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Abstract
1. Biologging has proven to be a powerful approach to investigate diverse questions related to movement
ecology across a range of spatiotemporal scales and increasingly relies on multidisciplinary expertise.
Advancements in sensor design and analytical techniques continue to push the boundaries of this
emerging discipline. However, the growing variety of animal-borne equipment, coupled with little
consensus regarding analytical approaches to interpret complex datasets presents challenges and makes
comparison between studies and study species di�cult.

2. Here, we present a combined hardware and analytical approach for standardizing the collection,
analysis and interpretation of multi-sensor biologging data. We develop (i) a custom-designed integrated
multi-sensor collar (IMSC), which was �eld tested on 71 free-ranging wild boar (Sus scrofa) over 2 years;
(ii) a machine learning behavioral classi�er capable of identifying six behaviors in free-roaming boar,
validated across individuals equipped with differing collar designs; and (iii) laboratory and �eld-based
calibration and accuracy assessments of animal heading measurements derived from raw
magnetometer data.

3. The durability and capacity of IMSCs exceeded expectations, with a 94% collar recovery rate and a 75%
cumulative data recording success rate across all collars deployed, with a maximum data logging
duration of 421 days. The behavioral classi�er had an overall accuracy of 85% in identifying the six
behavioral classes across all collar designs and improved to 90% when tested on data from the IMSC
only. Both laboratory and �eld tests of magnetic compass headings were in precise agreement with
expectations, with overall median magnetic headings deviating from ground truth observations by 1.7°
and 0°, respectively.

4. Here we present the development of the IMSC coupled with an analytical framework veri�ed by ground
truth data for identifying core behaviors and spatial orientation in free roaming boar. We highlight the
potential of additional analyses available using this commercially produced system that can be adapted
for use in future studies on terrestrial mammals.

Introduction
In recent decades, animal-borne sensors designed to monitor physiology, behavior, movement, and
environmental conditions have revolutionized studies of animal ecology in diverse taxa across a range of
spatiotemporal scales (Ropert-Coudert & Wilson, 2005; Rutz & Hays, 2009; Wilmers et al., 2015). This has
been made possible due to advances in sensor technology, data management, and analytical techniques,
which now underpin both theoretical and applied research on wild animals (Cooke et al., 2012; Rattenborg
et al., 2016; Wilmers et al., 2015). However, the emergence of novel biologging techniques require a
multidisciplinary approach, often relying on diverse expertise in areas beyond wildlife ecology (Kays et al.,
2022; Portugal & White, 2018; Tuia et al., 2022; Wild et al., 2023). Furthermore, animal-borne electronics
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and datasets are increasingly tailored to a particular study or research group, making access to, and
comparison between, biologging studies challenging.

Triaxial accelerometers and magnetometers form the bedrock of biologging studies, providing high-
resolution data on animal movement and orientation (Shepard et al., 2008; Williams et al., 2017; Wilson et
al., 2008), with recent studies applying various machine learning techniques to identify behaviors from
raw accelerometer and/or magnetometer pro�les (Wang, 2019), as well as alternative approaches, such
as template matching(Walker et al., 2015) and user-de�ned algorithms for behavior (Wilson et al., 2018).
Performance of such models varies due to factors such as the frequency at which data are recorded and
the degree of behavioral variation within and between the behavioral classes attempting to be identi�ed.
To date, no consensus has been reached on a single behavioral classi�cation technique across
biologging studies, further hindering comparison between studies and species.

Magnetometer data, used in conjunction with accelerometers, can enhance machine learning
performance by providing additional orientation data (Williams et al., 2020), and in some contexts, triaxial
magnetometer data alone can be used to successfully identify behavior in free-roaming animals
(Chakravarty et al., 2019; Williams et al., 2017). In addition, triaxial magnetometers can provide magnetic
heading orientation (Matsumura et al., 2011), although extracting compass headings from raw data is
not trivial and depends on sensor calibrations and accelerometer-based tilt-compensation corrections
(Bidder et al., 2015). Unsurprisingly, calibration techniques are now commonplace in studies that report
magnetic heading measurements derived from raw magnetometer data (Gutzler & Watson III, 2022;
Logan et al., 2023; Martín López et al., 2016); however, few (Wilson et al., 2007) have provided ground
truth validation of magnetic compass accuracy and reliability across ecologically realistic movement
dynamics or behaviors.

Integration of GPS technology with accelerometer and magnetometer data has further enhanced the
accuracy and depth of spatial information in animal tracking studies and is re�ected in the widespread
deployment of GPS technology across a range of animal studies over the past three decades (Kays et al.,
2015). Beyond its utility in providing reliable positional �xes, GPS is now used to improve the
performance (e.g., mitigate drift and heading error) of dead-reckoning path reconstruction that rely on
vector integration obtained from synchronized accelerometer and magnetometer data(Gunner et al.,
2021) and further underscores the importance of assessing the accuracy of magnetic heading
measurements obtained from raw data. Engineering multi-sensor collars (e.g. GPS, accelerometers,
magnetometers) capable of recording and storing large volumes of data over months or years that
comply with animal welfare standards remains an additional challenge in biologging research (Cook et
al., 2017; Holton et al., 2021; Kenward, 2000; Wilson et al., 1986, 2021).

Here we present the development of a multi-sensor biologging collar equipped with GPS and triaxial
accelerometer and magnetometer sensors that has been extensively tested in free-ranging wild boar (Sus
scrofa). In tandem, we have developed a novel method for classifying ecologically relevant behaviors
from raw accelerometer data in wild boar using machine learning techniques and provide a detailed
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assessment of magnetic compass performance based on raw magnetometer data across a range of
behavioral contexts. Our �ndings suggest that both the collars and analytical techniques are robust,
adaptable, and suitable for long-term studies with terrestrial mammals, and we discuss the broader
applications of this work for wildlife research.

Methods

Study site and Subjects
Field testing the IMSC was carried out in unrestricted, natural habitats throughout the Czech Republic.
Boar were captured in corral traps, sedated using methods described below (see also Supplemental
Materials) and �tted with the IMSC, then released into the surrounding environment. All data used to
develop the behavioral classi�er and evaluate magnetic compass performance, were collected at a
wildlife reserve (49°57'52.7"N 14°50'14.7"E) owned by Czech University of Life Sciences. Inside the
reserve, a semi-natural enclosure (~ 38 m x ~ 46 m), made from non-magnetic wood fencing was used to
collect ground truth behavioral data (hereafter ‘behavioral enclosure’) from six adult wild boar between
October 2017 – December 2018 (Fig. S1). Boar were captured opportunistically using dart tranquilizer
methods (see Supplemental Materials), then were transported inside the behavioral enclosure and �tted
with one of two biologging collar designs (see below). Four infrared game cameras (UOVision UM 565)
were installed within the enclosure (Fig. S1) to record ground truth data used for behavioral classi�er and
magnetic heading analyses (see below).

Trapping, handling, and collaring protocols were performed in accordance with the Ethics Committee of
the Ministry of the Environment of the Czech Republic number MZP/2019/630/361 and following
ARRIVE guidelines (Percie du Sert et al., 2020). See Supplemental Materials for additional study site
information.

Biologging Collar Development
Two collar systems were designed in this study; ‘integrated multi-sensor collars’ (IMSCs) and ‘single-tag
collars’ (STCs), both �tted with Wildbyte Technologies Daily Diary data loggers
(http://www.wildbytetechnologies.com/). Loggers were equipped with tri-axial accelerometers and tri-
axial magnetometers (LSM303DLHC, ST Microelectronics) programmed to record continuously at a
sample rate of 10 Hz across all six sensors aligned along three orthogonal axes corresponding to the
major axes of the boars’ bodies (Fig. 1).

Integrated Multi-sensor Collar (IMSC)
The IMSC included a ‘Thumb’ Daily Diary tag (18 x 14 x 5 mm) with triaxial accelerometer and
magnetometer sensors (LSM9DS1, ST Microelectronics), as well as a Vertex Plus GPS collar, scheduled
to record GPS �xes at 30 min intervals. Collars were equipped with an integrated ‘drop-off mechanism’
and VHF beacon to enable collar recovery from the �eld. All collar electronics were powered from a single
battery pack (4-D cell) and total deployment weight was 716 g. The Daily Diary tag was protected by a
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custom-designed polyurethane housing (40 mm x 25 mm x 12 mm) positioned on the outside of the
plastic collar belt. The orientation of the tag relative to the collar, as well as the orientation of collar
relative to the animal, remained �xed for all IMSC deployments (Fig. 1, Table 1).

Single-tag Collars (STCs)
All STCs were equipped with the ‘Square’ Daily Diary tag (27 x 26 x 10 mm) and recorded data to a
removable 32 GB MicroSD card. The logger was powered with a single cell 3.6 V lithium battery (SAFT,
LS17500CNR) and was oriented and levelled within a 12 cm x 4.8 cm dia PVC-U cylindrical tube housing
secured to a plastic collar belt. Total STC weight was 250 g. All STC housings were positioned ventrally at
the base of the animal’s neck (Fig. 1A, B). However, logger orientation was rotated in one STC deployment
(Fig. 1B) to test the positional robustness of the behavioral classi�er (see below).

See supplemental material for additional information regarding collar speci�cations and deployments.

Data collection
Field testing the IMSC involved 71 collar deployments over a two-year period on adult (> 12 months, > 40
kg) free roaming wild boar (52 females, 18 males, 1 unidenti�ed). Collars were evaluated for robustness,
capacity, and functionality over 6,001 tracking days, cumulatively across all deployments.

Behavioral classi�er and magnetic compass performance data was collected from six free roaming
individuals inside the behavioral enclosure. Before collaring, calibration data used for hard- and soft-iron
magnetometer corrections (Gunner et al., 2021; Williams et al., 2017) were collected by rotating the collars
through three-dimensional space for 5 min within the immediate area of the behavioral enclosure. The
resulting accelerometer ‘calibration signature’ was also used to time-sync biologging data with ground
truth recordings from each game camera. Upon data retrieval, raw data �les were uploaded to DDMT
software (Wildbyte Technologies - Swansea University, Singleton Park, Swansea, UK, SA2 8PP), for further
processing, including magnetometer calibrations. A summary of data collection and performance
evaluations for each collar design is provided in Table 1.

Behavioral Classi�er Development

Training Dataset Construction
Triaxial (x,y,z) accelerometer data from three individuals �tted with STCs were used to develop the
behavioral classi�er (Table 1). Six broad behavioral classes (‘Continuous Walk’, ‘Foraging’, ‘Resting’,
‘Running’, ‘Standing’, and ‘Other’) were established using the criteria listed in the Supplemental Materials.
Behaviors were identi�ed using video records and corresponding accelerometer pro�les were located by
matching video timestamps with synced timestamps in the DDMT software. Pro�les were then extracted
to create behavioral ethograms composed solely of triaxial accelerometer data falling into one of the six
behavioral classes. To facilitate future re�nement of the classi�er, ‘Foraging’, ‘Running’, and ‘Standing’
classes were further subdivided to produce three additional, ‘higher resolution’ behavioral categories:
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‘Rooting’, ‘Trotting’, and ‘Vigilance’, respectively, resulting in a total of nine behavioral classes. The higher-
resolution behavioral classes were collapsed into their parent classes for initial classi�er evaluation.

Each marked behavioral epoch was subdivided into 4-second non-overlapping windows to generate
baseline observations for classi�er training (i.e., entities to be classi�ed following feature extraction). The
4-second observation window was chosen in consideration of two factors: the shortest-duration behavior
desirable to detect, and the minimum acceptable detection latency. In total, there were 13,461 training
observations (14.96 hours of marked data), with the following breakdown of observations and training
percentage for the six ‘core’ behavioral classes: ‘Continuous Walk’ (1445, 11%), ‘Foraging’ (2601, 19%),
‘Resting’ (6345, 47%), ‘Running’ (1042, 8%), ‘Standing’ (1668, 12%), and ‘Other’ (360, 3%) (Table 2, Table
S1). Training data for the ‘higher resolution’ behavioral subclasses are provided in Table 2, Table S1. The
proportions of observations used to train the behavioral classi�er were selected a priori to re�ect the
frequencies of these behavioral classes thought to occur in natural contexts (VS, MJ personal
observations). The training dataset was constructed from three individuals (B3, B6 male; B5, female), all
�tted with STCs with identical tag orientations (Fig. 1A, Table 1).

Feature Extraction
Eighteen features were extracted from each 4-second raw-data observation. These features were: the
estimated ‘signal power’ in each of four frequency bands (0-2.5 Hz, 2.5-5 Hz, 5-7.5 Hz, and 7.5–10 Hz;
four features), the signal median (one feature), and the signal variance (one feature), for each of the three
accelerometer axes. The power features were derived from the Welch method of power spectral density
estimation (2s windows with 1s overlap, 64-point Discrete Fourier Transforms), by integrating the output
in the designated frequency ranges. All features guaranteed to be non-negative (i.e., all except the median
features) were log-transformed to a decibel-proportional scale prior to further processing. Finally, features
were z-scored and Principal Components Analysis was performed, retaining a number of components
required to preserve 95% of the total data variance (eight components). The resultant 13,461 x 8 matrix
served as the training data for a 5-nearest neighbor classi�er with cityblock distance as the metric.

Behavioral Classi�er Evaluation
Performance of the behavioral classi�er was evaluated using continuous accelerometer recordings
collected from three individuals (B4, B7, B30) not used in classi�er training (Table 1). Prior to evaluation,
behaviors were veri�ed using ground truth video recordings and corresponding accelerometer pro�les
were identi�ed as described above. Because the tag orientation was not identical across training and test
boar (Fig. 1, Table 1), test data x,y,z-acceleration vectors at every time step were multiplied by the 3D
rotation matrix required to map them to the coordinate frame used for training data. After 18-dimensional
feature extraction, test data observations were transformed using the training data mean and standard
deviation vectors before being projected onto the 8-dimensional principal component space of the
training data for classi�cation. Initial test data classi�cations were made at every possible time step
using a 4-second symmetric, non-causal sliding window.

Post-processing
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Initial classi�cations were smoothed with a nonlinear �lter; speci�cally, the class at each time-step was
replaced with the modal class of a 1-second forward-looking window. This �ltering step resulted in a set
of candidate behavioral events, each delimited by a starting and ending time, which were then subject to
two pre-determined heuristic criteria to yield the �nal set of classi�cations. The �rst was that each
candidate behavioral event was required to be of a minimum duration: ‘Foraging’ (5s; ‘Rooting’ 3s),
‘Resting’ (120s), ‘Running’ (3s; ‘Trotting’ 3s), ‘Standing’ (2s; ‘Vigilance’ 2s), and ‘Other’ (1s). Any candidate
event not meeting its minimum duration was reassigned to the next most likely class for which the
duration criterion could be met. Class likelihoods were determined using the relative class-proportions
among the �ve nearest training set-neighbors corresponding to each time-step in the candidate event.
Class-proportions were summed across time-steps and sorted to produce a rank-ordered likelihood for the
classes. Candidate events for which this procedure failed to yield a valid alternate class assignment were
merged with the subsequent event[1].

The second heuristic was that any candidate ‘Standing’ event �anked by ‘Resting’ activity was reassigned
to the ‘Resting’ class. Speci�cally, this reassignment was made if the majority of a 120s window on either
side of the candidate ‘Standing’ event was classi�ed as ‘Resting’.

Magnetometer Data
To assess magnetic compass heading accuracy and reliability magnetometer data were collected from
four collars under two conditions: a controlled laboratory environment (hereafter, ‘lab evaluation’)
designed to test the precision of the magnetometer, and from three free-roaming boar inside the
behavioral enclosure (hereafter, ‘�eld test’) (Table 1).

During the lab evaluation, the tag was levelled and centered inside an electromagnetic enclosure
containing four Helmholtz’s coils used to manipulate the strength and alignment of an experimentally
generated magnetic �eld. Two orthogonally aligned coils were used to cancel the residual horizontal
component of the Earth’s magnetic �eld (+/- 0.1%) and to adjust the vertical component of the magnetic
�eld to match that of an Earth strength vertical �eld (~ 45,000 nT). Two inner orthogonally aligned coils
were used to generate Earth-strength magnetic �elds (total strength ~ 50,000 nT) that could be rotated
into alignment into one of four cardinal compass alignments corresponding to topographic North, South,
East, and West (Kirschvink, 1992). The tag was oriented such that one end of the x-axis was aligned
toward topographic North which was then de�ned as the ‘heading direction’ in DDMT for analysis. Tag
orientation remained static, whereas the horizontal component of the magnetic �eld was rotated by 90°
increments into alignment with each of the four cardinal compass directions for a period of 10 sec in
each alignment. Magnetic heading measurements calculated by DDMT were plotted relative to the four
expected cardinal compass directions using the gghistogram function in the R package ggpubr
(Kassambara, 2020).

Field tests of the magnetometer performance were carried out concurrently with data collected for the
behavioral classi�er within the behavioral enclosure on three free-roaming individuals (Table 1). Video
recordings provided ground truth magnetic headings and a spatial array of ‘magnetic landmarks’ were
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installed within the camera’s �eld of view to provide known magnetic references to better estimate
magnetic headings of focal subjects. Magnetic landmarks were either non-magnetic cables tethered
between trees or the non-magnetic fence-line forming the behavioral enclosure (Fig. S1). A total of 45
independent behavioral epochs from all �ve core behavioral classes, totalling 5:27 (min:sec), were
selected to test the precision of the magnetic heading data. Heading predictions were made by two
investigators not involved in data collection and blind to all raw magnetometer data. Using only video
records, investigators predicted boar magnetic heading using the available magnetic landmarks
described above. For each prediction, the average magnetic heading was estimated over the duration of
the segment identi�ed. When investigator predictions differed by less than 20° (n = 40), they were
averaged to establish the �nal magnetic heading, whereas when predictions differed by more than 20° (n 
= 5), investigators determined a �nal prediction after reevaluating the recording together. A third
investigator blind to the magnetic predictions extracted the magnetic heading data from DDMT for
further analysis.

Results

IMSC Field Performance: durability, capacity, lifetime
Between 2019 and 2022, 67 of the 71 total collars (~ 94%) deployed on free-ranging boar were recovered
and data recording durations ranged from 9 to 421 days. The remaining four collars (~ 6%) experienced
an unknown GPS malfunction and remain unrecovered. Of the 67 collars retrieved, 51 (76%) were fully
functional and no appreciable damage was noted, while 11 (16%) exhibited mechanical damage likely
due to physical stresses associated with boar behavior, and the remaining 5 collars (7%) failed
prematurely due to an unexpected electrical fault. Of the fully functional subset, 35 (69%) collars recorded
data until retrieval, whereas 9 collars (18%) recorded data for > 50% of deployment period and the
remaining 7 collars (14%) recorded data for < 50% of deployment period. Overall, free-ranging boar
equipped with IMSCs were tracked for 6,001 days and a total of 4,547 days of biologging data were
recorded, corresponding to 75% of the cumulative deployment duration.

Behavioral Classi�er
Classi�er performance was evaluated using accelerometer data from 2,100 independent ground truth
behavioral epochs (i.e., independent behaviors falling into one of the six behavioral classes) across three
individuals, totalling 08:28:15 (HH:mm:ss) of data (Table 3, Table S2). Classi�er performance was
evaluated on an event-by-event basis, (i.e. per 0.1 sec sample). Overall behavioral classi�er performance
was 85.1% across all behaviors from all three individuals (Table 4) and includes data from the STC and
IMSC collar designs with different tag positions and orientations. Of the �ve behavioral classes of
interest (i.e., excluding ‘Other’ which was composed of heterogeneous behaviors only identi�ed by the
classi�er when a behavior did not fall into any of the �ve core behavioral categories), the likelihood that
any given prediction matched the ground truth class label (i.e., precision), ranged from 77.1% (‘Walking’
and ‘Standing’) to 96.5% (‘Resting’) (Table 4). Classi�er recall, i.e., the proportion of behavioral epochs
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correctly identi�ed by the classi�er, ranged from 74.7% (‘Running’) to 91.8% (‘Resting’) (Table 4). Classi�er
performance was consistent between the three deployments, ranging from 83.5% (B4) to 89.9% (B30),
and surprisingly, the collar with the highest performance (B30, IMSC) was least similar to those used to
train the classi�er (Table 5). All possible pairs of the 8 principal components used to identify the six
behavioral classes are plotted, along with histograms corresponding to each component in isolation, to
illustrate the collective and relative contribution of the principal components towards class-separability
(Fig. 2). Precision and recall metrics were substantially lower when tested on the three expanded
behavioral classes, re�ecting their similar acceleration pro�les relative to their respective parent classes.
However, overall classi�er performance remained robust, with an accuracy of 78.4%, although there was
larger variation in performance between collar designs when tested on the expanded classes (Table 6).

Magnetic Heading: Lab Evaluation
Following calibration procedures describe above, median magnetic heading measurements calculated by
DDMT were in agreement with each of the experimentally generated magnetic �eld alignments: N = 2.99°,
S = 179.16°, East = 88.21°, W = 268.66° (Fig. 3), with an overall median heading error of 1.7° relative to
expected.

Magnetic Heading: Field test
Across all 45 magnetic heading samples, the median discrepancy between DDMT magnetic compass
heading measurements and ground truth predictions was 0° (CI: -3.1° and 6.9°) (Fig. 4B). Median
bootstrapped 95% con�dence intervals relative to predictions were calculated using the function boot
from the boot package (Canty & Ripley, 2020). Discrepancy between DDMT heading and corresponding
ground truth prediction ranged from − 30° to 21° (Fig. 4B). As shown in Fig. 4A, the distribution of
compass headings obtained is evenly distributed across all possible magnetic heading alignments and
the error in the DDMT magnetic compass heading measurements compared to predictions was uniform
(i.e., error was unbiased across the range of magnetic directions) as indicated by the manova model
previously described in Landler et al., 2022 (model results: intercept: approx. F = 0.65, p = 0.53, error
proportion: approx. F = 0.79, p = 0.46) (Fig. 4C). The ‘error proportion' was calculated as the angular
deviation between the DDMT measurement and the ground truth prediction divided by the total angular
deviation. The cosine and sine of the magnetic heading in radians were used as the response variables
and the error proportion as a linear covariate. The intercept of this model was used to test for a
signi�cant departure from uniformity (Landler et al., 2022). Importantly, the accuracy of magnetic
compass headings was consistent across all three individuals evaluated (Table 7), �tted with different
collar designs, biologger positions and orientations (Fig. 1, Table 1), as well as across all behavioral
classes, including behaviors characterized by large acceleration amplitudes and variation (e.g., ‘Foraging’,
‘Walking’, ‘Running’).

Discussion
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Animal-borne telemetry systems have emerged as a powerful tool to further characterize animal
movement, behavior, and ecology. The availability of reliable collar systems equipped with a range of
sensor technologies adaptable across multiple studies and species is valuable for several reasons,
including that it eliminates the need to develop and test novel equipment, and that datasets collected
from a standardized system may catalyse additional collaboration, data sharing, and advance progress
in analytical techniques[2]. The IMSC developed here, equipped with triaxial accelerometer and
magnetometer sensors, GPS technology, as well as a variety of additional sensors not used in the current
study, has proven to be highly reliable under the harsh demands imposed by wild boar. Across the 71
IMSC deployments, 94% of deployed collars were recovered resulting in recorded biologging data for 75%
of the cumulative deployment duration. While the maximum recording duration was an impressive 421
days on one individual, the majority of IMSCs (72%) were terminated prematurely due to hunting or
automobile collisions, which does not re�ect collar capacity. In a separate study, 36 IMSCs identical to
those described above, were deployed on free-ranging red deer (Cervus elaphus) and had an average and
maximum data recording duration of 203 and 529 days, respectively. Given the standardization,
durability, and functionality of the IMSC, these collars are well-suited for long-term studies in terrestrial
mammals, and we hope they will be adopted for use in future biologging studies.

Concurrent with the IMSC development, we have built a behavioral classi�er capable of identifying
ecologically relevant behaviors from six behavioral classes in wild boar. The classi�er had an overall
performance of 85% and, of the �ve core classes, identi�ed ‘Resting’ with the highest precision, and
‘Standing’ had the lowest precision and was most often misclassi�ed as ‘Resting’, likely due to the similar
acceleration pro�les between these behaviors. Classi�cation recall performance was highest in ‘Resting’
and lowest in ‘Running’. The majority of undetected ‘Runs’ were misclassi�ed as ‘Forage’, a class that
includes ‘Rooting’ characterized by large and variable x-axis acceleration amplitudes, like those
associated with ‘Running’ accelerometer pro�les. Importantly, the test dataset for core and expanded
behavioral classes re�ected the proportions of behaviors used in classi�er training, which in turn,
approximated the overall behavioral repertoire of wild boar in natural contexts.

The classi�er exhibited the best overall performance (89.9% accuracy) when tested with data collected
from the IMSC, despite being trained on data exclusively from STCs, suggesting that the classi�er has an
inherent plasticity and is capable of classifying behaviors from biologging tags attached in various
orientations and positions. As expected, classi�er performance on the expanded suite of behavioral
classes was not as robust, largely due to the similarities between the parent class and higher resolution
classes. To explore this further, we build upon the framework detailed inWilson et al., 2018 using DDMT’s
Behavior Builder and Time Series functions in an attempt to distinguish between behavioral classes with
similar acceleration pro�les, such as ‘Standing’ and ‘Vigilance’ behaviors. Applying these post-
classi�cation techniques to a subset of our current dataset drastically improved ‘Vigilance’ resulting in > 
50% precision and recall metrics (see Fig. S2). Although encouraging, a more detailed investigation using
larger datasets across multiple behaviors is needed. Furthermore, we expect that a similar improvement
in classi�cation performance could also be achieved in the pre-processing stages of classi�er
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development by creating new features that capture subtle differences in accelerometer signatures
between similar classes, like those identi�ed between ‘Standing’ and ‘Vigilance’ behaviors.

The classi�er was trained and tested solely from triaxial accelerometer data, an important a priori
consideration. Because spatial features of the behavioral enclosure remained consistent throughout the
study (e.g., location of water source and feeding area, shaded areas used as bedding sites), including
locations and viewing angles of the cameras used to collect ground truth videos, it was important to
exclude magnetometer data from classi�er training and testing, as behaviors under these circumstances
cannot be assumed to be randomly oriented. For example, in our study ‘Resting’ alignment was biased
due to limited shaded areas in the enclosure. Had magnetometer data been included in the behavioral
analysis, the classi�er would likely identify ‘Resting’ using biased magnetometer data that have no
relevance beyond the con�nes of the behavioral enclosure and would result in artifactually positive
classi�cations that arti�cially in�ate precision and recall metrics. We acknowledge that magnetometer
data can be valuable for behavioral identi�cation under certain contexts (Chakravarty et al., 2019;
Williams et al., 2017); however, it remains unclear if studies that incorporate magnetometer data into
machine learning analyses could be predisposed to such biases, as the relative contribution of
magnetometer data used for behavioral identi�cation are rarely provided.

None-the-less, triaxial magnetometer data can provide a wealth of opportunities for exploring movement
ecology in greater detail, such as dead-reckoning analyses (Gunner et al., 2020) and studies of magnetic
alignment (Begall et al., 2013; Červený et al., 2017). Given the salience of magnetometer data in
biologging research, it is surprising that few studies have validated the precision of magnetic compass
headings calculated from raw triaxial magnetometer data (Wilson et al., 2007). Therefore, we provide a
detailed characterization of magnetic heading measurements under laboratory and natural contexts with
magnetometer sensors mounted in different positions and orientations. Magnetic headings calculated by
DDMT were consistent with ground truth predictions, with an overall median deviation from expected of
1.7° and 0° in the laboratory and �eld test, respectively. These data con�rm that the magnetometer
calibrations (i.e., soft- and hard-iron corrections) and tilt-compensation algorithms applied in DDMT are
well-suited for extracting high-frequency magnetic compass bearings from raw magnetometer data.

Importantly, the �eld test carried out on free-roaming boar included magnetic measurements that were
obtained from the �ve core behavioral classes. ‘Running’ had the largest average deviation relative to
expected (9°) and may be due to the large variation in acceleration amplitudes that introduce ‘noise’ into
accelerometer-dependent tilt-compensation calculations and/or the (in)ability of observers to accurately
predict magnetic alignment from more erratic behavioral classes, such as ‘Running’. Unintuitively
however, magnetic headings obtained from ‘Resting’ behavior, characterized by little-to-no variation in
acceleration pro�le, also had a relatively high deviation from expected (8°) and was likely due to an
obstructed view of the animal’s head alignment caused by a dense canopy covering the bedding area
where boar would exclusively rest. It is noteworthy that magnetic compass performance remained
accurate across all �ve core behaviors, and compass performance was evaluated across a representative
range of all possible magnetic directions (i.e., 0° − 359°). This is the �rst study to our knowledge that has
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provided a detailed characterization of magnetic compass performance in free-roaming animals using
ground truth data.

Of particular interest is the implementation of dead-reckoning to reconstruct high resolution movement
traces in free roaming mammals. As a proof-of-concept, we take advantage of three important elements
made possible by the IMSC presented in the current study: (i) the behavioral classi�er capable of
identifying ecologically relevant behaviors in free-roaming boar, (ii) a reliable stream of magnetic heading
data recorded at sub-second intervals, and (iii) GPS �xes recorded at 30 min intervals. Dead-reckoning
relies on vector integration, where vectors depend on speed (or distance travelled) and heading estimates
derived from raw biologging data (for details see Bidder et al., 2015; Gunner et al., 2021). Deriving speed
from biologging data is notoriously di�cult (Cade et al., 2018) and previous work has assigned speed
coe�cients to manually labelled behavioral classes to estimate vector lengths for dead-reckoning path
reconstruction (Bidder et al., 2015). We build upon this approach by using machine learning to identify
behavioral classes from large volumes of continuous biologging data, which were then assigned speed
coe�cients based on ground truth observations. Coupling our behavioral classi�cation techniques with
the accuracy of our veri�ed magnetic heading data yielded high-resolution track reconstruction that was
further re�ned by ‘anchoring’ tracks to the landscape using time-synced GPS �xes (Fig. 5). The tortuosity
of the reconstructed track in Fig. 5 that explicitly avoids boundaries and obstacles highlights the
precision of these methods compared to using GPS data alone and offers a powerful approach to
investigate movement ecology over multiple spatiotemporal scales.

Although the emergence of biologging techniques has revolutionized studies of animal ecology, a
growing set of challenges accompanies these technologies, requiring multidisciplinary expertise. The
IMSC developed here, coupled with a robust behavioral classi�er and a detailed veri�cation of magnetic
heading performance provides a comprehensive system that can be adopted and adapted for future
studies on terrestrial mammals.
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Footnotes
1. If no subsequent event was available - only possible at the end of a �le - the candidate event was

discarded as unclassi�able. A small number of time steps at the beginning of each �le were similarly
discarded, since a �xed amount of time must accumulate before the classi�er can make its �rst
decision. Such edge-effects have negligible impact on classi�er evaluation.

2. We do not imply that the �eld of animal-borne telemetry and biologging is not collaborative, and
indeed, would argue the opposite. However, we suggest that increased overlap between
methodologies may encourage further collaboration and promote the growth of this emerging
discipline.

Tables
Tables 1 to 4 are available in the Supplementary Files section.

Table 5. Behavioral Classi�er Performance Summary. Precision and recall percentages are shown for all
six behavioral classes, partitioned by individual, as well as overall classi�er accuracy (%) per individual. 
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Behavioral Classi�er Performance Summary   

Behavioral Class B4 B7 B30  

Precision

(%)

Recall

(%)

Precision (%) Recall

(%)

Precision (%) Recall

(%)

 

Walk 77.8 86.4 74.2 91.2 87.1 85.6  

Other 34.1 58.0 53.7 72.3 4.3 17.4  

Rest 93.5 85.6 98.3 95.0 98.6 100.0  

Forage 96.1 88.6 62.9 39.1 94.6 96.2  

Run 92.3 78.4 94.1 75.2 75.0 60.2  

Stand 58.7 72.4 85.9 83.0 95.3 67.3  

Overall Accuracy (%) 83.5 84.2 89.9  

 

Table 6 and 7 are available in the Supplementary Files section.

Figures
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Figure 1

Biologging collars used throughout the study. Accelerometer axes orientation is superimposed on the
logger and axis polarity indicates the acceleration value as the axis is pointed toward gravity. Note the
different axis alignments between STC designs (A, B). Both the logger position and logger orientation
used in all IMSCs (C) differs from STC logger position and orientations. Photographs both collar designs
are shown below their respective schematics.

Figure 2

Matrix showing plots of all possible pairs of the 8 principal components (PCs) that were used in
classi�cation. Points correspond to training observations (n=13461 in each plot) and are colored
according to behavioral class. Numbering columns and rows each from 1-8, respectively, beginning at the
top left corner of the matrix, the column number corresponds to the PC plotted on the horizontal axis and
the row number to the PC plotted on the vertical axis. For example, the plot in row 3, column 2 has the
second PC plotted on the horizontal axis and the third PC plotted on the vertical axis. The plots along the
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diagonal are histograms, colored by class, for each of the 8 PCs. (Plots mirrored across the diagonal
show the same two PC's with the axes swapped).

Figure 3

Lab test of triaxial magnetometer data used to calculate magnetic heading measurements in DDMT
software. Histograms plot the total count of 100 samples (10 Hz x 10 sec) recorded in each magnetic
�eld alignment (i.e. mN = topoN, E, S, W), relative to magnetic heading bearings calculated in DDMT after
magnetometer calibration procedures. Plots A-D correspond to experimentally generated Earth-strength
magnetic �elds aligned at: North (0°), East (90°), South (180°), West (270°), respectively. Median values
for each magnetic �eld alignment are shown in red.
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Figure 4

Results from the magnetometer �eld test collected from free roaming individuals equipped with STC and
IMSC designs. A total of 45 samples were evaluated and compared to ground-truth predictions of
magnetic heading. A) Histogram of the overall distribution of magnetic compass measurements
produced by DDMT shows that samples were obtained from the range of possible compass directions. B)
The discrepancy between DDMT magnetic compass measurements and ground-truth recordings, i.e.,
DDMT magnetic heading output error (median error = 0°, black dashed line; bootstrapped 95% CI: -3.1°
and 6.9°). C) The error produced by DDMT was uniform across the range of possible magnetic compass
headings.

Figure 5

Example of dead-reckoning path reconstruction in a free ranging wild boar equipped with the IMSC.
Behaviors were �rst identi�ed from continuous accelerometer data using the behavioral classi�er and
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were then uploaded to DDMT. User-de�ned speed coe�cients were assigned to each behavioral class
which was then then integrated with time-synced magnetic heading data to reconstruct movement traces
between GPS �xes, which anchored the tack to the landscape. Right insight shows a detailed track
segment highlighting the added value of dead-reckoning analyses compared to using GPS data alone
and lends further credibility to the precision of the dead-reckoning methodology used in this study.
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