Correctly accounting for this backaction is our major
contribution to the model which, as we have seen, pro-
duces significant effects on the dynamics. It is also impor-
tant to note that q2ph(t) can be experimentally measured
through the intensity of a diffraction peak in femtosec-
ond time-resolved X-rays [56], enabling another path to
measure the effects of this backaction.

To microscopically interpret the observed phase tran-
sition, we consider the system near its steady-state; we
assume that the phonons synchronize with the drive, with
the dominant Fourier component of qph(t) = q1e

iωt+c.c.
and similarly for pph. Away from the NESS, q1 slowly
evolves towards a stationary point, which can be obtained
by setting q̇1 = ṗ1 = 0. Solving Eqs. (3a) and (3b) for
this Fourier mode, we obtain
iωq1 = ω0p1 −

γph
2

q1 , (6a)

iωp1 = − ω0q1 − 4qq[ne − 1/2]q1 − 2A0 −
γph
2

q1 . (6b)

Using Eq. (S9) and the relation q2ph = |q1|2/2, this gives
a cubic equation

F = −
4g4qω

2
0

π2t20
q2ph

3
−

4g2qω0

πt0

(
ω2 − ω2

0 +
γ2
ph

4

)
q2ph

2

−
(
γ2
phω

2 +
(
ω2 − ω2

0

)2)
q2ph + 2A2

0ω
2
0 ,

(7)

with F = 0 in the NESS. Perturbing away from the F =
0 solution, this cubic equation may be thought of as a
generalized force; stable attractors have dF/dq2ph < 0.

As seen in Fig. 2(c), the force curve shifts depending
on various parameters and appears to have two separate
phase transitions (marked by red circles) from having a
unique NESS to a regime with two distinct stable NESSs.
The first phase transition (transparent circle) is visible in

FIG. 3. Dynamical damping-coupling constraint for
the phase transition. Critical driving frequency as a
function of phonon damping rate and strength of quadratic
electron-phonon coupling at ω0 = 4.8 THz, A0 = 0.036 THz,
and γe = 0.0024 THz. The transition occurs down to arbitrar-
ily small values of gq and γph. The separatrix, below which
dynamical first-order phase transitions occur, is parabolic in
the γph − gq plane.

our numerical data since, starting from a vacuum state,
a jump from small to large q2ph matches our expectations.
The second phase transition (open circle) is not seen in
the data, but could be realized via protocols similar to
those in Fig. 4. This bifurcation transition with a cubic
equation for the effective force is reminiscent of the mag-
netization in a first-order Ising phase transition. How-
ever, we emphasize that our phase transition occurs not
in equilibrium, but rather out of equilibrium in the driven
NESS.

One may naively conclude from Fig. 2 that the phase
transition requires extremely large QEPCs, which can be
challenging to find experimentally. However, by solving
the cubic equation, we find the following analytical ex-
pression for the critical driving frequency:

ωc =

√
ω2
0 −

2
√
3γphω0

3
+

W

2
, (8a)

W =

√
γ4
ph − πt0b̃

3g2qω0
− 4γ2

phω
2
0 −

96g4qω
4
0A2

0

π2t20b̃
, (8b)

where b̃ = g2qω0γph(3γph−4
√
3ω0)/πt0. Importantly, this

shows that a phase transition persists down to arbitrarily
small qq, as seen in the parametric plot of γph vs. gq in
Fig. 3. Intriguingly, even with 1% damping of phonon
energy (γph ≈ 0.048 THz) to the phononic bath, governed
by the Lindemann criterion [57], the system still features
the phase transition for moderate QEPC gq = ω0/2 =
t0. The region in which the transition can be observed
increases with the phonon frequency.

The generalized force in Fig. 2(c) suggests that two
stable equilibria exist at large gq or small ω, yet only
one NESS is seen in our simulation for each value of
the parameters. This is the attractor of the equations
of motion starting from our initial ground state. To re-
alize the other NESS, a different initial state must be
prepared. Taking the cue from hysteresis near equilib-
rium first-order phase transitions, we suggest that this
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FIG. 4. Chirp protocol for realizing the alternative
steady state. (a) Absorbed power in presence of a lin-
early chirped electric field E(t) = A0 cos

(
ω(t) t

)
with ω(t) =

ω1 + [(ω2 − ω1)(t − τ1)/(τ2 − τ1)] (inset) for fixed ω2 = 4.32
THz < ωc = 4.44 THz. (b) Depending on whether ω1 is less
than or greater than ωc, the system ends up in a different
branch of the steady state. Black arrows point to the posi-
tions of the frequencies ω0 and ω2 (black dotted vertical lines);
color-coded arrows indicate the value of ω1, cf. legend in (a).
Parameters are ω0 = 4.8 THz, A0 = 0.036 THz, γph = 0.24
THz, and γe = 0.0024 THz.

may be done via slowly ramping one of the parameters,
such as the frequency (a “chirp” protocol). We consider
a linearly chirped electric field E(t)=A0 cos

(
ω(t) t

)
with

ω(t)=ω1+(ω2−ω1)(t−τ1)/(τ2−τ1), as shown in Fig. 4(a),
inset. Such frequency ramps are important throughout
ultrafast spectroscopy [58, 59], and can thus be imple-
mented experimentally. Starting with frequency ω1 at
time τ1 sufficiently large to reach the NESS, we slowly
ramp to the final value ω2 < ωc at time τ2. If ω1 < ωc

as well, no phase transition is crossed by this ramp and
the system simply reaches the original NESS. However,
if ω1 > ωc, the system instead stays in the upper NESS
with large q2ph, as shown in Fig. 4(b). Similar hysteretic
preparation of the alternative NESS can be accomplished
via slowly ramping other experimental parameters, such
as the drive amplitude A0 in Fig. 1(b).

Conclusion/Outlook.—We have uncovered a novel
nonequilibrium phase transition of a driven-dissipative
fermion chain coupled to a phonon mode. By dynami-
cally tuning the dissipation processes through the backac-
tion of phononic excitations on the electronic dispersion,
we find a robust phase transition from having a unique
nonequilibrium steady state to having two stable steady
states. Since the effect is favored by a quasi-equilibrium

electron density (less than 2% deviation from a half-
filled chain in equilibrium), it should be prevalent in any
fermion chain. Our findings motivate future nonequi-
librium spectroscopy experiments to seek photo-induced
phononic phase transitions in driven quantum materi-
als such as driven superconductors, where the modified
phononic steady state may enable a nonequilibrium path-
way to controlling superconductivity [60, 61]. Since such
strong phononic steady state tends to be inhibited by
the feedback mechanism that we consider, nonequilib-
rium protocols such as the chirp may be required to push
these systems into the desired NESS. This phase transi-
tion will likely also be possible in the presence of an elec-
tromagnetic cavity, which has been used in recent work
to control heating in driven materials [62–64].

Finally, we note that these nonequilibrium phase tran-
sitions not restricted to 1D, and are in fact more likely in
higher dimensions, where mean-field theory and expan-
sions around the Fermi sea are even more well-justified.
Indeed, the phenomenon we reported primarily comes
from a mean-field treatment of the average density, whose
weakly correlated behavior is insensitive to dimensional-
ity up to an overall prefactor in the density of states.
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Supplemental Materials for “Nonequilibrium phononic first-order phase transition in a
driven fermion chain”

S1. HAMILTONIAN MODEL IN k-SPACE

In this section, we transfer the model in Eq. (1) into the reciprocal space. We apply the following Fourier
transformations for both electronic (characterized by mode k) and phononic (characterized by mode q) sectors,
c†ℓ = L1/2

∑
k exp(−ikℓ)c†k and a†ℓ = L1/2

∑
q exp(−iqℓ)a†q. With this, the electronic dispersion is given by

ωk = −2t0 cos(k). As the first approximation, we consider the infrared active phonons as well as we only take
into account the dispersionless q = 0 phonon mode. The physical reason behind the zero-momentum phonon mode
approximation can be understood from the fact that the atoms generating the phonons in a lattice are of the order
of Angstroms, while the laser wavelengths are of the order of nanometers. From this separation of scales, the zero
phonon mode dominates. It can also be justified by the fact that in most materials the average phonon frequency is
much larger than the phonon bandwidth. Thus, the total Hamiltonian reads

H =
∑
k

ωkc
†
kck + ω0 a

†
0a0 +

[ gl√
L

(
a†0 + a0

)
+

gq
L

(
a†0 + a0

)2]∑
k

(
c†kck − ⟨c†kck⟩eq

)
+ E(t)

√
L
(
a†0 + a0

)
, (S1)

where gl describes the linear electron-phonon coupling, k belongs to the Brillouin zone from −π to π for a lattice
constant l0 = 1. Moreover, L−1

∑
k⟨c

†
kck⟩eq = 1/2 is the equilibrium value of electron density.

S2. PHYSICAL OBSERVABLES AND QUANTUM MASTER EQUATIONS

In this section, we define the physical observables and the corresponding expectation values for both electronic and
phononic sectors as

qph(t) = ⟨ 1√
L
(a†0 + a0)⟩(t) := phonon displacement , (S2a)

pph(t) = ⟨ i√
L
(a†0 − a0)⟩(t) := phonon momentum , (S2b)

nph(t) = ⟨ 1
L
a†0a0⟩(t) := phonon occupation , (S2c)

Qph(t) = ⟨ 1
L
(a†0a

†
0 + a0a0)⟩(t) := squeezed-phonon displacement, (S2d)

Pph(t) = ⟨ i
L
(a†0a

†
0 − a0a0)⟩(t) := squeezed-phonon momentum, (S2e)

ne,k(t) = ⟨c†kck⟩(t) := k-component of electron number . (S2f)

Before turning to the ordinary differential equations of motion (EoM), it is also useful to define the electron density

ne(t) =
1

L

∑
k

ne,k(t) (S3)

for which the constraint ne(t) ≤ 1/2 should be hold in the presence of quadratic electron-phonon coupling (QEPC) gq.
We would also mention that Lindemann’s criterion [57] provides an estimate for the phonon occupation nph(t) ⪅ 1 to
avoid lattice melting in a solid state system. This is also satisfied in our simulations.

Now we take the role of dampings into account. To do so, we use the adjoint quantum master equation for an
arbitrary observable O(t) in an open system for which the Heisenberg equation of motion is extended to deduce the
time evolution of the entire system [42, 43]. The equation describing the coherent evolution and the dissipator reads

⟨Ȯ⟩(t) = i⟨[H, O(t)]⟩+ 1

2

∑
ℓ

γℓ

〈[
L†
ℓ, O(t)

]
Lℓ + L†

ℓ

[
O(t),Lℓ

]〉
, (S4)

where the summation ℓ runs over all possible states in the Hilbert space and Lℓ are the time-independent Lindblad
jump operators in the reduced system’s Liouville space. The damping parameters are γph and γe, respectively, for the
phonon and electron.
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The Heisenberg term, i.e. the first term of the above equation, is straightforward to be obtained for defined
observables in Eq. (S2). Turning to the second term of Eq. (S4), the possible jump operators for the phononic sector
can be each of Lℓ = a0, a

†
0, a0a

†
0, a

†
0a0, a0a0, and a†0a

†
0. Let us label the corresponding damping parameters with

γ1, γ2, γ3, γ4, γ5, and γ6, respectively. Since the environment is supposed to be the same for all these channels, one can
rewrite the above damping parameters as γphr1, γphr2, γphr3, γphr4, γphr5, and γphr6, respectively, in which r{1,··· ,6}
refer to the arrival rates of states after interacting with the phononic bath. For the two first operators, since the weak
interaction with many atoms is supposed to simulate the coupling to a thermal bath (Markovian approximation) with
temperature T , the rates r1 and r2 must be related to each other by a Maxwell-Boltzmann factor, i.e.

r2
r1

= e−ω̃0(t)/kBT =
N0(t)

1 +N0(t)
, (S5)

where N0(t) is the mean number of energy quanta at time t in the phonon mode corresponding to the modulated
frequency ω̃0(t) = ω0

√
1 + 4gq∆ne(t)/ω0, where ∆ne(t) = ne(t) − 1/2 [55]. As for the cases a†0a0 and a0a

†
0, the

corresponding states have the same arrival rates because they are not acting as ladder operators and do not change
the states when interacting, thus, r4/r3 = 1. For the two last cases, however, we neglect order operators higher than
bilinear and set their contribution to zero in the dissipation process, i.e. r5 = r6 = 0. Considering Eq. (S4), after
pretty straightforward calculations, the only Lindblad operators contributing to the dissipation effects originate from
the non-conserving phonon operators, a0 and a†0, described by Eq. (S5).

Finally, in order to make these coupled equations solvable, we use a mean-field approximation in which entanglement
between electronic and phononic degrees of freedom are neglected. With these approximations, we then obtain the
time evolution of the phononic observables as

q̇ph(t) = + ω0 pph(t)−
γph
2

[1 + 2N0(t)]qph(t) , (S6a)

ṗph(t) = −
[
ω0 + 4gq∆ne(t)

]
qph(t)−2

(
E(t) + gl ∆ne(t)

)
− γph

2
[1 + 2N0(t)]pph(t), (S6b)

ṅph(t) = −
(
E(t) + gl ∆ne(t)

)
pph(t)− 2gq∆ne(t)Pph(t)− γph[nph(t)−N0(t)] , (S6c)

Q̇ph(t) = + 2
[
ω0 + 2gq∆ne(t)

]
Pph(t) + 2

(
E(t) + gl ∆ne(t)

)
pph(t)− γph[Qph(t)−N0(t)] , (S6d)

Ṗph(t) = − 2
[
ω0 + 2gq∆ne(t)

]
Qph(t)− 2

(
E(t) + gl ∆ne(t)

)
qph(t)− 4gq

[
2nph(t) +

1/L
]
∆ne(t)− γph[Pph(t)−N0(t)] .

(S6e)

As the laser drive is what takes us out of equilibrium, there is no displacement/movement for the phononic sector in
equilibrium, leading to the initial conditions Oph(0) = 0.

For the single electron O(t) = ne,k(t), we again consider all possible Lindblad operators ck, c†k, ckc
†
k, and c†kck.

Again, we do not consider higher order terms including electron-electron interaction and would obtain bilinear EoMs.
Then, the arrival rates of states to the electron after interacting with the phononic bath follow the same argument as

r2
r1

= e−ω̃k(t)/kBT =
Nk(t)

1−Nk(t)
, (S7)

where Nk(t) is the mean number of energy quanta at time t in the electron mode corresponding to the modulated
dispersion ω̃k(t) = ωk + glqph(t) + gqq

2
ph(t) [55]. The fact that QEPC acts as a chemical potential in the electronic

dispersion stems from the fact that the phonon is coupled to the local electron number in our model, leading to a
shift in the electron energy. While the LEPC only makes the dispersion oscillatory around its equilibrium value with
no shift.

Within the same manner, the electron conserving jump operators ckc
†
k, c†kck lead to zero contributions to the

dynamical properties of electron (r4/r3 = 1). Ultimately, the time evolution of the electron number is obtained as

ṅe,k(t) = − γe[ne,k(t)−Nk(t)] . (S8)

As an extension to the model, placing material into an optical cavity can be considered to circumvent detrimental
heating, which is a fundamental problem for driving materials with classical light. This, in turn, enhances the
light-matter coupling for which a few photon states of the cavity can influence the matter’s degrees of freedom [62].
Generally, to treat both light and matter quantum mechanically, one has to deal with host hybrid states as a mixture of
both light and matter degrees of freedom. For instance, it has been proposed that coupling cavity modes to the phonons
involved in electronic pairing [63] or by directly coupling to the electronic degrees of freedom, the superconductivity
in a cavity can be influenced [64].



10

1.8 2 2.2

0.495

0.5

0.505

0.0
0.5
1.0

0 0.5 1

(b)(a)

in
 t
h
e
 N

E
S

S

Driving Frequency

E
le

c
tr

o
n
 O

c
c
u
p
a
ti
o
n

Laser Field Amplitude

FIG. S2-1. Dressed electron occupation for various LEPCs as a function (a) of driving frequency at A0 = 0.038 THz and (b)
of laser field amplitude at ω = 4.44 THz. Fixed parameters are phonon frequency ω0 = 4.8, γph = 0.24, and γe = 0.0024 (all in
units of THz). Negligible effect of LEPC is evident.

S3. NONEQUILIBRIUM STEADY STATE

To reveal the local depopulation of electrons due to EPC, we calculate electron occupation in the nonequilib-
rium steady state (NESS). At T = 0, electron dynamics depend on the mode k given by ne,k(t) = ⟨c†kck⟩(t) =

−γe
∫ t

0

(
ne,k(t

′) − Nk(t
′)
)
dt′ with time-dependent Fermi-Dirac mean number Nk(t) = 1/[eω̃k(t)/kBT + 1] of energy

quanta ω̃k(t) = ωk + glqph(t) + gqq
2
ph(t); ωk = −2t0 cos(k) and qph(t) = ⟨ 1√

L
(a†0 + a0)⟩(t), respectively, denote the

bare electronic dispersion and the phonon displacement. The time-dependency of electron number arises from the
self-consistent alteration of the occupations. Time-dependent electronic dispersion ω̃k(t) reflects the mutual feedback
through coupling in Nk(t) which is simply a step function [42, 55]. Thus, we have L−1

∑
k Nk(t) = k̃F(t)/π, where

k̃F(t) = π/2 − [glqph(t) + gqq
2
ph(t)]/2t0 is obtained via linearization of bare electronic dispersion around the Fermi

level. Accordingly, we obtain electron occupation from squeezing of the phonon state via

nNESS
e (t) =

1

2
−

glqph(t) + gqq
2
ph(t)

2πt0
. (S9)

Averaging over oscillations in the NESS leads to ne = 1/2 − gqq2ph/2πt0 because qph = 0 such that only QEPC
contributes effectively to the NESS electron response, see Fig. S2-1. From these points, we neglect the LEPC term in
what follows.

To establish the NESS by steady laser driving, we first investigate the evolution of the resonance (ω = ω0) phononic
and electronic responses upon tuning the QEPC across the nonequilibrium, as shown in Fig. S2-2. Due to the weak
coupling of a single Einstein phonon to an ensemble of phonons (bath), we set phonon damping rate γph to a value
of order 5% of the phonon energy, consistent with the experimental recombination rates of certain quasi-1D Mott
insulators [44]. Further, the electron mode is in general damped to a phononic bath weaker than Einstein phonon,
i.e., γe < γph, and accordingly we set γe to a value of order 0.1% of the electron hopping energy.

Phonon occupation pumps into a steady state exponentially due to the laser field and reaches the NESS at approx-
imately four-time constants of the phonon system 2/γph. From the fact that the power of the laser is proportional
to the squared amplitude of the laser field, the plateau value of decoupled phase gq = 0 reaches (A0/γph)

2 similar
to a damped driven harmonic oscillator, in agreement with Ref. [25]. For gq = 0, the electron number displays the
equilibrium plateau 1/2. For gq ̸= 0, a NESS forms with deviations in phononic and electronic plateaus stemming
from the feedback between nonequilibrium phonons and dressed electronic dispersion ω̃k(t) = ωk + gqq

2
ph(t). Sub-

tracting averages from the time evolutions in the NESS gives rise to trackable oscillations, as shown in inset panels of
Figs. S2-2(a) and S2-2(b). The point refers to the oscillation frequency; both quantities oscillate with the frequency
2ω0 – frequency doubling effect – in the NESS accompanied by a phase shift φ due to QEPC. As an explanation, the
decrease (increase) in the amplitude of NESS for the phonon (electron) sector with QEPC is a standard consequence
of energy level repulsion.

It is worth mentioning that our dissipation model provides an advantage compared to other studies [36, 37] for the
stability of QEPC model. The renormalized phonon frequency in the NESS ω̃0 = ω0

√
1 + 4gq[ne − 1/2]/ω0 is linked

to the renormalized oscillator stiffness K̃ = ω̃0
2

setting the oscillator mass M = 1. Thus, demanding a positive stiffness
K̃ > 0 and considering our mean-field-type approximation, which replaces the quantized on-site electron occupation
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FIG. S2-2. Time evolution of dressed (a) phonon and (b) electron occupations for various QEPCs at A0 = 0.038, resonant
ω = ω0 = 4.8, γph = 0.24, and γe = 0.0024 (all in units of THz). Both sectors show a frequency doubling effect (inset panels)
in the NESS accompanied by a phase shift φ due to QEPC.

by an average value that only weakly (maximum 2% or 3%) deviates from 1/2, we find the stability condition of the
QEPC model for gq/ω0 < 25 which is always achievable for all materials. Thereby, no instability occurs.

S4. ENERGY FLOWS THROUGH THE ELECTRON-PHONON SYSTEM

In this section, we intend to focus on the energies per unit of time in the model. For a better understanding of the
presented energy flows in the following, we draw Fig. S4(a) to track the context. The input energy J l→p is due to the
laser field, which goes into the driven phonon. The driven phonon splits this input energy into the energy entering the
QEPC part and the phononic bath, given respectively by J p→QEPC and J p→b. The energy entering the QEPC part
is again divided into two parts J QEPC→e and J QEPC→b referring, respectively, to the energy entering the electron
and the bath. Finally, the electron induces the energy flow of J e→b to the bath through the dissipation. These powers
can directly be obtained from the EoMs of phonon occupation and electron number in Eqs. (S6c) and (S8):

J l→p(t) = − E(t)ω0 pph(t) , (S10a)

J p→QEPC(t) = + 2gq ω0 ∆ne(t)Pph(t) , (S10b)

J p→b(t) = + γph ω0 nph(t) , (S10c)

J QEPC→b(t) = + gq [γe + γph] ∆ne(t) q
2
ph(t) , (S10d)

J QEPC→e(t) = + gq q
2
ph(t)γe

[1
2
− 1

L

∑
k

Nk(t)
]
, (S10e)

J e→b(t) = +
γe
L

∑
k

ωk

[
ne,k(t)−Nk(t)

]
. (S10f)

Although most of the above expressions are clear from the EoMs, Eq. (S10d) needs more clarification: JQEPC→b(t)
is obtained using the time-derivative of QEPC Hamiltonian in Eq. (S1) via

1

L
∂t⟨He−ph⟩(t) = ∂t[gq q

2
ph(t)∆ne(t)] = J p→QEPC(t)−

[
J QEPC→b(t) + J QEPC→e(t)

]
, (S11)

which the very small energy entering the electron from the QEPC part is stemming from the reflection of the dressed
electronic dispersion from the bath to the QEPC subsystem.

Having the explicit form of energy flows, we can explore the physical sum rules which should be valid at each
stage. It should be noted that, after taking the average of the late-time signals over one period, the input energy
from the laser driving field should satisfy J l→p

= J p→b
+ J QEPC→b

+ J e→b
in the NESS, originating from the

energy conservation. In addition to this general sum rule, three further rules are valid for the subprocesses: (i)
J l→p

= J p→QEPC
+ J p→b

, (ii) J p→QEPC
= J QEPC→e

+ J QEPC→b
and (iii) J QEPC→e

= J e→b
.

Finally, with the help of energy flows, one can use a sample with a thickness w, area a, and the molar density ρ to
obtain the power in kW as

P◦→□(t) = waρJ◦→□(t) . (S12)
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FIG. S4. (a) Schematic picture of the energy flows within a driven-dissipative fermionic chain; J l→p is the uptake of laser
energy by the driven phonon, J p→QEPC is energy flowing out of the driven phonon due to the presence of the QEPC, and
J p→b is the energy flowing from the driven phonon and directly to the phononic bath. Furthermore, JQEPC→e and JQEPC→b

are, respectively, the energy flowing out of the QEPC part to the electron and bath. Finally, the electron induces the energy
flow of J e→b to the bath through the dissipation. (b) Input and output powers through the electron-phonon system with the
same parameters as Fig. 2(a) and Fig. 2(b) for gq/ω0 = 2. Total power sum rule J l→p

= J p→b
+JQEPC→b

+J e→b is evident
from the driving to the final stage of dissipation.

The input energy fluence P l→p due to the laser field excites the phonon and it is an absorbance spectrum proportional
to the phonon occupation, as shown in Fig. S4(b). The net energy flow bears a close resemblance to Figs. S2-1(a)
and S2-1(b) with additional weighting factors of ω0 and ωk (see Eq. S10 of the SM). It can be seen that the majority
of the laser energy flows directly to the phononic bath and a relatively tiny fraction of it (negligible) can be absorbed
by the electron. Moreover, the negative sign of PQEPC→b

implies a small energy flow from the bath due to the QEPC
term. Therefore such an absorbance can be used for quantitative analysis. In Fig. S4(b), one may compute the
net power in the NESS, Pp→b

+ PQEPC→b
+ Pe→b

, which by the sum rules at each step matches P l→p
for energy

conservation.

S5. EFFECTIVE FORCE TREATMENT OF THE NONEQUILIBRIUM PHASE TRANSITION

As the input laser drive is a continuous wave field, the output coherent oscillations in the NESS must synchronize
with it. To understand the phase shift caused by QEPC, we Fourier decompose the phonon oscillations in the NESS,
qNESS
ph (t) =

∑
n qne

inω t and substitute it in Eqs. (S6a) and (S6b), leading to (at T = 0, N0(t) → 0)

inωqn = ω0pn − γph
2

qn , (S13a)

inωpn = − ω0qn − 4qq
∑
n′

∆ne,n′qn−n′ + 2gqqn − 2A0 −
γph
2

pn , (S13b)

As seen in the numerics, the dominant harmonics are n = 1 for qph and n′ = 0 for ne (henceforth, we use the notation
ne,0 = ne since the zeroth Fourier harmonics is that of the averaged plateau in the NESS):

q1 =
2A0ω0

ω2 − ω2
0 +

γ2
ph

4 − 4gqω0(ne − 1/2)− iγphω
= |q1|eiφ , (S14a)

|q1| =
2A0ω0√

[ω2 − ω2
0 +

γ2
ph

4 − 4gqω0(ne − 1/2)]2 + γ2
phω

2

, (S14b)

φ = arctan

(
γphω

ω2 − ω2
0 +

γ2
ph

4 − 4gqω0(ne − 1/2)

)
. (S14c)

From a physical point of view, the driven phonon typically exhibits different characteristic behaviors far from equi-
librium compared to equilibrium that are not generally described by a minimization principle. As we deal with a
damped driven dressed (by the electron) harmonic oscillator, there is an effective force acting on the phonon and mi-
croscopically on |q1| far from equilibrium. This force can be obtained from setting q̈ph = q̇ph = 0 in the NESS. Using
the relations q2ph = |q1|2/2 and ne = 1/2 − gqq2ph/2πt0 stemming from the dressed Fermi momentum k̃F, Eq. (S14b)
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FIG. S5-1. (a) Effective force F(X ), Eq (S15a), with X = q2ph for various QEPCs at A0 = 0.038, resonant ω = ω0 = 4.8,
γph = 0.24, and γe = 0.0024 (all in units of THz). (b) Deviation from the decoupled phase shift, i.e. arctan(4ω0/γph) observed
in inset Figs. S2-1(a) and S2-1(b) in the NESS, is due to QEPC at X ≃ 0.0197 (see the orange line in (a)).

can be rewritten as a cubic equation F(X ) = 0 for X = q2ph, satisfying the physics behind the relative effective

force (assuming atomic mass = 1) discussed above. Here we use this relative effective force to find |q1| =
√
2q2ph

required for the phase shift. Thus,

F(X ) = aX 3 + bX 2 + cX + d , (S15a)

a = − 4
g4qω

2
0

π2t20
, b = − 4

g2qω0

πt0

(
ω2 − ω2

0 +
γ2
ph

4

)
, c = − γ2

phω
2 −

(
ω2 − ω2

0

)2
, d = 2A2

0ω
2
0 . (S15b)

As shown in Fig. S5-1(a), a single root appears for F(X ) when the laser drive is in resonance with the phonon. This root
should be plugged into ne to find the phase shift φ at ω = ω0, resulting in φ(X ) = arctan(γphω0/[γ

2
ph/4+2g2qω0X/πt0]),

as shown in Fig. S5-1(b). This phase shift decreases with QEPC as the quadratic phonon displacement is decreased.
By analyzing F(X ) diagram using Eq. (S15a) for off-resonance conditions, we can attribute the origin of phase

transition to shifts of the cubic function, leading to creation/annihilation of roots. The off-resonance nonequilibrium
dynamics of the spinless fermionic chain subject to a laser drive can broadly be divided into three regions depending
on the QEPC strength, namely ω < ωc, ω = ωc, and ω > ωc, where ωc is the threshold driving frequency at which
the phase transition takes place. For these regimes, we plot F(X ) as a function of X in Fig. S5-2(a). The extrema of
F(X ) from Eq. (S15a) occur when dF(X )/dX = 0, so, two stationary points locate at X1 = −(b/3a) +

√
∆/6a and

X2 = −(b/3a)−
√
∆/6a, where ∆ = 4b2 − 12ac. From Eq. (S15b), a and c coefficients are always positive, while d is

always negative. For ω < ω0, b becomes negative, while it is positive at ω = ω0 and ω > ω0. Here we address ω < ω0.
For various driving frequencies in the current set of parameters, there is a critical ω = ωc = 4.44 THz at which two
of the three distinct roots become identical at Re[X1]. For ω < ωc, the first and third roots are stable solutions,
while the second root is unstable; it can be understood from the slopes around the roots. However, the first solution
is the relevant physical one based on the nature of EoMs in our coupled model with a vacuum ground state. As an
explanation, one would argue that the laser cannot strongly excite phonons at low frequencies (before the strongest
response at the phase transition point) and the weakest phonon displacement is expected to be detected, which is that
of the first solution. To physically interpret the behaviors at ω = ωc, one would argue that the force acting on the
phonon instantaneously vanishes and the pattern becomes static, hence, a sharp jump to the third root for restoring
dynamic patterns happens. This is where the first-order phase transition emerges. For ω > ωc, the third root is the
only left one as we approach the phonon frequency ω0 = 4.8 THz.

To find the exact analytical expression for ωc, we use the fact that, at ω = ωc, the imaginary part of X1 for

∆ < 0 vanishes. Thus, one immediately finds ωX1
=

√
ω2
0 +

γ2
ph

2 −
√
3γphω0 to satisfy ∆ < 0. Afterwards, we obtain

X1 = −b̃|ωX1
/3a with

b̃ =
g2qω0γph

πt0

(
3γph − 4

√
3ω0

)
. (S16)

Due to the weak coupling of a single Einstein phonon to an ensemble of phonons (bath), γph < ω0 always holds,
implying that the above characteristic parameter b̃ is physically always negative to have the expected positive X1 = q2ph.
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FIG. S5-2. (a) Effective force, Eq (S15a), characterized by X := q2ph for off-resonance driving frequencies with the phonon
frequency ω0 = 4.8 THz. The threshold driving frequency at which the phase transition occurs is ωc = 4.44 THz. Off-
resonance time evolution of dressed phonon occupation (main panels) and electron number (inset panels) for phonon frequency
(b) ω0 = 4.8 THz with ωc = 4.44 THz and (c) ω0 = 2.4 THz with ωc = 2.26 THz and three regimes of driving frequencies
below, at, and above ωc at gq/ω0 = 2, A0 = 0.038, γph = 0.24, and γe = 0.0024 (all in units of THz).

Eventually, plugging X1 = −b̃/3a into Eq. (S15a) yields the following solution for ωc

ωc =

√√√√ω2
0 −

2
√
3

3
γphω0 +

1

2

√
γ4
ph − πt0b̃

3g2qω0
− 4γ2

phω
2
0 −

96g4qω
4
0A2

0

π2t20b̃
. (S17)

For the set of parameters ω0 = 4.8, gq = 9.6, A0 = 0.038, γph = 0.24, and γe = 0.0024 (all in units of THz), one
exactly obtains ωc = 4.44 THz, in excellent agreement with above numerical findings.

It should be noted that the Lindblad approach applies in the Markovian limit of a weak system-bath coupling;
this is contained not in the parameter gq, but in the damping parameters γph and γe. Technically, our treatment is
entirely consistent with the requirements of the Lindblad formalism and no artifacts will arise. Therefore, having a
large QEPC and a small damping rate in the same system is not a contradiction. Moreover, the breakdown of the
lattice is still governed by the Lindemann criterion [57] through the connection between allowed phonon damping and
weak laser amplitude in our model.

The corresponding time evolution of phonon occupation and electron number is also shown in Figs. S5-2(b) and S5-
2(c) for two phonon frequencies. The phase shift analysis due to the presence of QEPC in the previous section is also
valid here for ω ̸= ω0. For ω = ωc and sufficiently large QEPC (gq/ω0 = 2), phonon occupation first rises to diverge
but it pulls down again to another NESS plateau (largest value). At the same time, the electron number drops down
to the lowest NESS plateau, as shown in the inset panels. The appearance of divergence spectrograms – first-order
phase transition – at large QEPC is largely independent of the phonon frequency. Finally, in Fig. S5-3 we show that
the phase transition occurs for other sets of parameters, as expected from Eq. (S17), and it is a global dynamical
feature of the system based on our dissipation model such that the cusp appears with varying gq or ω.
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FIG. S5-3. Phonon occupation in the NESS as a function (a) of QEPC for various off-resonance driving frequencies and (b) of
driving frequency for various QEPCs with the phonon frequency ω0/t0 = 2. The critical QEPC and driving frequency at which
the phase transition occurs is different for different set of parameters, as confirmed by Eq. (S17). Other parameters are fixed
at A0 = 0.038, γph = 0.24, and γe = 0.0024 (all in units of THz).
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