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Candidatus Alkanophaga archaea from 
Guaymas Basin hydrothermal vent sediment 
oxidize petroleum alkanes

Hanna Zehnle    1,2,3 , Rafael Laso-Pérez    2,4,7, Julius Lipp    2, Dietmar Riedel5, 
David Benito Merino    1,3, Andreas Teske    6 & Gunter Wegener    1,2 

Methanogenic and methanotrophic archaea produce and consume the 
greenhouse gas methane, respectively, using the reversible enzyme 
methyl-coenzyme M reductase (Mcr). Recently, Mcr variants that 
can activate multicarbon alkanes have been recovered from archaeal 
enrichment cultures. These enzymes, called alkyl-coenzyme M reductase 
(Acrs), are widespread in the environment but remain poorly understood. 
Here we produced anoxic cultures degrading mid-chain petroleum 
n-alkanes between pentane (C5) and tetradecane (C14) at 70 °C using 
oil-rich Guaymas Basin sediments. In these cultures, archaea of the genus 
Candidatus Alkanophaga activate the alkanes with Acrs and completely 
oxidize the alkyl groups to CO2. Ca. Alkanophaga form a deep-branching 
sister clade to the methanotrophs ANME-1 and are closely related to 
the short-chain alkane oxidizers Ca. Syntrophoarchaeum. Incapable 
of sulfate reduction, Ca. Alkanophaga shuttle electrons released from 
alkane oxidation to the sulfate-reducing Ca. Thermodesulfobacterium 
syntrophicum. These syntrophic consortia are potential key players in 
petroleum degradation in heated oil reservoirs.

In deep seafloor sediments, pressure and heat transform buried organic 
matter into complex hydrocarbon mixtures, forming natural gas and 
crude oil1,2. n-Alkanes (hereafter referred to as ‘alkanes’) constitute a 
major fraction of these mixtures3 and become energy-rich substrates 
for microorganisms4 in habitable anoxic zones. Sulfate-reducing bac-
teria (SRB) oxidize alkanes ≥ propane (C3 alkane)5,6 after activation via 
fumarate addition through alkylsuccinate synthases7. Archaea possess 
a different mechanism for anaerobic alkane degradation based on 
reversal of the methanogenesis pathway. This mechanism was first 
revealed in anaerobic methanotrophic archaea (ANME)8,9, which acti-
vate methane to methyl-coenzyme M (methyl-CoM) via the key enzyme 
of methanogenesis methyl-coenzyme M reductase (Mcr)10. Recently 

cultured archaea oxidize non-methane alkanes analogously to ANME, 
as a first step activating the alkanes to alkyl-CoMs via divergent variants 
of the Mcr, termed alkyl-CoM reductases (Acrs)11. Candidatus Argo-
archaeum ethanivorans12, Ca. Ethanoperedens thermophilum13 and 
Ca. Syntrophoarchaeum spp.14 oxidize short-chain gaseous alkanes 
(C2-C4), while Ca. Methanoliparum spp., enriched from oil-rich environ-
ments, oxidize long-chain alkanes (≥C16)15. Similar to most ANME, the 
short-chain alkane-oxidizing archaea lack respiratory pathways and 
shuttle the electrons from alkane oxidation to partner SRB13,14,16,17. In 
contrast, Ca. Methanoliparum encodes a canonical Mcr in addition 
to the Acr, with which it couples alkane oxidation to methanogenesis 
in a single cell15.
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slurries produced >10 mM sulfide. Sulfide production was accompanied 
by dissolved inorganic carbon (DIC) production and sustained during 
dilution steps (Fig. 1 and Extended Data Fig. 2), yielding effectively 
sediment-free cultures after the third dilution. Cultures, except the 
considerably slower C5 culture, doubled within 13–40 d (Supplemen-
tary Table 1).

According to the general formula

CnH2n+2 + (0.75n + 0.25)SO2−
4 → nHCO−

3 +

(0.75n + 0.25)HS− +H2O + (0.25n − 0.25)H+,
(1)

the ratio of DIC production to sulfate reduction is ~1.25–1.30 in case 
of complete alkane oxidation. In two representative cultures (C6 and 
C14), this ratio was slightly lower, with 1.21 ± 0.22 in the C6 culture and 
1.09 ± 0.04 in the C14 culture. These values suggest that around 10% (C6) 
and 35% (C14) of the carbon released from alkane oxidation is assimilated 
into biomass (Supplementary Table 2).

Ca. Alkanophagales archaea are abundant in the cultures
We reconstructed two high-quality archaeal metagenome-assembled 
genomes (MAGs) from the cultures (Supplementary Table 3): MAG 
4, abundant in the C5-C7 cultures and MAG 1, abundant in the C8-C14 
cultures (Fig. 2a and Supplementary Table 4). Both MAGs were rare 
(relative abundances ≤0.1%) in the original slurry (Extended Data  
Fig. 1e,f). The in situ temperatures of the studied sediment (Extended 
Data Fig. 1d), which captured only the upper sediment layer up to 30 cm 
depth, probably did not reach the optimal growth temperatures of 
the two organisms. Both MAGs recruited up to 39% (MAG 4) and 5% 
(MAG 1) of raw reads in deeper, hotter layers of the Guaymas Basin26 
(Supplementary Table 5).

MAGs 1 and 4 represent two species within one genus (average 
nucleotide identity (ANI) 81.5%) and belong to the same genus as the pre-
viously published MAG ANME-1 B39_G2 reconstructed from Guaymas  
Basin sediments (ANIs: MAG 1-ANME-1 B39_G2 98.8% and MAG 4-ANME-1 
B39_G2 80.8%)27. The name Ca. Alkanophagales was recently proposed 
for the clade represented by ANME-1 B39_G2 on the basis of its genomic 
content which hinted at a capacity for multicarbon alkane metabo-
lism11,27. MAGs 1 and 4 form a clade diverging at the root of ANME-1 
and next to Ca. Syntrophoarchaeum, together forming the class Syn-
trophoarchaeia (Fig. 2b).

Visualization of the organisms revealed mixed aggregates of 
archaea of the Ca. Alkanophagales clade and bacteria (Fig. 2c–f). 
These associations resemble those of short-chain alkane-oxidizing 
cultures13,14,16, suggesting that archaea oxidize the alkanes and partner 
SRB perform sulfate reduction.

The enriched archaea activate alkanes with Acrs
Both Ca. Alkanophagales MAGs encode three Acrs (acrABG) (Extended 
Data Fig. 3). Currently, only the sister group Ca. Syntrophoarchaeum 
encodes a higher number of Acrs with four copies14. The six acrA 
sequences, which code for the catalytic subunit28, form three clusters 
of two highly similar sequences, one of each species (≥89% identity) 
in the acrA clade (Fig. 3a and Supplementary Table 6)12–15. All clusters 
are highly similar to acrAs of Ca. Syntrophoarchaeum (Supplementary 
Table 6).

Both species highly expressed the acrA of the third cluster, plac-
ing it among the top 19 (C8) to top 4 (C5) expressed genes (Fig. 3b and 
Supplementary Table 7). This cluster is phylogenetically closely related 
to acrAs that presumably activate long-chain alkanes, for instance in 
Ca. Methanoliparum15. In both MAGs, this acrA is spatially separated 
from the acrB and acrG subunits (Extended Data Fig. 3), which has been 
previously reported for Ca. Syntrophoarchaeum14.

As in other Acr-dependent alkane-degrading cultures14,29, 
a selective inhibitor of the Mcr/Acr, the CoM analogue 

Anaerobic archaea capable of petroleum alkane (C5-C15) oxidation 
via Acrs were unknown. These alkanes are the major constituents of 
gasoline and kerosene18,19, and of high ecological relevance because of 
their toxicity20,21. Lately, many acr genes with unknown function have 
been recovered from environmental metagenomes, especially from 
hot springs22–24. We hypothesized that yet uncultured thermophilic 
archaea could activate petroleum alkanes via Acrs. We aimed to enrich 
such archaea from heated oil-rich sediment from the hydrothermal 
vent site Guaymas Basin (Gulf of California, Mexico)25. We obtained 
eight enrichment cultures thriving at 70 °C, in which alkanes from 
C5-C14 were oxidized in combination with sulfate reduction. Analy-
ses of these cultures via omics approaches and physiological tests 
revealed that a sister clade of ANME-1, Ca. Alkanophaga, was oxidizing 
the alkanes after activation via Acrs coupled to sulfate reduction by a 
partner Thermodesulfobacterium. Such consortia potentially contrib-
ute to souring in deeply buried, heated oil reservoirs.

Results
Thermophilic microorganisms thrive on petroleum alkanes
Anoxic slurries produced from heated sediment collected at the hydro-
thermal vent complex Cathedral Hill in the Southern Trough of the 
Guaymas Basin (Extended Data Fig. 1a–d) were amended with petro-
leum alkanes (C5-C14) as sole carbon and electron source and sulfate 
as electron acceptor, and incubated at 70 °C. Within 3–7 months, the 
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Fig. 1 | Metabolic activity in anaerobic petroleum alkane-oxidizing cultures 
at 70 °C. a,b, Formation of sulfide over time in n-hexane (C6) (a) and  
n-tetradecane (C14) (b) cultures. Gaps in concentration profiles indicate dilution 
events. Arrows mark sampling for metagenomic and transcriptomic analyses. 
c,d, Concentrations of dissolved inorganic carbon (DIC), sulfate and sulfide in the 
C6 (c) and C14 (d) cultures, and in abiotic controls. For the cultures, three replicate 
samples were measured, with arithmetic mean shown as a dotted line.
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2-bromoethanosulfonate (BES)30, suppressed sulfide production 
(Extended Data Fig. 4a,b), consistent with an Acr-based activation 
mechanism. Further, metabolite extracts of all cultures contained 
peaks pertaining to the masses of the corresponding alkyl-CoMs as 
indicative activation product (Fig. 3c,d and Extended Data Fig. 5). 
While alkanes from C5-C7 were activated at the first and second carbon 
atom in similar ratios (Fig. 3c and Extended Data Fig. 5), we observed a 
shift to more subterminally activated alkanes with increasing alkane 
length (≥C9) (Fig. 3d and Extended Data Fig. 5). The longest alkanes 
C12 and C14 seemed to be activated predominantly to ≥3-alkyl-CoM 
(Fig. 3d and Extended Data Fig. 5). An activation at multiple positions 
was previously observed in Ca. Syntrophoarchaeum14. The compara-
tively high activation rate at the terminal position for shorter alkanes 
is unexpected, because particularly in short alkanes, C-H bonds are 

stronger at terminal positions compared with subterminal positions31. 
Further degradation of non-terminally activated alkanes probably 
requires a rearrangement to 1-alkyl-CoM as described for bacterial 
alkane degradation32.

We conclude that the archaea represented by MAGs 1 and 
4 oxidize the petroleum alkanes. We propose the genus name  
Ca. Alkanophaga, consistent with the previously suggested name 
Ca. Alkanophagales11, and analogous to the closely related methano-
trophs Ca. Methanophagales (ANME-1)33. The Ca. Alkanophaga MAGs 
share amino acid identities (AAIs) of 55–59% with ANME-1 MAGs (Sup-
plementary Table 8), placing Ca. Alkanophaga within the ANME-1 fam-
ily34. On the basis of apparent substrate preference in our enrichment 
cultures, we propose the names Ca. Alkanophaga volatiphilum for the 
archaeon represented by MAG 4 and Ca. Alkanophaga liquidiphilum 
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Fig. 2 | Two archaea of the genus Ca. Alkanophaga are abundant in the cultures 
and closely related to ANME-1. a, Relative abundances of MAGs obtained from 
manual binning. Ca. Alkanophaga volatiphilum (MAG 4) is abundant in cultures 
oxidizing shorter, volatile alkanes between C5-C7; Ca. Alkanophaga liquidiphilum 
(MAG 1) is abundant in cultures oxidizing liquid alkanes between C8 and C14.  
A Thermodesulfobacterium with the genomic capacities for dissimilatory  
sulfate reduction, Ca. Thermodesulfobacterium syntrophicum, is present 
in all cultures. Taxonomies of background MAGs are displayed at order level. 
Background archaea are shaded grey; background bacteria are shaded brown.  

b, Phylogenomic placement of Ca. Alkanophaga MAGs based on the concatenated 
alignment of 76 archaeal single-copy core genes. Ca. Alkanophaga diverge at 
the root of ANME-1 (Ca. Methanophagales). The class Syntrophoarchaeia is 
highlighted with a shaded rectangle. The outgroup consists of members of 
the Thermoproteota. Tree scale bar, 10% sequence divergence. c–f, Double 
hybridization of C6 (c,d) and C14 (e,f) culture samples with a specific probe 
targeting the Ca. Alkanophagales clade (Aph183, red) and a general bacterial 
probe (EUBI-III, cyan). Ca. Alkanophaga cells are abundant in the aggregates 
where they co-occur with bacterial cells. Scale bar, 10 µm.
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for the archaeon represented by MAG 1. Substrate tests corroborate 
that Ca. A. volatiphilum prefers shorter volatile alkanes <C10, while 
Ca. A. liquidiphilum readily degrades all alkanes between C6 and C15 
(Extended Data Fig. 6).

Ca. Alkanophaga completely oxidize the alkanes to CO2

The oxidation of alkyl-CoMs generated by the Acr requires conversion 
to acyl-CoA (Fig. 4a,b). The underlying reactions for this transformation 
are unknown, but for other alkane-degrading archaea, some candidate 
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enzymes have been proposed. The C2-oxidizing Ca. Ethanoperedens 
thermophilum may catalyse this step with tungstate-containing 
aldehyde:ferredoxin reductases (Aors). This archaeon encodes three 
aor copies located closely to genes of the Wood-Ljungdahl (WL) 
pathway and expresses them during ethane oxidation13. While both  
Ca. Alkanophaga encode complete aor gene sets, those genes were 
only moderately expressed (Supplementary Table 7), casting doubt 
on a crucial role of the Aor in this reaction in our cultures. A transfer 
of alkyl moieties to CoA via methyltransferases, as was hypothesized 
for Ca. Syntrophoarchaeum14, is equally unlikely because of the large 
alkanes consumed by Ca. Alkanophaga. In conclusion, the conversion 
of alkyl-CoM to acyl-CoA requires further investigation.

Similar to Ca. Syntrophoarchaeum14, Ca. Alkanophaga probably 
processes acyl-CoA to acetyl-CoA units via the β-oxidation path-
way35 (Fig. 4b). Ca. Alkanophaga encode all genes for even-chain 
β-oxidation and expressed them during alkane oxidation (Figs. 4a 
and 5, Extended Data Fig. 7 and Supplementary Table 7). For odd-chain 
alkanes, three additional genes are required to degrade the potentially 
toxic C3-compound propionyl-CoA36,37, two of which are missing from  
Ca. Alkanophaga. We could not identify complete alternative pathways 
for the degradation of propionyl-CoA, for example the methylcitrate 
cycle37. Thus, the fate of the propionyl-CoA remains, for the moment, 
unclear.

Acetyl-CoA units from β-oxidation are shuttled into biomass 
production or completely oxidized. For the latter, the acetyl-CoA 
decarbonylase/synthase (ACDS) complex splits a methyl group from 
acetyl-CoA which is transferred to tetrahydromethanopterin (H4MPT) 
(Fig. 4b). The enzymes of the H4MPT methyl branch of the WL pathway 
then oxidize methyl-H4MPT to CO2

13,14. Both Ca. Alkanophaga species 
encode and expressed multiple ACDS and all enzymes of the WL path-
way, except methylene-H4MPT-deyhdrogenase (mtd) missing in Ca. A. 
volatiphilum (Figs. 4a and 5, Extended Data Fig. 7 and Supplementary 
Table 7).

Unlike the closely related Ca. Syntrophoarchaeum and ANME-1, 
both Ca. Alkanophaga encode several 5,10-methylene-H4MPT reduc-
tase (mer) genes. This enzyme catalyses the oxidation of methyl-H4MPT 
(CH3-H4MPT) to methylene-H4MPT (CH2 = H4MPT) in the first step of 
the oxidative WL pathway38. Two of these genes, OD814_001315 in  
Ca. A. volatiphilum and OD815_000385 in Ca. A. liquidiphilum, most 
probably code for a canonical mer because they are highly similar 
(>99%) to mer copies of Methanomicrobia. A phylogenetic analysis 
placed these two mer sequences next to each other and close to those 
of the hydrogenotrophic methanogens Methanocellales39 (Extended 
Data Fig. 8a). We therefore hypothesize that Ca. Alkanophaga inherited 
mer vertically from the methanogenic ancestor of Methanocellales. 
Ca. Syntrophoarchaeum and ANME-1 seem to have replaced mer with 
methylene-tetrahydrofolate (H4F) reductase (metF) of the H4F methyl 
branch of the WL pathway14,40. Both Ca. Alkanophaga MAGs also encode 
metF copies, which are highly similar (70–80%) to those of Ca. Syn-
trophoarchaeum and cluster next to metF sequences of Hadarchaeota 
from Jinze hot spring (China) and Yellowstone National Park (USA) 
(Extended Data Fig. 8b). While both mer and metF were transcribed, 
mer was especially expressed by Ca. A. liquidiphilum in cultures oxi-
dizing longer alkanes ≥C10 (Fig. 5b,d, Extended Data Fig. 7e,f,k,l and 
Supplementary Table 7).

Ca. Alkanophaga partner with a Thermodesulfobacterium
Ca. Alkanophaga lack the dissimilatory sulfate reduction (DSR) path-
way and therefore require a partner organism. We identified a Ther-
modesulfobacterium represented by MAG 24, which was enriched 
in all cultures (Fig. 2a and Supplementary Table 4) and rare in the 
original slurry, as the most likely syntrophic sulfate reducer. MAG 24 
encodes and expressed the three DSR proteins ATP-sulfurylase (Sat), 
APS-reductase (Apr) and dissimilatory sulfite reductase (Dsr)41 (Fig. 5,  
Extended Data Fig. 7 and Supplementary Table 7). We propose the 

name Ca. Thermodesulfobacterium syntrophicum for this bacterium, 
which is closely related to the hyperthermophilic sulfate-reducing 
Thermodesulfobacterium geofontis isolated from the Obsidian Pool in 
Yellowstone National Park (USA)42 (Extended Data Fig. 9).

Etymology. Alkanophaga: alkano (new Latin): alkane and phaga 
(Greek): eating; volatiphilum: volatilis (Latin): volatile and philum 
(Greek): preferring; liquidiphilum: liquidus (Latin): liquid and philum 
(Greek): preferring; syntrophicum: syn (Greek): together with; trephein 
(Greek): nourish and icum (Latin): pertaining to.

Locality. Hydrothermally heated oil-rich deep-sea sediment in the 
Guaymas Basin, Gulf of California, Mexico.

Description. Ca. Alkanophaga volatiphilum and Ca. Alkano-
phaga liquidiphilum: thermophilic, anaerobic, petroleum (C5-C14) 
n-alkane-oxidizing archaea, forming syntrophic consortia with the 
sulfate-reducing Ca. Thermodesulfobacterium syntrophicum.

Syntrophic microorganisms trade electrons via molecular inter-
mediates, such as hydrogen or formate43, or direct interspecies elec-
tron transfer (DIET)44. Both Ca. Alkanophaga and Ca. T. syntrophicum 
encode membrane-bound [NiFe]-hydrogenases, including several 
hydrogenase maturation factors, enabling electron transfer via molecu-
lar hydrogen. Some hydrogenase genes were substantially expressed 
(Fig. 5, Extended Data Fig. 7 and Supplementary Table 7). Formate 
dehydrogenases, necessary for electron transfer via formate, were also 
present in both partners and moderately expressed (Fig. 5, Extended 
Data Fig. 7 and Supplementary Table 7). However, the addition of hydro-
gen or formate did not accelerate sulfide production (Extended Data  
Fig. 4c,d). Moreover, cultures in which sulfate reduction was inhibited 
by the addition of sodium molybdate produced only miniscule frac-
tions (max. 2.4% for C6 and 0.9% for C14) of the hydrogen concentrations 
that would be necessary were hydrogen the sole electron carrier (Sup-
plementary Table 9). Thus, neither molecular hydrogen nor formate 
are probably primary electron carriers.

Alternatively, alkane oxidation and sulfate reduction are cou-
pled through DIET, as suggested for other alkane-oxidizing consor-
tia13,14,45. DIET probably involves cell appendages, such as bacterial 
type IV pilin (PilA) or the archaeal flagellin B (FlaB), and multihaem 
c-type cytochromes (MHCs), forming conductive nanowires enabling 
electron transport46,47. Both components are present and strongly 
expressed in previously established alkane-oxidizing consortia13,14,45. 
Surprisingly, neither our nor the previously published Ca. Alkanophaga 
MAGs encode any MHCs, while the closest relatives of Ca. Alkanophaga, 
ANME-1 and Ca. Syntrophoarchaeum, encode multiple MHCs14,33.  
Ca. T. syntrophicum encodes six MHCs, only one of which was slightly 
enriched in all cultures (Supplementary Table 7). This implies a minor 
role of MHCs in the interaction of both organisms.

Both Ca. Alkanophaga encode several copies of pilA and flaB for 
the formation of cell appendages for DIET. These genes were among 
the most highly expressed genes of Ca. Alkanophaga in all cultures. 
Ca. T. syntrophicum encodes several pilA genes as well, some of which 
were strongly enriched in the C10-C14 cultures (Supplementary Table 7). 
Transmission electron microscopy revealed diffuse filamentous struc-
tures in the intercellular space that might pertain to such nanowires 
(Extended Data Fig. 10), but further analyses are necessary to confirm 
the identity of these structures.

We predict that electron transfer in our cultures is based pre-
dominantly on DIET. The lack of MHCs in Ca. Alkanophaga might be 
compensated by MHC production in the partner bacterium similar to 
observations in syntrophic methane-oxidizing cultures, where only the 
bacterial partner expressed pilA genes45. Alternatively, DIET might be 
completely independent of MHCs, which has been observed before48,49. 
It remains possible that a small fraction of electrons are transferred 
via soluble intermediates such as hydrogen. Such a combination of 
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DIET with diffusion-based electron transport was recently shown to 
be energetically favourable for syntrophic consortia50.

Discussion
Petroleum-rich anoxic environments such as oil reservoirs, oily sludges 
and polluted sediments harbour oil-degrading microorganisms. Iso-
lates from these environments that couple petroleum alkane oxidation 

to sulfate reduction are mostly bacteria active at temperatures ≤60 °C 
(ref. 51). With Ca. Alkanophaga, we enriched a thermophilic clade thriv-
ing on petroleum alkanes from C5 to C14 at temperatures between 
65–75 °C (Extended Data Fig. 4e,f), which approach the suggested upper 
limit of microbial hydrocarbon degradation in petroleum reservoirs of 
around 80 °C (ref. 52). This temperature optimum is reflected by the 
high relative abundance of Ca. Alkanophaga in deep, heated sediment 

?
CoM-SH

Cn-trans-∆2-enoyl-CoA

Cn-β-ketoacyl-CoA

Cn-L-β-hydroxyacyl-CoA

Cn–2-acyl-CoA

5,10-Methylene-H4MPT

Methyl-H4MPT

Hdr

5,10-Methenyl-H4MPT

5-Formyl-H4MPT

Formyl-MF

CO2
W

oo
d-

Lj
un

gd
ah

l

β-
ox

id
at

io
n

Acetyl-CoA

ACAD

H2O

HADH
NAD+

NADH + H+

ECH

CoA-SH F420H2

F420

Mtd
F420

F420H2

Mch

H2O

H+

Ftr
MF

H4MPT 

Fdox

MF + Fdred

ACAT

ACDS

Fdox + H4MPT

Fwd

Candidatus Alkanophaga

C
andidatus Therm

odesulfobacterium
syntrophicum

Sat
ATP + H+

APS

Apr

PPi

PPi

SO3
2–

SO4
2–

SO4
2–

6 e–

2 e–

Dsr

S2–

S2–

CO2Cn-alkane

e– e–

Fdred + CO2

2H+

Etfred

Etfox
FeS
OR

MHC MHC

FlaB/PilA

PilA

Ndh 2H+

2H+Fqo

Fqo

Mer
NADH
+ H+

NAD+
Met

Ca. Alkanophaga volatiphilum

Ca. Alkanophaga liquidiphilum

Alkane activation
β-oxidation
β-oxidation (odd chain)
Wood-Ljungdahl

Alkane CO2

Cn-alkane

Acr

Cn-alkyl-CoM

Cn-acyl-CoA

CoM-S-S-CoB

CoB-SHAl
ka

ne
ac

tiv
at

io
n

a

b

MHC MHC

ac
rA

GB
ac

ad ec
h

had
h

ac
at pcc

mcm

ac
dsA

BCDE
mce

metF mer
mtd mch ftr

fw
dABCDE

hdrA
BC

Fig. 4 | Mechanism of syntrophic petroleum alkane oxidation. a, Genomic 
capacities for alkane oxidation in Ca. Alkanophaga MAGs. Colour-filled 
rectangles indicate presence of a gene; white rectangles indicate absence. For 
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units into CO2 and a tetrahydromethanopterin (H4MPT)-bound methyl unit.  
The methyl branch of the Wood-Ljungdahl pathway, including (1) 5,10-methylene 
tetrahydrofolate reductase (MetF) and/or 5,10-methylene H4MPT reductase 
(Mer), (2) methylene-H4MPT dehydrogenase (Mtd), (3) methenyl-H4MPT 

cyclohydrolase (Mch), (4) formylmethanofuran-H4MPT formyltransferase 
(Ftr) and (5) tungsten-containing formylmethanofuran dehydrogenase (Fwd), 
oxidizes methyl-H4MPT to CO2. Most probably, an electron transfer flavoprotein 
(Etf) serves as electron acceptor in the first step of the β-oxidation pathway. 
Cofactor recycling is taken over by cytoplasmic heterodisulfide reductase (Hdr), 
[FeS]-oxidoreductase (FeS-OR), NADH dehydrogenase (Ndh) and F420H2:quinone 
oxidoreductase (Fqo). Electrons from alkane oxidation are transferred to 
Ca. Thermodesulfobacterium syntrophicum, most probably via DIET. DIET 
seems to rely on conductive filaments formed by type IV pilin (PilA) and/or 
flagellin B (FlaB) that are expressed by both partners, and multihaem c-type 
cytochromes (MHCs) expressed solely by the bacterium. Sulfate reduction in 
Ca. T. syntrophicum follows the canonical dissimilatory sulfate pathway using 
the enzymes ATP-sulfurylase (Sat), APS-reductase (Apr) and dissimilatory sulfite 
reductase (Dsr). pcc, gene encoding propionyl-CoA decarboxylase; mce, gene 
encoding methylmalonyl-CoA epimerase.
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layers of the Guaymas Basin, inferring a crucial role of these archaea in 
thermophilic hydrocarbon transformation.

Ca. Alkanophaga encode three Acrs for anaerobic alkane acti-
vation, one less than the closely related short-chain alkane oxidizer  
Ca. Syntrophoarchaeum14. Independent of alkane length, Ca. Alkano-
phaga strongly expressed only one of the Acrs, which is highly similar 
to the highest expressed Acr in Ca. Syntrophoarchaeum during C4 
oxidation14. Future studies may reveal functions or substrates of the 
other two lower expressed Acrs. Ca. Alkanophaga stand out among 
Acr-using archaea with their wide substrate range between C5 and C15. 
Therewith, all alkanes between C1 and C20 are confirmed substrates of 
alkane-oxidizing archaea12–15. Our study implies that substrate flexibility 
of the Acr increases with increasing alkane length, which is presumably 
enabled by a wider catalytic cleft in the Acrs activating C3+ alkanes31 
compared with the highly selective hydrophobic tunnel detected in 
the C2-activating Acr29. Crystallization efforts may resolve molecular 
and structural modifications of these Acrs that make use of such a wide 
substrate spectrum.

The three clades of the class Syntrophoarchaeia (Ca. Alkanophaga, 
Ca. Syntrophoarchaeum and ANME-1), share many metabolic features 
such as obligate syntrophic growth with partner SRB and presence 
of the β-oxidation and WL pathways. At the same time, they exhibit 
remarkable metabolic and genomic differences. For instance, ANME-1 
encode the canonical Mcr for methane metabolism, which is missing 
in Ca. Syntrophoarchaeum and Ca. Alkanophaga, preventing them 
from oxidizing and producing methane. Instead, the latter two possess 
multiple multicarbon alkane-activating Acrs, which are in turn absent 
in ANME-1. Our study supports the previously established hypothesis 
that multicarbon alkane metabolism probably preceded methanotro-
phy in the Syntrophoarchaeia11,53 because of the basal position of both 
multicarbon alkane oxidizers (Fig. 2b) and their similar metabolisms. 
The presence of the β-oxidation pathway in ANME-1 (ref. 11) supports 
this notion because this pathway is required for the oxidation of C3+ 
alkanes but serves no purpose in the oxidation of methane. We propose 
that the common ancestor of the Syntrophoarchaeia was a multicarbon 
alkane-oxidizing archaeon with multiple Acrs. Ca. Syntrophoarchaeum 
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Fig. 5 | Gene expression profiles for syntrophic petroleum alkane oxidation. 
a,b, Fragment counts normalized to gene length (FPK) shown on a logarithmic 
y axis. The average gene expression of each organism is indicated as arithmetic 
mean (sum of all FPK values divided by number of genes) depicted as a horizontal 

line. c,d, Fragment counts normalized as CLR. For simplicity, only the values 
of the more active Ca. Alkanophaga species are shown. For abbreviations, see 
Fig. 4; hyd, gene encoding [NiFe]-hydrogenase; fdh, gene encoding formate 
dehydrogenase; cyt, gene encoding multihaem cytochrome.
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and Ca. Alkanophaga emerged from this ancestor, preserving a similar 
metabolism. Today, Ca. Syntrophoarchaeum thrives at much lower 
temperatures (50 °C) and seems incapable of oxidizing liquid alkanes14. 
Thus, adaptation to different temperatures and substrates might have 
enabled Ca. Syntrophoarchaeum and Ca. Alkanophaga to occupy dif-
ferent ecological niches. Ca. Alkanophaga and ANME-1 also shared a 
common ancestor from which ANME-1 probably diverged after losing 
their Acrs54 and acquiring an Mcr, potentially from a methanogen via 
lateral gene transfer33,55.

Ca. Alkanophaga differ from the two other groups of the Syn-
trophoarchaeia in two main aspects. First, Ca. Alkanophaga encode and 
expressed mer, an essential enzyme of the canonical methanogenesis 
pathway56. ANME-1, except for a putative methanogenic ANME-1 mem-
ber57, and Ca. Syntrophoarchaeum lack mer and instead code for the 
phylogenetically widely distributed metF14,33,58, which is also present 
and expressed in Ca. Alkanophaga. We hypothesize that mer in Ca. 
Alkanophaga is a remnant from a methanogenic ancestor. Second, Ca. 
Alkanophaga lack MHCs, which are often considered essential for DIET 
between syntrophic partners46. All other syntrophic alkane-oxidizing 
archaea code for several MHCs53. However, an absence of MHCs in 
DIET-performing methanogens has been recognized before48. It is thus 
conceivable that MHCs aid in but are not essential for DIET and that 
MHCs were potentially lost by Ca. Alkanophaga without a substantial 
impact on the efficiency of electron transfer. The loss of all MHCs 
opens up questions as to the mechanisms that occurred. In a recent 
study, giant extrachromosomal elements named Borgs, many of which 
carried clusters of MHCs, were reconstructed from methane-oxidizing 
Methanoperedens (ANME-2d) archaea59. One could imagine that MHCs 
in the Syntrophoarchaeia ancestor were encoded on such a Borg, which 
was then lost by Ca. Alkanophaga. This could explain why all MHCs are 
absent in Ca. Alkanophaga. However, the presence of Borgs in other 
members of the Syntrophoarchaeia still needs to be examined.

Ca. Alkanophaga partner with the sulfate-reducing Ca. Thermodes-
ulfobacterium syntrophicum. Previously enriched alkane-oxidizing 
archaea partner with a different bacterium, Ca. Desulfofervidus auxilii, 
which has an optimal growth temperature of 60 °C (refs. 13,14,16,17). We 
suspect that the higher incubation temperature of our study selected 
for a more thermophilic partner organism. Recently, another Ther-
modesulfobacterium species, Ca. Thermodesulfobacterium torris 
(ANI 84.0%, Extended Data Fig. 9), has been reported as syntrophic 
sulfate reducer partnering with thermophilic ANME-1c at 70 °C (ref. 60). 
Thus, Thermodesulfobacteria represent a new group of partner organ-
isms for alkane-oxidizing archaea at high temperatures. In contrast to  
Ca. Alkanophaga, Ca. T. syntrophicum encodes and expressed several 
MHCs, which could support DIET for both partners.

All currently available Ca. Alkanophaga sequences originate from 
the Guaymas Basin, a thoroughly studied hydrothermal vent area haul-
ing heated fluids rich in alkanes61. We suspect two main reasons for this 
apparent absence in other environments. First, until recently, microbial 
community studies have mostly focused on 16S ribosomal (r)RNA gene 
amplification and sequencing, a method depending heavily on primer 
choice62. We discovered a mismatch of the commonly used archaeal 
primer Arch915 (5′-GTGCTCCCCCGCCAATTCCT-3′63, mismatch in 
bold) to the 16S rRNA gene sequences of Ca. Alkanophaga, which prob-
ably produces an artificial underrepresentation of Ca. Alkanophaga in 
public databases. Second, sequencing data from other environments 
similar to the Guaymas Basin, that is, heated oil reservoirs with sulfate 
supply, remains scarce. Many of these reservoirs, often buried kilo-
metres deep within the subsurface, are extremely hard to access64. In 
addition, the risk of contamination from the upper biosphere during 
sampling increases with depth, which might conceal the native com-
munity64. Still, sampling technologies have greatly improved in recent 
years, and the focus has shifted from amplification-based 16S rRNA 
gene to shotgun metagenome studies, which should facilitate a more 
accurate molecular characterization of reservoir microorganisms. 

Thus, future studies may disclose the coexistence and activity of  
Ca. Alkanophaga and Ca. T. syntrophicum in other heated, petroleum- 
rich environments.

Methods
All chemicals were of analytical grade and obtained from Sigma Aldrich, 
unless otherwise stated. All incubations were done under gentle shak-
ing (40 r.p.m.) in the dark.

Cultivation of anaerobic thermophilic alkane degraders
The push core used for anoxic cultivations was collected with sub-
mersible Alvin during RV Atlantis cruise AT42-05 in the Guaymas Basin 
(Gulf of California, Mexico) (dive 4,991, core 15, 27° 00′ 41.1″ N, 111° 24′ 
16.3″ W, 2,013 m water depth, 17 November 2018). While shipboard, 
the push core was transferred to a sealed glass bottle, purged with 
argon and stored at 4 °C. In the home laboratory, an anoxic sediment 
slurry was prepared with synthetic sulfate-reducer medium (SRM)65, 
using a ratio of 10% sediment and 90% SRM (v/v), and distributed in 
100 ml portions into culture bottles. Cultures were supplemented 
with 200 µl liquid alkane (C5-C14) in duplicates. For the C5-C10 alkanes, 
4 ml 2,2,4,4,6,8,8-heptamethylnonane (HMN) were added to mitigate 
potential toxic effects of the substrate66. A substrate-free culture served 
as a negative control. Headspaces were filled with N2:CO2 (90:10; 1 atm 
overpressure) and incubated at 70 °C.

Sulfide production was measured every 2–4 weeks using a copper 
sulfate assay67. Once sulfide concentrations reached 12–15 mM, cultures 
were diluted 1:3 with SRM and supplied with fresh substrate. Activity 
doubling times were determined from the development of sulfide 
concentrations during the first two dilutions. Sulfide concentrations 
over time were displayed using a logarithmic (base 2) y axis. An expo-
nential trend line with the formula y = n × emx was generated. Per defini-
tion, the doubling time equals ln(2)

m
.

Quantitative substrate turnover experiment
Triplicate 100 ml dilutions with 20 ml headspace were prepared from 
C6- and C14-oxidizing cultures, supplied with substrate and incubated 
at 70 °C, complemented by a substrate-free negative control. Sulfate 
and DIC concentrations were measured from weekly subsamples until 
the cultures had reached sulfide concentrations of ≥15 mM. Samples 
were sterile filtered using a GTTP polycarbonate filter (0.2 µM pore 
size; Millipore). For DIC measurements, 1 ml filtrate was transferred 
into synthetic-air-purged 12 ml Exetainer vials (Labco) filled with 100 µl 
phosphoric acid (45%). After 10 h of equilibration, headspace DIC was 
measured by isotope ratio infrared spectroscopy (Thermo Fisher; 
Delta Ray IRIS with URI connect and Cetac ASX-7100 autosampler) with 
standards of known concentration. To determine sulfate concentra-
tions, 1 ml of the filtrate was fixed in 0.5 ml 100 mM zinc acetate. The 
sample was centrifuged and the clear supernatant was diluted 1:50 in 
deionized water. Sulfate was measured by ion chromatography (930 
compact IC, Metrohm) against standards with known concentrations.

DNA extraction and short-read sequencing
DNA was extracted from pellets of 25 ml culture samples collected after 
the third dilution, using a modified SDS-based extraction method as 
previously described68. Total DNA yield per sample, determined by 
fluorometric DNA concentration measurement, ranged from 0.9 µg 
to 3.6 µg. Samples were sequenced at the Max Planck-Genome-Centre 
(Cologne, Germany). C6-C14 culture samples were sequenced as 2 × 250 
paired-end reads on an Illumina HiSeq2500 sequencing platform. 
The C5 culture sample was sequenced later because of slower growth, 
together with a sample of the sediment slurry before incubation, 
by which time the sequencing facility had changed their settings 
to 2 × 150 bp paired-end reads on an Illumina HiSeq3000 platform. 
Between 4,140,953 and 4,234,808 raw reads were obtained per culture 
sample. From the original slurry, 3,130,329 reads were gained.
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Short-read DNA data analysis
Reads from short-read metagenome sequencing were quality-trimmed 
using BBDuk (included in BBMap v.38.79; https://sourceforge.net/pro-
jects/bbmap/; minimum quality value: 20, minimum read length: 50). 
Reads of the C6-C14 samples were coassembled using SPAdes (v.3.14.0; 
https://github.com/ablab/spades)69, running BayesHammer error cor-
rection and k-mer increments (21, 33, 55, 77, 99 and 121) with default set-
tings. The output scaffolds were reformatted using anvi’o (v.7; https://
github.com/merenlab/anvio/releases/)70, simplifying names and remov-
ing contigs shorter than 3,000 bps. Trimmed reads were mapped back 
to the reformatted scaffolds using Bowtie2 (v.2.3.2; http://bowtie-bio.
sourceforge.net/bowtie2/index.shtml)71 in the local read alignment 
setting. Sequence alignment map files were converted to binary align-
ment map (BAM) files with SAMtools (v.1.5; http://samtools.sourceforge.
net/)72 and indexed with anvi’o. A contigs database was created from 
the reformatted scaffolds and profile databases were generated for 
each sample with anvi’o. Profile databases were merged, enforcing 
hierarchical clustering. Hidden Markov model (HMM) searches were run 
via anvi’o on the contigs database to detect genes encoding for Mcrs/
Acrs, Wood-Ljungdahl pathway and DSR. Taxonomies for open reading 
frames were imported into the contigs database using the Centrifuge 
classifier (v.1.0.2-beta; https://ccb.jhu.edu/software/centrifuge/)73. The 
contigs database was inspected in the anvi’o interactive interface, which 
clusters the contigs hierarchically on the basis of sequence composition 
and differential coverage, thereby indicating their relatedness to each 
other70. Binning was performed manually in the interface by clicking 
branches of the dendrogram in the centre of the interface and using the 
GC content, mean coverage in the samples, gene taxonomy and real-time 
statistics on completion and redundancy based on single-copy core 
genes as guides. The dendrogram branches were followed systemati-
cally in a counterclockwise direction to obtain the maximum number 
of bins. Bin quality was assessed again with CheckM (v.1.1.3; https://
ecogenomics.github.io/CheckM/)74 and only bins with completeness 
>50% and redundancy <10% were kept. Taxonomies were assigned to 
these metagenome-assembled genomes (MAGs) using GTDB-Tk (v.1.5.1; 
https://github.com/Ecogenomics/GTDBTk)75. All manually generated 
MAGs were refined with anvi’o to minimize contamination. We iden-
tified MAGs 1 and 4 as the likely alkane oxidizers and MAG 24 as the 
likely sulfate reducer based on their mean coverages and HMM hits. To 
increase the completeness of these three MAGs, an iterative reassembly 
loop (https://github.com/zehanna/MCA70_analysis/targeted_reas-
sembly_loop.sh) was performed. Therein, the trimmed reads were 
repeatedly mapped to the refined MAG using BBMap with a minimum 
alignment identity of 97%. Mapped reads were then assembled using 
SPAdes. The assembly was quality-checked with CheckM and used as 
a new reference file to map the trimmed reads to. After performing 25 
iterations of this loop, the assembly with the highest quality (that is, 
highest completeness, lowest contamination and lowest strain hetero-
geneity) was selected for further analysis. Final MAGs were annotated 
with Prokka (v.1.14.6; https://github.com/tseemann/prokka)76 and 
the anvi’o-integrated databases NCBI clusters of orthologous genes 
(COGs)77, Kyoto Encyclopedia of Genes and Genomes (KEGG)78, Protein 
Families (Pfams)79 and KEGG orthologues HMMs (KOfams)80. A bash 
script (https://github.com/zehanna/MCA70_analysis/CxxCH_scan.sh) 
was run to search for the haem-binding CxxCH amino acid motif81 in the 
translated gene sequences of the three MAGs. Selected translated gene 
sequences were exported for gene calls from the contigs database with 
anvi’o and compared via the BLASTp82 web interface (http://www.ncbi.
nlm.nih.gov/blast).

Relative abundances of the MAGs were calculated by mapping the 
trimmed reads to the manually curated and refined MAGs with CoverM 
(v.0.6.1; https://github.com/wwood/CoverM) in genome mode includ-
ing the dereplication flag using the default aligner Minimap2 (v.2.21; 
https://docs.csc.fi/apps/minimap2/) in short-read mode, discarding 
unmapped reads. The final relative abundance of each MAG is the 

percentage of the MAG in the mapped fraction of each sample. ANIs 
between MAGs were calculated with FastANI (v.1.32; https://github.
com/ParBLiSS/FastANI).

Because of later sequencing, the original slurry and C5 samples 
were treated separately from the previously sequenced samples and 
assembled individually. We could not obtain quality MAGs for the origi-
nal slurry sample; therefore, we estimated the phylogenetic composi-
tion on the basis of reconstructed small subunit ribosomal RNAs (SSU 
rRNAs) mapped against the SILVA SSU reference database (v.138.1)83 
with phyloFlash (v.3.4.1; https://github.com/HRGV/phyloFlash)84. For 
the C5 sample, the same procedure as for the previously sequenced 
culture samples was followed. The identity (ANI ≥ 95%; ref. 85) of the 
Ca. Alkanophaga volatiphilum and Ca. Thermodesulfobacterium syn-
trophicum MAGs from the C5 sample, MAG 4_1 and MAG 24_1, respec-
tively, to the previously reconstructed ones was confirmed via FastANI.

To estimate relative abundances of Ca. Alkanophaga and Ca. T. 
syntrophicum MAGs in the original slurry, the trimmed reads of the 
original slurry were mapped to the MAGs with CoverM.

Construction of phylogenomic trees for archaea and bacteria
The archaeal tree was constructed using 98 publicly available Halobac-
teriota and Thermoproteota genomes (Supplementary Table 10) from 
NCBI plus the Ca. Alkanophaga MAGs from this study. For the bacte-
rial tree, 121 publicly available Desulfobacterota and Bipolaricaulota 
genomes (Supplementary Table 10) and the Thermodesulfobacterium 
MAG from this study were included. Trees were based on the concat-
enated alignment of 76 single-copy core genes (SCG) for archaea and 
71 SCGs for bacteria. Alignments were generated with anvi’o, which 
uses the multiple sequence alignment tool MUSCLE86 (v.5.1; https://
github.com/rcedgar/muscle). Trees were calculated with RAxML (ran-
domized accelerated maximum likelihood) (v.8.2.12; https://cme.h-its.
org/exelixis/web/software/raxml/)87 using the PROTGAMMAAUTO 
model and autoMRE option, which required 50 iterations to reach a 
convergent tree for both alignments. Trees were visualized with the 
Interactive Tree of Life online tool (https://itol.embl.de/)88. To resolve 
taxonomic levels, the Ca. Alkanophaga MAGs were compared to the 
ANME-1 and Ca. Syntrophoarchaeales MAGs included in the tree by 
calculating average amino acid identities (AAIs) using the aai_wf feature 
of the CompareM software (v.0.1.2; https://github.com/dparks1134/
CompareM) with default settings.

In situ hybridization and microscopy
Culture samples were fixed in 1% formaldehyde for 1 h at r.t., washed 
twice in 1× PBS and stored in 1× PBS-ethanol (1:1 v/v) at −20 °C. Aliquots 
were filtered onto GTTP polycarbonate filters (0.2 µM pore size; Mil-
lipore). Filters were embedded in 0.2% agarose. For permeabilization, 
three consecutive treatments were performed: (1) lysozyme solution 
(0.05 M EDTA (pH 8.0), 0.1 M Tris-HCl (pH 7.5) and 10 mg ml−1 lysozyme 
in MilliQ-grade deionized water) for 1 h at 37 °C; (2) proteinase K solu-
tion (0.05 M EDTA (pH 8.0), 0.1 M Tris-HCl (pH 7.5) and 7.5 µg ml−1 pro-
teinase K in MilliQ) for 10 min at r.t.; and (3) 0.1 M HCl solution for 
5 min at r.t. Endogenous peroxidases were inactivated using 0.15% 
H2O2 in methanol for 30 min at r.t. A specific probe was designed 
to exclusively target the Ca. Alkanophagales clade. Therefore, the  
Ca. Alkanophaga 16S rRNA gene sequences were added to the SILVA 
SSU reference database (v.138.1) using the ARB software89 (v.7.1; http://
www.arb-home.de/home.html). A subtree containing all ANME-1 16S 
rRNA gene sequences, plus the two sequences from Ca. Alkanophaga, 
was calculated using RAxML (v.8; https://cme.h-its.org/exelixis/web/
software/raxml/) with 100 bootstrap replicates, a 50% similarity filter, 
the GTRGAMMA model and Methanocella as outgroup. The probe 
was generated using the probe design feature with these parameters: 
length of probe, 19 nucleotides; temperature, 50–100 °C; GC content, 
50–100%; E. coli position, any; max. non-group hits, 5; min. group 
hits, 100%. Criteria for candidate probes were: GC content lower than 
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60%, lowest possible number of matches to non-group species with 
decreasing temperature, at least one mismatch to non-group species. 
We ordered a probe that fit these criteria (Aph183) with the sequence 
5′-GCATTCCAGCACTCCATGG-3′ from Biomers. For bacteria, the gen-
eral probe combination EUBI-III (I: 5-GCTGCCTCCCGTAGGAGT-3; II: 
5-GCAGCCACCCGTAGGTGT-3; III: 5-GCTGCCACCCGTAGGTGT-3)90 
was applied. Probe working solution (50 ng µl−1) was diluted 1:300 in 
hybridization buffer containing 30% formamide for Aph183 and 35% 
formamide for EUBI-III. Probes were hybridized at 46 °C for 3–4 h. 
Signals were amplified with tyramides labelled with Alexa Fluor 488 
for bacteria and Alexa Fluor 594 for Ca. Alkanophaga (Thermo Fisher) 
for 45 min at 46 °C. For double hybridizations, peroxidases from the 
first hybridization were inactivated using 0.30% H2O2 in methanol 
for 30 min at r.t. before the second hybridization and amplification. 
Filters were analysed via epifluorescence microscopy (Axiophot II 
imaging; Zeiss). Images were captured with the AxioCamMR camera 
and the AxioVision software included in the microscope. Images were 
processed using ImageJ (v.1.49, https://imagej.nih.gov/ij/), where the 
colour of Alexa488 was changed to cyan to improve accessibility.

Phylogenetic analysis of proteins involved in alkane oxidation 
in Ca. Alkanophaga
For the mcrA tree, the six full-length mcrA sequences of Ca. Alkano-
phaga were aligned with 347 publicly available mcrA sequences. For 
the mer and the metF trees, Ca. Alkanophaga sequences were added 
to publicly available alignments in ref. 33 (mer: Fig04B; metF: Fig05C 
of Supplement S1). Sequences were aligned with MAFFT (multiple 
alignment using fast Fourier transform) (v.7.475; https://mafft.cbrc.jp/
alignment/software/)91. Alignments were trimmed with SeaView (v.5; 
http://doua.prabi.fr/software/seaview)92. For the mcrA tree, sequences 
shorter than 450 amino acids were removed after trimming, after 
which 337 sequences remained (Supplementary Table 10). Trees were 
calculated with RAxML (v.8.2.4) using the PROTGAMMAAUTO model, 
which assigned LG with empirical base frequencies as amino acid model 
and the autoMRE option for bootstraps, which required 300, 550 and 
400 iterations to reach a consensus tree for the mcrA, mer and metF 
alignments, respectively. Trees were visualized with the Interactive 
Tree of Life online tool (https://itol.embl.de/)88.

RNA extraction and short-read sequencing
For total RNA extraction, 10 ml of culture material collected after the 
third dilution at the exponential growth stage were filtered through 
an RNAse-free cellulose nitrate filter (pore size 0.45 µm; Sartorius). 
Immediately after filtration, filters were incubated with 5 ml RNAlater 
for 30 min. RNA was extracted from filters using the Quick-RNA mini-
prep kit (Zymo Research). DNA was digested without RNase inhibitor. 
No rRNA depletion step was performed. Between 0.3 and 1.3 µg of total 
RNA were obtained per sample as determined by fluorometric RNA 
concentration measurement. Samples were sequenced as 2 × 250 (C5: 
2 × 150) paired-end reads at the Max Planck-Genome-Centre on the 
Illumina HiSeq2500 (C5: Illumina HiSeq3000) sequencing platform. 
Between 4,043,349 and 4,785,231 raw reads were obtained per sample.

Short-read RNA data analysis
Reads from metatranscriptome sequencing were quality-trimmed 
using BBDuk (included in BBMap v.38.79). Trimmed reads were mapped 
to the concatenated Ca. Alkanophaga MAGs to minimize unspecific 
mapping because of the high similarity of the two MAGs and to the Ca. 
Thermodesulfobacterium syntrophicum MAG using BBMap (v.38.87) 
with minimal alignment identity of 98%. Mapped reads were counted 
using featureCounts (v.1.4.6-p5; http://subread.sourceforge.net/)93 
with minimum required number of overlapping bases and minimum 
mapping quality score of 10, counting fragments instead of reads.

Before normalization, rRNA reads were excluded. Fragments were 
first normalized to gene length, yielding fragments per kilobase (FPK).

FPKi =
Ci

Li
(2)

The centred-log ratio (CLR) was calculated as the base-10 loga-
rithm of read count Ci of gene i normalized by gene length Li in kilobases 
and divided by the geometric mean of all read counts C1 − Cn normalized 
by their respective gene length L1 − Ln.

CLRi = log
⎛
⎜⎜⎜
⎝

Ci+0.5
Li

n

√
(C1+0.5)

L1
× (C2+0.5)

L2
×… × (Cn+0.5)

Ln

⎞
⎟⎟⎟
⎠

(3)

Test of a selective Mcr inhibitor on culture activity
Duplicates of C6- and C14-oxidizing culture were supplied with substrate 
and 5 mM (final concentration) BES. A control culture was supplied 
with substrate but not with BES. Cultures were incubated at 70 °C and 
sulfide concentrations were measured until the control cultures had 
reached >15 mM sulfide.

Metabolite extraction
Metabolite samples were collected at sulfide levels of 10–14 mM. An 
80 ml culture sample of each substrate was pelleted via centrifuga-
tion (15 min, 3,100 × g, 4 °C). Supernatants were removed, pellets were 
resuspended in 1 ml of acetonitrile:methanol:water (2:2:1 v/v/v) and 
transferred to bead-beating tubes. Samples were agitated for 15 min on a 
rotor with vortex adapter at maximum speed. Samples were centrifuged 
for 20 min at 10,000 × g at 4 °C. Clear supernatants were stored at 4 °C.

Synthesis of authentic alkyl-CoM standards
Coenzyme M (sodium 2-mercaptoethanesulfonate) (0.1 g) was dissolved 
in 2 ml 25% (v:v) ammonium hydroxide solution and twice the molar 
amount of bromoalkane was added. We acquired 2- and 3-bromohexane 
from Tokyo Chemical, and 2-bromotetradecane from Alfa Aesar. Vials 
were incubated for 6 h at r.t. under gentle shaking on a rotor with vortex 
adapter. The clear upper phase (1 ml) was collected and stored at 4 °C.

Mass spectrometry of culture extracts and standards
Culture extracts and standards were analysed using high-resolution 
accurate-mass mass spectrometry on a Bruker maXis plus quadrupole 
time-of-flight (QTOF) mass spectrometer (Bruker) connected to a 
Thermo Dionex Ultimate 3000RS UHPLC system (Thermo Fisher) via an 
electrospray ionization (ESI) ion source. Sample aliquots were evapo-
rated under a nitrogen stream and re-dissolved in a methanol:water 
(1:1 v/v) mixture before injection. A 10 µl aliquot of the metabolites 
was injected and separated on an Acclaim C30 reversed phase col-
umn (Thermo Fisher; 3.0 × 250 mm, 3 µm particle size) set to 40 °C 
using a flow rate of 0.3 ml min−1 and the following gradient of elu-
ent A (acetonitrile:water:formic acid, 5:95:0.1 v/v/v) and eluent B 
(2-propanol:acetonitrile:formic acid, 90:10:0.1 v/v/v): 0% B at 0 min, 
then ramp to 100% B at 30 min, hold at 100% B until 50 min, followed by 
re-equilibration at 0% B from 51 min to the end of the analysis at 60 min 
to prepare the column for the next analysis. The ESI source was set to 
the following parameters: capillary voltage 4,500 V, end plate offset 
500 V, nebulizer pressure 0.8 bar, dry gas flow 4 l min−1, dry gas heater 
200 °C. The QTOF was set to acquire full scan spectra in a mass range 
of m/z 50–600 in negative ionization mode. The C14 culture extract 
was additionally analysed in tandem mass spectrometry mode, and 
mass spectra of the fragmentation products of m/z 337.1877 isolated 
in a window of 3 Da and fragmented with 35 eV were acquired. Every 
analysis was mass-calibrated to reach mass accuracy of 1–3 ppm by loop 
injection of a calibration solution containing sodium formate cluster 
ions at the end of the analysis during the equilibration phase and using 
the high-precision calibration algorithm. Data were processed using 
the Compass DataAnalysis software package v.5.0 (Bruker).
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Substrate range tests
Cultures originally grown with C6 and C14 were diluted 1:10 in fresh SRM. 
Dilutions were supplemented with alkanes between C5 and C14 for which 
growth had not been confirmed yet, and with shorter (C3 and C4) and 
longer (C16-C20) alkanes (Table 1).

A negative (inoculated culture without substrate) and a positive 
(inoculated culture supplied with substrate with which the culture was 
originally grown) control were also set up. Cultures were incubated at 
70 °C and activity was tracked via sulfide measurements. Once sulfide 
concentrations reached >10 mM, cultures were diluted 1:3 with SRM. 
The procedure was repeated and incubations that showed sustained 
activity over two dilutions were considered successful.

Hydrogen production measurements
C6 and C14 cultures were divided into two 20 ml aliquots in 156 ml serum 
bottles. One aliquot was left untreated, the other one was treated with 
10 mM (final concentration) sodium molybdate. Hydrogen was meas-
ured by injecting 1 ml of headspace sample into a Peak Performer 1 gas 
chromatograph (Peak Laboratories). Measurements were taken in 1 h 
intervals up to 8 h after the start of the experiment. A final measure-
ment round was conducted from 24 h to 30 h in 2 h intervals.

Test of the effect of addition of hydrogen and formate on 
culture activity
Two replicates of C6- and C14-oxidizing cultures were supplied with 
substrate and with 10% H2 in the headspace or 10 mM (final concentra-
tion) sodium formate in the medium. A control culture was supplied 
only with substrate. Cultures were incubated at 70 °C and sulfide con-
centrations were measured until the control cultures had reached 
≥15 mM sulfide.

Transmission electron microscopy
C6 and C14 culture (100 ml) were collected at 1,000 × g using a Stat Spin 
Microprep 2 table top centrifuge. Cells were transferred to aluminium 
platelets (150 µm depth) containing 1-hexadecene94. Platelets were 
frozen using a Leica EM HPM100 high-pressure freezer (Leica). Fro-
zen samples were transferred to a Leica EM AFS2 automatic freeze 
substitution unit and substituted at −90 °C in a solution containing 
anhydrous acetone and 0.1% tannic acid for 24 h, and in anhydrous 
acetone, 2% OsO4 and 0.5% anhydrous glutaraldehyde (Electron Micro-
scopical Science) for a further 8 h. After further incubation over 20 h at 
−20 °C, samples were warmed to +4 °C and subsequently washed with 
anhydrous acetone. Samples were embedded at room temperature in 
Agar 100 (Epon 812 equivalent) at 60 °C for 24 h. Thin sections (80 nm) 
were counterstained using Reynolds lead citrate solution for 7 s and 
examined using a Talos L120C microscope (Thermo Fisher).

Temperature range tests
Aliquots of C6- and C14-oxidizing cultures were diluted 1:6, supplied 
with substrate and incubated at 60–90 °C in 5 °C increments. Sulfide 
production was tracked until the 70 °C cultures had reached >10 mM 
sulfide.

Availability of biological materials
Official culture collections do not accept syntrophic enrichment cul-
tures, but G.W. will maintain the cultures. Non-profit organizations can 
obtain samples upon request.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The following databases were used in this study: SILVA SSU refer-
ence database (v.138.1; https://www.arb-silva.de/documentation/
release-1381/), NCBI COGs (https://www.ncbi.nlm.nih.gov/research/
cog-project/), KEGG (https://www.genome.jp/kegg/kegg1.html), Pfam 
(https://www.ebi.ac.uk/interpro/), KOfam (https://www.genome.jp/
tools/kofamkoala/) plus alignments in ref. 33 (mer: Fig04B; metF: Fig05C 
of Supplement S1; https://doi.org/10.1371/journal.pbio.3001508.s017).
MAGs of Ca. Alkanophaga (Ca. A. volatiphilum: BioSample 
SAMN29995624, genome accession: JAPHEE000000000; Ca. A. liq-
uidiphilum: SAMN29995625, JAPHEF000000000) and Ca. Thermodes-
ulfobacterium syntrophicum (SAMN29995626, JAPHEG000000000), 
the raw reads from short-read metagenome and transcriptome 
sequencing, the coassembly of the C6-C14 samples, and the single 
assemblies of the original slurry and the C5 samples (SAMN30593190, 
Sequence Read Archive (SRA) accessions SRR22214785-SRR22214804) 
are accessible under BioProject PRJNA862876. The mass spectrom-
etry runs for the detection of alkyl-CoMs have been deposited to the 
EMBL-EBI MetaboLights database95 with the identifier MTBLS7727. 
Source data are provided with this paper.

Code availability
The workflow for metagenome and transcriptome analysis, and the 
scripts for targeted reassembly and for the search of CxxCH motifs 
are available under https://github.com/zehanna/MCA70_analysis. 
Further inquiries about bioinformatic analyses may be directed to the 
corresponding authors.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Sampling site in the Guaymas Basin and microbial 
community in the original sediment. a, Location of the Guaymas Basin in the 
Gulf of California. b, Bathymetry of the southern end of the Southern Trough 
of the Guaymas Basin with the location of the Cathedral Hill hydrothermal vent 
area. c, Sampling of the push core (4991-15) that was used for anoxic cultivations 
in an area densely covered by orange sulfur-oxidizing Beggiatoa mats. d, Depth-
temperature profile in the sampling site. The temperature was measured using 
Alvin’s heatflow probe. Push cores reached about 30 cm into the sediment, 
where the temperature approached about 60 °C (sampling site photograph and 

temperature data courtesy of the Woods Hole Oceanographic Institution, from 
RV Atlantis cruise AT42-05). e, f Microbial community in the anoxic sediment 
slurry prepared from core 4991-15 before starting anoxic incubations based on 
16S rRNA gene fragments recruited from the metagenome. e, On the domain 
level, archaea and bacteria each make up around 50%. f, Taxonomic groups on 
order level. For groups with unknown order assignment marked with *, the next 
known higher taxonomic levels are indicated. An ANME-1 group is abundant 
within the archaeal fraction while the bacterial fraction is very diverse.
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Extended Data Fig. 2 | Sulfide production in anoxic C5-C12 n-alkane-degrading 
cultures at 70 °C up to the third dilution. Each culture was set up as a duplicate. 
Gaps in sulfide level indicate dilution steps. Pink arrows indicate the sampling 
points for metagenome and -transcriptome sequencing. Samples were collected 

after the third dilution from cultures degrading (a) n-pentane, (b) n-heptane, (c) 
n-octane, (d) n-nonane, (e) n-decane, and (f) n-dodecane. The negative control 
(light gray line) consisted of a sediment slurry without added substrate.
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Extended Data Fig. 3 | Organization of acr genes in Candidatus Alkanophaga 
MAGs. Partial acrA genes are shown in light pink, unannotated genes in light gray. 
Some gene names were shortened to fit the arrows. Genes code for: acrA: alkyl-
coenzyme M reductase, alpha subunit; acrB: alkyl-coenzyme M reductase, beta 
subunit; acrG: alkyl-coenzyme M reductase, gamma subunit; fixC: flavoprotein 
dehydrogenase; yjiL: activator of 2-hydroxyglutaryl-CoA dehydratase; nC: nuoC-
NADH:ubiquinone oxidoreductase; hycE2: [NiFe]-hydrogenase III large subunit; 

hyfC: formate hydrogenlyase; ycaO: ribosomal protein S12 methylthiotransferase 
accessory factor; rpf: rpf1-rRNA maturation protein; n: nuoI-formate 
hydrogenlyase subunit 6; paaJ: acetyl-CoA acetyltransferase; insQ: transposase; 
gd: gdb1-glycogen debranching enzyme; hdrA: heterodisulfide reductase, 
subunit A; cu: cutA1-divalent cation tolerance protein; disA: c-di-AMP synthetase; 
cinA: ADP-ribose pyrophosphatase domain of DNA damage- and competence-
inducible protein CinA; fwdA: formylmethanofuran dehydrogenase subunit A.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Sulfide production in n-hexane (C6)- and n-tetradecane 
(C14)-degrading cultures under different conditions. a, b, Treatment with 
2-bromoethanosulfonate (BES). BES (5 mM final concentration) was added to 
duplicates of C6 (a) and C14 (b) degrading cultures ( + BES). A control culture 
(-BES) did not receive BES. The inhibition of alkane oxidation by BES corroborates 
an Acr-based substrate activation. c,d, Addition of hydrogen or formate to C6 
(c) and C14 (d)-degrading cultures. All cultures were supplied with the original 

substrate. The addition of 10% H2 into the headspace or 10 mM sodium formate 
into the medium did not accelerate sulfide production compared to positive 
controls. e, f, Incubation at temperatures between 60 °C and 90 °C. The C6-
degrading culture (e) grows optimally at 70 °C and 75 °C, while it still shows some 
activity at slightly lower (65 °C) and slightly higher (80 °C) temperatures. The 
activity of the C14-degrading culture (f) seems to be limited to 70 °C.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Detection of alkyl-CoMs in Cx-n-alkane-degrading 
cultures. Samples were separated by liquid chromatography and extracted 
ion chromatograms (EICs) based on the exact mass of deprotonated ions of 
the Cx-alkyl-CoMs with a window of ±10 mDa were created. Panels show the 
EICs of culture extracts together with synthetic standards. Dashed vertical 
lines were added at the retention times of peak maxima of the standards for 

easier identification of peaks in the culture extracts. Peaks with mass-to-charge 
ratios (m/z) of the respective alkyl-CoM were detected in all cultures. All culture 
extracts show several peaks, indicating an activation at different carbon atoms. 
While shorter alkanes are activated to a similar degree at subterminal and 
terminal positions, longer alkanes are predominantly activated at non-terminal 
carbon atoms.
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Extended Data Fig. 6 | Substrate spectra of originally (a) n-hexane- and (b) n-tetradecane-oxidizing enrichment cultures. Cultures were diluted into fresh sulfate-
reducer medium and supplemented with other n-alkanes between C3 and C20. Only active cultures are shown. No activity was observed for cultures supplied with C3, C4, 
C16, C18, or C20.
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Extended Data Fig. 7 | Expression of alkane oxidation, sulfate reduction, 
and related genes in C5-C12 n-alkane-oxidizing cultures. Transcriptome reads 
were mapped to the MAGs of the two Candidatus Alkanophaga species and to 
Ca. Thermodesulfobacterium syntrophicum. a-f, Fragment counts normalized 
to gene length (FPK) using a logarithmic y axis. The average gene expression of 
each organism is indicated as arithmetic mean (sum of all FPK values divided by 
number of genes) depicted as a horizontal line. g-l, Fragment counts normalized 
as CLR. For simplicity, only values of the more active Ca. Alkanophaga species 
are shown. The x-axis shows the genes encoding: acr: alkyl-CoM reductase, acad: 
acyl-CoA dehydrogenase, ech: enoyl-CoA hydratase, hadh: hydroxyacyl-CoA 
dehydrogenase, acat: acetyl-CoA acetyltransferase, mcm: methylmalonyl-

CoA mutase, acds: acetyl-CoA decarbonylase/synthase, met: 5,10-methylene 
tetrahydrofolate reductase, mer: 5,10-methylene tetrahydromethanopterin 
(H4MPT) reductase, mtd: methylene-H4MPT dehydrogenase, mch: methenyl-
H4MPT cyclohydrolase, ftr: formylmethanofuran-H4MPT formyltransferase, fwd: 
tungsten-containing formylmethanofuran dehydrogenase, hdr: heterodisulfide 
reductase, FeS-or: [FeS]-oxidoreductase, ndh: NADH dehydrogenase, fqo: 
F420H2:quinone oxidoreductase, etf: electron transfer flavoprotein, flaB: flagellin 
B, pilA: type IV pilin, hyd: [NiFe]-hydrogenase, fdh: formate dehydrogenase, sat: 
ATP-sulfurylase, apr: APS-reductase, dsr: dissimilatory sulfite reductase, cyt: 
multi-heme c-type cytochrome.
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Extended Data Fig. 8 | Phylogenetic placement of (a) 5,10-methylene-
H4MPT reductase (mer) and (b) methylenetetrahydrofolate reductase 
(metF) sequences recovered from Ca. Alkanophaga MAGs. Both mer and 
metF sequences of the two Ca. Alkanophaga species are highly similar to each 

other. The mer sequences, which distinguish Ca. Alkanophaga in the class 
Syntrophoarchaeia, might originate from the ancestor of Methanocellales, while 
metF sequences cluster near those of close relatives Ca. Syntrophoarchaeales.
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Extended Data Fig. 9 | Phylogenomic placement of Candidatus 
Thermodesulfobacterium syntrophicum based on the concatenated 
alignment of 71 bacterial single copy core genes. Ca. T. syntrophicum is closely 
related to the already cultured Thermodesulfobacterium geofontis (OPF15T) and 

to Ca. Thermodesulfobacterium torris, which functions as partner bacterium 
in the thermophilic anaerobic oxidation of methane. The outgroup consists of 
members of the candidate phylum Bipolauricaulota. The tree scale bar indicates 
10% sequence divergence.
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Extended Data Fig. 10 | Transmission electron micrographs of EPON 812-embedded thin-sections of (a,b) C6- and (c,d) C14-n-alkane-degrading culture samples. 
The scale bar indicates 0.5 µm. The experiment was run once with one biological replicate per sample. Images are representative for > 5 recorded images per sample.
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