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Abstract: Mangrove forests provide valuable ecosystem services to coastal communities across
tropical and subtropical regions. Current anthropogenic stressors threaten these ecosystems and
urge researchers to create improved monitoring methods for better environmental management.
Recent efforts that have focused on automatically quantifying the above-ground biomass using
image analysis have found some success on high resolution imagery of mangrove forests that have
sparse vegetation. In this study, we focus on stands of mangrove forests with dense vegetation
consisting of the endemic Pelliciera rhizophorae and the more widespread Rhizophora mangle mangrove
species located in the remote Utría National Park in the Colombian Pacific coast. Our developed
workflow used consumer-grade Unoccupied Aerial System (UAS) imagery of the mangrove forests,
from which large orthophoto mosaics and digital surface models are built. We apply convolutional
neural networks (CNNs) for instance segmentation to accurately delineate (33% instance average
precision) individual tree canopies for the Pelliciera rhizophorae species. We also apply CNNs for
semantic segmentation to accurately identify (97% precision and 87% recall) the area coverage of the
Rhizophora mangle mangrove tree species as well as the area coverage of surrounding mud and water
land-cover classes. We provide a novel algorithm for merging predicted instance segmentation tiles of
trees to recover tree shapes and sizes in overlapping border regions of tiles. Using the automatically
segmented ground areas we interpolate their height from the digital surface model to generate a
digital elevation model, significantly reducing the effort for ground pixel selection. Finally, we
calculate a canopy height model from the digital surface and elevation models and combine it with
the inventory of Pelliciera rhizophorae trees to derive the height of each individual mangrove tree.
The resulting inventory of a mangrove forest, with individual P. rhizophorae tree height information,
as well as crown shape and size descriptions, enables the use of allometric equations to calculate
important monitoring metrics, such as above-ground biomass and carbon stocks.

Keywords: mangrove forests; forest inventory; monitoring; habitat mapping; UAV; UAS; artificial
intelligence; machine learning; instance segmentation; semantic segmentation; above ground biomass;
carbon stock
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1. Introduction

For the past decades, the global area covered by mangrove forests has receded because
of direct and indirect anthropogenic causes such as land use changes, deforestation, pollu-
tion and climate change [1]. The potential impacts of the disappearance of mangrove forests
to local communities and adjacent ecosystems are manifold due to the critical services
that these forests provide (coastal protection [2], fish nurseries [3], feeding grounds [4],
carbon sequestration [5], etc.). The urgency of the current state of affairs has lead to the
launch of many protection, rehabilitation and reforestation efforts of mangrove forests
worldwide [6,7]. For these efforts to succeed, careful observation and detailed analysis of
forest conditions are required to identify problems, calibrate predictive models and enact
mitigatory management actions [8].

The condition of most forests can be assessed on different scales: individual trees,
the collection of trees in a forest stand or the complete forest ecosystem (considering biotic
and abiotic factors) [9]. An individual tree can be assessed in the field through many
indicators such as nutritional status, presence of parasites/pathogens, crown transparency,
diameter at breast height (DBH), crown length and crown width (m), to provide a few
examples. Then, these indicators are collected for trees in several plots, aggregating the
measurements in inventories and extrapolating for trees onto the forest stand. Creating
inventories of a forest enables certain ecosystem indicators to be derived, which can
be its biomass (above- and below-ground), canopy structure, tree species composition
and community structure [10,11]. For example, to calculate the above ground biomass
(AGB) for a forest using allometric equations, the following variables must be collected for
each individual tree: its species, height, DBH [12] and, to calculate the canopy structure,
the crown size and shape must be acquired.

The manual in situ measurement of these variables is a labor-intensive task when a
forest of several hectares is surveyed, even with advances in on-ground sensing technolo-
gies [13,14]. Thus, a limited number of small plots are surveyed depending on the aim,
the sampling costs, the extent of the forest, the tree sizes and species diversity found in a
patch of forest (e.g., 35× 35 m plots for trees over 50 cm DBH) [15]. There is a trade-off
between the sampling cost and the accepted uncertainties that appear when extrapolating
the measurements to the complete forest area [16]. Recent studies suggest that field surveys
entail significant errors in measurement and plot positions [16,17]. As in other intertidal
systems, in-situ plot measurements in mangrove forests can be difficult to execute, given
that tidal regimens, muddy terrain, pneumatophores and stilt roots, remote locations and
other factors severely reduce the accessibility. Furthermore, DBH can be difficult to measure
for some mangrove species (i.e., Rhizophora mangle), due to their complex trunk-growing
structure [18], and correct crown size and shape is difficult to measure visually, given the
irregular shape and clumpiness of the canopies [19].

In recent decades, researchers have used fly-over strategies to capture plane-view
images of forests to use for inventory creation. This has been fueled by the advancements in
remote sensing, image analysis and machine learning. These advancements have enabled
analyses of mangrove forests and their dynamics across vast scales [20–22]. In these studies,
spectral indices, such as normalized difference vegetation index, are calculated for each
pixel to describe and classify mangrove forests, being able to label the tree species and tree
density within a pixel, as well as canopy width and forest fragmentation [22]. The benefits
of Earth-observation technologies are the large spatial coverage and frequent acquisition of
images. Paired with machine learning automation, studies of long time-series of images
can be carried out. Recent improvements in satellite image resolutions (i.e., 0.031 m for
the World-View 3 satellite) have allowed for more resolved classification of trees using
semantic segmentation neural networks [23,24], detection of individual trees using instance
segmentation networks [25–28] and detection of mangrove forest clearings [29] on high-
resolution RGB images. Nonetheless, the calculation of certain variables, such as the
height of trees extracted from canopy height models (CHMs) is error-prone at the current
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resolution of satellite imagery and should be paired with low-flying platforms, such as
planes or UASs [28] for better validation and performance.

Several recent studies have pointed out and demonstrated the value offered by UASs
for monitoring coastal environments, such as mangrove forests [30–33]. The imagery taken
with UASs can be processed with structure from motion (SfM) software to produce geo-
referenced orthorectified photo-mosaics (orthomosaics) and digital surface models (DSMs).
Paired with novel image segmentation techniques, precise area coverage of individual tree
species in a forest are determined and other surrounding land cover classified (i.e., grass,
shrubs, water, sand, mud, etc.) [34,35]. Certain terrain classes such as mud and sand are
used to calculate the height of forest canopies or of individual trees by subtracting their
elevation from the elevation of trees in the DSM [36,37]. Furthermore, using hyperspec-
tral and multispectral cameras yielding high-dimensional input data, the area covered by
multiple tree species in a forest can be accurately segmented [38]. Individual tree crown
segmentation, delineation and classification can be facilitated by the advancement of ma-
chine learning algorithms on the high resolution RGB and LiDAR images of low-flying
platforms [39]. Recent studies segmented mangrove trees in forest plots using images from
RGB or LiDAR sensors mounted on a consumer-grade UASs together with object-based
image analysis (OBIA) algorithms, and compare the predicted segments to on-ground
measurements [19,36,40]. Despite the success of OBIA algorithms on UAS images to detect
mangrove trees, they rely upon tree crowns that are visually well separated and detailed
elevation maps. The potential benefit of state-of-the-art instance segmentation techniques is
to handle dense canopies and rely only on imaging data. A recent review [41] of deep learn-
ing applications for tree crown segmentation noted the potential of instance segmentation
applications, hindered mainly due to the insufficient training data. The development of
instance segmentation workflows of high resolution RGB images acquired from consumer-
grade UASs is critical to be used as validation for global Earth-observation efforts and as
preparation for improved resolution in future satellite sensors.

In this work, we develop and present a complete workflow to delineate individual
trees of the Pelliciera rhizophorae mangrove species and calculate inventory measurements
(i.e., tree height, crown shape and size, geo-location, etc.), as well as map the land cover
for other classes: Rhizophora mangle, water and mud (see Figure 1). The input data were a
set of orthomosaics and DSMs created from images captured with consumer-grade UASs
in three mangrove forest stands located in the Utría National Park on the Colombian
Pacific coast (Figure 2). We implement two separate deep learning networks: (i) a semantic
segmentation neural network to identify area coverage of the two mangrove species, mud
and water classes and (ii) an instance segmentation neural network to delineate individual
Pelliciera rhizophorae mangrove trees. We present a novel tiling/untiling algorithm (from
here onwards, we refer to stitching or merging tiles together as “untiling”) for the correct
preservation of predicted tree instances located at the edges of tiles of large orthomosaics.
We also provide a comparison of three different semantic segmentation untiling techniques
to resolve the overlapping borders of tiles. We automate the calculation of a CHM, created
from a digital elevation model (DEM) using the classified ground pixels and compare it to a
DEM created from manually selected ground areas. Finally, using the delineated trees and
the CHM, we provide an inventory of the trees in the mangrove forest with their specific
height, crown size and crown shape as well as area cover and height distribution values for
the other tree classes.
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Figure 1. From airborne images to a detailed tree inventory: we present a workflow that creates
a tree inventory for 35 hectares of a mangrove forest. The workflow starts with data acquisition
using UASs flown over the mangrove forests. We then build top-down orthomosaic and DSM with
SfM software. We implement a tiling and a novel untiling process of the orthomosaics and DEM
images. Instance segmentation neural networks were used for detecting individual trees and semantic
segmentation networks were used to map land cover. Using the classified ground regions, we created
and interpolated the digital terrain model (DTM) into a DEM. Subtracting the DEM from the DSM
yielded a comprehensive canopy height model. For each automatically segmented tree instance,
the tree height was derived from the CHM. This creates an inventory of trees with their heights and
crown areas, even in a dense forest canopy, and enables the calculation of above ground biomass,
an important measure for monitoring and carbon stock assessments.

Figure 2. Surveying a dense canopy in a remote forest area: we used a consumer-grade UAS to survey
a mangrove forest located in the Utría national park in the Colombian Pacific coast. Three surveyed
plots of mangrove forests were used. For each plot large orthomosaic images were created, with fine
spatial resolution (e.g., 3.64 cm/pixel) of the underlying mangrove trees. The two dominant species
of mangrove trees are the Pelliciera rhizophorae species and the Rhizophora mangle species. Each of the
three plots provide unique challenges for canopy segmentation, given that their conditions differ in
ground composition, exposure, tidal level during the survey and lighting/blurring in the images.
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2. Materials and Methods

The complete workflow, from data tiling to tree inventory, was developed in the
Python programming language, using Snakemake [42] to manage the analytical workflow.

2.1. Study Site and Input Data Structure

We focused on three mangrove forest sites of the Utría National Park: La Chunga
North (LCN), Terron Colorado (TC) and Estero Grande Shore (EGS) (see Table 1 for area
sizes). These mangrove forests are mainly comprised of two mangrove species: Pelliciera
rhizophorae and Rhizophora mangle. P. rhizophorae is endemic to the East Pacific and Caribbean
regions and is listed as vulnerable in the International Union for Conservation of Nature
(IUCN) Red List for endangered species [43]. It lives in intermediate to upstream estuarine
environments with medium to high tidal ranges. The R. mangle species is more widespread
across the Atlantic/East Pacific bio-geographic region and is listed as of “least concern”
in the IUCN Red List for endangered species. It is found in downstream to intermediate
estuarine environments with low to medium intertidal shifts.

Table 1. Mangrove forest study sites and digital products details.

La Chunga Terron Estero Grande
North (LCN) Colorado (TC) Shore (EGS)

UAS images

Quantity 289 346 106

Areas

Surveyed 367,806 m2 241,752 m2 425,851 m2

Mangrove forest 223,456 m2 120,726 m2 110,960 m2

Annotated 50,347 m2 28,410 m2 —

Resolutions

Ortho. image 19, 855× 21, 068 px 16, 375× 18, 923 px 10, 478× 24, 485 px
Ortho. pixel 3.64 cm/px 3.27 cm/px 5.83 cm/px
DSM image 15, 145× 15, 377 px 13, 148× 13, 454 px 6759× 15, 468 px
DSM pixel 7.29 cm/px 6.55 cm/px 11.7 cm/px

GCPs

Quantity 3 2 4
RMSE * 0.011 m 0.0097 m 1.13 m

Tiles **

Total 3304 2438 2070
Annotated 196 168 —

* Root-mean-square error (RMSE) for ground control points (GCP) over all (X,Y,Z) coordinates. ** Tiles of size
512× 512 pixels with 30% overlap.

The aerial footage of the sites was captured in 2019 (19–22 February) using two
consumer-grade UASs the DJI Phantom 4 and DJI Mavic Pro (SZ DJI Technology Co., Ltd—
Shenzhen, China). The DJI Phantom 4 has an integrated photo camera, the DJI FC330, which
has a 1/2.3′′ CMOS sensor with 12.4 M effective pixels, a focal length of 4 mm, a pixel size of
1.56× 1.56 µm and a resolution of 4000× 3000 pixels (px). The DJI Mavic Pro was equipped
with the integrated DJI FC220 camera with 4000× 3000 px resolution, 12.35 M effective
pixels and 26 mm wide-angle lens. The flights were programmed to follow the trajectories
in an automated mode by means of the commercial app “DroneDeploy”. Ground control
points (GCPs) were positioned in the field, and their geographic location was acquired. We
used two single-band global navigation satellite system (GNSS) receivers: an Emlid Reach
RS+ single-band real-time kinematics (RTK) GNSS receiver (Emlid Tech Kft.—Budapest,
Hungary) as a base station, and a Bad Elf GNSS Surveyor handheld GPS (Bad Elf, LLC—
West Hartford, AZ, USA). RINEX static data from the base station was processed with
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the Precise Point Positioning Service (PPP) of the Natural Resources of Canada (https:
//webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp.php, accessed on 26 June
2023), while rover position was processed using the RTKLib software (https://rtklib.com/,
accessed on 26 June 2023) through a post processed kinematics (PPK) workflow. The final
absolute positional accuracy of the products is below one meter because the results of the
PPP workflow has a positional accuracy between 0.2 m and 1 m. The acquired images and
GCPs were analyzed and used as inputs in the software Agisoft Metashape Professional
1.6.2 (https://www.agisoft.com/, accessed on 26 June 2023). With this SfM-MVS (structure
from motion-multi-view stereo reconstruction) method we created an orthomosaic and
a digital surface model for each site, similar to a previous study in the same geographic
region [32]. Table 1 shows more details about the photogrammetric products.

2.2. Annotations

The preparation of the image data for machine learning started with the annotation
of classes of interest. The LCN and TC sites were used for training and testing the deep
neural networks; the EGS site was used as an out-of-distribution dataset. In the created
orthomosaics it was easy to visually distinguish the regions of mangrove forest from the
surrounding terrestrial forest. We delimited the area of the mangrove forest to only use
this region during the prediction by the machine learning process (see orange outline in
Figure 3 and Table 1 for area sizes). In LCN, 61% of the area is covered by mangrove
forest, in TC 50% is covered by mangrove forest and in EGS 26% of the area is covered
in mangrove forest. Inside the mangrove forest stands of LCN and TC, we selected three
subplots per site to annotate the classes manually, specifically for the machine learning
training process (see red outline in Figure 3; see Table 1 for the area sizes). In LCN, 22% of
the mangrove forest area was annotated and in TC 24% was annotated.

Inside these subplots, different types of annotations were made for training semantic
segmentation and instance segmentation CNNs (Figure 3). For semantic segmentation
networks, pixel annotations were required. We selected P. rhizophorae, R. mangle, short-
sized R. mangle, water and mud as our target classes (see Table 2A for annotation numbers).
It was possible to visually differentiate between P. rhizophorae and R. mangle species in
most cases. In some areas, distinct short-sized and shrub-like tree patches were visible.
After comparing to on-ground images it was clear that these patches were comprised of
short-sized R. mangle. Water pixels were also manually annotated. After these annotations
were finished, the remaining non-annotated pixels were labeled as mud.

Table 2. (A) Pixel-wise and (B) tree-wise annotation details per site.

(A) Pixel-wise annotations for semantic segmentation

Label La Chunga North Terron Colorado Total

Pelliciera
rhizophorae

24,304 m2 10,268 m2 34,572 m2

17,753,335 px 9,429,282 px 27,182,617 px
(48%) (35%) (42%)

Rhizophora
mangle

7998 m2 6637 m2 14,635 m2

5,842,042 px 6,094,429 px 11,936,471 px
(16%) (22%) (19%)

Short-sized
Rhizophora mangle

3716 m2 629 m2 4345 m2

2,714,167 px 577,334 px 3,291,501 px
(8%) (2%) (5%)

Water
2214 m2 1239 m2 3453 m2

1,617,468 px 1,137,770 px 2,755,238 px
(4%) (4%) (5%)

Mud
12,115 m2 9637 m2 21,752 m2

8,849,536 px 10,020,035 px 18,869,571 px
(24%) (37%) (29%)

https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp.php
https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp.php
https://rtklib.com/
https://www.agisoft.com/
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Table 2. Cont.

(B) Tree-wise annotations for instance segmentation

Label La Chunga North Terron Colorado Total

Pelliciera rhizophorae 2855 trees 1756 trees 4611 trees
* Pixel-wise annotation percentages are relative to the total annotated area in each plot.

Figure 3. Annotating and tiling for AI: within the orthomosaics, working regions were marked,
inside which the mangrove forests were considered for further classification (see orange lines).
Inside sub-regions (red polygons), annotations were created for 5 classes (Pelliciera rhizophorae,
Rhizophora mangle, short-sized R. mangle, water and mud). The areal annotations were used for
semantic segmentation and the individual P. rhizophorae tree annotations were used in instance
segmentation. The large orthomosaic images and their corresponding annotations were tiled using
different strategies and allowed to downsize the classification problem to fit within the constraints
of our computational resources. Different combinations of input signals from the plots were used
by merging color pixels and the height information from the DSM.

Tree instances were only marked for the P. rhizophorae species. Each tree was visually
identified on the orthomosaic images and delineated using shapes in QGIS v3.12 (https://
www.qgis.org, accessed on 26 June 2023). In total, 4611 P. rhizophorae trees were annotated,
2855 in LCN and 1756 in TC (Table 2B). Individual R. mangle trees were difficult to visually
delineate, and therefore areas of contiguous canopy of this species were annotated.

2.3. Data Tiling

The large sizes of the orthomosaic files (i.e., 21, 068× 19, 855 pixels for LCN, 1.3 GB)
are not directly suited for supervised learning with neural networks due to computational
restrictions. In machine learning pipelines, the large orthomosaics are processed by taking
smaller tiles as the processing unit. We implemented tiling with windows of a fixed size

https://www.qgis.org
https://www.qgis.org
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of 512× 512 pixels (around 17× 17 m), which allows for an average of 30 trees of the
P. rhizophorae species inside each tile. The tiling can be done with or without overlap
between adjacent tiles to reduce uncertainties of predictions around tile borders by the
CNNs. Using overlap also requires us to merge tree instances that are split between the
borders of 2 or more tiles. We selected 30% overlap between tiles (154× 512 pixels), allowing
P. rhizophorae tree masks to maintain their complete shape in at least one tile. Identical
tiling procedures were applied to all four linked layers of each study site: the orthomosaic,
the elevation image (DSM), the class annotation regions and the tree annotations (Figure 3).

2.4. Deep Learning: Semantic and Instance Segmentation Networks

We used two separate CNNs: a semantic segmentation network for dense pixel-wise
predictions and an instance segmentation for delineation of P. rhizophorae trees (Figure 4).
As input for both networks, we used the RGB tiles extracted from the orthomosaic images
and the elevation tiles extracted from the DSM. We also ran the process with RGB + height
tiles but a preliminary analysis showed no real benefit to considering the height information
for the deep learning process. Thus, for the data experiments and final predictions, we only
considered RGB tiles.

Figure 4. Two networks to rule them all: our workflow uses AI to convert orthomosaics of the
mangrove forests into habitat maps and a tree inventory. The input of an RGB, height or RGB+height
tile goes through a series of convolutional filters to extract deep features. The instance segmentation
network CenterMask2 uses a spatial attention module to suggest prediction masks inside bounding
boxes, which potentially delineate the canopy of individual P. rhizophorae trees. The semantic seg-
mentation network uses an encoder and decoder framework to assign one of five semantic labels (see
Figure 3) to each pixel. The network architecture illustrations are adapted from [44] for CenterMask2
and from [45] for DeepLabV3+.

We implemented the DeepLabV3+ [45] semantic segmentation network with the De-
tectron2 Python library [46], which is build on the PyTorch machine learning library [47].
This algorithm has been successfully applied towards pixel-wise segmentation of natu-
ral habitats in top-down images [48,49]. A recent study [38] used a modified version of
DeepLab for semantic segmentation of hyperspectral images in Brazilian forests. We se-
lected the ResNet-101 backbone for the DeepLabV3+ architecture, which also uses separate



Remote Sens. 2023, 15, 3334 9 of 24

atrous convolutional layers to ensure higher-resolution outputs and reduce execution time.
Starting from network weights from training with the ImageNet dataset, we retrained
the whole network parameters with our image data. For training, we used 300 tiles in
batches of 4, and employed 15,000 iterations in total. For the optimizer, we used a learning
rate scheduler with polynomial decay (weight decay of 0.001) and warm-up period of
1000 iterations, developed for the DeepLab network. We use an initial learning rate of 0.01,
a “hard pixel mining” loss function, and a loss weight of 1. The DeepLab network was
trained on two NVIDIA RTX 2080 Ti GPUs (NVIDIA, Inc.—Santa Clara, CA, USA) with
12 GB of memory each. The annotation input for the training of the network were densely
annotated tiles (see Figure 3). The outputs of the semantic segmentation network were
vectors of five class probabilities for each pixel in a tile. The highest probability value was
selected as the class prediction in each pixel.

For instance segmentation, we implemented the CenterMask2 network on the De-
tectron2 framework, an improved version of the CenterMask instance segmentation net-
work [44]. The authors show that CenterMask2 outperforms the more commonly used
MaskRCNN (mask region-based convolutional neural network), which has been recently
used in tree segmentation studies [27,50,51]. CenterMask2 is an anchor-free one-stage
instance segmentation network that implements a spatial attention-guided mask. The pre-
trained backbone (on the ImageNet dataset) we used was the VoVNetV2-99 network [52],
and its stem and first residual module parameters were frozen. The network ran for
15,000 iterations with batches of 16 images. It used a warm-up multi-step learning rate
scheduler, with 0.001 weight decay, 1000 warm-up iterations and steps at 10,000 and
13,000 iterations. The CenterMask2 network ran on two NVIDIA RTX 3090 Ti GPUs with
24 GB memory each. The annotation input for the training of the network were common
objects in context (COCO)-style JSON files with tree shape descriptions and locations on
the annotated tiles (see Figure 3). The output of the instance and segmentation networks
were P. rhizophorae tree instance descriptions with bounding boxes, locations, masks and
mask prediction scores (prediction confidence). On average, the training of the network
took 3 h and 20 min for each experiment.

Given the low number of total training tiles (364) across sites, we used augmentations
for both networks, with random flips of the images, cropping and rotations with the
Detectron2 training pipeline. We analyzed the amount of data (before augmentation)
needed for a better performance of the instance segmentation network. After separating
10% of the tiles as a testing dataset, we created several training datasets using 50%, 60%,
70%, 80% and 90% of the remaining tiles, thus ensuring a consistent testing dataset with no
overlap with the training datasets (Figure 5a). We also compared the performance when
considering “empty” tiles in the training set, in which no P. rhizophorae instance was present,
to not over-fit the network. As a measure of performance for instance segmentation we used
the mean average precision (AP) as defined by the COCO dataset (https://cocodataset.
org/#detection-eval, accessed on 26 June 2023). This index measures the percentage of
predicted instance masks for which the IoU (intersection over union) with the ground-truth
annotation is larger than a list of 10 different thresholds. The thresholds go from 50% to 95%
in steps of 5%, and then the percentages of masks with an IoU larger than the threshold at
each step are averaged to get the final AP.

We trained the semantic segmentation network on 90% of the tiles and 10% testing tiles.
We measured the performance of the network (Figure 5c) with precision (user’s accuracy)
and recall (producer’s accuracy) confusion matrices and with the Cohen’s Kappa score,
overall accuracy, overall recall, overall precision and the F1-score (the harmonic mean of
overall recall and precision values).

Additionally, we measured the agreement between P. rhizophorae and R. mangle pre-
dictions between the instance and semantic segmentation networks (Figure 5b). For this
we calculated the area fraction inside instance predictions that is predicted as P. rhizophorae
or R. mangle by the semantic segmentation network.

https://cocodataset.org/#detection-eval
https://cocodataset.org/#detection-eval
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(a)
(b)

(c)
Figure 5. Evaluation of training modality: we trained the networks with 6 different classification
regions annotated on 2 separate plots, looking for an optimal mix of annotation effort and generaliza-
tion performance from the networks. The higher the number of tiles used in training the network the
better the performance of the prediction (a). The best performance (33.1% instance average precision)
was achieved with 80% of the training tiles (267), using datasets with empty tiles (tiles were no
P. rhizophorae instance is found). In (b), we compared the agreement (or error) between predictions
of instance and semantic segmentation networks. Agreement of P. rhizophorae predictions for both
training and testing instances in both sites had a median of 97%. The error between P. rhizophorae
instances and R. mangle areas was very low, with a mean of 2.6% overlap for training instances and
4.5% for testing instances. In (c), we show the semantic segmentation performance. All classes
had a precision of over 80% and all classes except the short-sized R. mangle class had high recall
scores (>87%). The low recall score of short-sized R. mangle (28%) shows a large confusion with the
P. rhizophorae class.

2.5. Untiling Strategies

The predictions of the network on individual tiles had to be untiled back together to
recover a consistent prediction over the complete mangrove forest area. Given that the tiling
process was done with overlap between the tiles, different strategies had to be applied
to accurately recover and resolve the predictions in overlapping regions. The untiling
process had to be implemented independently for instance segmentation and semantic
segmentation predictions.

2.5.1. Untiling Instance Segmentation Tiles

Untiling the predicted instance tiles was done with a novel developed algorithm (see
Algorithm 1 for the pseudo-code) to control the preservation of tree instances in border
regions across tiles. The algorithm is controlled by two thresholds: one for the minimum
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predicted mask score and one for the overlap between two or more predicted instances,
which intersect in the prediction. A schematic of the untiling steps is shown in Figure 6.

Algorithm 1 Tree instances untiling algorithm

1: tiles← M(tile_width× tile_height× num_tiles× instances_per_tile) . M is a Matrix
2: mask_minimum_score← α
3: overlap_threshold← β
4: tiles← RemoveTilesWithoutInstances(tiles)
5: tiles← RemoveInstancesWithLowScores(tiles, mask_minimum_score)
6: untiled_map← M0(orthomosaic_width× orthomosaic_height) . A matrix filled with

zeroes
7: new_instance_id← 0
8: for tile in tiles do
9: for instance in tile.instances do

10: new_instance_id← new_instance_id + 1
11: temp_tile← Crop(untiled_map, tile.coordinates)
12: intersected_instances← temp_tile ∩ instance.mask
13: merge_to_instance← NULL
14: intersected_instance← NULL
15: for intersected_instance in intersected_instances do
16: intersection← intersected_instance.mask ∩ instance.mask
17: if intersection.size > (instance.size× overlap_threshold) then
18: if !merge_to_instance ‖ intersected_instance > merge_to_instance then
19: merge_to_instance← intersected_instance
20: end if
21: temp_tile[intersection]← intersected_instance.id
22: instance.mask[intersection]← False
23: else
24: if intersection.size > (intersected_instance.size × overlap_threshold)

then
25: intersection← intersected_instance
26: temp_tile[intersection.mask]← new_instance_id
27: instance.mask[intersection]← True
28: end if
29: end if
30: end for
31: if merge_to_instance 6= NULL & intersected_instance 6= NULL then
32: temp_tile[instance.mask]← merge_to_instance.id
33: intersected_instance.size+ = intersection.size
34: Delete(instance)
35: else
36: temp_tile[instance.mask]← new_instance_id
37: end if
38: untiled_map[tile.coordinates]← temp_tile
39: end for
40: end for

We first filter the tiles that do not have instances predicted in them. Then, we filter in-
stances that have a prediction score (confidence) under a given threshold mask_minimum_score
in the range [0.0− 1.0]. We create an empty matrix the same size as the original orthomo-
saic image (untiled_map). We iterate over all remaining instances in all remaining tiles,
creating a unique ID for any new instance that we keep. We crop the region correspond-
ing to the tile in the large orthomosaic image and save it to temp_tile. We then calculate
the overlap between the new instance and every intersected_instance. We iterate over the
overlapping instances and calculate the intersection size with the current instance. We
compare this overlap with mask size of the current instance times a given overlap_threshold
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in the range [0.0–1.0] (Algorithm 1 line 17–23). If the overlap size is larger than this value,
we assign the current instance pixels to one of the overlapping instances in temp_tile.
To decide into which instance to merge, we first check that no merge_to_instance variable
was set or that the intersected_instance size is larger than the previously saved instance
in merge_to_instance (Algorithm 1 line 18–20). We then replace the intersection location
in temp_tile with the ID of the current intersected_instance. We also remove the inter-
sected area from the current instance. Otherwise, in case the intersection.size is larger than
(intersected_instance.size × overlap_threshold), we assign the intersection to the current
instance in temp_tile (Algorithm 1 line 24–28). Afterwards, if merging_to_instance is set,
we assign all pixels in temp_tile of the current instance to that instance in temp_tile and
delete the current instance (Algorithm 1 line 31–35), or else we just add the (remaining)
parts of the current instance to its location in temp_tile. Finally, we merge the updated
temp_tile back to the larger untiled_map, which after all iterations will contain tree in-
stances without any overlap and clear crown boundaries. The algorithm’s execution time is
bound to the number of tiles (tile size and overlap) and number of instances predicted in
each tile.

Figure 6. Instanceuntiling algorithm and parameters. We provide a heuristic algorithm for untiling
the predicted instance segmentation within overlapping tiles. The algorithm works by filtering
low-scoring predicted tree masks and handling overlapping tile sections with an overlap threshold
to merge overlapping instances. In the illustration we show the process of merging two or more
instances into one or more instance, such that a coherent shape and tree count is preserved. We
calculated the ideal minimal mask score threshold and overlap threshold to preserve the original
count of trees in annotated areas. For the overall scene reconstruction we found that a 0.62 minimum
mask confidence threshold, together with a 0.5 overlap threshold predicted the same tree count as the
original annotation count. Any change in minimum mask confidence needs an adjustment in the
overlap threshold (error shown in shaded regions).

We measured the effects of the predicted mask score and overlap threshold variables
by looking at which values make the count of trees closest to the original annotations in the
annotation regions (Figure 6).

2.5.2. Untiling Semantic Segmentation Tiles

The predicted semantic tiles were untiled following three different strategies: over-
laying, clipping and averaging (schematic in Figure 7). Overlaying simply places each
new tile in its original position without considering any overlapped tile in that region. We
overlaid tiles starting in the top left corner of the orthomosaic image, going from top to
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bottom, and moving to the subsequent column until the last tile is reached in the bottom
right corner. This gives preference to predictions in tiles that are further down the list,
where only the last tile to be untiled maintains its complete area and all other tiles maintain
49% of it (given a 30% overlap example). Clipping means that the half of the overlap region
is clipped off the border of tiles and then placed in its original location on the orthomosaic.
In a 30% overlap example, corner tiles retain 72% of their central area, tiles at the edge of
the orthomosaic retain 60% and every other tile retains 49%. Averaging means taking the
mean of network softmax values in the overlapping regions before the argmax function is
used to select the predict class. In a 30% overlap example, corner tiles will have 28% of its
area averaged, border tiles 40% and all other tiles 51%.

Figure 7. Semantic tile-merging strategies. For the semantic segmentation tiles we tried 3 different
untiling strategies to recover the predicted habitat map: overlaying, clipping and averaging. We
compared them to the ground truth densely annotated tiles and calculated their accuracies. No
clear advantage was detected for any of the untiling strategies, which hints at the good prediction
confidence of state-of-the-art semantic segmentation networks, even around borders of images.

We measured the accuracy for each untiling strategies by dividing the total number
of predicted pixels of every class (inside the annotation regions in each site) by the total
number of pixels for that class in the manual annotation (Figure 7).

2.6. Digital Terrain Model, Digital Elevation Model and Canopy Height Model

After creating the untiled orthomosaics of semantic and instance segmentation predic-
tions we created a digital terrain model, digital elevation model and a canopy height model.
In this study we reference DTM as a model only showing terrain features (i.e., mud and
water pixels), selected from the DSM, which is the raw elevation model that considers all
natural and artificial features on the map. The DEM is the result of interpolating the DTM
to describe the elevation of the terrain below natural and built/artificial features. A CHM
is the subtraction of a DEM from the DSM. In this study, we selected ground points in
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the orthomosaics to create a DTM and then interpolated the empty areas with smoothing,
to generate a DEM [36,37].

We compared 2 strategies to select ground points and generate the DTMs. The first
strategy was manually selecting ground points (in QGIS) that visually looked like mud
or water region close to the mangrove trees. We corroborated that the selected region did
not contain any higher elevation pixels in the DSM (corresponding to the surrounding
trees), given that the initial resolutions of the orthomosaic and DSM were not identical.
The manual selection of points took around 2 h for the TC site and 3 h for LCN.

The second strategy used our semantic segmentation predictions as they also contain
ground pixels (mud and water classes). We use those regions to select the relevant points
to interpolate into a DEM. Given that the predictions might contain errors, we used a
threshold of 95% network confidence of the ground predictions to select pixels. This
yields a very small number of ground predicted regions (under 0.5% of pixels). Finally,
to remove residual pixels that may contain high elevation values in the DSM, we convolve
a window of 2000× 2000 pixels across the entire DSM and select pixels with elevation
under a parameterized percentile value. The pixels that passed through this filtering were
very likely to be only the ground level regions and were used as ground points for the
DTM interpolation.

For both strategies, we use the Geo-spatial Data Abstraction Library’s (GDAL)
f ill_no_data function to interpolate and smooth out the DTM into a DEM. This func-
tion uses the inverse distance weighting (IDW) algorithm to interpolate missing values in
a raster, followed by 3 smoothing passes with a 3× 3 kernel. We then subtract the DSM
elevation from the DEM elevation to obtain a CHM. We calculated the height of a tree by
selecting the maximum elevation inside its contoured shape from the CHM.

We illustrate the complete process in Figure 8. We compared the resulting elevation of
the trees using both strategies by plotting them against each other, and by comparing the
bias of the mean and the 95% limit of agreement using Bland–Altman (or mean-difference)
plots (Figure 8). We use the first “manual” ground pixel selection strategy as control for the
second “automatic” ground pixel detection strategy.

Figure 8. Digital elevation model (DEM) and canopy height model (CHM) strategy comparison: we
illustrate our automatic ground selection and interpolation process. From the semantic segmentation
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predictions we select and filter high confidence ground pixels, which we then use to interpolate the
DSM values in the corresponding ground locations. We subtract the DSM values from the DEM to
generate a CHM. Finally we “cookie-cut” the predicted tree instances on the CHM to calculate height
statistics of the tree crown. We check if the automatically extracted DEM is correlated to a DEM
generated from manually selected ground regions in the plot. The tree heights from both methods did
not show a significant bias for either technique as shown in the regression plots and mean-difference
plots for both LCN and TC sites. Outliers can be caused by imperfections in the original DSM.

2.7. Forest Inventory

We summarize the attributes of the automatically delineated trees, such as crown
shapes and heights, into an inventory of the forest (Figure 9). We calculate mean and
maximum pixel heights inside predicted tree crown shapes for both DEM creation strategies.
We also calculate and plot the tree crown diameter from the major axis of the ellipsis with
the same second moment as the crown polygon. Other metrics calculated from the instance
contour are the tree crown eccentricity, which is the ratio of the focal distance (distance
between focal points on the ellipsis covering the tree crown shape) over the major axis
length (a value of 0 means the shape is a perfect circle), and tree crown area in square
meters. We also plot the tree height in meters against the canopy area in square meters
using a linear regression plot. These measurements were extracted with the “regionprops”
function of the “scikit-image” Python library [53].

Figure 9. Combined inventory of the La Chunga North and Terron Colorado mangrove forest plots. We
measured the (a) mean height and (b) maximum height in predicted P. rhizophorae instances as well as
(d) tree crown diameter, (e) eccentricity and (f) area. We plotted (c) tree height against tree crown area.
We compare (g) the tree heights and (h) tree crown areas of P. rhizophorae from the training sites LCN
and TC with the out-of-distribution site Estero Grande Shore. We also compare the (i) area coverage of
P. rhizophorae, R. mangle and short-sized R. mangle across the three sites.
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Finally, having the trained pipeline, we tile, predict the semantic and instance seg-
mentation outputs and untile the out-of-distribution EGS site. In order to measure the
scalability of the method, we then compare P. rhizophorae tree heights and tree crown areas
for all three sites. We also compare the area cover of the R. mangle and the P. rhizophorae
species as well as that of the short-sized R. mangle class from the semantic segmentation
predictions. Finally, we calculate the pixel-wise height distributions in the CHMs for
area-wise predictions of the three tree classes.

3. Results

The presented workflow allows for automatic delineation of individual P. rhizophorae
trees and the segmentation of R. mangle canopy areas, as well as other land cover classes
(mud and water). We review the accuracy of both instance and semantic segmentation
networks, as well as of the untiling of the predicted tiles, and finally of the automatic
calculation of tree measurements, such as height from the generated CHM.

3.1. Deep Learning Performance

We measured the performance of both instance and semantic segmentation networks
separately but also compared their agreement on predictions for the P. rhizophorae class and
overlap with the R. mangle class.

In Figure 5a, we show the performance of the CenterMask2 network when both tiles
with P. rhizophorae instances and tiles without P. rhizophorae instances were considered in
the training procedure. For both cases, the performance peaked with 80% of the training
tiles (228 tiles without and 267 with empty tiles). When considering empty tiles, the AP
was 33.2% and without the empty tiles it was 32.6%. With the 90% training fraction, the
performance reduced by 1.2% when considering empty tiles and only by 0.3% when not.
The best performing network was used for the final tile predictions.

The performance metrics for the semantic segmentation network are shown in
Figure 5c. The overall precision for the network was 89%, the overall recall 88%, the F1-score
was 87%, the overall accuracy was 88%, and the Kappa score was 82%. The precision con-
fusion matrix also shows the per-class performance, where R. mangle has the highest score
(97%), followed by water (96%), mud (89%) and short-sized R. mangle (89%) and finally
P. rhizophorae (83%). In the recall matrix, the highest value was for P. rhizophorae with 96%,
while by far the lowest was the short-sized R. mangle, with 28%. The major confusion that
affected the recall values was between P. rhizophorae, mud and short-sized R. mangle. Other
minor confusions occurred between water and mud and between short-sized R. mangle
and R. mangle.

The two networks showed good overlap between their P. rhizophorae predictions,
with median values of 98% for training instances and 97% for testing instances. Nonetheless,
some P. rhizophorae tree crown instances in the testing tiles had fewer pixels predicted as
P. rhizophorae by the semantic segmentation network inside their area (lower 25% quartile
of 85% overlap). Similarly, there seemed to be little confusion between predictions of the
two mangrove species. We found a median of 0.05% of all training and testing instances
and a mean of 2.6% for training instances and 4.5% for testing instances. The instances in
testing tiles showed higher overlap with up to 12% overlap for the upper 75% quartile.

3.2. Untiling Accuracy: Tree Instances

Our novel instance untiling algorithm (Algorithm 1) for tree crown masks can be
modulated by two parameters: the mask prediction score and the overlap (IoU) threshold.
To understand the interplay between the two parameters, we plot the mask score threshold
value against the P. rhizophorae tree count after the untiling algorithm has been applied
(Figure 6). The forest area used in this experiment is the sum of all the annotated regions
in each site; hence, the dotted “ground truth” lines show the total number of manually
annotated P. rhizophorae trees. The error, shown in shaded areas, corresponds to the different
values obtained from changing the overlap threshold (from 10% to 90% overlap). For the
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LCN site, the ideal minimum mask score threshold was at 67% and an overlap threshold of
50%. For TC, the mask threshold was at 56% confidence and the overlap threshold at 50%.
When combining both sites, the ideal mask score was 62% and an overlap threshold of 50%.
The minimum mask score changed between 59% and 65% when the overlap threshold
was changed from 10% to 90%, respectively. We used the ideal value of a 62% mask score
threshold and 50% overlap threshold for the final predictions of the complete mangrove
forest sites.

3.3. Untiling Accuracy: Semantic Labeling

Similar to the instance segmentation network, we measured the accuracy of untiling
the results of semantic segmentation prediction on tiles with overlap while employing
three different merging strategies (Figure 7). For each strategy and site, we calculate the
accuracy by comparing the labeled pixels of each annotated regions against the labels in
the untiled prediction. The accuracy variability was negligible for all strategies. In LCN
the accuracy was 86.4% for the overlay and clip strategy and 86.6% for average, while in
TC, it was 91.5%, 91.6% and 91.7%, respectively. These accuracy values for the final untiled
areas correlate with the accuracy reported for the testing tiles in the confusion matrices
(Figure 5c). This portrays the great generalization capabilities of the semantic segmentation
network, even in image borders.

3.4. Automatic Creation of Digital Elevation Model and Canopy Height Model

After untiling as described, we compared two ways to generate the needed DEM to
accurately calculate the CHM: manually selecting ground pixels versus machine-predicted
(semantic segmentation network) mud and water pixels. In Figure 8, we show that for
a vast majority of the P. rhizophorae trees, the heights calculated from the CHMs from
both DEMs correspond by staying close to the one-to-one line in the regression plots
(Figure 8). We predicted and compared 12,572 P. rhizophorae trees in the LCN site and
4574 P. rhizophorae trees in TC. The Bland–Altman (mean-difference) plots show little bias
in tree height predictions both in LCN (−0.72 m of mean difference) as in TC (−0.18 m of
mean difference) from the automatic ground detection against the manual ground selection
technique. In LCN, a small number of outliers were found outside of the −3.4 lower
95% limit of agreement (−1.96 SD line) standard deviation, where some trees were predicted
as taller when using the automatic ground detection. Inversely, in TC, some trees were
predicted as taller when using the manual ground selection strategy DEM, pushing the
upper 95% limit of agreement (the +1.96 SD line) to 1.7, but the lower 95% limit was
higher at 2.1.

3.5. Tree Inventory and Area Coverage

In Figure 9, we summarize the tree-level description of the forest stands created by
our workflow. This includes the P. rhizophorae tree inventory and the area coverage of the
R. mangle mangrove species and short-sized R. mangle. For the automatic ground detection
CHM, the mean pixel height in P. rhizophorae predicted masks had a mean value of 7.58 m
and the mean of maximum height values was 9.33 m (Figure 9a). The height values in the
25% and 75% quantile range were 5.35 m to 9.5 m for the automatic CHM, and 20.48% of
trees had a maximum height over 10 m (Figure 9b).

We also calculated the tree crown diameter (major axis of ellipse), eccentricity and
areas in square meters (Figure 9d–f). The mean of the crown diameters was 3.9 m. The dis-
tribution of eccentricity of the tree crowns tended towards 1.0 with a mean of 0.67, meaning
that their shapes were more elongated and less circle shaped. The mean of tree crown areas
was 6.77 m2. The largest crowns measured up to 20 m2. For the P. rhizophorae trees, we
checked the correlation of tree height with the canopy areas (Figure 9c). We noticed that
shorter trees did not have larger crown areas (Figure 9c). The opposite was not the case,
since we find small canopy areas with large heights.
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We compared tree heights and tree crown areas of the two in-distribution sites (LCN
and TC) with the out-of-distribution EGS site (Figure 9g,h). The calculated heights show
an almost identical distribution, with very similar means and with 50% of the trees in the
5–10 m range. The tree crown areas present similar distributions between LCN and TC,
with means around 7 m2 and most trees having an area under 10 m2. Trees in the EGS site
show a wider distribution with a similar mean than the other two sites but with 40% of
trees in the 10–20 m range.

Finally, we calculated the area coverage for P. rhizophorae, R. mangle and short-sized
R. mangle from the semantic segmentation predictions. In LCN, the P. rhizophorae species
was the most common class with 12.79 ha, followed by R. mangle with 2.8 ha and short-
sized R. mangle with 0.6 ha. In TC, the difference was not as pronounced, with P. rhizophorae
covering 3.49 ha and R. mangle covering 1.41 ha and short-sized R. mangle with 0.34 ha.
In the out-of-distribution site, EGS, P. rhizophorae covered 3.63 ha and R. mangle covered
4.1 ha, and short-sized R. mangle covered 1.1 ha. The average height of R. mangle areas
over the three sites had a range of 6–12 m with a mean of 10 m. The heights of short-sized
R. mangle areas was lower, mostly in the 3.3–5.4 m range.

4. Discussion

In this study, we propose a novel method for creating an inventory of mangrove forests
and their surroundings. We also provide a technique for the automatic creation of a DEM
and CHM, to calculate heights of individual trees and tree areas. We show that machine
learning with deep neural networks has the potential to greatly increase the throughput and
precision of surveys of hard-to-access forest areas. Furthermore, by detecting the contour
of individual tree crowns and their respective heights, valuable information is obtained for
allometric analysis. We show that the workflow can be scaled to handle large mangrove
forest regions and generalizes well to new survey data that were not in the training dataset.

4.1. Effort Reduction of On-Ground Work and Annotation

Mangrove forests present difficult conditions for on-ground field surveys, given
their complex root systems, tidal regimens and remote locations. The use of airborne
imaging systems can alleviate the effort by covering large distances in a short time and not
being hindered by the complex setting of the forest floor. UASs, in particular, provide
a controllable platform for high resolution imaging of target areas from above. In this
study, we used the photogrammetric products (orthomosaic and DSM) constructed from
aerial imagery captured with consumer-grade UASs in a remote and inaccessible area of
Utría National Park on the Colombian Pacific coast. We used UASs with their default RGB
cameras because this technology is easily accessible for local park authorities. Other studies,
in contrast, have used more expensive sensors, such as multispectral or hyperspectral
cameras, as well as LiDAR sensors [19,38].

We set out to establish that state-of-the-art deep learning techniques can enable even
consumer-grade imagery to deliver information-rich survey output at the scale of entire
mangrove forests. Given the large extent (103 hectares; Table 1) of the forests captured
in the orthomosaics, we annotated subplots that would approximately represent 20% of
the total mangrove area (Figure 3). To capture the variability in the sites, we used the
following criteria when selecting annotation subplots: presence of both mangrove species,
mud and water presence, location in the plot and height differences in the DSM. To train the
semantic segmentation network, we densely annotated large areas such that no pixel was
left un-annotated. To measure the performance of the untiling algorithms, we also selected
rather larger regions to annotate (three per site) instead of directly annotating smaller-sized
tiles that would fit in the network. The contouring of individual P. rhizophorae trees in QGIS
was the most time consuming part of the process, but this time can be reduced by using
novel annotation software designed for supervised learning with large orthomosaic images,
such as TagLab [54].
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The decision to not include the R. mangle species in the instance segmentation process
was made due to the difficulty for the human annotators to visually identify individual
tree crowns from each other. This could be overcome by using more specialized sensors
that capture higher spatial and spectral resolutions and UASs with steadier flight control,
considering the cost trade-off. Even so, the uneven growth patterns of mangrove crowns
can be a limiting factor in comparison to other types of forests, where individual trees are
easily distinguishable or where forest canopies have more spaced patterns [34].

We also included the short-sized R. mangle class, given that some parts of the forest had
a shrub-like aspect that differed from surrounding trees. Most of these areas were exposed
to incoming tide, and a smaller fraction were found in-between patches of P. rhizophorae
trees. After comparing with on-ground images, we determined that those areas were
covered in short-sized R. mangle trees. Given that it was not possible to visually identify
individual tree crowns in the aerial images, we annotated area patches that covered one or
more trees.

4.2. Instance and Semantic Segmentation

Using two deep neural networks that produce different outputs helped us achieve
three distinct goals. First, the instance segmentation network CenterMask2 was trained
to identify individual tree crowns for the P. rhizophorae mangrove species. Instance seg-
mentation networks were developed for detecting everyday objects in urban settings
but have been successfully transferred to a variety of other fields, such as natural envi-
ronments [55,56]. Our implementation achieved an AP of 33% using over 80% of our
annotated regions for training. This a good performance considering some quality artifacts
in the orthomosaics of the images, such as blurring and the reduced training samples.
Another source of error was the contour of annotations, given that mangrove canopies were
not always 100% distinguishable between species and between trees of the same species.
Furthermore, AP is a very stringent metric of performance as it heavily penalizes small
errors in the mask overlap.

The second goal that our automation pipeline achieved was to annotate R. mangle
areas with recall of 87% and precision of 97% (Figure 5c). We were not able to annotate
individual trees for this species but were able to describe the area cover. In such cases,
where individual trees cannot be detected, area cover and its height distribution can be used
to monitor the species AGB [57]. By using the detected trees from instance segmentation
and the areas from the semantic segmentation, we can account for every species in the
mangrove forest. In Figure 5b, we show that P. rhizophorae and R. mangle have little to no
overlap between the semantic and instance segmentation predictions, indicating a robust
separation of these two classes.

The third goal of our workflow was to retrieve ground pixels (i.e., mud and water) to
produce a DTM and a subsequent interpolated DEM. The semantic segmentation network
predicted areas of the mud and water classes with high precision (89% and 96%, respec-
tively), allowing for accurate detection of ground areas surrounding the mangrove trees.

4.3. Automating the Canopy Height Model

The creation of a DEM from accurately detected ground areas allowed us to extract
a consistent CHM, from where individual tree heights could be estimated. The automati-
zation reduces the time effort of manually selecting ground pixels by 3 h per plot. In the
created DEM, nonetheless, we found small imperfections noticeable in the outliers of the
mean-difference comparison in Figure 8. This was the result of artefacts from the difference
in resolution of the DSM and orthomosaic. For example, some pixels in the bordering
regions of mangrove trees and ground pixels were predicted as ground but had an elevation
value in the DSM that corresponded to the trees. We reduced these errors by selecting only
predicted ground pixels with high confidence (>95%) and further filtering pixels under a
certain elevation in tiles along the scene (see Methods). After this filtering, the error in the
heights of P. rhizophorae trees between the two methods was not significant. The outliers
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can be further corrected by checking and correcting small imperfections in the automat-
ically generated DEM, which still takes only a couple of minutes compared to hours of
selecting ground pixels for a manual DEM. Furthermore, in long-time monitoring set-
tings, the time gain of automating CHM creation is additive. Finer CHM calculations with
closer-to-ground sensing techniques can be used for global-scale canopy height estimation
studies [58].

4.4. From Pixels to Tiles to Trees

In our workflow, we propose a novel instance untiling algorithm that minimizes errors
on tile borders (Algorithm 1; Figure 6). By tiling the forest plots with overlap, we enhance
the probability that trees in border regions will be recovered correctly. Nonetheless, it
also complicates the untiling process since the decision has to be made if two or more
overlapping masks represent the same or different trees. The two settable parameters in our
algorithm allow for adjusting the untiling process to match available on ground data (count
of trees). The mask prediction score threshold reduces the number of trees considered for
the final prediction by discarding low-confidence predictions such that less overlap occurs
in the borders. Then, the overlap threshold parameter handles the case when two or more
instances do overlap, and depending on the sizes of their masks and their intersection, we
consider merging or dividing the masks. The algorithm gives preference for the already
existing tiles in the final prediction because it checks first the existing instances for their size
versus the intersection size. The algorithm also works if multiple instances are overlapping
with the incoming instance, and each is merged into, merged together or split accordingly.
In our study case, we utilize an overlap of 30% between tiles, but this algorithm works on
any overlap sizes.

Similarly, for the semantic segmentation predictions, we combine the tiles using
different strategies (Figure 7). In contrast to the large size of the mangrove forest plots,
the benefits of different strategies seem negligible, but it can be relevant if the overlap is
larger. We found that averaging was the best way to reconstruct the underlying scene
more accurately, similar to what is recommended in [59]. If the overlap is larger (over 50%)
and tile sizes smaller, this strategy is also better suited to combine tiles [38]. Nonetheless,
with newer state-of-the-art semantic segmentation CNNs, tiling with overlap might no
longer be required, given their high confidence predictions, even in border-adjacent pixels.

4.5. Seeing the Forest for the Trees: An Inven(s)tory

The final output of our workflow was an inventory of individual P. rhizophorae trees
and area cover and height distribution for R. mangle and short-sized R. mangle (Figure 9).
The distribution of heights of P. rhizophorae trees in our automated inventory fell within
the range found in the literature, with most trees in the 5–10 m range and 15–20% larger
trees in the 10–20 m range [60]. The regions classified as R. mangle trees had slightly taller
values (6–12 m), with a larger Section (38%) of trees surpassing 10 m, which also correlates
to literature descriptions of the species’ height [61]. Our decision to separate the short-sized
R. mangle regions to another category was confirmed to be helpful for the class predictions,
given the lower height (3.3–5.4 m) for regions of this category. As mentioned previously,
these regions hold shorter trees of the R. mangle species, which grow like shrubs compared
to taller R. mangle trees in more protected areas. Separating these two growth forms of
the R. mangle species could help tailor the allometric equations for calculating AGB to be
more precise.

Describing tree crown shapes and sizes from aerial imagery is a complicated task that
has been tried with different methods [62]. By using instance segmentation networks on
well-defined training data, the task can be seemingly simplified [41]. Our workflow allows
for individual tree crown predictions, and the possible descriptions go beyond tree crown
diameters. We calculate tree crown areas and eccentricity, which are parameters that can be
used for further understanding growth patterns of mangrove tree species in response to
environmental factors (e.g, tide shifts, terrain rugosity, wind direction and speed, etc.).
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The semantic segmentation prediction also enables us to study the gaps between trees
or those separating forest stands. This helps to understand the growth patterns of the whole
mangrove forest and the species distributions, depending on environmental variables, such
as distance to shore, tidal locations, forest cover loss and water channel formation [29]. It
can also aid in detecting deforestation incidents or other disturbances in the environment.

4.6. Scaling Up: Limitations and Future Work

Our dual-network workflow was able to create a detailed inventory of large mangrove
area plots. We show that it can scale and be applied onto new large mangrove forest plots
(see height comparison plots in Figure 9), with the only condition being that the potential
mangrove forest area in the new plot is delineated. In future work, our workflow will be
applied onto seven large mangrove plots in the Utría National Park to analyze patterns in
the forests. We extract critical information from medium-quality data and show that with
consumer-grade technology (UAS and RGB images), complex analyses of forests can be
supported for short-term studies or long-term monitoring.

Nonetheless, with better spatial and spectral resolution in the orthomosaics and better
spatial and height precision in the DSM, the errors in the predictions could be improved.
For example, the use of multi/hyper-spectral cameras mounted on low-flying platforms
can improve class separability [38], and the use of LiDAR sensors can improve the CHM
precision [19,40,63]. This richer data improves predictions in natural environments, even
when more complex communities are targeted [38,64]. Additionally, advancements in
earth-observation technologies are allowing us to apply instance segmentation networks
on satellite imagery [28]. Research on imagery from low-flying platforms can, in the short-
term, be used as detailed monitoring tools and validation information for global studies
and, in the long-term, prepare the data-pipelines for enhanced satellite imagery.

The exponential improvement in machine learning platforms also promises to im-
prove the performance of automated monitoring workflows. Both instance and semantic
segmentation networks are constantly improving, and as more computational resources
are made available, larger and more capable models will be used routinely. Furthermore,
the current development of panoptic segmentation networks will allow us to simplify
workflows such as ours by classifying foreground and background objects/classes at the
same time, removing the need for inter-network comparisons [65].

We use two networks to describe parts of a mangrove forest scene in different ways:
pixel-wise and object-wise. We did not include ground measured data in this study, both
due to the inaccessibility of the location and to establish the possibility for a quick aerial
survey to support rich survey output. Additionally, the scale of the forest area predicted
compared to the area that could be manually measured was very large. By comparing
the two networks’ predictions to each other, we can assure that the underlying scene was
consistently described. For the application on new sites, the community composition of the
forest must be assessed, and the prediction classes must be adapted accordingly. This con-
stitutes a known drawback of mutli-class supervised learning. Nonetheless, the backbone
weights of the networks can be reused for training given that top-down forest features do
not change significantly between mangrove trees, providing a starting point for new forest
surveys using aerial data.

Our workflow provides a blueprint for automatic forest inventory creation, facilitating
rapid automated assessments of large areas of mangrove forests with consumer-grade
technology. It benefits from the advancements in UAS technology and artificial intelligence,
enabling unprecedented detail in forest-wide inventories, especially in inaccessible areas
such as remote mangrove forests.
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