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1 Outline

This manual describes some useful techniques and methods applied to discrete signal analysis,

e.g. digitized signals. Digital signal processing is a wide ranging topic with a long history.

There is an extensive range of excellent and detailed books and monographs available, as well as

thousands of journal publications in a range of scientific (and non-scientific) areas. The various

journals and Proceedings of the IEEE are a standard source for early papers on the fundamental

techniques. In terms of references - the standard reference is probably the Bendat and Persol

tome, which is often referred to as the bible of signal processing. 1 It is wide ranging and highly

accessible. Other, somewhat older, references on the basics include: 2 3 4 5 6 7 There are many

more-recent text books drawn from varying fields of application - here preference is a matter of

taste!

I can also highly recommend the lecture notes of Dave Meko on applied time series analysis. 8

For method implementation the standard must be the excellent Numerical Recipes. 9 Not least,

Wikipedia can be a useful source, although the quality of information can be rather mixed.

Where possible, key original journal references (drawn from generally accessible journals), as

well as illustrative references to applications in the field of plasma turbulence are provided for

each topic. In general, each topic is supported with relevant formulas, but not lengthy deriva-

tions, as well as code snippets (in IDL) and demonstrative example figures. IDL (Interactive Data

Language) is a well established, if rather old, high level programming language for data analy-

sis. The code snippets should be relatively self-evident, and thus easily translatable to alternate

languages, such as python etc.

A passing note, just about every signal analysis technique has its basis in statistics - and the

starting point is the probability distribution and its moments. It is not essential to be an expert

in statistics to use signal analysis methods, but a basic knowledge will, at least, provide an

appreciation of why and how certain techniques are used.

This guide is not by any means fully comprehensive, but is intended to provide the basics and to

point perhaps to some unfamiliar analysis methods. Enjoy.

1 Bendat J.S. and Piersol A.G. Random data: Analysis and measurement procedures, 4th edn.

Wiley, N.Y. (2010). First published in 1971.
2 Otnes R.K. & Enochson L. Applied time series analysis, Wiley N.Y. (1978).
3 Marple, S.L. Digital spectral analysis with applications, Prentice-Hall (1987).
4 Oppenheim A.V. Discrete-time signal processing, Prentice Hall (1989).
5 Mitra S.K. Digital signal processing, 2nd edn. McGraw-Hill (2001).
6 Proakis J.G. & Mandakis D.G. Digital signal processing, 4th edn. Pearson (2006).
7 Chatfield C. The analysis of time series: An introduction, 6th edn. Chapman & Hall, New

York (2004).
8 Meko D.M. GEOS585A, Applied time series analysis : Course notes, Univ. of Arizona

(2019). Download from http://www.ltrr.arizona.edu/∼dmeko/
9 Press W. et al Numerical recipes in Fortran - The art of scientific computing, 2nd edn. Cam-

bridge Uni. Press (1992).
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1.1 Definitions

1.1.1 Terminology

To begin with, a few basic definitions, with reference to symbols in next section:

Deterministic means that the signal xn can be exactly predicted from previous values. When

not, then xn is termed stochastic and can only be predicted with some probability.

Stationary vs non-stationary. Strict stationary means that the probability density function

pdf(x) (see below) is time invariant. However, weak stationarity means that only the moments

of the pdf are time invariant, while the pdf itself may not be.

Periodic vs aperiodic - the signal is dominated by a repetitive behaviour, or not.

Univariate vs multivariate - the signal is dependent on one, or many independent variables.

Densities and distributions - Densities have units, distributions can be dimensionless.

Orthogonal - if two signal distributions px and py are independent then they are said to be

orthogonal.

Adaptive vs non-adaptive. Basis functions are either predefined (non-adaptive), as in sinewaves

or wavelets for Fourier and Wavelet transforms, or they are obtained from the data (ie. they adapt

or change), as in the Empirical mode decomposition.

Local vs non-local - the signal is localized in time or space, or not localized.

Linear vs non-linear - Whether the signal amplitude behaviour is linear or not.

Expected value - or expectation operator E[·] is a fundamental concept in probability theory.

Put simply, it is the mean, or ensemble average value.

Estimator. The imperfect estimation of a real parameter comes with an associated bias and

with errors. Estimators are indicated by the hat symbol Â.

Bias error - bias[Â] is the amount by which an estimator consistently over or under estimates

the real parameter.

Variance error - var[Â] is the amount of variation of the estimator about the real parameter.

The normalized standard error (random) is ǫ[Â] = σ[Â]/A (ie. normalized standard deviation).

Degrees of freedom (dof) The dof ν = N − p is the sample size N minus p the number of

parameters (or constraints) calculated. Thus the dof of the sample mean is ν = N − 1 etc.

PDF - Probability Density Function, pdf p(x).

PSD - Power Spectral Density, psd(f). Often simply called the power spectrum S(f).

Periodogram - The PSD computed from the squared Fourier transform (FT) F of the signal

(F {xn})2 → S(f).

Correlogram - The PSD from the FT of the autocorrelation (auto covariance) Rxx(τ).

Windowing - is the application of a shaped profile (of limited extent, ie. a window) to either

the signal x(t), the time lagged correlation R(τ), or the frequency spectral estimate S(f).
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1.1.2 Symbols

Symbol Meaning Range

ı
√
−1

n Time index {n = 0, . . . , N − 1}
j Frequency index {j = 0, . . . , J − 1}
k Lag index {k = 0, . . . , K − 1}
l Spatial index {l = 0, . . . , L− 1}
m Ensemble index & Signal mean M = total number of ensembles/averages

b2 Bicoherence squared

f, ω Frequency (ω = 2πf )

k Wavenumber (k = 2π/λ)

p, q Moment order of pdf or spectrum

p(x) Probability

R Correlation function

r, ρ Correlation coefficient −1 < r < +1

S Power spectral density (psd), Skewness

t Time 0 ≤ T

w, h Window or weight fnct.

x(t) Continuous data

{xn} Discretized data {n = 0, . . . , N − 1}
α Confidence level, p = (1− α)

β Spectral index (also sometimes m)

δf,k Spectral widths (freq., wavenumber)

δx Increment (signal or spatial)

ǫ Normalized standard error

γ Coherence

λ Wavelength

λi Eigenvalue

µp, κp Moment / Cumulant of order p

σ Standard deviation, var = σ2

τ Time delay or lag {τ = 0, . . . , K∆t}
θ Cross-phase

ξ Spatial interval or separation

∆t Sample interval or period

∆f Frequency interval

F FT transformation

H Hilbert transform

cov[·] Operator

cov(·) Function

Ŝ, E[·] Estimated (hat), Expected value
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1.2 Digitization basics

1.2.1 Discretization

Digital sampling of an analog time varying signal x(t) involves sampling in both time and am-

plitude. The sampling rate or frequency fs = 1/∆t (where ∆t is the sample period or interval)

defines the maximum resolvable frequency of the signal. To avoid aliasing effects the sam-

ple rate should be at least twice the maximum expected frequency component, defined by the

Nyquist frequency fN - see below.

The signal amplitude is also quantized into discrete levels set by the bit resolution and the input

(voltage V ) range of the digitizer. The quantization error (assuming a uniform signal distribu-

tion between quantization levels) has a standard deviation of approx. 0.29∆V . Thus for a modest

12-bit digitizer the maximum signal to noise ratio (SNR) is 212∆V/0.29∆V or 83 dB - which is

a lot! Thus dynamic range is rarely an issue for modern computers and electronics. See Bendat

and Persol for fuller details. 1

1.2.2 Sampling

An issue of signal discratation is the occurrence of aliasing where only signal frequency compo-

nents f < fN less than the Nyquist frequency can be resolved - that is, one needs at least 2 time

samples per shortest cycle in order to resolve it unambiguously. To meet the Nyquist frequency

one must either sample the data at at-least twice the highest frequency, or analog low-pass filter

(anti-aliasing) the signal to below fN = fs/2 = 1/(2∆t) before digitizing.

It is often required to re-sample the digitized signal to a new sample rate. To down-sample the

data the signal should first be digitally filtered to just below the new Nyquist frequency to avoid

aliasing. Then re-sampled, using where possible interleaving to recover as much of the data as

possible.

Example: Down-sample by a factor of d = 3: ∆t(new) = d×∆t and f(Nnew) = 1/(2.d.∆t)

x = {0,1,2,3,4,5,6,7,8,9,10,11,12,... N-1} T = N.Dt

x1= {0, 3, 6, 9, ... N-3} T = N/3 (3.Dt)

x2= { 1, 4, 7, 10, ... N-2}

x3= { 2, ,5, 8, 11, ... N-1}

For a fixed, or restricted measurement period T = N∆t, oversampling the signal and then

digital down-sampling with interleaved ensemble averaging can bring notable improvements in

the spectral SNR, but with additional computational cost. On the other hand, if SNR is not an

issue, for example if using digital Inphase-Quadrature (IQ) detection, cf. 10 then the reduced

quantization levels (number of bits) can massively reduce computational cost and processing

speed.

10 MIT (EE CS) Lecture 9: Analog and digital I/Q modulation : 4/Nov/2006,

web.mit.edu/6.02/www/f2006/handouts/Lec9.pdf (Checked Feb. 2023).
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2 Synthetic signals

Testing of codes and analysis methodologies often requires synthetic test signals with known or

defined properties - such as harmonic type perturbations to model coherent modes, or random

fluctuations with Gaussian amplitude distributions to model broadband turbulence.

2.1 Basic harmonic signals

The most universal test signal is a simple harmonic (sinewave) corrupted by white noise gener-

ated by a random number generator. Most compute language packages have (pseudo) random

number generators with a choice of normal (Gaussian) or uniform amplitude distributions.

npt = 8192 & an = 0.1 & fo = 110. & seed = 107 & dt=1/1000 .

time = Findgen(npt)*dt

sinw = Sin(2.*!pi*time*fo)

msig = Moment(sinw)

Print, ’Mom Sig:’, msig

noise = an * RandomN(seed, npt)

mnos = Moment(noise)

Print, ’Mom Nos:’, mnos

data = sinw + noise

mdat = Moment(data)

Print, ’Mom Data:, mdat

Example. 1 : Code snippet (IDL) for generating, and calculating moments of, a sinewave with

added Gaussian distributed white noise.

2.2 Basic noise signals

2.2.1 In addition to the random number generators mentioned above, a simple way of generat-

ing a random spiky signal is to create an exponential signal from a random normal distribution.

The frequency distribution retains the same white spectrum but the amplitude distribution is now

skewed - see section 3 on probability density functions (pdfs) and their moments.

data = RandomN(seed, npt) .

data = (1. - Exp(data))

Example. 2 : Code snippet (IDL) for generating a skewed/exponential random signal.

2.2.2 Noise comes in different colours. White noise (such as generated by a generic random

noise generator routine - with either a uniform or Gaussian / normal amplitude distribution) has

a flat or constant spectral intensity or power at all frequencies. Pink noise is dominated by the

lower frequencies while blue or violet noise is tilted to the higher frequencies. The shape of the

spectral power (amplitude squared) profile is often defined by a spectral index P ∝ fβ , where

β = 0 for white noise, β = −1 for pink noise and β = −2 for Brownian noise. 11 Blue and

violet noise have indexes of β = 1 and β = 2 respectively. In practice the spectral shape, can

be formed by selectively filtering a white noise signal. A quick and simple way to generate

11 Wikipedia - https://en.wikipedia.org/wiki/Colors of noise (Checked Jan. 2023).
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pink-like and violet-like noise is to use a moving average and a moving difference filter (part

of the broader category of recursive and non-recursive filters) on a white noise input. Figure

1 shows two example spectra (see section 6.3) generated using the code snippet below. The

weight factors w0, w1 and w2, as well as the temporal pre and post index steps, can be adjusted

(optimized slightly) to obtain the precise desired spectral shape.

seed = 104 & npt = 8192 & dt = 1/1000 & nft =1024 & ilp=0 .

noise = 0.4 * RandomN(seed, npt) ; Gaussian random

nsL = noise

w0 = 1.35 & w1 = 1.0 & w2 = 1. ; pinkish

FOR i = 2,npt-3 DO nsL[i] = (w0*nsL[i]+w1*nsL[i+1]+w2*nsL[i-2])/2.

nsH = noise

w0 = 0.95 & w1 = -1.0 & w2 = -1.0 ; violet

FOR i = 2,npt-3 DO nsH[i] = (w0*nsH[i]+w1*nsH[i+1]*w2*nsH[i-1])/2.

; Example FFT spec

win = (1.-Cos(2.*!pi*Findgen(nft)/nft))/2. ; window

SpL = Fltarr(nft) & frq = Findgen(nft)/nft/dt

WHILE itp LT npt-nft-1 DO BEGIN ; 50% overlap sum

SpL += Abs(FFT(win*nsL[itp:itp+nft-1],-1))ˆ2

SpH += Abs(FFT(win*nsH[itp:itp+nft-1],-1))ˆ2

itp += nft/2 & ilp +=1 ; inc. index

ENDWHILE

SpL /= ilp & SpH /= ilp ; normalize

Example. 3 : Code snippet (IDL) to generate pseudo pink and violet noise from white - cf. fig. 1.

Note in the example shown there is a degree of inherent flattening of the spectra at low frequen-

cies. It is tricky to get perfect behaviour over many frequency decades, nevertheless, it gives an

example of what is possible.

Figure. 1: Synthetic noise spectra: (left) unfiltered white, (middle) pink and (right) violet noise.

Ensemble averaged FFT spectra with npt = 8192, nft = 1024, and Hann window.

As an aside, the use of temporal weights for modifying the spectral domain has a parallel in the

use of a Hann window in the time domain and its equivalence to applying spectral weights of

−0.25,+0.5,−0.25 to adjacent [i− 1, i, i+ 1] frequency elements. 12

12 Smith D.E. et al Fast-Fourier-Transform spectral analysis techniques as a plasma fluctuation

diagnostic tool, IEEE Trans. Plasma Sci. PS-2 (12) 261-272 (1974).
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2.2.3 Sometimes a semi-random signal is required. One way is to narrow-band filter the

white noise signal. The code snippet below uses a convolving filter to obtain a squarish notch or

pass-band. It is used later in demonstrating the autocorrelation error bars.

seed = 30 & npt = 4096 & an = 1. & dt = 0.2 .

fs = 0.2 & fw = 0.05 ; centre f & width

data = an * RandomN(seed, npt, /Double)

fN = 1./(2.*dt) ; Nyquist freq.

flow = 0. > (fs-fw)/fN ; express freq. in

fhigh = (fs+fw)/fN < 1. ; multiples of fN

; for LPF flow=0, for HPF fhigh=1

a = 50 ; typ. value

nterms = 320

filt = Digital_Filter(flow, fhigh, a, nterms) ; calc. filt coefs

dout = Convol(data, filt, /Edge_wrap) + Mean(data) ; Conv. & add mean

Example. 4 : Code snippet (IDL) for generating narrow-band random signal - ref. IDL help file.

2.3 Distorted harmonic signals

In fusion plasmas, experimental signals with sawtooth-like temporal behaviour, or sinewaves

with distorted peaks and troughs often appear due to rotating (magnetic) islands or by ELM

(edge localized mode) perturbations.

2.3.1 A sawtoothed-like signal can be generated from a skewed or distorted sinewave by

applying a harmonic frequency modulation (FM): 13

x(t) = a cos
(

2πfo t+ ϕo −
π

4
S cos (2πfo t+ ϕo)

)

(1)

where ϕo is the perturbation phase shift and S is a skew factor between ±1.0 which distorts the

sinewave (S = 0) into a smooth sawtooth perturbation, as shown in fig. 2 using the code snippet

below.

2.3.2 Alternatively the sine amplitude could be distorted with a cusp-like shape using:

x(t) = a

{

1

2(C−1)
[cos (2πfo t+ ϕo) + 1]C − 1

}

(2)

where C > 0 is a cusping factor. For a sinewave C = 1.

These two types of asymmetric perturbations are quite distinct. The first is a distortion of the

slopes (or time derivative) of the perturbation, i.e. a non-symmetric x′ = dx/dt probability

density function (pdf). The second is distortion to the amplitude distribution, ie. a non-symmetric

amplitude x pdf. As shown in the code snippet below they can also be combined together.

t = Findgen(npt) .

sigS = Cos(2.*!pi*fo*t - (!pi*Sq/4.)*Cos(2.*!pi*fo*t + ph)+ph)

sigC = (1./2ˆ(Cp-1.))*(Cos(2.*!pi*fo*t + ph) +1)ˆCp -1.

Example. 5 : Code snippet (IDL) for generating skewed and cusped sinewaves - cf. fig. 2.

13 Conway G.D. Effects of reflectometer asymmetries on fluctuation measurements, Plasma

Phys. Control. Fusion 41 65 (1999).
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Figure. 2: Synthetic harmonic signal with (top) slewing plus pdf of it’s time derivative, and

(bottom) cusping and corresponding amplitude pdf.

2.3.3 These types of signal are close to the family of Stokes waves x(t) = cos(ωt+ ǫ sin(2ωt))

which creates an FM or intra-wave modulation. The Stokes wave is also an approximate so-

lution of the non-linear Duffing equation x′′ + x + ǫx3 = γ cos(ωt) which has an approximate

solution of x(t) = cos(ωt)+ǫ cos(3ωt)+ǫ2 cos(6ωt)+ . . .. With γ = 0.1, ǫ = −1 and ω = 1/25

this will create strong symmetric peaking at the crests and troughs.

npt = 10000 & tinc = 200. & phs = 0.5 & omg = 2.*!pi*1. .

cf = 1.0/(2.0**(c-1.))

do i = 1, npt

t=real(i)/tinc

x[i]=Cos(omg*t + phs)

del = ((cos(omg*t+phs)+1.0)**c)*cf - 1.

do il = 1, i, 3

x[i] = ((cos(omg*t-(pi/2.)*s*del+phs)+1.0)**c)*cf -1.

del = x[i]

end do

end do

Example. 6 : Code snippet (Fortran) for generating skewed and cusped sinewave.

2.4 Tailored broadband signals

Broadband fluctuation signals can be generated from a Fourier summation with a specified spec-

tral shape or weighting function h(ω), such as a Gaussian (with half-width ωw and centre ωm):

x(t) =
1

σx

N
∑

i=1

h(ωi) cos(ωit+ ϕi) (3)

h(ωi) = exp
(

−(ω − ωm + δi)
2/ω2

w

)

(4)

However, care is required to avoid hidden periodicities. It is recommended to add randomized

phase offsets ϕ (with a uniform distribution between ±π), and to use non-uniform spacing of the

the frequency ω intervals by adding a small random jitter δi (of the order of 10%) to ω.
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Figure. 3: Examples of synthetic broadband time signals with skew and cusping plus pdfs of the

signal x and it’s time derivative x′ = dx/dt.

Again, the two types of distortions (asymmetric amplitude and/or asymmetric gradient/time

derivative pdf) can be applied to the broadband fluctuations. For example, the signal can be

made either spiky or sawtoothed by multiplying x(t) with exponential functions such as:

x(t) = x(t)× (exp(Cx(t)) + 1) (5)

x(t) = x(t)× (exp(Sx′(t)) + 1) where x′(t) = dx(t)/dt (6)

prior to normalization, where C and S are the cusping and skewing factors between ±1.

Figure 3 illustrates example signals and pdfs for extreme cusped and skewed forms. A signal with

a preponderance of either negative or positive going spikes would result in an asymmetric am-

plitude distribution, while random sawteeth would result in an asymmetric gradient distribution.

Both types of sequences are commonly observed in Langmuir probe ion-saturation currents.

seed = 104 & df = 0.991 & npt = 8192 & ifr = 233 & frw = 31 .

Cp = 0.25 & Sq = 1.0

t = Findgen(npt) & sig = Fltarr(npt)

frq = Fltarr(ifr) & h = Fltarr(ifr)

jit = 0.19*(RandomU(seed, ifr)-0.4999) ; Uniform random jitter

FOR i = 0, ifq-1 DO BEGIN

frq[i] = (Float(i) + jit[i]) ; freq + small jitter

h[i] = Exp(-frq[i]ˆ2/frwˆ2) ; spectral weight fnct.

ENDFOR

ph = (RandomU(seed,ifq)-0.4999)*!pi*2. ; Uniform random phase

FOR i = 0, ifq-1 DO sig = sig + h[i]*Cos(2.*!pi*frq[i]*df*t +ph[i])

sig = sig*(Exp(1. + Cp*sig))/(2.ˆ(Cp-1) ; Apply warp/cusp)

sig = sig/Stddev(sig) ; Normalize to sigma

sder = Deriv(sig) ; Take derivative

sig = sig*(1. + Exp(Sq*sder)) ; Apply skew

Example. 7 : Code snippet (IDL) for generating skewed and cusped broad-band signal - cf. fig. 3.
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2.5 Non-stationary signals

Non-stationary means the signal pdf (ie. amplitude or frequency moments etc.) are evolving or

changing in time. In the case of a non-stationary frequency a simple continuous chirping signal

can be generated via x(t) = exp(ıat2/2) where the frequency increases linearly with time. The

parameter a sets the lowest starting frequency. See fig. 35 for an example in section 10.5.

npt = 2048 & a = 16. .

time = Findgen(npt)/Float(npt)

data = Sin(!pi*(a*time)ˆ2)

Example. 8 : Code snippet (IDL) for generating a frequency chirp signal - cf. fig. 35.

Likewise, non-stationary amplitude moments can be generated with additional terms to the above

harmonic and broad-band fluctuation code snippets which, for example, evolve the signal ampli-

tude either continuously, or intermittently.

2.6 Intermittent signals

Intermittent events are very commonly observed in the edge regions of confined fusion plasmas,

and in particular are often related to density filamentary behaviour or to edge localized modes

(ELMs). Typically these appear as semi-random spikes, but with a well defined temporal struc-

ture.

A synthetic event (ELM-like) signal may be generated in various ways. As an example of a

construction procedure, first the basic event features are defined as follows:

1. Shape

The basic event shape is fixed, such as a spike with a fast linear rise to a maximum, followed by

a slower exponential decay. The decay rate maybe:

(a) Fixed or proportional to the rise rate.

(b) Proportional to the event period.

2. Frequency / event period

(a) Periodic. Here one can use a clipped sinewave (square-wave) as the event trigger.

(b) Semi-periodic, ie. a broadened base frequency - use sinewave with a uniform ±1π random

phase modulation, or frequency offset.

(c) A normally distributed random frequency within a set range.

3. Peak amplitude

(a) Follows a pre-defined pdf, such as the one-sided log-normal distribution, or a Poisson

distribution would be a natural choice.

(b) Uniformly distributed random amplitude within a set range.

(c) Amplitude is proportional to the event period, eg. large and infrequent events or small and

frequent.

4. Finally, add some random white noise background.
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Figure. 4: Synthetic intermittent ELM-like signal generated from (a) exponential random signal

with (b) decaying spike shape, giving (c) ELM signal. (d - f) show pdf, spectra and autocorrela-

tion of ELM signal.

Figure 4 shows an example of the kind of synthetic random, intermittent, explosive (ELM-like)

positive going spike signal that can be created following the description above. In this exam-

ple the starting point is a random Gaussian amplitude white noise signal which is converted to

a positive going exponential signal - as illustrated in the code snippet below. A threshold de-

tector selects the singular peak points of the large amplitude spikes. Around these peak points

is wrapped a temporal shape with a fast rise and an exponential decay exp(−αt) as illustrated

in fig. 4(b) resulting in the ELM-like signal in fig. 4(c) where additional white noise baseline

has been added. The individual spikes retain the amplitude distribution of the original expo-

nential signal resulting in the highly skewed pdf shown in the accompanying plot. As the spike



A Short Manual to Discrete Time Series Analysis - G.D.Conway 16

decay rate is fixed the full-width half-maximum (fwhm) of the spike scales with its amplitude.

The corresponding spectra shows (red) a high-frequency 1/f -like decay above an enhanced low-

frequency ’bump’. In this example there is no specific coherent event/spike spectral peak since

the source was a random noise. With an appropriate source choice, singular ELM-like frequen-

cies or quasi-coherent like structures can like-wise be created.

Section 12.1.2 shows an example of how the above signal is used to demonstrate the operation

of box-car (conditional averaging) of an intermittent signals.

npt = 16384 & seed = 104 & dt = 1./5000 & nft = 2048 .

an = 0.4 & thresh = 1.0 ; amp & threshold

time = Findgen(npt)*dt

freq = Findgen(nft)/Float(nft)/dt

; Make exponential random signal

noise = an * RandomN(seed, npt) ; normal random

sig0 = (Exp(noise) - 1.) ; -> exponential

; Make shape

p = Where(sig0 GT thresh, ntp)

sig2 = sig0/10.

alpha = 0.3 ; decay rate

nr = 2 & nd = 20 ; up/dn widths

rise = [0.0, 0.05] ; linear rise &

decay = Exp(-1.0*Findgen(nd)*alpha) ; exp decay

shape = [rise, decay] ; add up&down

ns = nr + nd

; Scale spikes and (constructively) add to original exp. signal

nd = ns - nr - 1

FOR i = 0, ntp-1 DO BEGIN ; scale peaks

sig2[p[i]-nr:p[i]+nd] = shape*sig0[p[i]] > sig2[p[i]-nr:p[i]+nd]

ENDFOR

sig2 = (noise/5. > sig2) ; add 1/5 noise

Example. 9 : Code snippet (IDL) for generating an intermittent ’ELM’-like’ signal from white

noise - cf. fig. 4.
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3 Probability functions

The starting point is the probability distribution of the signal amplitude. This is defined as the

probability P of x(t) falling within a range x and x+∆x (full-width)

P(x) = Prob[x < x(t) ≤ x+∆x] = lim
T→∞

Tx
T

≈ p(x)∆x (7)

where Tx =
∑

∆t is the sum of all the periods where the above condition is met, and T is the

total length of the time series.

The Probability Density Function (pdf) p(x) is the probability distribution P(x) divided by the

amplitude interval or bin size ∆x 14 15

p(x) = lim
∆x→0

1

∆x
lim
T→∞

Tx
T
. (8)

The pdf graphically displays how the signal amplitude is distributed. For discrete sampled data

the p(x) function is estimated via histogramming, or binning the data sequence {xn} into ampli-

tude bins

p̂x =
Nx

NW
(9)

where Nx is the number of data points that fall within the bin width x ±W/2 and N the total

number of data points. The hat symbol is used to indicate that p̂x is an estimate of the real p(x).

The pdf can be defined in terms of two, or more, independent variables to give a joint pdf

p(x, y) → p̂x,y =
Nxy

NWxWy

. (10)

If x and y are uncorrelated then p̂x,y = p̂x p̂y etc. In addition, a conditioned or conditional pdf

p(x|y) can be defined where y is some condition to be met in the summation of Tx - see section

12.1.1.

Less familiar perhaps is the Cumulative Distribution Function (cdf) - also called the empirical

probability distribution. This is useful for quantifying the distribution percentage-wise, as well

as for identifying statistical outliers. The cdf is defined as

cdf(x) = p(u ≤ x) =
∑

u<x

p̂(u) (11)

The Quantile plot q(f) is an alternate representation of the cdf. Here fn = (n − 0.5)/N is the

decimal fraction of data below the f quantile. The approach is to sort the data into ascending

values and then rank the values by assigning an f -value to each data point. The code example

below indicates how this is computed in reality. Figure 5 shows example plots computed for a

normal and for an exponential type signal.

14 Bendat J.S. and Piersol A.G. Random data: Analysis and measurement procedures, 4th edn.

Wiley, N.Y. (2010). First published in 1971.
15 Bevington P.R. et al Data reduction and error analysis for the physical sciences, McGraw-

Hill, 2nd ed. (1992).
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Figure. 5: Time traces (first 1000 pts.), pdfs, cdfs, quantile q(f) plus box plots for 2 synthetic

signals: (Top) a normal distributed signal, and (bottom) an exponential signal.

The 25% and 75% quantiles, or percentiles, are used for statistical tests. For example, r =

q0.75 − q0.25 is the inter-quantile range which encompasses 50% of the data. Note this is not the

standard deviation. The 50% quantile is the pdf median. The q-plot is equivalent to the inverse

of the cdf, except using the full N points of the raw data rather than the cumulated pdf bins.

Outliers are defined as data points that lie outside of the q0.25 − 1.5 r and q0.75 + 1.5 r ranges.

These are usually drawn using the so-called box-plot - as shown in fig. 5 - with the box showing

the extent of the inter-quantile range, the red bar the median, the extender bars the ±1.5 ranges

above and below the 25% and 75% quantiles, and finally the red points are the outliers. In fig. 5
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one sees that for the normal distribution ±0.37% of the points lie outside the 1.5 r ‘buffer’. For

the exponential distribution the pdf is highly skewed and the number of negative outliers rises to

some 7.7%. How one interprets outliers depends on the measurement, they could be real data

points, or equally measurement errors. Statistically, outliers are simply defined as being outside

the expected normal distribution.

The quantile-quantile plot or q-q-plot is useful for comparing two signals, if x and y come from

the same pdf then the q-q-plot is a straight line - even if the means and standard deviations of x

and y are different. 16

; Probability density function .

dx = (rdx-rdn)/Float(nbin)

xbin = Findgen(nbin)*dx+rdn

ybin = Histogram(data, Max=rdx, Min=rdn, Binsize=dx)/pts

; Cumulative distribution function

xcdf = Findgen(nbin)*dx +rdn

ycdf = Total(ybin, /Cumulative)

; Quantile

xq = (Findgen(npt)-0.5) / pts

yq = data[Sort(data)]

Example. 10 : Code snippet (IDL) for calculating the cdf and quantile plots - cf. fig. 5.

3.1 Moments and cumulants

The (sample) moments are quantities related to the shape of the pdf and are defined in terms of

the expectation operator E[x] or expected value, ie. the ensemble average. E[x] is the probability

weighted average of all x values, eg. for the raw mean or first moment of a time series:

E[x] =
∞
∑

n=1

xn pn where pn are the probabilities for each data point. (12)

For the usual case of uniform measurement likelihoods pn = 1, the p-th moment (about zero) of

a real (discrete) valued distribution is defined as

µp = E[xp] = 〈xp〉 (13)

Central moments are defined about the mean m rather than zero

µp =
1

N

N
∑

n=1

(xn −m)p (14)

Standardized moments are the p-th central moments normalized to σp, the standard deviation to

the power of p.

1st moment: Mean (Raw) : Middle point

m =
1

N

N
∑

n=1

xn (15)

16 Meko D.M. GEOS585A, Applied time series analysis : Course notes, Univ. of Arizona

(2019). Download from http://www.ltrr.arizona.edu/∼dmeko/
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2nd moment: Variance (Central): Standard deviation squared, or ‘width’ of the pdf

var[x] = σ2
x =

1

N

N
∑

n=1

(xn −m)2 (16)

Note, a so-called ‘standardized’ distribution would have a mean = 0, and variance = 1.

For a bivariate distribution the covariance is

cov[x, y] = σ2
xy =

1

N

N
∑

n=1

(xn −mx)(yn −my) (17)

3rd moment: Skewness (Standardized) : Asymmetry of the pdf about the mean

S =
1

N

N
∑

n=1

(xn −m)3 / σ3
x (18)

4th moment: Kurtosis (Standardized) : Flatness or tailness of the pdf relative to the centre

K =
1

N

N
∑

n=1

(xn −m)4 / σ4
x (19)

A normal or Gaussian distribution has a K = 3. Thus the excess Kurtosis = K − 3 is defined as

flatness relative to the normal distribution.

Higher moments are also defined, 5th moment: hyperskewness, 6th moment: hyperflatness

but are not often used. The higher the moment the longer the time series (ie. N ) required for

statistical stability. For sample moments the normalization is usually replaced with 1/(N − 1),

where ν = N − 1 is the degrees of freedom (dof), to produce a better unbiased estimate.

The median (also the ν symbol) is the value which separates a sample distribution into two equal

halves, ie. equal number of points above and below ν. The sample mode is the most frequent

value in the data set, ie. the x value of the p(x) peak.

The standard error (SE), ie. the standard deviation σ, of some parameter or estimator Â is an

important concept in data analysis and can be expressed in terms of the expected value:

σ2 = E[(Â− E[Â])2]. (20)

The normalized standard error ǫ given by: ǫ[Â] = σ[Â]/Â for Â 6= 0.

Cumulants κp are alternative expressions of the moments µp. The 1st cumulant κ1 is equal to the

mean, the 2nd κ2 is also equal to the variance (2nd central moment), likewise the 3rd cumulant

κ3 is also equal to the 3rd central moment. However, the 4th and higher order cumulants are not

equal to the respective central moments. 17

17 Wikipedia - https://en.wikipedia.org/wiki/Cumulant (March 2023).
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3.2 Errors in moment estimations

The pdf moment estimations are themselves subject to statistical uncertainties. These can be cal-

culated as the standard error (SE) of the moment (usually via their gradients.15). As an example

the uncertainty in the mean is σ[m] = σ/
√
N .

Figure. 6: Errors in pdf estimation.

Another approach 18 is to divide the pdf

range p(x) into i = 0, . . . , K intervals of

width x ± ∆x/2, each with an average pdf

value p(xi) = Nxi/N∆x centered on xi
with Nxi points. The corresponding mo-

ments of order p are then

µp =
K
∑

i=1

p(xi)(xi −m)p ∆x (21)

where m is the mean of xi and xi is the so-called interval class mark

xi =

(

1

Nxi

Nxi
∑

j=1

(xj −m)p

)1/p

+m (22)

where the sum is over the i-th interval. There are two possible error sources: the error in estimat-

ing p at each interval ǫ[p(x)]; and the error in the interval class mark given by

ǫ[xpi ] = Max(|xpMi − xpi |, | xpi − xpmi|) (23)

where xMi and xmi are the upper and lower bounds of the i-th x interval. The total error of µp is

then

ǫ[µp] =
1

N
√
K

[

K
∑

i=1

√

Nxi |(xi −m)p|+
K
∑

i=1

Nxi ǫ[x
p
i ]

]

. (24)

3.3 Temporal asymmetry

Distributions and moments can also be calculated for the temporal derivative of the signal. An

example is the temporal asymmetry, ie. skewness of the time derivative x′ = ∂x/∂t, defined as

A(x) =
〈 (x′ − 〈x′〉)3 〉

σ3(x′)
(25)

where angular brackets mean temporal average. 18 An A = 0 corresponds to a signal with a

symmetric distribution for its time derivative. A > 0 implies that the rise time of x(t) is on

average shorter than the decay time, and A < 0 the opposite. This parameter is useful for

studying relaxation events. As an example, a sawtooth waveform with a rise time tr and a decay

18 Sanchez E. et al Statistical characterization of fluctuation wave forms in the boundary region

of fusion and nonfusion plasmas, Phys. Plasmas 7 (5) 1408 (2000).
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time td would have a skewness S = 0 but an asymmetry A = (td − tr)/
√
trtd, which nicely

quantifies the time asymmetry of the sawtooth. Likewise, the temporal Kurtosis can also provide

useful information on the shape of the sawtooth, or other perturbation shapes etc.

3.4 Types of distributions

There are a range of common (continuous) distribution functions that occur in the context of

signal analysis and in the fitting of discrete signal histograms and spectral peaks. Some of the

more important distributions may include the following (see fig. 7 for comparisons):

3.4.1 Poisson distribution

p(x) =
µx

x !
exp(−µ) (26)

a one-sided distribution where µ is the mean and the variance. Here, the factorial is computed

using the gamma function with x ! = Γ(x+ 1) for positive non-integers.

3.4.2 Gaussian (or normal) distribution

p(x) =
1

σ
√
2π

exp

(

− (x−m)2

2σ2

)

(27)

where m is the mean and σ the standard deviation (1/e distribution width).

3.4.3 Lorentzian (or Cauchy) distribution

p(x) =
1

π

γL/2

(x−m)2 + (γL/2)2
(28)

where γL is the full-width at half maximum fwhm (or ‘half-height width’).

3.4.4 Log-normal distribution

p(x) =
1

σ
√
2π

1

x
exp

(

− (ln x)2

2σ2

)

for x ≥ 0. (29)

a one-sided distribution (for x ≥ 0) often observed in the distribution of radar returns.

3.4.5 Rayleigh (Exponential) distribution

p(x) =
x

σ2
exp

(−x2
2σ2

)

for x ≥ 0. (30)

where σ is a scale parameter. This distribution is often observed in the vector magnitude of

signals which have normally distributed amplitudes and directions.

3.4.6 Gamma distribution

p(x) = (βα/Γ(α)) xα−1 exp(−βx) for x ≥ 0, and α, β > 0. (31)

where Γ(α) = (α− 1)! is the gamma function.
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Figure. 7: Comparison of various distribution functions.

3.4.7 Weibull distribution

p(x) = (c/b) (x/b)(c−1) exp(−(x/b)c) (32)

where b is a scale parameter and c is a shape parameter. The Weibull joins the exponential (c = 1)

and the Rayleigh (c = 2 and b =
√
2σ) distributions.

3.4.8 Rician (or Rice) distribution (non-zero mean)

p(x) =
s

b
exp

( −x2
2s2b2

)

+

(
√
1− s2

2b2

)

x exp

(−x2
2b2

){

1 + erf

[

x√
2 b

(
√
1− s2

s

)]}

(33)

is a bivariate normal distribution with s and b defining different scale/shape parameters and erf

the error function.

3.4.9 Voigt distribution

A distribution often used for fitting spectral peaks is the Voigt function. This is a convolution of

Gaussian fG(x) and Lorentzian fL(x) functions

fV (x) =

∫

∞

−∞

fG(x−m; σ) fL(x−m; γL) dx =
Rew(z)

σ
√
2π

(34)

where w(z) = exp(−z2) erfc(−ız) is the Feddeeva fnct. with z = (x+ ı γL)/(σ
√
2) and erfc the

complementary complex error function. fV (x) is often approximated by the pseudo Voigt

fpV (x1) = (1− η) fG(x1) + η fL(x1) (35)

where x1 = x−m (zero centered) and 0 < η < 1 is a mixing fraction.
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One approximation gives: 19 20

fpV (x1) = (1− η)

(

2
√

ln(2)

Γ
√
π

)

exp

(−4 ln(2) x21
Γ2

)

+ η

(

2Γ

π

)[

1 +
4x21
Γ2

]−1

(36)

which can be fitted directly with η and the Voigt full-width half-maxima (fwhm) Γ, with or

without amplitude scale factors, or they can be approximated in terms of respective Gaussian

and Lorentzian fwhm:

η = 1.36603 (ΓL/Γ)− 0.47719 (ΓL/Γ)
2 + 0.11116 (ΓL/Γ)

3. (37)

Γ = (Γ5
G+2.69269 Γ4

GΓL+2.42843 Γ3
GΓ

2
L+4.47163 Γ2

GΓ
3
L+0.07842 ΓGΓ

4
L+Γ5

L)
1/5(38)

Figure. 8: Voigt plus Gauss and Lorentzian.

where ΓG = 2
√

ln(2) σ and ΓL = 2γL.

The Voigt fwhm can also be approximated by

ΓV ≈ 0.5346 ΓL +
√

0.2166 Γ2
L + Γ2

G

There are also other forms in the literature 21

where eqn. (35) is expressed in terms of

fG(x) = (1/
√
π σ) exp(−x2/σ)2

fL(x) = (1/γLπ)
[

1 + x2/γ2L
]−1

with Γ and η as given above.

Figure 8 shows an example pseudo Voigt to-

gether with the composite Gauss and Lorentzian functions for σ = γL = 1.

19 Thompson P. et al Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,

J. Appl. Cryst. 20 79 (1987).
20 Di Rocco, H.O. et al The Voigt profile as a sum of a Gaussian and a Lorentzian functions,

when the weight coefficient depends only on the widths ratio, Phys. Polenica A 122 666

(2012)
21 Ida T. et al Extended pseudo-Voigt function for approximating the Voigt profile, J. Appl.

Cryst. 33 1311 (2000).
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4 Stationarity / Randomness tests

Many analysis techniques (eg. FFTs) either presume or require the data to be stationary. Thus

testing for stationarity is important. The standard definition of a stationary signal x(t) is

E[|x2n|] < ∞
E[xn] = m

cov[xt1 , xt2 ] = cov [xt1+τ , xt2+τ ] = cov(t1 − t2) (39)

for all t, with E[·] the expected value, eg. ensemble average, and cov[·] the covariance. 22 Strict

stationary means that the pdf(x) is time invariant. However, weak stationarity means that only

the moments of the pdf (ie. the mean and standard deviation etc.) are time invariant, while the

pdf itself may not be. The analysis of non-stationary signals is addressed in section 10.

4.1 Runs test

One of the better known stationarity tests is the (Wald-Wolfowitz) Ordinary Runs test of the

mean square deviation about the median. 23 The procedure is as follows:

(1) Divide time series xn into M equally long (independent and similarly distributed) segments.

(2) Create a new time series of segment mean squares y = {x21, x22, ..., x2M}.

(3) For each yi assign a “+” if yi > νy and a “−” if yi < νy where νy is the median of the y

mean squares sequence.

A sequence of “+”s or “−”s is called a run. The relative balance of the total number of alternating

positive and negative runs is an indicator of the stationarity of the data.

Figure. 9: Example of performing a mean squares runs test with n = 20 sample means.

In the example of fig. 9 there are R = R+ + R− = (3 + 4) = 7 runs with n = n+ + n− = 20

values. For a null hypothesis of randomness every arrangement of “+” and “−” signs should be

equally probable with no clear trends.

22 Huang N.E. The empirical mode decomposition and the Hilbert spectrum for nonlinear and

non-stationary time series analysis, Proc. R. Soc. Lond. A 454 903 (1998)
23 Bendat & Piersol Random data: Analysis and measurement procedures, Wiley (1971)
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That is to say, a large discrepancy between R+ and R− would be an indicator of non-stationary.

Put more precisely, for a large n+ and n− (ie.> 10) the runs should have approximately a normal

conditional distribution with mean and variance

mR =
2n+n−

n
+ 1 and σ2

R =
2n+n−(2n+n− − n)

n2(n− 1)
. (40)

Taking the probability of false alarm PFA as α, then the critical region is

|R−mR|
σR

≥ Q(α/2) where Q(α/2) =
1√
2π

∫

∞

α/2

e−t2/2dt. (41)

For a 5% significance level, ie. α = 0.05, a z-test statistic with an absolute value greater than

1.96 would indicate non-randomness. Thus, for stationarity expect Rn,1−α/2 < R ≤ Rn,α/2.

For smallish sets of runs it is usual to use a half point correction R → R ± 0.5 for ‘continuity’.

Add 0.5 to R if it is smaller than mR and subtract 0.5 if it is greater. There are a large number of

more recent alternative runs tests in the literature. 24 25

Other alternatives for testing signal stationarity include modelling each set as an autoregressive

(AR) process (see section 7.1 and 10.6) with time varying coefficients - the so-called adaptive

AR technique - and evaluating their temporal variation. 26

24 Modarres R. et al A modified runs test for symmetry, Statist. Prob. Lett. 31 (2) 107 (1996).
25 O’Brien P.C. et al A runs test based on run lengths, Biometrics 41 (1) 237 (1985).
26 Ulrych T.J. & Ooe M. Chapter 3: Autoregressive and mixed autoregressive-moving average

models and spectra in Nonlinear methods of spectral analysis, 2nd edn. Springer (1983).
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5 Correlation functions

5.1 Lagged Auto & Cross-association

The most basic measure of similarity between two time sequences is the so-called ‘matching

state’. 27 At any position within the paired sequences, their respective values are either identical

(match = 1) or different (mismatch = 0). The degree of association, or index of similarity is

then defined as aL =M/N , the ratio of the total number of matched pairs M to the total number

of compared pairs N . As with correlations the sequences can be shifted (lagged L) relative to

each other to reveal repetitive patterns or time delays in the sequences. Mathematically aL is

expressed as:

aL =
1

N − L

N−L−1
∑

n=0

1 | (xn = xn+L) (42)

which can range from 0 (no association) to 1 (perfect similarity).

Example: lagged auto-association of a time series {xn} with an integer sequence:

x = {1, 1, 0, 1, 1, 2, 1, 0, 0, 1, 1, 2, 2}
L = 1 { , 1, 1, 0, 1, 1, 2, 1, 0, 0, 1, 1, 2, 2}
match { , 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1} → a1 = 4/12 = 0.333

5.2 Lagged Auto & Cross-correlation

The correlation coefficient is a measure of the degree of linear association between two variables

based on a sufficiently large data set. For time series this usually means the time lagged cross-

correlation. The cross correlation function Rxy(τ) as a function of time delay τ is defined as:

Rxy(τ) = lim
T→∞

1

T

∫

∞

0

x(t)∗ y(t+ τ) dt (43)

where x∗ means the complex conjugate of x.

For discrete sampled series {xn} and {yn} at time index n = t/∆t for (n = 0 . . . N − 1) with

delay (lag) index k = τ/∆t with (k = 0...m) and m≪ N the correlation is:

cor(xy)(k, n) = E[xn+k y
∗

n] (44)

The cross-covariance is similar to the correlation except that the signals are mean centred:

cov(xy)(k, n) = E[(xn+k −m) (yn −m)∗] (mean subtracted). (45)

The sample correlation is thus given by

R̂xy(k) =
1

N − k

N−k
∑

n=1

(xn − x̄ )∗ (yn+k − ȳ ) (46)

27 GITTA - Geographical Information Technology Training Alliance Time as a sequence of

events (with regular intervals), http://gitta.info (2014).
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Note that the zero-lag auto-correlation R̂xx(0) = σ2
x and R̂xy(0) = cov[x, y] = σ2

xy.

The general properties of the correlation are:

(1) When the mean m = 0 then covariance equals the correlation, cov = cor.

(2) R(−k) = R∗(k), ie. the auto-correlation is Hermitian.

(3) When the pdf moments µx(n) = µ = constant then the data and the correlation are

stationary.

The correlation function can also be extended to multi-dimensional parameters, e.g.:

R̂xy(p, q, r) =
1

N

N
∑

i, j, k

(xi, j, k − x )∗ (yi+p, j+q, k+r − y ). (47)

Normalizing the correlation function Rxy gives the correlation coefficient −1 ≤ ρ(τ) ≤ 1, aka

the sample Pearson correlation r̂k for discrete data

ρ(τ) =
Rxy(τ)

(Rxx(0)Ryy(0))1/2
(48)

r̂k =
1

N − k

N−k−1
∑

n=0

(xn − x )(yn+k − y )

σx σy
(49)

Figure. 10: Example of sinewave correlation

with 1/N and 1/(N − k) normalization.

Note the 1/(N − k) normalization in eqn. 49

compared to 1/N in eqn. 47. For small lag val-

ues k ≪ N relative to the sample length N ,

the difference is not too important. But, as seen

in fig. 10 (and corresponding code snippet) for

the autocorrelation of a sinewave, the effect is

significant for k . N when normalizing incor-

rectly to 1/N (black) and correctly to 1/(N−k)
(red),

As discussed in section 6.3 the coherence and

cross-phase spectra are the Fourier equivalents

in frequency space and contain the same infor-

mation as the time-delayed cross-correlation.

data = Sin(2.*!pi*Findgen(npt)*16./npt) & lag = Indgen(nlag) .

M = Abs(lag)

; Incorrect for nlag =< npt, but okay for nlag << npt

FOR k = 0L, nlag-1 DO $

cor[k] = Total(data[0:npt-1-M[k]] * data[M[k]:*]) / Total(dataˆ2))

; Correct always

FOR k = 0L, nlag-1 DO $

cor[k] = Total(data[0:npt-1-M[k]] * data[M[k]:*])/$

Sqrt(Total(data[M[k]:*]ˆ2)*Total(data[0:npt-1-M[k]]ˆ2))

Example. 11 : Code snippet (IDL) for correct and incorrect correlation normalization - cf.

fig. 10.
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5.3 Confidence limits & confidence intervals

The correlation estimators have uncertainties. These uncertainties are reflected in the minimum

significance level (SL) above which the data is meaningful, and the confidence interval (CI)

or band, ie. the error bar about the correlation point. These are specified in terms of probability

confidence level p and the significance α = 1 − p. A confidence of p = 95% equates to an

α = 0.05

5.3.1 Standard error SE (normal)

Figure 11 shows the standard normal (Gaussian) distribution (with mean m = 0 and variance

σ2 = 1) with various probability regions about the mean:

Figure. 11: Standard normal distribution.

p zα/2 σ

68.3% lies within ±σ
95.0% ±1.96σ

95.5% ±2σ

99.0% ±2.53σ

99.7% ±3σ

For the correlation the SL and CI depend primar-

ily on the sample size N , or more precisely on the

degrees of freedom (dof). If at least one of the sig-

nals is white noise, or N is large, then the error

distribution is approximately normal with zero mean and a standard deviation of σ = 1/
√
N .

The standard error (SE) equals the σ. The CI is then ± SE times the zα/2 (z-score) for the chosen

confidence level α.

For example, a 99% confidence level (α = 0.01) gives ±2.53/
√
N , and 95% level a ±1.96/

√
N

error bar. Wikipedia 28 gives an alternate standard error σr =
√

(1− r̂2k)/(N − 2) (derived

assuming a t-distribution).

5.3.2 Fisher transform (non-normal)

However, not all signals are normal distributed but may be bounded by zero, or clipped by some

threshold or limit level thus resulting in a non-normal error distribution. In these cases the Fisher

transform F (r̂k) = tanh−1(rk) is recommended, 28 since F is approximately normal distributed

with a mean m = tanh−1(r̂k) and standard error SE = σ = 1/
√
N − 3, ie. a dof ν = N − 3.

Thus the r̂k confidence interval for a (1− α)% statistic becomes

r̂k ∈
[

tanh

(

tanh−1(r̂k)±
zα/2√
N − 3

)]

(50)

where zα/2 = 1.96 for a 95% probability level and zα/2 = 2.53 for a 99% probability level.

28 https://en.wikipedia.org/wiki/Pearson correlation coefficient (Feb. 2023).
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5.3.3 Large lag standard error

At large lag k values the correlation coefficient may become self-correlated, ie. enhancing the

correlation. Thus, it is usual to adjust the correlation variance σ2 as follows: 29

var[r̂k] =
1

N

(

1 + 2
∑K

i=1 r̂
2
i

)

(51)

where K < k. The resulting standard error of the correlation SE = zα/2
√

var[rk] broadens with

increasing ±k lag - see fig. 12 below for an example of a narrow-band signal. Note that this

correction is not appropriate for strongly harmonic signals.

Figure. 12: Example of correlation SE and large-lag SE for a narrow-band noise signal.

5.4 Scaled correlations

Usually the correlation would be calculated using a single full length block of N samples. How-

ever, if the signal is broken into several M = round(T/s) shorter segments each of length s

seconds, which are correlated and then ensemble averaged

r̂M =
1

M

M
∑

m=1

r̂m. (52)

it is claimed that by adjusting s, the resulting r̂M correlation can be made less sensitive to the

lower frequency signal content, leaving the correlation of faster varying components. 28

29 Meko D.M. GEOS585A, Applied time series analysis : Course notes, U. of Arizona (2019).
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Figure. 13: Example of scaled correlations for a low-frequency dominated pink noise with block

lengths of (a) s = 500 and (b) s = 100 points (red crosses) with N = 8000 points compared

with s = N (black lines).

As an example, figure 13 compares time lagged autocorrelations of a low frequency dominated

(pink) noise signal over a full sample length s = N = 8000 points (black line) with ensemble

averaged shortened segments (red crosses) of (a) s = 500 and (b) s = 100 points. The correlation

decays initially with a rate set by the highest frequency component, followed by a slower residual

ripple due to the lower frequency components. For block lengths s > 500 there is little effect of

segmenting, but for s = 100 the low-frequency structure is significantly reduced and the initial

correlation decay is a little faster and the residual somewhat enhanced.

5.5 Weighted correlations

There are occasions where it maybe necessary or desirable to apply a weight factor w to the

data before correlating, for example in the Blackman-Tukey method of calculating the spectral

density from the Fourier transform of the correlation R function which has been windowed - see

section 6.

The weighted covariance is given by

cov(x, y;w) =

∑

nwn (xn −m(x;w)) (yn −m(y;w))
∑

nwn

(53)

where the weighted mean is

m(x;w) =

∑

nwnxn
∑

nwn

(54)

resulting in the correlation coefficient

ρw(x, y) =
cov(x, y;w)

√

cov(x, x;w) cov(y, x;w)
(55)
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5.6 Nonlinear correlations

The standard Pearson correlation coefficient ρxy is an index of the linear relationship between

2 parameters (dependent and variable), or more parameters (correlation of multiple independent

variables with the dependent), or partial correlation of variables and a control variable etc. But

there are also many situations where a correlation can exist but ρ = 0 nevertheless. For example

any non-linear relation, such as quadratic y = ax2 has a functional dependency but, because of

the ±x, has a zero correlation. Such dependencies would need a transformation of x or y or both

to make the relationship linear, for example using log(x) or xp or −xp etc. 30

The alternative to data transformation is to use a non-linear correlation index - see section 11.4.

30 Asuero A.G. et al The correlation coefficient: An overview, Crit. Rev. Analyt. Chem. 36 (1)

41 (2006).
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6 Spectral analysis - Linear

This and the next section review linear and non-linear spectral estimation techniques of stationary

stochastic and harmonic signals. The analysis of non-stationary signals is addressed in section 10.

Frequency-wavenumber spectra are covered in section 8, and higher-order spectra in section 9.

Spectral analysis methods can be roughly categorized into two basic groups: (1) Linear methods

such as Discrete FTs and the Blackman-Turkey (BT) method. These are Non-parametric meth-

ods where no specific signal structure is assumed. (2) Non-linear methods include Parametric

methods, where the signal is modelled by a parameterized function (as in autoregressive models)

and Eigenvector methods based on the correlation matrix and sub-domain separation. The non-

parametric group includes specific stationary and non-stationary methods (eg. Wavelets), while

parametric and eigenvector methods are generally applicable to both non- & stationary data.

Non-parametric

Stationary

Blackman-Tukey FT of smooth/windowed and/or truncated autocor

Periodogram DFT and FFT with or w/o window/filter

Welch’s Overlapped windowed segments

Non-stationary

SFFT Short-form or sliding windowed FFT- Non-adaptive

Wavelet trans. Non-adaptive wavelet basis fnct.

Hilbert Spect. Hilbert transform → analytic signal, IMF

Hilbert-Huang HHT - Empirical mode decomposition - Adaptive IMF

Parametric Stochastic

Autoregressive AR : Model signal

Moving average MA : Model noise

Prony’s method Not discussed here

Eigenvector Sinusoidal

Pisarenko Single (noise) λmin eigenvalue

MUSIC Use all noise subspace λn eigenvalues

ESPRIT Use signal subspace λs eigenvalues

Table 1: Summary of main spectral estimation techniques.

Table 1 summarizes the more well know methods. There are many reviews in the literature

comparing different models. Some of the better include 31 32 33. Übeyi in particular gives a good

review of the pros and cons of the various methods. Several hybrid techniques have also been

developed, which mix schemes in an attempt to exploit the strengths of certain methods while

limiting their short-comings.

31 Kay S.M. et al. Spectrum analysis - A modern perspective, Proc. IEEE 69 (11) 1380 (1981).

32 Übeyli E.D. et al Comparison of eigenvector methods with classical model-based methods

in analysis of internal cartoid arterial Doppler signals, Comput. Biol. Med. 33 473 (2003).
33 Jain S.K et al Harmonics estimation in emerging power system: Key issues and challenges,

Elec. Pow. Syst. Res. 81 1754 (2011).
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The power spectral density (PSD), aka the spectrum, is essentially just the frequency distri-

bution of the signal amplitude variance σ2 (2nd moment)! Or put another way, how the signal

deviates from the mean as a function of frequency. The power spectral area (summed PSD)

should, of course, equal the signal σ2. Other frequency distributions of signal moments are also

possible - for example an increasing Kurtosis (4th moment) with frequency has been used as an

indicator of non-stationarity. 34

6.1 Least squares fitting

One of the most effective and basic methods is a simple visual inspection of the raw data. De-

pending on the signal-to-noise ratio (SNR), coherent features are often quite easily identified

by eye - and thus are amenable to linear Least Squares (LS) fitting to a simple model, such as

shown in fig. 14 of a single sinusoid of amplitude A, frequency ω and phase φ. In this sense, the

spectrum is just a LS fit of a set of complex exponentials (ie. multiple sinusoids) to the data.

Figure. 14: Example of least-squares fitting showing recovery of a single sinewave buried in

uniform Gaussian white noise (SNR = −11.7 dB).

6.2 Fourier transforms

The continuous Fourier transform (CFT) and its inverse are defined as

X(f) =

∫

∞

−∞

x(t)e−ı 2πft dt and x(t) =

∫

∞

−∞

X(f)eı 2πft df (56)

The discrete FT (DFT) forms for a digitized signal of finite length T = N∆t are defined as

Xj =
1

N

N−1
∑

n=0

xn exp(−ı 2πj n/N) and xn =
N−1
∑

j=0

Xj exp(ı2πj n/N) (57)

where t = n∆t with n = 0, . . . , N − 1 the data time index, which gives f = j∆f discrete

frequencies, with j = 0, . . . , N − 1 the frequency index. However, due to the sampling theo-

rem only the first N/2 frequency components Xj are unique (maximum freq.). The frequency

resolution (component spacing) is the inverse of the data sample length ∆f = 1/T .

34 Mahdizadeh N et al Investigation of intermittency in simulated and experimental turbulence

data by wavelet analysis, Phys. Plasmas 11 (8) 3932 (2004).
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6.2.1 Discrete Cosine transform

The discrete cosine transform (DCT) is a straight forward formulation of the real part of the

discrete FT. It is widely used in many areas of science and industry, cf. Wikipedia 35 There are

many variations, which are optimizations of the basic form, aimed at different applications. One

of the most common forms is the DCT-II, defined as

Xj =
N−1
∑

n=0

xn cos

[

π

N

(

n+
1

2

)

j

]

j = 0, . . . , N − 1. (58)

The (n+ 1/2) factor in the cosine is intended to give the best transform at the data boundaries.

6.2.2 FFT

The Fast Fourier Transform (FFT) is simply a refined and efficient algorithm for computing the

DFT. Most FFT routines derive from the original Cooly-Tukey algorithm of 1965. 36 37 The

basis of the Cooley-Tukey approach is to set eı 2π/N = WN in eqn. (57) to give the form

Xj =
1

N

[

N−1
∑

n=0

x∗n W jn
N

]∗

(59)

where ∗ is the complex conjugate. Restricting N to powers of 2 and representing integers j

and n in binary form allows eqn. (59) to be expanded as a sequence of summations of products

involving decreasing powers of WN . Taking advantage of various symmetries and redundancies

allows the number of complex operations (multiplications and additions) to be reduced from N2

to (N/2) log2N . As N increases the computational savings becomes substantial.

The power spectrum via the FFT (called the periodogram) is then simply given by

SPer(j∆f) = 〈XjX
∗

j 〉 (60)

=

〈∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

xn wn exp(−ı2πjn/N)

∣

∣

∣

∣

∣

2〉

.

where wn is a window function, which is discussed in section 6.4.2, and the angle brackets

indicate ensemble averaging, that is, the required expectation operation E[·].
The DFT assumes x(t) to continue and be periodic outside the sample window T . For a real

valued xn this leads to ReXj being symmetric and ImXj being anti-symmetric about fN . That

is, the N/2 to (N − 1) components Xj can be interpreted as ‘negative’ frequencies. For a com-

plex valued signal, the xj symmetry/anti-symmetry is broken and both the positive and negative

frequency Xj are important. Further issues and ‘restrictions’ of the FFT algorithm are discussed

in section 6.4.

35 https://en.wikipedia.org/wiki/Discrete cosine transform (Dec. 2022)
36 Bergland G.D. A guided tour of the Fast Fourier Transform, IEEE Spectrum 6 41 (1969).
37 Bendat J.S. and Piersol A.G. Random data: Analysis and measurement procedures, 4th edn.

Wiley, N.Y. (2010). First published in 1971.
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6.3 Auto and cross-spectra

As noted in the previous section, from the Fourier transform component X(f) of signal x(t) one

computes the (raw) auto-power spectrum, defined as 38

Sxx(f) = |X∗(f)X(f)| = (ReX(f))2 + (ImX(f))2 (61)

Here, raw means a single un-smoothed spectrum. With the Fourier transform Y (f) of a second

signal y(t) one can compute the mutual power with the (raw) cross-power spectrum, defined as

Sxy(f) = |X∗(f)Y (f)| = |C(f) + ı Q(f)| =
(

C(f)2 +Q(f)2
)1/2

(62)

where the respective (raw) co- and quad-spectra are given by

C(f) = ReX(f) ReY (f) + ImX(f) ImY (f) (63)

Q(f) = ReX(f) ImY (f)− ReY (f) ImX(f) (64)

In practice the respective raw spectra should be averaged over either m adjacent frequency ele-

ments (smoothed) or ensemble averaged over M different time segments to reduce the spectral

variance. The normalized cross-power spectrum is called the coherence spectrum, which is

computed after ensemble averaging the auto and cross spectra. It is defined as

γ(f) = |γ(f)| eıφ(f) (65)

where

|γ(f)| = 〈Sxy(f) 〉
( 〈Sxx(f) 〉 〈Syy(f) 〉 )1/2

(66)

with 0 ≤ |γ(f)| ≤ 1, and the corresponding cross-phase spectrum

φ(f) = − tan−1

( 〈Q(f) 〉
〈C(f) 〉

)

= − tan−1

( 〈 ImSxy(f) 〉
〈ReSxr(f) 〉

)

(67)

The angle brackets indicate ensemble averaging of multiple raw spectra instances. Note, without

the ensemble averaging the coherence (computed via the FFT) is γ(f) = 1 by definition!

A term often used is coherency, but confusingly for the complex coherence γ(f), with coherence

meaning |γ|2. Here, coherency is defined as the frequency averaged spectral coherence:

γ̄ =

∑

|γ(f)|Sxy(f)
∑

Sxy(f)
(68)

38 Smith D.E. et al Fast-Fourier-transform spectral-analysis techniques as plasma fluctuation

diagnostic tool, IEEE Trans. Plasma Sci. PS-2 (12) 261-272 (1974).
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6.4 Fourier transform issues

6.4.1 Periodicity & Aliasing

As noted in section 6.2.2 the signal discretion leads to periodicities above the Nyquist frequency

fN = fs/2 folding back, or aliasing and appearing as lower frequencies. Figure 15(b) shows

ensemble averaged FFT spectra (N = 256) of 3 (real valued) sinewaves, plotted vs FFT index.

It is also common to plot the upper N/2 indexes (above Nyquist fN = 128 index) as negative

frequencies, as shown in fig.15(c). In terms of FFT indexes the real f1 = 30 cycles per unit time

produces also a mirror negative peak at index j = (256 − 30) = 226, while the f2 = 150 is

aliased to j = (256− 150) = 106 with a negative peak at j = 150. Likewise, the real f3 = 311.3

is aliased to j = −(256 − 311.3) = 55.3 with a negative peak at j = 200.4 . For broadband

fluctuation signals the aliasing effect can severally distort the measured spectrum.

Figure. 15: Example of FFT aliasing of sines above the Nyquist frequency plus negative fre-

quency ‘image’ peaks. (b) Spectra vs FFT index and (c) as double-sided frequency.

6.4.2 Leakage and data windowing

Because the DFT data length is limited this is equivalent to multiplying the data {xn} with a rect-

angular or boxcar windowwn. The Fourier transform of a rectangular window {wn} = 1 is a sinc

function, which leads to power (positive and negative) leaking from one frequency component

Xj to adjacent components. The solution is to shape the inherent (time restricted) window to one

which has reduced FT side-lobes. Generally this means tapering the data amplitude towards zero

at either end of the FFT block. Several windows are recommend - cf. Wikipedia. 39

Figure. 16: Various window functions for leakage reduction.

39 https://en.wikipedia.org/wiki/Window function (Dec. 2022).
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Some of the more popular window functions are shown in fig. 16 and include:

(1) Extended cosine bell/taper: applied to the first 1/10th and last 1/10th of the data window.36 40

wn =











cos2(2π10n/N) for 0 < n < N/10

1 for N/10 ≤ n < 9N/10

cos2(2π10(n−N)/N) for 9N/10 ≤ n < N

(69)

(2) Cosine-sum windows: with α0 = 0.5 (Hann) or 0.54 (25/46) (Hamming).

wn = α0 − (1− α0) cos(2πn/N) (70)

(3) Blackman window: 41 42 with α0 = (1− α)/2, α1 = 1/2, and α2 = α/2, with α = 0.16

wn = α0 − α1 cos(2πn/N) + α2 cos(4πn/N) (71)

Figure. 17: Example of spectral leakage with integer (blue) and non-integer (red) sinewave

frequencies, without (b) & (d) and with (c) & (e) Hann window (inc. wcor correction). SNR

= 34 dB. ΣS = summed spectral power, Ap = sine amplitude from peak power via eqn. (74).

A related leakage issue is the so-called Picket-fence effect. Spectral frequencies that fall between

the discrete orthogonal Xj values will spread their power to adjacent Xj components, distorting

the spectrum. As shown in fig. 17 for two unity amplitude sines, one with an integer (blue) and

one with non-integer frequency (red), the effect of leakage can be very pronounced with power

bleeding over a very wide frequency band, resulting in spectral peak reduction, cf. red peak in

figs. 17(b) linear and (d) log power scale.

40 Otnes R.K. & Enochson L. Applied time series analysis, Wiley N.Y. (1978).
41 Oppenheim A.V. Discrete-time signal processing, Prentice Hall (1989).
42 Mitra S.K. Digital signal processing, 2nd edn. McGraw-Hill (2001).



A Short Manual to Discrete Time Series Analysis - G.D.Conway 39

Note, for a sinusoid of integer frequency and amplitude Apk = 1 the power spectrum has a

positive & negative frequency peak, each of magnitude pk = (Apk/2)
2 = 0.25. Quoted in the

spectra plots here are the parameters: ΣS for the total summed spectral power (≈ σ2), pk for the

spectral peak maxima, and Ap for the recovered peak/mode amplitude using eqn. (74) below.

Applying a window function (eg. Hann) confines the spectral leakage to a narrower bandwidth,

but at the expense of frequency resolution. 31 For coherent peaks the (controlled) power spread

to adjacent Xj frequency components results in peak broadening - even for integer frequencies -

but with off-peak leakage now reduced to below the background noise level, figs. 17(c) and (e).

The effect of convolving the signal with a window is an overall reduction in the spectral power,

such that the summed power no longer equals the signal variance. To recover the signal variance

σ2
d the windowed spectrum Sw(f) must be rescaled by multiplying by a correction factor wcor

S(f) = (wcor/H)× Sw(f) (72)

wcor =
(

N/
∑N wn

)2

(73)

which is inversely proportional to the area under the window. For a Hann windowwcor = 1/α2
0 =

1/0.52 = 4, and 1/0.542 for a Hamming window. The extra H = 1.5 − 1.52 factor is required

for the controlled leakage. Of course, even with the power correction, coherent peaks will still

be smaller than in the non-windowed case due to the power spreading in frequency.

Figure. 18: Effect of zero-padding on FFT spectra of integer frequency (fo = 30) unity amplitude

sinewave plus white noise (SNR = 42 dB). Without (coloured) and with (peak power scaled)

Hann window (black). Top row: linear, and bottom row: log power scales. Sn(f) = S(n) ∗ iz.

6.4.3 Zero padding

For broad-band spectra the picket-fence effect appears as modulation or ripple in the spectra. One

mitigation technique is to essentially smooth the spectrum via complex interpolation of the Xj

coefficients. 36 This can be achieved by padding the data set {xn} of length N = 2n points with
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extra blocks of N zeros. (Adding zeros in the time domain is equivalent to interpolation in the

frequency domain.) The result, for a single sinewave, shown in fig. 18 with increasing multiples

of N blocks of zeros, is to make the FFT compute interleaved frequencies. As can be seen, zero

padding does not improve the inherent frequency resolution of the peak (cf. black stared points),

but simply adds frequencies between the original Xj components, which may help to resolve

multiple peaks. However, a side-effect of zero-padding (without windowing) is the formation of

harmonics. With windowing (applied only to the data segment and not to the zero padding) the

harmonics are smoothed out, as shown by the black curves and points in fig. 18.

A second side-effect of zero-padding is to reduce the spectral power, which must now be rescaled

by iz = nft/npt (ratio of extended data length to real data length) in order to recover the summed

spectral power ΣS(f) = σ2
d. While ΣS is now correct the spectral peak will, nevertheless, still

decrease as power is spread over more points with increasing as iz. In fig. 18 for display purposes

the spectra have been multiplied by a further iz (see code snippet) to maintain the peak height.

npt = 512 & alpha = 0.5 & H = 1.52 .

wind = alpha - (1.0-alpha)*Cos(2.0*!pi*Findgen(npt)/npt)

wcor = (Float(npt)/Total(wind))ˆ2 ; =alpha !

; For iz=1 => nft=512 iz=2 => 1024 iz=4 => 2048 iz=8 => 4096

freq = Findgen(npt*iz) / iz

zero = Fltarr(npt*(iz-1))

b = FFT([data,zero], -1)

S = Abs(b*Conj(b)) * iz ; recover sigma_d

SS = Total(S[1:*])

pk = Max(S[0:*], ip) ; pwr peak

Ap1 = 2.*Sqrt(Total(S[ip-(iz):ip+(iz)])) ; Amp peak

Ap2 = 2.*Sqrt(Total(S[ip-(iz+1):ip+(iz+1)]))

Sn = S * iz ; invariant peak

; With window

b = FFT([data*wind,zero], -1)

Sw = Abs(b*Conj(b)) * wcor/H * iz

SSw = Total(Sw[1:*])

pkw = Max(Sw[0:*], ipw)

Ap1w = 2.*Sqrt(Total(Sw[ipw-(iz):ipw+(iz)]))

Ap2w = 2.*Sqrt(Total(Sw[ipw-(iz+1):ipw+(iz+1)]))

Swn = Sw * iz

Example. 12 : Code snippet (IDL) demonstrating zero padding of sinewave with white noise.

Note windowed spectra are scaled by correction factor wcor/H - cf. fig. 18.

6.4.4 Mode amplitude from FFT

As implied above it is quite possible to recover the amplitude of a single frequency harmonic

mode from the FFT power spectrum. For moderate a SNR the amplitude Apk of an isolated

frequency spectral component can be recovered by summing the power under the peak. Generally

the sum should only be over the coherent peak. To obtain a reasonably good estimate it is

sufficient to take a couple of FT index points either side of the peak index, ie. ip ± 1 or 2

Apk = 2×





ip+(iz+1)
∑

j=ip−(iz+1)

S(n)(fj)





1/2

(74)
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In the case of zero padding one should use ip±(iz+1) where iz is the padding ratio, ie. iz = 1 for

no padding. When using zero-padding the peak width is given by ±iz, as indicated by the stared

spectral points in fig. 18 with a summation over ±(iz + 1) (ie. Ap2 in the code snippet above).

The factor 2 before the square-root is required if the summation is only over one side (positive

frequencies) of the FFT. Also, note S(f) should have already been corrected withwcor/H if using

windowing. These formulas and correction factors work well, even down to SNR of < 3 dB or

less - as long as sufficient points are used to resolve the peak.

6.4.5 Truncation and partial zero padding

The Cooley-Tukey FFT algorithm is a so-called radix-2 algorithm in that it performs the DFT by

dividing (ie. factorizing) the transform into successively smaller N/2 chunks to achieve a com-

putational advantage. Hence the data length restriction to N = 2n. However, other factorizations

are also possible, leading to mixed-radix, prime-factor, and co-prime or split-radix algorithms,

as well as other approaches, such as the chirp-z transform, Rader or Bluestein algorithms. 43

Figure. 19: Spectra (nave=32 w/o window) using IDL mixed-radix FFT of various lengths,

demonstrating truncation and zero-padding effects. Sinewave plus Gaussian noise, σ2
d = 0.50.

Most computer language packages provide straight-forward FFT routines. Depending on sophis-

tication, for non-power-of-two data lengths N 6= 2n, the routine might do one of several things:

(1) Complain - not particularly user-friendly! (2) Automatically truncate or zero-pad the data

length out to the next 2n (eg. python numpy.fft). (3) Perform data interpolation. Or (4) switch to

an alternate algorithm (eg. IDL : mixed-radix, or python scipy.fft : Bluestein).

43 Wikipedia - https://en.wikipedia.org/wiki/FFT and https://en.wikipedia.org/wiki/Cooley-

Tukey FFT algorithm (Checked Apr. 2023).
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As example, fig. 19 shows a selection of spectra of a single unity amplitude sinusoid with fre-

quency fo and DC offset of 0.5, plus a small amount of Gaussian white noise, using the IDL

provided FFT routine (a mixed-radix algorithm from the Intel Math Kernel Library) - see code

snippet below. The number of FFT points (without windowing) is deliberately small N < 100 to

highlight effects. Full (positive and negative frequency) spectra are shown with the DC peak of
√

1./2 at FFT index j = 0 (lower x-axis).

Figures 19(a) for integer fo = 10, and (b) non-integer fo = 10.3 with N = 64 FFT Xj points,

reproduce the effects of spectral leakage shown in fig. 17. In fig. 19(c) the data length is extended

to N = 76 and in (e) truncated to N = 52 respectively. (Note the IDL routine returns the same

number of Xj components as the input data length.) Although in both (c) & (e) the sinewave

fo = 10 is integer, the effective FFT frequency f = fo ∗ N/2n with 2n = 64 is non-integer

in both cases, and thus spectral peak leaks occurs. The scaled frequency index f = j × 2n/N

corresponding to the FFT index is shown in the upper blue x-axis. In fig. 19(f) increasing fo =

12.307 with N = 52 gives an effective integer frequency of f = 10 = Round(12.307 × 52/26)

and thus no peak leakage. What is important to note is that the FFT reference length is taken

(radix-2 in these cases) to the nearest 2n points!

dt = 1./1000. & nz = 12 & nft = 64 & fo = 10 & ofs = 0.5 .

time = Findgen(2060)*dt

sig = Sin(2.*!pi*time*fo) + ofs ; long Sine + DC

zero = Fltarr(nz)

; length = 64 : Standard (blue) fo = 10.

fs = FFT(sig[0:nft-1], -1)

S1 = Abs(fs*Conj(fs))

; length = 76 : Extended (purple) fo = 10.

fs = FFT(sig[0:nft+12-1], -1)

S3 = Abs(fs*Conj(fs))

freq = Findgen(nft+12)/(nft+12)*nft ; freq adjusted

; length = 64 : Truncate + zero (orange) fo = 10.

fac = 1. + Float(nz)/Float(nft-1-nz)/2.

fs = FFT([sig[0:nft-1-nz],zero], -1)

S4 = Abs(fs*Conj(fs)) * facˆ2 ; Note *facˆ2

SS4 = Total(S4[1:*]) / fac ; Note /fac

; length = 52 : Truncate, no pad (green) fo = 10.

fs = FFT(sig[0:nft-nz-1], -1)

S5 = Abs(fs*Conj(fs))

Example. 13 : Code snippet (IDL) for computing partial zero/truncated spectrum - cf. fig. 19.

A common approach in many routines is to either truncate the data down, or zero pad the data

up to the nearest 2n (eg. numpy.fft). In fig. 19(d) the 52 data points are zero-padded up to 64.

Temporal zero-padding is equivalent to interpolation in the frequency domain, thus while the

peaks now align with the expected FFT indexes, the peaks of course are now subject to the zero-

padding harmonic/leakage effect noted in section 6.4.3. In all cases it is highly recommended to

always use a window on the data before zero padding.

The final message here is, that it is important to understand how your preferred FFT routine

actually works. Advice - do not use ‘black-box’ routines on trust. If in doubt, test the routine.
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6.4.6 Convolution and correlation

Digital filtering is often performed by convolving the signal with a kernel. The convolution

of two signals in the time domain is the same as multiplying the two signals in the frequency

domain, c(t) = x(t) ∗ h(t) ⇋ X(f) ·H(f). Using FFTs:

ĉn = F−1 {F{xn} · F{hn}} (75)

where F and F−1 represent the forward and inverse FFT. However, to avoid cyclic effects in the

convolution it is necessary to double the length of the signals to 2N and set the second half to

zeros - Bergland gives an excellent description of the issues. 36

x̂n = xn for 0 < n < N (76)

x̂n = 0 forN ≤ n < 2N

6.4.7 Overlap averaging

This technique, commonly called the Welch spectra, 44 involves ensemble averaging data seg-

ments which are overlapped. Up to a 50% overlap can reduce the spectral standard error (but

not the spectral bias error) - see below for discussion of spectral errors. More than 50% tempo-

ral overlap does not improve the error further as the segments are no longer fully independent.

Segment overlapping is also commonly used in the sliding or short-time STFT for resolving time

evolutions - see section 10.1.

6.4.8 Cepstrum

An extension to the power spectrum P (f) = |F{x(t)}|2 is the cepstrum. 45 This is a technique

widely used in the field of acoustics and sonar etc. for resolving periodic components in the

spectral frequency. The approach is to take the FFT of the log of P

C(τ) = | F{log( |F{x(t)}|2 )} |2. (77)

Note that the FT of an FT is a ‘spectrum’ with components of cycles per Hz, eg. seconds. Es-

sentially back to the time domain and towards an autocorrelation. However, taking the log of the

first power spectrum has the effect of converting any temporal convolutions to an additive spec-

trum. The polycepstrum has also been defined as the inverse FT of the log of the corresponding

polyspectrum (where poly means 2nd or higher-order spectra) 46 47

44 Welch P.D. The use of fast Fourier transform for the estimation of power spectra: A method

based on time averaging over short, modified periodograms, IEEE Trans. Audio Electo.

AU-15 (2) 70 (1967).
45 Noll M.A. Cepstrum pitch determination, J. Acost. Soc. Am. 41 (2) 293 (1967).
46 Swami A. et al. Higher-order spectral analysis toolbox, User’s guide, v.2, The MathWorks

Inc. https://www.ligo.caltech.edu/ rana/mat/HOSA/HOSA.PDF (1998).
47 Oppenheim A.V. & Schafer R.W. Digital signal processing, New Jersey, Prentice-Hall

(1989).
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6.5 Confidence limits & confidence intervals

As for correlation estimators (section 5.3), the linear spectral estimators also have a confidence

or significance level (SL), ie. the minimum value of the estimate above which the estimate is

significant, and a confidence interval (CI) or band, ie. the error bar on the mean value of the

estimate. These are often related, but not necessarily the same. Bendat 48 gives perhaps the

most definitive description and derivation of the statistical errors associated with the various

spectral estimators. Firstly, there are two types of errors: (1) the bias error in the estimate, which

expresses the basic goodness of the estimator, ie. does it under or over estimate? And (2) the

random or statistical variance error:

(1) bias[Â] = E[Â]− A

(2) var[Â] = E[(Â− E[Â])2]

with the normalized standard error ǫ[Â] = σ[Â]/A.

The bias scales with the resolution bandwidth Be = 1/T while the variance error ǫ ∝ 1/
√
M .

Since all spectral estimates need to be ‘smoothed’ either by averaging m adjacent frequencies or

M ensembles, there will always be a trade-off in either the frequency resolution ∆f = m/∆t,

or the length of each ensemble T = N∆t vs the number of ensembles M = Ttot/T .

With ensemble averaging Bendat gives the following formulas for the normalized standard errors:

ǫ[Ŝxx(f)] ≈ 1/
√
M (78)

ǫ[Ŝxy(f)] ≈ 1 / (|γxy(f)|
√
M) (79)

ǫ[γ̂2xy(f)] ≈
√
2 (1− γ2xy(f)) / (|γxy(f)|

√
M) (80)

and for the transfer function |Ĥxy(f)|2 = γ̂2xy(f) Ŝyy(f)/Ŝxx(f)

ǫ[Ĥxy(f)] ≈ (1− γ2xy(f))
1/2 / (|γxy(f)|

√
2M) (81)

from which, when ǫ[Ĥxy(f)] is small, eg. ǫ < 0.1 gives the cross-phase error

ǫ[φ̂xy(f)] = ∆φ̂xy ≈ sin∆φ ∼ ǫ[|Ĥxy(f)|] (82)

Smith 38 also provides the following formulas when using frequency averaging for the spectral

variances. When converted to ǫ these are fairly close in form to those of Bendat:

var[Ŝxy(f)] ≈ |Ŝxy(f)|2
[

1 + |γ̂xy(f)|−2
]

/ 2m (83)

var[γ̂xy(f)] ≈
[

1− |γ̂xy(f)|2
]2
/ 2m (84)

var[φ̂xy(f)] ≈
[

|γ̂xy(f)|−2 − 1
]

/ 2m (85)

48 Bendat J.S. Statistical errors in measurement of coherence functions and input/output quan-

tities, J. Sound Vibration 59 (3) 405-421 (1978).



A Short Manual to Discrete Time Series Analysis - G.D.Conway 45

6.5.1 Coherence significance level

There are also various formulas provided in the literature for the γ coherence statistical signifi-

cance level (SL) c. At the most basic level c depends on the number of ensemble averages M ,

and whether averaging of m neighboring frequencies was used. For a normal error distribution

in the coherence this can be approximated as:

c ≈ 1/
√
mM (86)

However, for small γ values (close to zero) the error distribution is not normal but more like an

asymmetric Poisson. In this case, taking a χ2 or F-distribution gives a γ2 confidence level for a

particular α

c2 = F2,2q (α) / (F2,2q (α) + q). (87)

Fν1,ν2 is the quantile percent point function (see section 3) with lower and upper percentiles, ie.

dof of ν = 2 and 2q = 2(M − 1). 49 There are tables for the F -distribution for different α values

in most statistics text books cf. 50 and computer packages, such as Matlab, have routines for its

computation. Fortunately, the F-statistic for γ can be distilled down to something simpler 51 52

c =
√

1− α1/q (88)

where α = 1− p, (eg. α = 0.01 for p = 99% confidence) and q =M − 1. Note the significance

level c is independent of the frequency f .

To give a brief summary of the correlation and coherence errors. 53 The concept of statistical

stability is set by the resolution bandwidth Be, and the (individual) record length T = N∆t

where ∆t = sample interval. Be = 1/τmax is the correlation bandwidth (τmax = m∆t and m is

maximum lag), thus the FFT bandwidth is Be = 1/T = M/N∆t (where M is the number of

elementary components averaged), then the degrees of freedom: dof ν = 2BeP .

If N is moderately large, say N > 30, or for small values of ǫ, then the distribution approaches

Gaussian / normal and the percentage error, or coefficient of variation (standard error): ǫo =

1/
√
BeT which leads to:

ν dof Be b/w ǫo error

Correl. : 2N/m : 1/τmax :
√

m/N

FFT : 2M : 1/T :
√

1/M

49 Shumway R.H. & Stoffer D.S. Time series analysis and its applications, with R examples,

3rd edn. Free texts in Statistics (2014) p159. Subsequently published as Time series, A data

analysis approach using R, Chapman & Hall (2019).
50 Bevington P.R. et al Data reduction and error analysis for the physical sciences, McGraw-

Hill, 2nd edn. (1992).
51 Thompson R.O. Coherence significance levels, J. Atmos. Sci. 36 (10) 2020 (1979).
52 https://dsp.stackexchange.com/questions/16558/statistical-significance-of-coherence-values

(Checked 2022).
53 Otnes R.K. & Enochson L. Applied time series analysis, Wiley, NY. (1978) - chapter 8.
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6.6 Blackman-Tukey method

One of the oldest methods to compute the periodogram is the indirect method of Blackman &

Tukey (BT).1 Here the signal auto-covariance estimate R̂xx(k) is computed using eqn. (46) for a

data set of xn (n = 0, . . . , N − 1), and then Fourier transformed to the frequency domain 31

SBT (f) = 2∆t
K−1
∑

k=0

R̂xx(k)wk exp(−ı2πfk∆t) (89)

= 2∆t
K−1
∑

k=0

R̂xx(k)wk cos(2πft) + R̂xx(k)wk sin(2πft).

Here the auto-covariance is computed using the full data set of N points, but the Fourier trans-

form of J frequencies, is only made overK ≪ N lags, ie. the covariance is truncated. Originally

this was an advantage since the FT is the computationally expensive part. Figure 20(a) shows the

raw BT spectra of a sinewave in noise obtained using the code snippet below. Because the expec-

tation operation on the covariance does not transfer through the FT it also necessary to smooth

the periodogram, either by averaging over adjacent frequencies - compare fig. 20(a) and (b), or

ensemble averaging over several spectra. In this case theN point data set can be sub-divided into

smaller segments before correlating. The most striking feature is how different the BT spectra

look compared to equivalent FFT spectrum - much smoother with narrow coherent peaks. In

fact, peaks are generally much narrower than can be achieved with comparable FFTs.

Figure. 20: Comparison of (a) raw BT spectra, (b) with freq. averaging and (c) with window, for

N = 2000, K = 1000 (ncor) and J = 410 (nft) of sine fo = 80.1 in noise (an=0.2) σ2
d = 0.547.

As with the FFT spectrum it is also highly recommended to use a window on the auto-covariance

estimates, in order to reduce leakage effects - compare fig. 20(a) without, and (c) with a half

Tukey cosine windowwk = 0.5×(1+cos(2πk/K)) applied to the positive covariance lags. Other

windows (eg. Parzen or Bartlett) are also possible. The window removes the covariance edge

effects and gives smoother spectra with minimal reduction in frequency resolution. The choice of

N , K and J sets the spectral quality. Lag truncation K < N is essential for spectral consistency

(variance decreasing with larger N ). A general recommendation 54 is: 1/20 < K/N < 1/3.

54 Chatfield C. The analysis of time series: An introduction, Chapman & Hall, (2004).
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npt = 8000 & dt = 1/1000 & time = Findgen(npt)*dt & fo = 80.1 .

data = Sin(!pi*2.*time*fo)+an*RandomN(seed, npt) ; build test signal

; Auto covariance

lag = Indgen(ncor) & M = Abs(lag) & acv = Fltarr(ncor)

win = 0.5*(1.+Cos(!pi*Findgen(ncor)/Float(ncor)))

bcor = (Float(ncor)/(Total(win)))ˆ2 & H = 1.5

FOR k = 0L, ncor-1L DO $

acv[k] = Total(data[0:npt-1- M[k]]*data[M[k]:*])/Float(npt-M[k])

; Fourier Transform via complex exponentials

psd = Fltarr(nft) & fqb = Findgen(nft)/Float(nft)/dt

a = Complexarr(ncor)

FOR j = 0L, nft-1L DO BEGIN ; Full freq range

f = Float(j)/(Float(nft)*dt)

FOR k = 1,ncor-1 DO a[k]=acv[k]*win[k]*Exp(Complex(0,-2.*!pi*k*f*dt))

psd[j] = Abs(Total(a))

ENDFOR

psd = dt*(acv[0] + 2.*psd)/!pi * (bcor/H) ; Scale spectrum

Example. 14 : Code snippet (IDL) for computing BT spectrum, after Meko 16 - cf. fig. 20.

Figure. 21: Effect on windowed BT spectra of (top row) increasing covariance lags K (ncor)
with fixed N = 8000 (npt) and J = 4096 (nft) frequencies, and (bottom row) increasing J with

fixed K and N , for sinewave (as = 1, fo = 80.1) with Gaussian noise (an = 0.1). σ2
d = 0.513

Here, the BT formula proposed by Meko (ie. Chatfield) eqn. 90, was used in preference to the

one above, since, together with the with window factor, the peak scales more robustly

SBT (f) =
∆t

π

(

R̂xx(0) +
∑K−1

k=1 R̂xx(k)wk exp(−ı2πfk∆t)
)

× (bcor/H). (90)

Figure 21 (top row) shows the effect of increasing lag K on the spectral resolution with fixed

number of reconstructed frequencies J and data length N . The larger K the better the spectral

resolution and the narrower and stronger the coherent peaks (ie. larger spectral SNR), but at the

cost of increased confidence bands (spectral error bars). The degrees of freedom scales as ν =
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2.67N/M (which sets the χ2 confidence interval) while the bandwidth scales as bw = 4/(3M).

The number of frequencies J of course also needs to be large enough to take advantage of the

inherent resolution - as in fig. 21 J(c) example with J = 4096 (nft). Note that the background

noise floor remains constant. Increasing N does not reduce the noise floor, but it does reduce

the error bars. The bottom row of fig. 21 shows in J(a) the under resolved peak, while in fig. 21

J(b) with J = K (as recommended by Meko 16 ) the peak is optimally resolved. In fig. 21 J(c),

increasing J > K simply add more points, filling in the spectrum (as with zero padding of the

FFT), within the resolution defined by K.

Figure. 22: Effect of increasing Gaussian white noise (+45 to −34 dB SNR) on sinewave win-

dowed BT spectra with J = 1024 frequencies, and K = 1024 lags and N = 2049 data points.

FFT with Hann window.

The behaviour of the BT spectra with broadband noise is also rather different to the direct FFT

method. As seen in the spectra of fig. 22 with increasing levels of white noise relative to sinewave

amplitude, there is generally a fairly constant minimum spectral floor (which unfortunately scales

with the overall covariance level). As shown in fig. 22(b) and (c), only at significant noise levels

does the broadband background level begin to scale with the noise variance σ2
n. Increasing the

sinewave amplitude raises the coherent peak proportionately. What this example demonstrates

well is the ability of the BT method in recovering coherent features at extreme noise levels with

very short data lengths. That is, in conditions where the direct FFT periodogram struggles.
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7 Spectral analysis - Non-linear

This section discusses some of the non-linear spectral estimators, beginning with the various

flavours of autoregressive methods, and then the eigenvector methods based on the singular value

decomposition (SVD) of the auto-covariance matrix.

7.1 Autoregressive moving-average models

Autoregression moving-average (ARMA) spectral methods are based on parametric models of

the persistence, ie. autocorrelation of the time series. They offer alternatives to discrete Fourier

transforms and are particularly useful for short time series or non-stationary time series. They

are also of value for extracting harmonic signals from noise. There is a vast body of literature on

these and related methods. Some good overviews include: 55 31 56

7.1.1 AR spectra and Yule-Walker equations

Autoregressive spectral methods (AR) express the current (zero-mean) data value xn as a linear

series of previous values, plus a residual white noise term wn

xn = a1 xn−1 + a2 xn−2 + . . .+ ap xn−p + wn =

p
∑

l=1

al xn−l + wn (91)

where al are predictor or weighting coefficients and p is the order of the linear series, ie. the

number of regression terms. From this the power spectral density is given by 55 57

ŜAR(f) =
σ2
n ∆t

|1 − ∑p
l=0 al exp(−ı 2πf l∆t)|

2 =
σ2
n

|A(f)|2 (92)

where A(f) = 1 − a1 e
−ı2πf − . . . − ap e

ı2πfp. Note eqn. (91) is sometimes defined as xn =

−∑ alxn−l +wn, in which case the minus sign in eqn. (92) becomes a plus etc.59 One approach

to obtaining the al coefficients and the noise σ2
n = E[wnwn] is via the Yule-Walker recursion

equation, which relates a and the autocorrelation Rxx (with a full derivation in Kay31)

Rxx(k) =

p
∑

l=1

alRxx(k − l) + σ2
n (93)

which can be expressed as a set of equations in matrix form with σ2
n = σ2

l=0,













Rxx(0) Rxx(−1) . . . Rxx(−p)
Rxx(1) Rxx(0) . . . Rxx(1− p)
...

...
...

Rxx(p) Rxx(p− 1) . . . Rxx(0)













.













1

a1
...

ap













=













σ2
0

0
...

0













(94)

55 Ulrych T.J. & Ooe M. Chapter 3: Autoregressive and mixed autoregressive-moving average

models and spectra in Nonlinear methods of spectral analysis, 2nd edn. Springer (1983).
56 Takalo R. et al Tutorial on univariate autoregressive spectral analysis, J. Clin. Monit. Com-

put. 19 401 (2005) and erratum (2006).
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The Levison-Durbin algorithm is an efficient Gaussian elimination method for solving eqn. (94)

and can be summarized as follows: 31 The first step is to initialize for k = 1

a11 = −Rxx(1) /Rxx(0) (95)

σ2
1 = (1− |a11|2)Rxx(0) (96)

followed by a recursive loop for k = 2, 3, . . . , p

akk = −
[

Rxx(k) +
∑k−1

l=1 ak−1,lRxx(k − 1)
]

/ σ2
k−1 (97)

ak,l = ak−1,l + akk a
∗

k−1,k−l (98)

σ2
k = (1− |akk|2) σ2

k−1 (99)

The double subscripts on a and σ2 indicate storage of previous values in the summation and

parameter updating steps. An advantage of this method is that all values of the coefficients up to

order p are stored. This is useful since the optimal order p is not necessarily known a priori.

npt = 8192 & an = 0.1 & dt = 1/npt & fo = 80. .

time = Findgen(npt)*dt

data = Sin(2.*!pi*time*fo) + an*(2*RandomU(seed, npt)-1.)

pmx = 100 ; max AR order no.

aic = Fltarr(pmx)

FOR p = 2, pmx-1 DO BEGIN

res = TS_COEF(data, p, MSE=sigma2) ; IDL supl. routine

aic[p] = Alog(sigma2) + 2*p/npt

ENDFOR

Example. 15 : Code snippet (IDL) to calculate AIC vs order p - cf. fig. 23(a).

There are various formulas for selecting p, such as the Akaike information criterion (AIC) 55 56

57 which reaches the first significant minimum at the optimal p

AIC(p) = ln σ̂2
p + 2p/N (100)

where σ̂2
p (eg. the noise σ2

n) is the prediction mean-square-error associated with order p. In

practice the optimal p may also be taken where σ2
p saturates or falls to a preselected value. Also

there is the Finite Prediction Error (FPE), the Minimum Description Length (MDL) - eqn. (118),

and the Criterion Autoregressive Transfer (CAT) 31 - all basically giving similar results, cf. 59

FPE(p) = σ̂p

(

N + p+ 1

N − p− 1

)

(101)

Figure 23 shows a comparison of AR spectra for a single sinewave plus Gaussian white noise

for increasing AR orders p = 20, 40, 80, 160 and 320 using the IDL TS COEF routine which

employs the Levison-Durbin recursion algorithm - see code snippet below. The optimal spectrum

57 Iwana N. et al Least-squares autoregression (maximum entropy) spectral estimation for

Fourier spectroscopy and its application to electron cyclotron emission from plasmas, J.

Appl. Phys. 52 (9) 5466 (1981).
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Figure. 23: (a) AIC vs AR order p. (b-f) AR spectra for orders p = 20, 40, 80, 160 and 320, for

sinewave (as = 1) plus Gaussian noise (an = 0.05) using IDL TS COEF routine employing the

Levison-Durbin recursion algorithm.

is with p ≈ 40 − 60. Figure 23(a) shows the AIC as a function of p (see code snippet) falling

rapidly, then leveling off for p ≥ 40. For too low a p the AR spectral peak in fig. 23(b) is poorly

resolved, even with J = 4096 reconstructed frequencies. For p = 40 the peak in fig. 23(c) is now

well resolved. With increasing order p the resolution improves further as the peak base narrows

and the peak amplitude stabilizes, but at the expense of minor spectral artifacts (structure) as

seen in fig. 23(e). As with the BT spectrum, in comparison with the corresponding FFT spectrum

(ensemble averaged) in fig. 24 the spectra is greatly smoothed, depending on the order p.

nft = 4096 & p = 60 & dt = 1./nft ; FT points & AR order.

a = TS_COEF(data, p, MSE=sigma2) ; IDL supl. routine

psd = Fltarr(nft)

apr = Complexarr(p)

; Compute FT using complex exponentials

FOR j = 0, nft-1 DO BEGIN

f = Float(j)/(nft*dt)

FOR k = 0, p-1 DO apr[k] = a[k]*Exp(Complex(0,-2.*!pi*k*f*dt))

psd[j] = Abs(1.- Total(apr))ˆ2

ENDFOR

psd = dt*sigma2 / psd ; invert & scale

Example. 16 : Code snippet (IDL) to calculate AR spectra via IDL TS COEF routine - cf. fig. 23.

Nevertheless, the AR spectrum is sensitive to the signal to noise ratio (SNR). Figure 24 shows

the effect of increasing the (Gaussian) noise amplitude from an = 0.005 to 5 (ie. SNR 85.7 to

-34.3 dB). As the σ2
n increases it is necessary to also increase the AR order p in order to retain

the resolution of the peak. Comparing the AR and FFT spectra, the overall spectral shape and the
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scaling of the background spectral level with the noise is convincing. However, the integrated

(summed) AR spectral power ΣS(f) does not follow the signal variance σ2
d since the spectra are

scaled to the noise variance σ2
n. In addition, while the FFT retains the constant coherent peak

amplitude, the AR peak is compressed at low noise levels (high SNR) since coherent peaks in the

AR spectra are not simply linearly related to power. 31 Nevertheless, at sufficiently high SNR the

area under the AR peak is proportional to power Σpk ∝ P while the peak magnitude Spk ∝ P 2.

Figure. 24: (Left) raw signal, (middle) AR spectra and (right) FFT power spectra with Hann

window, for unity amplitude sinewave of frequency fo = 80.1 plus varying Gaussian noise am-

plitude (an = 0.005, 0.05, 0.5 and 5). σ2 is the AR mean-square error, which is approximately

equal to the noise σ2
n. Frequencies J = 4096 for both AR and FFT, but AR order p is varied.

Generally, the larger the noise level σn, or the signal complexity (ie. bandwidth) the larger the

AR order p required to resolve features. For real data this means scanning p to find the optimal

order. For short data lengths p can not be too large. Here, reducing unnecessary complexity

by prior low-pass filtering the signal would be an option. Overall, the AR spectra nevertheless,

remains superior to the FFT for short data lengths.
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7.1.2 Maximum Entropy Method (MEM)

The maximum entropy (ME) method (also called Burg’s method) is an alternate way of fitting

the AR model. The essence of the method is “to choose the spectrum which corresponds to the

most random time series whose autocovariance agrees with the measured values” 58 Inverting the

AR eqn. (91) one can define a pair of forward and backward prediction errors (ie. σ2 s)

efp,n = xn +
∑p

l al xn−l = efp−1,n + ρp e
b
p−1,n−1 (102)

ebp,n = xn−p +
∑p

l al xn−p+l = ebp−1,n−1 + ρ∗p e
f
p−1,n (103)

for n = p + 1, . . . , N . The second halves of the equation pairs are recursive expressions, where

ρp = −2
∑N

p+1 e
f
p−1 e

b
p−1/

∑M
p+1(e

f
p−1)

2 + (ebp−1)
2 are called reflection coefficients, which are

related to the al and r̂. Since |ρp| ≤ 1 they are also called partial correlations (PARCOR). The

prediction error equations can be solved via a Levison recursion or least-squares. Finally, the

spectrum is given by

ŜME(f) =
efp + ebp

|1 +
∑p

l=0 âl exp(−ı 2πf l)|
2 (104)

An alternate ME representation is the AR autocorrelation extension. In order to mitigate the

frequency smearing induced by a truncated Rxx(k), cf. eqn. (93), the covariance estimates r̂k are

extended with AR predictions using the previously derived ak and σp values.

r̂k =

{

Rxx(k) for |k| ≤ p
∑p

l=1 al r̂k−l for |k| > p
(105)

From Kay31, the result is essentially an extended Blackman-Tukey spectrum:

ŜME(f) = ∆t
∑

∞

k=−∞
r̂k exp(−ı 2πf k∆t) (106)

7.1.3 Least-Squares spectral estimator

Least squares (LS) is another numerical approach to the spectral estimation where the difference

between the estimated (ie. from the data) covariance r̂k and the predicted covariance from the

AR coefficients is minimized. 57 Using the Yule-Walker equation (93) one can write the function

to be minimized as

Ip(a, σ
2) =

1

K + 1

K
∑

k=0

(

rk −
p
∑

l=1

al rk−l − σ2 δk,0

)2

(107)

Here one can use standard LS minimization techniques, or via matrix methods, cf. 56 55

It should be noted that the AR process can be viewed as linear filtering. The Kalman-Filtering

method is a type of AR process solved via LS.

58 Haykin S. and Kesler S. Chapter 2: Prediction-error filtering and maximum-entropy spectral

estimation in Nonlinear methods of spectral analysis, 2nd edn. Springer (1983).



A Short Manual to Discrete Time Series Analysis - G.D.Conway 54

7.1.4 Moving average spectra (ARMA)

The AR spectrum has problems resolving sharp troughs. This can be addressed by expressing

the noise term wn also as a series of lag dependent terms to form an AR-moving average model

xn =

p
∑

l=1

al xn−l +

q
∑

l=0

bl wn−l (108)

where wn is a white noise signal with variance σ2
n, which again can be solved using a least-mean-

squares approach. The corresponding spectrum is 59

ŜARMA(f) = σ2
n

∣

∣

∣

∣

B(f)

A(f)

∣

∣

∣

∣

2

=
σ2
n ∆t

∣

∣

∣

∑q
l=−q bl exp(−ı2πf l∆t)

∣

∣

∣

2

|1 − ∑p
l=0 al exp(−ı 2πf l∆t)|

2 (109)

If the al terms are zero then the resulting pure moving average spectrum is equivalent to the

Blackman-Tukey spectrum.31

ŜMA(f) =

q
∑

k=−q

Rxx(k) exp(−ı2πfk) (110)

7.1.5 AR summary

AR methods have several advantages over the FFT, firstly there is the absence of restrictions on

the choice of frequency. Once the a coefficients are computed then f is a free choice. That is,

AR can offer higher frequency resolution than FFTs which are restricted by the data length. Of

course, the maximum spectral frequency is still set by the sample period ∆t. Secondly, there is

no need for windowing the data to control leakage. The AR analysis is also particularly good for

short data lengths and for narrow-band signals. However, one disadvantage is that AR methods

are relatively more computationally expensive than the FFT, and the spectral discrimination can

be sensitive to the SNR.

There are example codes (recursion) in IDL and in python, and of course good source codes in

the excellent Numerical Recipes handbook. 60

59 Übeyli E.D et al Comparison of eigenvector methods with classical and model-based meth-

ods in analysis of internal carotid arterial Doppler signals, Comput. Biol. Med. 33 473

(2003).
60 Press W. et al. Numerical recipes in Fortran - The art of scientific computing, 2nd edn.

Cambridge Uni. Press (1992).
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7.2 Eigenvector methods

The autocorrelation matrix can also be decomposed using eigenvector methods to produce high

frequency resolution spectra. These techniques are particularly good for recovering a single,

or a few, harmonic components from noise dominated signals. There are several methods (or

variations on a theme) including the PHD, MUSIC and ESPRIT sub-domain methods.59

7.2.1 Pisarenko Harmonic Decomposition (PHD)

The oldest method, developed by Pisarenko 61 starts with the assumption that the signal consists

of L uncorrelated sinusoids (complex exponentials) corrupted by white noise:

xn =
∑L

i=1 ai exp(ıωin∆t) + wn = −∑L
i=1 aixn−1 + wn = sn + wn (111)

which leads to a special case ARMA process that is amenable to eigenvector analysis. The

essence is that the signal auto-covariance matrix R = E[x∗
x
T ] = s +w, formed with M ×M

lags from N data points can, with some assumptions, be formulated as an eigenequation

Ra = σ2
n a. (112)

The ARMA parameter a = [1, a1, . . . aL]
T is the eigenvector associated with the noise σ2

n =

diag{λ1, . . . , λK} eigenvalue array. In Pisarenko’s original work the eigenequation was solved

order by order until a minimum λmin was reached. 31 A more efficient approach is to use singular

value decomposition (SVD) routines 62 where the covariance matrix is expressed as

R = U W V
H (113)

with U and V the left and right eigenvectors and W the eigenvalue diagonal matrix. H is

the Hermitian, complex conjugate transposed. The eigenvectors can be divided into a signal

subspace (domain) of length L and an orthogonal noise subspace of length K = M − L. Since

all the sinusoids are assumed to have the same white noise corruption, all the noise eigenvalues

should be the same and ≈ σ2
n. Thus, one searches W for the minimum eigenvalue λmin and then

constructs a so-called pseudo-spectrum from the corresponding a vector (ie. V normalized to

the 1st element) via a summation of complex exponentials for each frequency f

ŜPis(f) =
1

|A(f)|2
where A(f) =

M−L
∑

i=L

ai e
−ı2πf i. (114)

The method is particularly good at extracting coherent peaks in the spectrum and can, in princi-

ple, can give very high frequency resolution for the sinusoids. However, it is not strongly robust

to “false zeros” arising from the use of a single eigenvector belonging to the minimum noise

eigenvalue λmin.

61 Pisarenko V.F. The retrieval of harmonics from a covariance function, Geophys. J. R.astro.

Soc. 33 347 (1973).
62 Kung S-Y et al Improved Pisarenko’s sinusoid spectrum estimate via SVD subspace approx-

imation methods, 21st IEEE Conf. on Decision & Control, 1312 (1982).
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7.2.2 MUSIC method (MUltiple SIgnal Classification)

The MUSIC method extends the Pisarenko method by averaging the pseudo-spectra over all the

available eigenvectors of the noise subspace, so as to minimize the effects of false zeros. 63

SMU(f) =
1

(1/K)
∑L+K

l=L+1 |Al(f)|2
. (115)

One could use the covariance matrix R = X
H
X , as in the Pisarenko method, however, a more

robust approach is to form an averaged forward and backward linear prediction (FBLP) estimator

matrix X directly from the xn and x∗n data. 64 65 which has a double dimension (2Np ×M )

X =
1

√

2Np































xM xM−1 . . . x1
xM+1 xM+2 . . . x2
...

...
...

xN xN−1 . . . xN−M+1

x∗1 x∗2 . . . x∗M
x∗2 x∗3 . . . x∗M+1
...

...
...

x∗N−M+1 x∗N−M+2 . . . x∗N































. (116)

whereNp = N−M+1 withN the data window size andM the number of expected eigenvalues,

ie. the matrix order. Expressing in SVD form X = U W V
H , where the left and right singular

eigenvectors are U (2Np×2Np) of XX
H , and V (M×M ) of R = X

H
X respectively, and W

(2Np ×M ) the real, non-negative eigenvalues. Similar to the Pisarenko method, the eigenvalues

are used only to identify the noise components, with the MUSIC pseudo-spectrum itself formed

from the eigenvectors alone, but in this case all K noise vectors En = [VL+1, VL+2, . . . VM ]

SMU(f) =
e
H(f) e(f)

eH(f)EnE
H
n e(f)

(117)

where e(f) =
[

e−ı2πft, e−ı4πft, . . .
]

are complex sinusoids. Concerning implementation, the

code snippet below gives an adaption of a pmusic code 66 There are two options for the final

Fourier transform step, either via complex exponentials, or if the number of reconstructed fre-

quencies is a power of 2 (or zero padded) then via an FFT. Together with the forward-backward

matrix this gives a particularly efficient computation.

63 Schmidt R.O. Multiple emitter location and signal parameter estimation, IEEE Trans. Ant.

& Prop. AP-34 (3) 276 (1986).
64 Haykin S. et al Chapter 7: Recent advances in spectral estimation, in Nonlinear methods of

spectral analysis, p.245, 2nd edn. Springer (1983).
65 Iwata T. et al Application of the multiple signal classification (MUSIC) method for one-pulse

burst-echo Doppler sonar data, Meas. Sci. Technol. 12 2178 (2001).
66 Vermare L. et al Detection of geodesic acoustic mode oscillations using multiple signal clas-

sification analysis of Doppler backscattering signal on Tore Supra, Nucl. Fusion 52 063008

(2012)
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dt = 1./1000. & & nl = 2 & nc = 7 : nc = Order (M) .

nw = 256 & np = nw - nc + 1 ; nw = window size (N)

; Load matrix with real & conj data directly

x = Make_Array(nc, 2*np, /Complex, Value=0)

FOR i = 0, np-1 DO BEGIN ; np = data pts. (N-M+1)

FOR k = 0, nc-1 DO BEGIN

x[k,i] = data[i-k+nc-1] ; load matrix w. data &

x[k,i+np] = Conj(data[i+k]) ; 2nd half w. conjugate

ENDFOR

ENDFOR

x = x / Sqrt(2.*np) ; normalize matrix

; Solve matrix : W = singular-values, U & V = eigenvectors

LA_SVD, x, W, U, V ; IDL supplied routine

; Fourier Transform

S = Fltarr(nf)

IF (cexp) THEN BEGIN ; Opt.1 via complex exp.

a = Make_Array(1, nc, /Complex)

E = V[n1:nc-1,*] ; n1:nc-1 = noise comp (K)

FOR j = 0, nf-1 DO BEGIN ; nf = no. frequencies

f = 1.*j/(nf*dt)

FOR l = 0, nc-1 DO a[l] = Exp(Complex(0.,-2.*!pi*l*f*dt))

at = Conj(Transpose(a))

S[j] = S[j] + Total(Abs(at##E)ˆ2) ; matrix mult.

ENDFOR

S = S / nfˆ2

ENDIF ELSE BEGIN ; Opt.2 via FFT pwr of 2

z = Make_Array(1, nf, /complex, Value=0)

FOR i = nl, nc-1 DO BEGIN

z[0:nc-1] = V[i,*] ; Use nc components (M)

z[nc:nf-1] = 0. ; pad with zeros

fftz = FFT(z, -1)

S = S + Abs(fftz*Conj(fftz))

ENDFOR

ENDELSE

S = (dt/S) / nfˆ2 / npˆ0.25 ; Invert & Scale

Sn = S * sigma2d / Total(S) ; Scale area to sigmaˆ2d

Example. 17 : Code snippet (IDL) to calculate pMUSIC pseudo-spectrum - cf. fig. 25.

As with the Pisarenko method, the issue of how to determine the optimal number of eigenvectors

remains. In addition to the AIC, eqn. (100), there is the Minimum Descriptive Length (MDL) 59

MDL(k) = −Nk log

(

∏k−1
i=0 λ

1/k
i

∑k−1
i=0 λi/l

)

+
1

2
(M + 1− k)(M + 1 + l) log(N) (118)

If the eigenvalues are sorted into ascending order, ie. noise values first, then the number of K

noise eigenvectors will be the k value that minimizes MDL(k). In addition, the minimum eigen-

values will also tend to cluster around the same small value, which should be easy to discriminate

by inspection. The signal eigenvectors are also orthogonal to the noise eigenvectors, thus one can

use an annihilating or elimination filter 57 to discriminate ei · ej = δij for (1 ≤ L, j ≤M).

Figure 25(a) shows an example of the singular values λ (in descending value as output by the

SVD routine) for a sinewave plus noise test case. Note, depending on the routine it may return

either the eigenvalues (EV) or the singular values (SV =
√
EV) - as is the case here for the IDL

routine. The first 2 values are the signal λs =
√
2σs, with L = 2l, twice the number of expected
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coherent sinewaves (l = 1) because of the 2N forward-backward matrix, while the remaining

K =M − L values are the noise λn = σn.

There are essentially 4 parameters that affect the pmusic spectrum, the size of the SVD matrix

Np (np = nw - nc +1), the total number of constituent (signal and noise) eigenvectors chosen M

(nc) plus the number of signal eigenvectors to neglect L (nl) in the Fourier transform, and the

number of reconstructed spectral frequencies J (nf).

Figure. 25: Example of (a) singular values and (b) normalized pmusic spectra Sn(f) dependency

on SVD matrix size (nw) for unity sinewave fo = 80 plus Gaussian white noise (an = 0.05).

Figure 25 shows normalized pmusic spectra Sn and their corresponding SV for increasing data

window size (nw ≤ nf), ie. the 2nd dimension of the matrix (np = nw - nc + 1) for fixed other

parameters. The SV are independent of the pmusic parameters, although both λs and λn tend to

decrease with increasing number of components M (nc).

Scaling the pmusic power spectrum is not straightforward as there are subtle dependencies on

the spectral content. Generally the broadband (noise) and coherent peaks do not scale linearly

together. To give an indication of the behaviour of the respective noise and signal components the

ΣS and peak power pk are given in the following plots. It is common to normalize the spectral

peak intensity to unity. Here, the spectral area are normalized to the data variance Sn(f) =

S(f) × σ2
d/ΣS(f), where S(f) has been scaled by (nf2) and (np0.25) - see code. The np0.25

removes much of the matrix size power variation, providing (nf ≥ nw). With increasing (nw)

there is a mild impact on sharpening the spectral peak without affecting the peak dynamic range.

As with the BT and AR spectra, it is also important in the eigenvector methods to have sufficient

number of reconstructed frequencies J (nf) - as is shown in fig. 26 with increasing (nf) with fixed

(nw) andM (nc). If too few frequencies are used, fig. 26(a), then the peak is not properly resolved

and the overall spectrum is poor. If the peak is sufficiently resolved, fig. 26(b), then increasing J

(nf) further has little impact and the overall spectrum remains robust. In the examples shown J

(nf) covers the full ±fmax range set by the sample period. However, in practice the reconstructed

f can be concentrated in the range of interest.

The number of reconstructed eigenvalues on the other hand has a stronger impact on the spec-

trum. Figure 27 shows that increasingM (nc) withL = 2 (nl) (one sinewave) reduces the spectral

power ΣS as a whole. The spectral peak dynamic range remains roughly constant, but the noise

power redistributes to make a flatter background level. In this example a large (nf) relative to
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(nw) was chosen to highlight the peak base narrowing. In short, increasing Np (nw) and M (nc)

to improve resolution (at the expense of longer data sequences) is only useful if J (nf) is large

enough to exploit the resolution. Note, in the case of fig. 27(a) there is only 1 noise component,

which is equivalent to the Pisarenko spectrum.

Figure. 26: Effect on pmusic spectrum of increasing number of reconstructed frequencies (nf)
for fixed matrix (nw = 128) and (nc = 2 : 9) for a sinewave with (an = 0.05) Gaussian noise.

Figure. 27: Effect on pmusic spectrum of increasing number of SVD components / eigenvectors

(nc) for fixed (nl = 2), (nf = 1024) and (nw = 128), for a sine plus (an = 0.05) Gaussian noise.

The MUSIC method is exceptionally good at recovering coherent modes from background noise.

Figure 28 shows that, as expected, increasing the noise level σ2
n - cf. noise λn - relative to the

coherent signal, decreases the spectral peak dynamic range (although the overall ΣS falls). At

high σn/σs, the rising background, and associated broadened peak base, begins to swallow-up

the peak maxima, reducing the peak resolution. Nevertheless, the pmusic retains its advantage

over comparable FFT, particularly for short data lengths - as seen in fig. 25.

Finally, the MUSIC method has also been extended to non-stationary data - the so-called time-

frequency MUSIC spectrum. 67 In the case of non-linear signals or sporadic impulsive noise

bursts, various derivatives have also been developed, such as ROC-MUSIC (Robust covariance

based MUSIC). 68 69

67 Belouchrani A. et al Time-frequency MUSIC, IEEE Signal Proc. Lett. 6 (5) 109 (1999).
68 Tsakalides P. The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing

estimation in impulsive noise environments, IEEE Trans. Sig. Proc. 44 (7) 1623 (1996).
69 Hmidat A.M. et al Robust multiple signal classification algorithm based on the myriad co-

variation matrix, IEE Proc. Vis. Image Signal Proc. 153 (5) 569 (2006).



A Short Manual to Discrete Time Series Analysis - G.D.Conway 60

Figure. 28: (a) Eigenvalue, (b) pmusic spectra and (c) FFT (with Hann window) for sinewave

(as = 1.0) with increasing Gaussian white noise (an = 0.1, 0.5&1.0) for fixed (nw = 256), (nf =
1024), (nl = 2) and (nc = 9). pmusic spectra scaled by area to data variance S(f)×σ2

d/ΣS(f).

7.2.3 ESPRIT method

ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) is also a sub-

space method using eigenvector decomposition, with its roots in array processing and direction

finding. It is somewhat similar to the MUSIC method, except it uses the signal subspace rather

than the noise subspace. 70 71 The eigensystem is also similar, except some additional constraints

are imposed on the input data allowing a significant reduction in computational cost. 70 Further

details on the methodology and example algorithms are given in the above references.

A final comment, it should be clear that non-linear spectral methods are not “out of the box”

but require (compared to the FFT) more effort in appropriate parameter selection, with usually

some trial and error testing to obtain the desired result. Nevertheless, the potential benefits and

improved performance are worth the effort. Concerning the spectral estimator errors. While it is

possible to obtain confidence limits analytically for linear and for AR estimators, this is rather

more complicated for eigenvector estimators.

70 Roy R.H. & Kailath T ESPRIT — Estimation of signal parameters via rotational invariance

techniques, Opt. Eng. 29 (4) 296 (1990).
71 Potts D. et al Efficient spectral estimation by MUSIC and ESPRIT with application to sparse

FFT, Front. Appl. Math. Stat. 2 Art.1 (2016).
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8 Frequency-wavenumber spectra

These techniques are used when simultaneous time series data are available from two or more

spatially separated channels or measurement points - from which a frequency-wavenumber spec-

tral density S(ω, k) can be computed. S(ω, k) graphically displays the regions and extents of

wave excitation simultaneously in the k and ω domains. From S(ω, k) the k-averaged frequency

S(ω), the corresponding ω-averaged wavenumber S(k) spectra, and the dispersion relation k(ω)

are obtained. There are several approaches, each with their respective pros and cons.

8.1 Double transform method S(ω, k)

If many spatial measurement points are available, eg. from probe arrays or scanable probe pairs,

in one or more directions then, depending on the spatial sample density, a simple double trans-

form maybe applicable. The procedure is straightforward: For pairs of measurement separations,

ξ = z2 − z1, the temporal transforms: x(t, z1) ⇋ X1(ω) and x(t, z2) ⇋ X2(ω) are made, from

which the real and imaginary cross-power components (Co & Quad spectra) C(ω, ξ) andQ(ω, ξ)

are computed. This is repeated for all available spatial separations ξ. 72 A second round of spatial

Fourier transforms of C(ω, ξ) and Q(ω, ξ) for all values of ξ for fixed ω are needed to give the

final frequency-wavenumber spectrum

S(ω, k) = 2

∫

∞

0

C(ω, ξ) cos(kξ) +Q(ω, ξ) sin(kξ) dξ. (119)

Depending on the number of spatial points available the spatial FT can be calculated using the

trapezium rule or, if appropriate, with a discrete Fourier transform (DFT). As with the temporal

FT, the spatial FT is also subject to the usual issues, such as aliasing, resolution and leakage

effects. 36 Consequently windowing in both time and space domains maybe desirable.

8.2 Multichannel AR

Spatial or array processing techniques have a long history in sonar, radar, seismic and direction

finding. In additional to linear methods, the S(f, k) can be computed from 2D or 3D receiver

arrays using auto-regression techniques. The AR models described in section 7.1 were for scalar

or univariate data, but they can be extended to vector, ie. multichannel or multivariate data. 58

Here, the Maximum entropy (ME) method is particularly suitable. 73 For example, expressing

the temporal data as a vector of spatial points x(t, zl), for a uniform spaced line array one has

Ŝ(f,k) = 1/
K
∑

i,j=1

λij exp[ı 2πk · (zi − zj)] (120)

where λij are solutions to the AR temporal model. For implementation details see reference 73.

72 Ilić D.B & Haker K.J. Evaluation of plasma-wave spectral density from cross-power spectra,

Rev. Sci. Instrum. 46 (9) 1197 (1975), and Rev. Sci. Instrum. 45 1315 (1974).
73 McDonough R.N. Chapter 6: Application of maximum-likelihood method and maximum

entropy method to array processing, in Nonlinear methods of spectral analysis, 2nd edn.

Springer (1983).
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Maximum likelihood and Levinson methods are also usable. Indeed, the generalized Burg algo-

rithm, or LWR algorithm, was originally developed for multi-point or phased array detectors for

direction finding. The approach is to build a matrix of AR coefficients (order and channel) from

the vector data (time and channel) and calculate the respective cross and auto spectra directly,

from which coherence and cross-phase spectra can be computed. 74 75

As noted previously, another alternative is the eigenvector ESPRIT model - section 7.2.3.

8.3 Two point correlation methods

8.3.1 Narrow-band covariance

If the spatial data is more limited, ie. there are insufficient points to cover at least one spatial

wavelength of the lowest k resolvable, then a range of so-called two fixed point techniques are

available. The approach of Iwama 76 describes a method to estimate the mean wavenumber k and

spectral width ∆k of narrow-band-pass filtered data from the complex covariance at zero time

lag for a fixed ξ spatial separation: cov(0, ξ) = Re cov(0, ξ) + ı Im cov(0, ξ). For a real signal

xn the covariance would be computed from the analytic signal (xn + ıH{xn}) using the Hilbert

transform to obtain the imaginary part - see section 10.7. From the pass-band filtered covariance

the first and second moments µ̂1 and µ̂2 are taken, resulting in

µ̂1 ≡ −ξ−1 tan−1

(

Im ˆcov

Re ˆcov

)

= ko (121)

√

µ̂2 − µ̂2
1 ≡

√
2

ξ

(

1− (Re cov)2 + (Im cov)2

σ2 − σ2
n

)1/2

= ∆̂k (122)

where σ2
n is the variance of the background noise. 77 Simply scanning the band-pass filter fre-

quency gives the k(ω) dispersion and ∆k(ω) growth-rate spectra using eqns. (121) and (122).

8.3.2 Cross-phase spectra

In the very narrow filter pass band limit, i.e. single frequency, the covariance estimate becomes

equivalent to the cross spectrum estimate and the µ̂1 and ∆̂ estimators can be rewritten as: 78

µ̂1 → k̂(ω) = −1

ξ
tan−1

(

〈Q̂(ω)〉
〈Ĉ(ω)〉

)

or k̂(ω) =
φ̂(ω)

ξ
(123)

74 Morf M. et al Recursive multichannel maximum entropy spectral estimation, IEEE Trans.

Geosci. Electron. GE-16 (2) 85 (1978).
75 Marple S.L. Performance of multichannel autoregressive spectral estimators, IEEE Intl.

Conf. Acoustics, Speech, & Signal Proc. (Tokyo), ICASSP 86 197 (1986).
76 Iwama N. & Tsukishima T. A correlation method for estimating wave-number spectrum

moments of fluctuations, Appl. Phys. Lett. 31 (11) 783 (1977).
77 Iwama N. et al Estimation of wave-number spectrum parameters from fixed probe-pair data,

J. Appl. Phys. 50 (5) 3197 (1979).
78 Beall J.M. et al Estimation of wavenumber and frequency spectra using fixed probe pairs, J.

Appl. Phys. 55 (6) 3933 (1982).
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∆̂k → δ̂k(ω) =

√
2

ξ
(1− γ̂(ω))1/2 . (124)

where φ(ω) is the cross-phase spectrum. These equations represent the statistical dispersion

relation and spectral width (inverse growth-rate) respectively. From eqn. (123) a corresponding

frequency averaged mean wavenumber can be defined as the cross-power weighted average

k̄ =
Σ k(ω)Sxy(ω)

ΣSxy(ω)
. (125)

8.4 Local frequency-wavenumber spectra Sl(ω, k)

The frequency-wavenumber technique of Beall 78 also uses the familiar cross-spectral estima-

tors. However, its basis and approach are different. Starting from the concept that turbulent

fluctuations can be modelled as a superposition of wave-packets of temporal and spatial sinu-

soids centered on single frequencies and wavenumbers, the method constructs a local frequency-

wavenumber power density spectrum, Sl(ω, k) as a histogram by sampling the individual wave-

packet power concentrations via the k(ω) spectrum (from the cross-phase spectrum between two

fixed spatial points) in conjunction with S(ω) for successive increments of ∆k and ∆ω (see code

snippet below).

In practice Sl(ω, k) is formed by summing the power of the S(ω) for a selected discrete frequency

from data sets whose corresponding wavenumber spectrum k(ω) lies within a specified sample

range k to k +∆k

Sl(ω, k) =
1

M

M
∑

m=1

S(ω)m I(k − k(ω)m) (126)

where I(·) is an indicator function

I(y) =

{

1 for 0 < y < ∆k

0 otherwise
(127)

The ensemble averaging diminishes the random noise and incoherent fluctuation power, leaving

structure and peaks in the regions of coherent oscillations. Note a successful implementation

relies strongly on the choice of the spatial point separation, ∆kmin = 2π/ξ, as well as the sample

length T (= N∆t) of the individual data sets used to compute the S(ω)m, and k(ω)m spectra, as

well as the total number M of spectra in the ensemble. 79

The spectral moments of Sl(ω, k) can then be computed to give the statistical dispersion relation

k̄(ω) =
M
∑

m=1

km
Sl(ω, km)

S(ω)
(128)

79 Carlson A. et al The limitations of the local wavenumber, Proc. EPS Conf. (Amsterdam)

ECA 14B, 1676 (1990).
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and wavenumber spectral width

δ̄k(ω) = σ2
k(ω) =

M
∑

m=1

(km − k̄(ω))2
Sl(ω, km)

S(ω)
(129)

where km = m∆k and M = π/ξ∆k with ξ the spatial separation of the measurement points.

Figure 29 shows an example Sl(ω, k) spectrum (contour plot and 3D-perspective plots) obtained

from a simple time delayed noise signal to simulate the spatial propagation of a broad-band

fluctuation, such as x(t, r) =
∑

i hi cos(ωit+ kiξ + φ) where ki = vph/ωi. Note in this example

the spectral amplitude has been artificially shaped by hi (hpf in code snippet) for visual effect.

Figure. 29: Example of local Sl(ω, k) spectrum using time shifted noise signals with shaped

power spectra. Left: contour and, right: perspective plots.

The respective S(ω), k(ω) and δk(ω) spectra are shown in fig. 30. Note the effect of aliasing in

k in fig. 29(b). As shown in the δk(f) spectrum in fig. 30(c) in this simple example the width

only becomes non-negligible at frequencies where the effect of aliasing occurs. Normally, in real

data the spectral width δk would indicate spectral spreading or a mode growth rate.

Figure. 30: Example of (a) S(ω), (b) k(ω) and (c) δk(ω) spectra from cross-phase estimates of

time delayed noise signals with shaped spectra.
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; Generate signals. use shift to simulate k dispersion .

npt = 8192 & nft = 128 & nf2 = nft/2 & nkp = 128 & kmax = 1400

sig1 = 2.*(RandomU(seed, npt)-0.4999)

sig2 = Shift(sig1, 4) + 0.05*RandomN(seed, npt) ; delay -> k prop.

hpf = Exp(-(Findgen(nf2+1)-32)ˆ2/(16ˆ2)) ; Shape spectrum

; Define local k-spec params.

delk = kmax/nkp *1.1 ; width of k bin

kt = Findgen(nkp)*kmax/nkp

Sloc = Fltarr(nf2,nkp)

; Loop over data

i1 = 0

WHILE i1 LT npt-nft DO BEGIN

i2 = i1+nft-1

f1 = FFT(Complex(sig1[i1:i2] - Mean(sig1[i1:i2]), 0.), -1)

f2 = FFT(Complex(sig2[i1:i2] - Mean(sig2[i1:i2]), 0.), -1)

sm = ((Conj(f1[0:nf2])*f1[0:nf2])+(Conj(f2[0:nf2])*f2[0:nf2]))*hpf

Cc = Real_Part(f1)*Real_Part(f2) + Imaginary(f1)*Imaginary(f2)

Qc = Real_Part(f1)*Imaginary(f2) - Real_Part(f2)*Imaginary(f1)

phase = -Atan(Qc[0:nf2], Cc[0:nf2]) ; 1st half of FFT

; Unwrap phase

nn = N_Elements(phase)

thresh = !pi *1.15 ; del-phase threshold

jumpsPos = Where(phase - Shift(phase,1) GT thresh)

jumpsNeg = Where(phase - Shift(phase,1) LT -thresh)

d = phase[0L:nn-2L] - phase[1L:nn-1L]

p = 2*!pi * (Float((d GT thresh) GT 0) -Float((d LT -thresh) GT 0))

r = Total(p, /Cumulative)

phase[1:*] += r

kspec = phase/(eta2-eta1)

; Build S-local spectral histogram

FOR j = 0, nkp-1 DO BEGIN

FOR i = 0, nft/2-1 DO BEGIN

IF (kt[j]-kspec[i]) GT 0. AND (kt[j]-kspec[i]) LT delk THEN $$

Sloc[i,j] = Sloc[i,j] + Sm[i]

ENDFOR

ENDFOR

i1 = i1 + nft/2

ENDWHILE

; Average weighted k and delta-k spectra

kbar = Fltarr(nf2)

dkbar = Fltarr(nf2)

sbar = Total(sloc,2)

FOR i = 0, nkp-1 DO BEGIN

kbar = kbar + kt[*] * Sloc[*,i]/Sbar[*]

dkbar = dkbar + (kt[*]-kbar[*])ˆ2 * Sloc[*,i]/Sbar[*]

ENDFOR

Example. 18 : Code snippet (IDL) to local Sl(ω, k) spectrum. Note the parameter hpf in the sm

calculation is used purely for artifice to give shape to the ω − k ridge and should be removed in

practice - cf. fig. 29 & 30.
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8.5 Space-time correlations

8.5.1 Spectral line shape

Sharp spectral peaks are often associated with coherent mode activity with a finite ko and ωo. The

shape and width of the spectral peak can give information on the underlying mode/turbulence

structure, such as the linear growth rate, ∆ω ∼ γl.
80 Fitting spectral peaks can be tricky and

∆ω is often better approached in the correlation domain since the peak width and autocorrelation

decay time are related ∆ω ∼ 1/τa. The autocorrelation may also display mixtures of Lorentzian

exp(−α|τ |) or Gaussian exp(−α2τ 2) forms, where α is dominated by the slowest decay process.

If multi-point data is available then the spatial-temporal autocorrelation decay envelope can be

fitted and modelled, eg. ρ(τ, ξ) = ρo exp(−α|τ |) exp(−β |ξ|). Further, if the data are narrow

band-pass filtered prior to correlation then the dispersion relation k̄(ωf) and spatial and temporal

growth rates α(ωf) and β(ωf) can be extracted as a function of filter centre frequency ωf .
81

8.5.2 Correlation phase velocity

Atmospheric and ionospheric radar studies have been a major source of techniques for measuring

the propagation of turbulent structures. Briggs, 82 using cross-correlation techniques developed

an analysis methodology to distinguish between the propagation velocity of a spatial density

fluctuation and it’s self-mutation rate. Figure 31 shows schematic 2D contour plots of the cross-

correlation coefficient ρ vs time lag τ and spatial separation ξ.

Figure. 31: Spatial-temporal correlation contours (a) purely propagating, (b) propagating and

mutating, and (c) purely mutating.

For a purely propagating mode or (narrow band-pass filtered) turbulence, the ρ contours are

inclined lines, fig. 31(a), with v = ξ/τ , while for a purely mutating structure the contours are

closed and symmetric, fig. 31(c). For small separations the contours are roughly elliptic and

ρ(τ, ξ) = ρo exp(−τ 2/τ 2c − ξ2/ξ2c ) with ξc and τc the characteristic lifetimes, cf. Briggs. 83

80 Edwards D.N. & Rusbridge M.G. The experimental determination of fluctuation line-profiles

in a weakly turbulent plasma, Phys. Lett. 86A (8) 421 (1981).
81 Conway G.D. & Elliott J. Digital signal processing techniques for plasma dispersion curve

measurements, J. Phys. E: Sci. Instrum. 20 1341 (1987).
82 Briggs B.H. et al The analysis of observations on spaced receivers of the fading of radio

signals, Proc. Phys. Soc. B, 63 106 (1950).
83 Briggs B.H. et al On the analysis of moving patterns in geophysics - I. Correlation analysis,

J. Atmos. Terr. Phys. 30 1777 (1986).
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More complex forms for ρ(τ, ξ) have also been modelled. 84 With a propagation velocity v the

ellipses become inclined with ρ(τ, ξ, ) = ρo exp(−τ 2/τ 2c − (ξ − vτ)2/ξ2c ). However, due to the

mutation rate the ellipse axis is not aligned with v but with an apparent fading velocity vf , where

ρ(0, ξo) = ρ(τo, 0).

Figure. 32: Auto-cross correlation intercept.

There are several approaches to separat-

ing the various velocities, the simplest

are illustrated in fig. 32. For a reasonably

small ξe separation the true propagation

velocity is given by the temporal inter-

cept τe of the auto and cross-correlation

curves where ρ(τe, 0) = ρ(τe, ξe) with

v = ξe/2τe. (130)

On the other hand, taking the cross-correlation peak delay τo for some arbitrary separation ξm
gives the characteristic vc = ξm/τo, ie. the speed of mutation. Returning to physics, He et al.
85 gives an interpretation of the space-time correlations in terms of turbulent flow dynamics and

couplings. The above temporal correlation methodology can be equally applied to the frequency

domain. 86

8.5.3 Statistics of the auto-correlation

This is a method proposed to extract turbulent velocity fluctuations from the single-point auto-

correlation function. 87 The model is as follows: assume the turbulent structures have a Gaussian

shape in space and time, propagating past the measurement point. Then the characteristic auto-

correlation time is given by

τc =
τd τv

√

τ 2d + τ 2v
(131)

where τd is the structure life-time or decay time, and τv = w/v is a velocity dependent propaga-

tion time with w the structure size or spatial correlation length and v the propagation velocity.

1. If τd ≫ τv then τc ≈ w/v. If w is constant in time then one can measure the time

dependent velocity v(t) and hence its spectrum.

2. If τd ≪ τv then τc is dominated by structure decay rate.

Of course, some pre-knowledge or estimate of the structure size w, ie. τd is required!

84 Holloway C.L. et al Cross correlations and cross spectra for spaced antenna wind profilers:

2. Algorithms to estimate wind and turbulence, Radio Sci. 32 (3) 967-982 (1997).
85 He G. et al Space-time correlations and dynamic coupling in turbulent flows, Annu. Rev.

Fluid Mech. 49 51-71 (2017).
86 Briggs B.H. & Vincent R.A. Spaced-antenna analysis in the frequency domain, Radio Sci.

27 (2) 117 (1992).
87 Bencze A. & Zoletnik S. Autocorrelation analysis and statistical consideration for the de-

termination of velocity fluctuations, Phys. Plasmas 12 052323 (2005).



A Short Manual to Discrete Time Series Analysis - G.D.Conway 68

8.6 Biorthogonal decomposition

Biorthogonal decomposition (BD) is an objective test for identifying and quantifying large-scale

coherent structures - with an priori assumption of their shape or localization. 88

Consider a set of signals y(t, r) measured at N time points and M locations. Now assemble the

signals into an N ×M matrix. The BD expands the discrete data Yij = y(ti, rj) into unique set

of orthogonal (ie. independent) modes in time and space:

Yij =
K
∑

n=1

An vn(ti) un(rj) (132)

where K = min(N,M) is the finite global dimension of the data set. The base functions un(rj)

and vn(ti) are eigensolutions of the matrix Y, and An are ‘weights’ or eigenvalues (positive, neg-

ative or zero), which can be obtained via usual singular value decomposition (SVD) techniques.

Note that there is a direct link between the spatial and temporal modes, ie. a dispersion relation

Yun = An vn. (133)

Concerning interpretation, highly correlated structures in space and time appear as large weighted

components An, while traveling waves appear as pairs of equal weighted components, and ran-

dom noise has roughly equal weights A1 ≈ A2 ≈ · · · ≈ AK . This topic is discussed in more

detail by van Milligen. 89

A restriction of the BD is its focus on long-lived, large scale structures. One solution to shorter

scales is the windowed BD (WBD) 90 which applies an adaptable temporal-spatial window to the

data y(t, r) before decomposition

W∆t,∆r(t, r) =

{

1, (to −∆t) < t < (to +∆t), (ro −∆r) < r < (ro +∆r)

0, else
(134)

where ∆t and ∆r are temporal/spatial window half-widths, and (to, ro) is the window centre.

Another useful parameter is a coherence factor S∆t,∆r(to, ro) =
(

∑k−1
i=1 (Ai − Ai−1/(k − 1))

)1/2

which ranges between 0 and 1 and is a measure of the coherence of the data set. 90 Finally, the

BD has been extended and applied to 2D (t, r, z) temporal-spatial data. 91

88 Benkadda S. Characterization of coherent structures in tokamak edge turbulence, Phys. Rev.

Lett. 73 (25) 3403 (1994).
89 van Milligen, B.Ph. The use of the biorthogonal decomposition for the identification of zonal

flows at TJ-II, Plasma Phys. Control. Fusion 57 025005 (2015).
90 Dong L. et al Identification of short-live and localized coherent structures in plasma turbu-

lence by window biorthogonal decomposition, Rev. Sci. Instum. 74 (12) 5093 (2003).
91 Fenzi C. et al 2D turbulence imaging in DIII-D via beam emission spectroscopy, Rev. Sci.

Instrum. 72 (1) 988 (2001).
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9 Higher order spectra

9.1 Bispectrum and bi-coherence

Bispectral analysis is a well established technique for identifying nonlinear processes in turbulent

systems, cf. Collis 92. Here the auto- and cross-bicoherence spectra (ie. third-order correlations)

can directly identify 3-wave couplings, for example in plasma drift-wave turbulence, 93 94 95 96

The general cross-bispectrum is given by

B̂xyz(ω1, ω2) = lim
T→∞

1

T
E[X(ω1)Y (ω2)Z

∗(ω1 + ω2)] (135)

= 〈X(ω1)Y (ω2)Z
∗(ω3)〉 (136)

where E[·] is the expectation operator, 〈·〉 the ensemble averaging and X(ω), Y (ω) and Z(ω) are

the Fourier components of signals x(t), y(t) and z(t) at ω1 & 2 with ω3 = ω1 ± ω2. The squared

bicoherence and the bi-phase are defined in terms of the bispectrum 97 as

b2xyz(ω1, ω2) = lim
T→∞

1

T

|B(ω1, ω2)|2
S(ω1)S(ω2)S(ω1 + ω2)

(137)

=
|B̂xyz(ω1, ω2)|2

〈X(ω1)Y (ω2)〉 〈Z(ω3)2〉
(138)

θxyz(ω1, ω2) = tan−1

(

Im B̂xyz(ω1, ω2)

Re B̂xyz(ω1, ω2)

)

, (139)

where b2 ranges from 0 to 1. For the auto-bispectra, X = Y = Z.

The total bicoherence is the b2 integrated over all ω1 and ω2 frequency space

b2tot =
1

N

N
∑

ω1,ω2

b2 (ω1, ω2) (140)

b2tot is often quoted as an indicator of the total non-linear activity in the spectrum.

92 Collis, W.B. et al Higher-order spectra: The bispectrum and trispectrum, Mech. Sys. Signal

Proc. 12 (3) 375 (1998)
93 Kim Y.C. & Powers E.J. Digital bispectral analysis of self-excited fluctuation data, Phys.

Fluids 21 (8) 1452 (1978).
94 Holland C. et al Evidence for Reynolds-stress driven shear flows using bispectral analysis:

theory and experiment, Plasma Phys. Control. Fusion 44 A453 (2002).
95 van Milligen B.Ph. et al Bicoherence during confinement transitions in the TJ-II stellarator,

Nucl. Fusion 48 115003 (2008).
96 van Milligen B.Ph. et al Spatiotemporal and wavenumber resolved bicoherence at the low to

high confinement transition in the TJ-II stellarator, Nucl. Fusion, 53 113034 (2013).
97 Kim & Powers, Digital bispectral analysis and its applications to non-linear wave interac-

tions, IEEE Trans. Plasma Sci. PS-7 120 (1979).
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Another common derivative is the summed bicoherence spectrum at ω3 defined as:

b2(ω3) =
1

Nω3

Nω3
∑

ω3=ω1+ω2

b2 (ω1, ω2). (141)

being a measure of the spectral coupling to the ω3 frequency.

9.1.1 Non-linear test signal

Kim & Edwards 98 provide a simple 3-oscillator non-linear coupled test signal

x(t) = cos(ωo1t+ φo1) + cos(ωo2t+ φo2) + 1/2 cos(ωo3t+ φo1 + φo2)

+ cos(ωo1t+ φo1) cos(ωo2 + φo2) + n(t) (142)

where ωo1/ωN = 0.220, ωo2/ωN = 0.375, and ωo3 = ωo1 + ωo2 are the oscillator frequencies

with ωN the Nyquist frequency. Here, φo1 and φo2 are uniformly (−π, π) distributed random

phases, and n(t) is a small level of normally distributed random noise.

Figure 33 shows contour plots of the b2 bispectrum and biphase for the non-linear test signal.

The bispectrum is symmetric about the spectral frequencies f2/fN = 0 axis, but cross-phase

inverted. The strongest b2 ∼ 1 peak occurs at f1/fN = 0.375 and f2/fN = 0.220 in the top

triangle, with corresponding peaks at f1/fN = 0.595 and f2/fN = −0.220 & − 0.375 in the

lower sector. The simple FFT spectra P (f) shows all 3 peaks, while the f3 and f1 spectra at the

ωo3 peak nicely separate the drive and coupled peaks.

9.1.2 Statistical error in b

The approximate variance of the bicoherence (estimator) is given by Kim & Edwards 98

var[b̂2] = (1/M) [1− b2(ω1, ω2)] (143)

where M is the number of segments, ie. FFT ensembles.

98 Kim & Powers, Digital bispectral analysis and its applications to non-linear wave interac-

tions, IEEE Trans. Plasma Sci. PS-7 120 (1979).
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; Calc auto-bispectrum - After S.Vaughan (2007) .

npt = 8192 & seed1 = 104 & seed2 = 30 & seed3 = 77 & dt = 1.

noise = 0.01 * namp*Reform(RandomN(seed,1, npt))

fN = 1./(2.*dt)

fo1 = 0.220*fN & fo2 = 0.375*fN & fo3 = fo1 + fo2

ph1 = (RandomU(seed2, npt)-0.5)*!pi/1.5

ph2 = (RandomU(seed3, npt)-0.5)*!pi/1.5

data = Sin(2.*!pi*Findgen(npt)*fo1*dt +ph1) $

+ Sin(2.*!pi*Findgen(npt)*fo2*dt +ph2) $

+ Sin(2.*!pi*Findgen(npt)*fo3*dt +ph1 + ph2) + noise

; Define arrays

nft = 256

wind = 0.5*(1.0-Cos(2.0*!pi*Findgen(nft)/nft)) ; if req.

df = 1./(Float(nft)*dt)

fr1 = Findgen(nft/2)*df ; X-axis freq1 array

fr2 = (Findgen(nft)-nft/2)*df ; Y-axis freq2 array

Bup = Complexarr(nft,nft) & bs1 = Bup & bs2 = Bup

bsq = Fltarr(nft/2,nft) ; bˆ2 matrix

Pws = Fltarr(nft) ; Summed power spectrum

; Setup index matrix {j,k} = j+k

indx = Indgen(nft)

i = Rebin(indx, nft, nft, /sample)

j = Transpose(i)

ij = i + j

; Shift (wrap) matrix > nft

cc = Where(ij GT nft)

ij[cc] = ij[cc] - nft

; Calc Auto/Cross-bispectrum

iat = 0L & ilp = 0

WHILE iat LT npt-nft DO BEGIN ; Sum over segments

ilp = ilp+1

da1 = data[iat:iat+nft-1] - Mean(data[iat:iat+nft-1])

fof = FFT(Complex(da1, 0.),-1) ; Without Hann window

IF N_Elements(data2) GT 0 THEN BEGIN ; Cross-bispec

da2 = data2[iat:iat+nft-1] - Mean(data2[iat:iat+nft-1])

fof2 = FFT(Complex(da2, 0.),-1)

ENDIF

XiXj = fof # fof ; matrix Xi*Xj & X{i+j}

Xij = fof[ij]

IF N_Elements(data2) GT 0 THEN Xij = fof2[ij]

XiXjXij = XiXj * Conj(Xij) ;triple term Xi*Xj*X{i+j}

Bup = Temporary(Bup) + XiXjXij

bs1 = Temporary(bs1) + Abs(XiXj)ˆ2

bs2 = Temporary(bs2) + Abs(Xij)ˆ2

Pws = Temporary(Pws) + Abs(fof*Conj(fof))

iat = iat + nstp

ENDWHILE

; Calc. bi-phase spectrum & shift

bphase = Shift(Atan(Bup[0:nft/2-1,*], /Phase), 0, nft/2)

; Normalize - bicoherence spectrum

Pws = Pws/Float(ilp)

Bup = Abs(Bup[0:nft/2-1,*])ˆ2

bss = (bs1[0:nft/2-1,*]*bs2[0:nft/2-1,*])

mask = Where(bss NE 0.0, cnt)

IF (cnt GT 0) THEN bsq[mask] = Bup[mask]/bss[mask]

bsq[0,0] = 0

; Shift matrix back

bsq = Shift(bsq,0,nft/2)

Example. 19 : Code snippet (IDL) to calculate auto/cross-bispectrum and biphase - cf. fig. 33.
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Figure. 33: Top: Bispectrum b2 and biphase spectra, and bottom: 3D perspective plot of b2

spectra for couple 3-oscillator test signal of eqn. (142) with added 4% white noise. fN is the

Nyquist frequency. Note f1, f2 and f3 = f1 + f2 are axis frequencies while ω1,2,3 are the mode

frequencies.
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9.2 Triple correlations

The auto/cross-correlation is a 2nd-order statistic (cumulant) of the signal. The triple correlation,

however, is a 3rd-order statistic, where one signal is correlated with a two other independent time-

shifted signals. The triple correlation is useful for several reasons; firstly, unlike the 2nd order

correlation which contains only the symmetric part of the Fourier phase (and thus can only give

the amplitude), the triple correlation retains the phase information. The phase information gives

evidence of non-linearities. 99 100 In addition, higher-order correlations are notably less sensitive

to noise.

Rxyz(τ1, τ2) =

∫

∞

−∞

x(t)∗ y(t+ τ1) z(t+ τ2)dt (144)

In discrete form

Rxyz(k1, k2) = E[x∗n yn+k1 zn+k2] (145)

=
1

N

N−1
∑

n=0

x∗n yn+k1 zn+k2

where τ1 = k1∆t and τ2 = k2∆t. Triple auto-correlations Rxxx, or mixed cross-correlations and

gated cross-correlations etc. are also possible - see section 12.1.3. The triple auto-correlation is

often used to enhance the visibility of latent periodicities.

The (two-dimensional) Fourier transform of the triple correlation R(τ1, τ2) is the bispectrum 101

Bxyz(ω1, ω2) = 〈X∗(ω1) Y
∗(ω2) Z(ω1 + ω2)〉. (146)

Sometimes the bispectra is also defined as

Bxyz(ω1, ω2) = 〈X(ω1) Y (ω2) Z
∗(ω1 + ω2)〉, (147)

the difference being simply a complex conjugate inBxyz, which is not important for the modulus,

but is important for the cross-biphase.

9.3 Trispectrum Txyzw

For completeness, the general cross-trispectrum is given by:

T̂xyzw(ω1, ω2, ω3) = lim
T→∞

1

T
E[X∗(ω1) Y

∗(ω2) Z
∗(ω3)W (ω1 + ω2 + ω3)] (148)

= 〈X(ω1) Y (ω2) Z
∗(ω3)W (ω4)〉 (149)

99 Lohmann A.W. & Wirnitzer B. Triple correlations, Proc. IEEE 72 889 (1984).
100 Swami A. et al. Higher-order spectral analysis toolbox, User’s guide, v.2, The MathWorks

Inc. https://www.ligo.caltech.edu/ rana/mat/HOSA/HOSA.PDF (1998) - and refs. therein.
101 Nikias C.L. et al Bispectrum estimation: A digital signal processing framework, Proc. IEEE

75 (7) 869 (1987).
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where X(), Y (), Z(),W () are the Fourier transforms of signals x(t), y(t), z(t) and w(t) at re-

spective ωn with ω4 = ω1±ω2±ω3. As for the bicoherence, the tricoherence squared is likewise

defined as

t2xyzw(ω1, ω2, ω3) =
|T̂xyzz(ω1, ω2, ω3)|2

〈X(ω1) Y (ω2) Z(ω3)〉 〈W (ω4)2〉
(150)

where t2 ranges from 0 to 1. If x = y = z = w then this gives the auto-trispectrum. The

trispectrum is also the Fourier transform of a 4th order cross-correlation 100

Rxyzw(τ1, τ2, τ3) = lim
N→∞

1

N

N−1
∑

n=0

x∗n y
∗

n+k1 z
∗

n+k2 wn+k3 + correction terms. (151)

; Generate data - sinewave plus noise .

npt = 8192 & seed = 104 & nlag = 60 & fr = 181.

noise = 0.01*Reform(RandomN(seed, 1, npt))

data = Cos(!pi*2.*Findgen(npt)*fr/npt) + noise

lag1 = (lag2 = Indgen(nlag))

xd = Conj(data - Total(data)/npt)

yd = data - Total(data)/npt

zd = data - Total(data)/npt

; Triple auto-correlation, un-normalized

Cor = Fltarr(nLag,nLag)

FOR k1 = 0L, nlag-1 DO BEGIN

FOR k2 = 0L, nLag-1 DO BEGIN

Cor[k1,k2] = Total(xd[0:npt-1-lag1[k1]-lag2[k2]] $

* yd[lag1[k1]:npt-lag2[k2]-1] * zd[lag2[k2]:npt-lag1[k1]-1])

ENDFOR

ENDFOR

Example. 20 : Code snippet (IDL) to calculate triple correlation - cf. fig. 34.

Figure. 34: Left: (Un-normalized) triple auto-correlation of a sinewave with 1% random noise

vs lag1 and lag2, right: triple correlation vs positive lag1 at lag2= 0.



A Short Manual to Discrete Time Series Analysis - G.D.Conway 75

9.4 Energy transfer

While bicoherence analysis techniques can indicate the strength of nonlinear couplings within, or

between regions of the turbulence domain, they do not give the direction of the energy transfer,

eg. from regions of fluctuation drive to regions of dissipation. For this other techniques are

employed. 102

9.4.1 Power transfer function (PTF)

The first technique, developed by Ritz 103 and modified by Kim 104 based on a Hasegawa-Mima

model (Hasegawa PRL 1977) is an energy flow equation for a single-field signal

∂Pk/∂t ≈ γkPk +
∑

k1,k2

Tk(k1, k2), (152)

where P (k) = 〈X(k)X∗(k)〉 is the spectral power of some signal X(t, k) at wavenumber k =

k1 + k2. The equation is reformed and solved for the fluctuation linear growth/damping rate γk
and the nonlinear energy transfer rate Tk(k1, k2), with the aid of auto and cross power spectra,

auto and cross bispectra and forth order moments of X(k). See Kim 104 for algorithm details.

The resulting 2D contour plot of T (k1, k2) visualizes the nonlinear couplings, as well as the

direction of the energy transfer between different scales.

Nagashima 105 106, also assuming 3-wave coupling k3 = k1 + k2 and f3 = f1 + f2, obtained a

vector energy transfer function in the frequency domain

F (ω1, ω2) = [kr(ω1) + kr(ω2)] Im〈 xθ(f1)xr(f2)x∗r(f3) 〉. (153)

where, 〈xθxrx∗r〉 is essentially a poloidal-radial flow cross-bispectra.

102 Conway G.D. et al Geodesic acoustic modes in magnetic confinement devices Nucl. Fusion

62 013001 (2022).
103 Ritz Ch.P. et al Experimental measurement of three-wave coupling and energy cascading,

Phys. Fluids B 1 (1) 153 (1989).
104 Kim J.S. et al Technique for the experimental estimation of nonlinear energy transfer in fully

developed turbulence, Phys. Plasmas 3 (11) 3998 (1996).
105 Nagashima Y. et al Nonlinear energy transfer of drift-wave fluctuation in a cylindrical labo-

ratory plasma, Plasma Fus. Res. 3 056 (2008).
106 Nagashima Y. et al Observation of the parametric-modulational instability between the drift-

wave fluctuation and azimuthally symmetric sheared radial electric field oscillation in a

cylindrical laboratory plasma, Phys. Plasmas 16 020706 (2009).
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9.4.2 Amplitude Correlation Technique (ACT)

A related method by Crossley 107 uses the time-delayed cross correlation between two frequency

bands of the same single-field signal (e.g. band pass filtered at low and high frequency ranges)

C(τ) =
〈

x2∆f1
(t).x2∆f2

(t+ τ)
〉

. (154)

The sign of the correlation time delay gives the direction of energy flow between the two fre-

quency bands ∆f1 and ∆f2.

9.4.3 Kinetic energy transfer (KET)

The KET method, developed by Holland 108 is a multi-field (more than one vector field) technique

which gives the evolution of the fluctuation energy ∂ 〈|s̃(f)|2〉 /∂t in the frequency domain as the

sum of a linear and nonlinear term involving a coupling parameter

T y
n (f, f

′) = −Re〈s̃∗(f) ṽy(f − f ′) ∂ys̃(f
′)〉. (155)

The parameter Ty is essentially a cross-bispectrum which quantifies the rate at which energy is

transferred between a scalar signal s at frequency f and signal gradient fluctuations (y direction)

at frequency f ′, mediated by a third y-direction velocity vy(f − f ′) fluctuation. Holland also

gives the energy transfer T in terms of the cross-bicoherence and biphase spectra 〈ñ v⊥ ∇ñ〉 and

shows their equivalence (with some nuances) using experimental and simulation data. See above

reference for details.

Xu derived a similar multi-field method to give kinetic energy transfer rates in the frequency

domain 109 110 The equation form for T is similar to that of Holland, for example for x(t) the

transfer rate

Tx(f, f1) = −Re 〈 F(x∗)f F(u⊥f2 · ∇⊥) F(x)f1 〉, (156)

where f = f1 + f2, u⊥ is the perpendicular velocity, ∇⊥ is the gradient in the perpendicular

direction, and the subscript of F(x)f means the Fourier frequency component f of signal x.

107 Crossely F.J. et al Experimental study of drift-wave saturation in quadrupole geometry,

Plasma Phys. Control. Fusion 34 (2) 235 (1992).
108 Holland C. et al Zonal-flow-driven nonlinear energy transfer in experiment and simulation,

Phys. Plasmas 14 056112 (2007).
109 Xu M. et al Study of nonlinear spectral energy transfer in frequency domain, Phys. Plasma

16 042312 (2009).
110 Xu M. et al Fourier-domain study of drift turbulence driven sheared flow in a laboratory

plasma, Phys. Plasma 17 032311 (2010).
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10 Time-frequency analysis

For time-varying or intermittent signals, different analysis methods are needed that do not assume

or require signal stationarity. There are essentially two classes of techniques available: those

that rely on some form of time shifting windows, and those that are based on the instantaneous

frequency concept.

10.1 Short time or sliding FT

The most popular time-frequency spectra is the short-time Fourier transform STFT, which is

essentially a simple short windowed FT, defined as

S(t, ω) =

∣

∣

∣

∣

∫

∞

−∞

x(t+ τ) hK(τ) e
−ı ωτ dτ

∣

∣

∣

∣

2

(157)

or in discrete form

SK(n, j) =
1

K

∣

∣

∣

∣

∣

∣

K/2−1
∑

k=−K/2

xn+k hK(k) e
−ı2πjk/K

∣

∣

∣

∣

∣

∣

2

(158)

where hK(k) is a time (index) translated window function of width K points and τ = k∆t, and

ω = 2πj/∆t. The FT is usually implemented with an FFT. The simplest window is a box-car

function, which, as expected from convolving the spectra with the H(ω) ⇌ h(t) leads to leakage

in the spectra and reduced frequency resolution. Window shaping or tapering is possible, and

the FT is also amenable to zero padding. Nevertheless, overall the optimal window length K is

always a trade-off between time resolution and frequency resolution.

10.2 Wigner-Ville spectrum

The Wigner-Ville (WV) spectrum or Wigner distribution (WD) is one of a class of quadratic

time-frequency methods using Fourier transforms of the autocovariance function. 111 The WV

spectrum overcomes some of the limitations of the STFT by using a forward and backward ±τ
conjugate pair, and is defined as 112

W (t, ω) =

∫

z(t+ τ/2) z∗(t− τ/2) h(τ/2)h(−τ/2) e−ı ωτ dτ (159)

where z()z∗() is essentially the instantaneous auto-correlation of the analytic signal z(t) = x(t)+

ıH{x(t)} (see section 10.7). For numerical implementation it is easier to use the so-called (un-

smoothed) pseudo-Wigner estimator

pW(2K−1)(n, j) = 2
K−1
∑

k=−K+1

xn+k x
∗

n−k |hK(k)|2 e−ı2πj(k/K) (160)

111 Martin W. & Flandrin P. Wigner-Ville spectral analysis of nonstationary processes, IEEE

Trans. Acoust. Speech ASSP-33 (6) 1461 (1985).
112 Boashash B. Estimating and interpreting the instantaneous frequency of a signal: Part 1,

Proc. IEEE 80 (4) 520 (1992) and Part 2, Proc. IEEE 80 (4) 540 (1992).
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where ωj = 2πj/K and hK() is a rectangular window function of 2K − 1 non-zero points. 113

If K is a power of 2 then pW (over 2K − 1) points can be calculated using one FFT over K data

points. Smoothed versions would include a second summation over adjacent pW estimates. 114

The Wigner-Ville spectrum has some positive points - it has good frequency resolution and is

time invariant. The total power/energy is also conserved, as are the marginal spectral powers

P (t) =
∫

W (t, ω) dω and P (ω) =
∫

W (t, ω) dt (unlike the STFT). However, points against

include the possibility of negative W values and, perhaps more importantly, due to its quadratic

nature the formation of significant cross-terms in the product of the forward and backward signal

conjugate pair, leading to spectral interference in multi-component signals. By comparison, the

product of the forward-forward conjugate pair in the STFT produces minimal cross-terms.

10.3 Choi-Williams distribution

The Choi-Williams distribution (CWD) is a more generalized version of the WV distribution.

It is a type of so-called Reduced Interference Distribution (RID) which includes an addition

exponential kernel term k to reduce the cross terms 115

CW (t, ω, σ) =

∫ ∫

1

|τ | k
(

µ− t

τ
, σ

)

x(µ+ τ/2) x∗(µ− τ/2) e−ı ωτ dµ dτ (161)

where the kernel k(t, σ) = (2πσ2)−1/2 e−t2/(2σ2). σ is the kernel scale factor. Note k(·) = 1 for

the WD spectrum. Translating to discrete form (which is non-trivial) gives

CW (n, θ, σ) = 2
∞
∑

τ=−∞

eı2θτ

[

∞
∑

µ=−∞

1
√

4πτ 2/σ
exp

(

−(µ− n)2

4τ 2/σ
xnx

∗

n

)

]

(162)

where n = t/∆t and θ = 2πf∆t is the rotational angle equivalent of ω. 115 116

Positive aspects of the CWD are the reduced cross-terms in the distribution due to the kernel,

but at the expense of reduced resolution. Here the trade-off is determined by σ. Concerning

implementation, either long-hand, via FFT or via matrix methods. See reference 117 for examples.

113 Bizarro J.P.S. & Figueiredo A.C. The Wigner distribution as a tool for time-frequency anal-

ysis of fusion plasma signals: application to broadband reflectometry data, Nucl. Fusion 39

(1) 61 (1999).
114 Boashash B. Note on the use of the Wigner distribution for time-frequency signal analysis,

IEEE Trans. Acoust. Speech ASSP-36 (9) 1518 (1988).
115 Choi H. & Williams W.J. Improved Time-Frequency representation of multicomponent sig-

nals using exponential kernels, IEEE Trans. Acoust. Speech Signal Proc. ASSP-37 (6)

(1989).
116 Figueiredo A.C.A. et al Time-frequency analysis of non-stationary signals in fusion plas-

mas using the Choi-Williams distribution, 30th EPS Conf. (St.Petersburg) ECA 27A P2.141

(2003).
117 Barry D.T. Fast calculation of the Choi-Williams time-frequency distribution, IEEE Trans.

Signal Proc. SP-40 (2) 450 (1992).
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10.4 S-method

The S-method (SM) is a time-frequency technique which provides a transition from the simple

STFT (with minimal cross-terms) to the WD (high energy concentration). The essence of the

method is to use correction terms to the base STFT spectrum. The SM spectrum is defined as 118

119

SM(t, ω) =
1

π

∫

∞

−∞

P (̟) F(t, ω +̟) F∗(t, ω −̟) d̟ (163)

where F is the FT of xn and P (̟) is a window function. If P (̟) = 1 for all ̟ then one obtains

the WD W (t, ω), and for P (̟) = πδ(̟) one obtains the STFT S(t, ω).

In discrete form (without windowing)

SML (n, j) =
L
∑

l=−L

F(n, j + l) F∗(n, j − l) (164)

where n is the time index, j is the frequency index and L is the number of correction (ie. lag)

terms. In the terminology used here the FT is zero centered so that the index l goes from negative

to zero to positive frequency indexes. In the above equation P (l) = 1, however, a weighted form

P (l) = 1/(2L + 1) can be used where −L ≤ l ≤ L is the frequency index summation range.

Reference 119 gives a recursive relation for

SML (n, j) = SML−1 (n, j) + 2Re [F(n, j + L) F∗ (n, j − L) ]. (165)

Essentially, 2Re [F (n, j+ l) F∗ (n, j− l)] are the correction terms for each step of the recursion

l = 1, . . . L, and the initial spectrum is simply the STFT auto-spectrum SN

SM0(n, j) = SN(n, j) = F(n, j) F∗(n, j) = |F(n, j)|2. (166)

Both of the Stanković references show good examples of the benefits of the S-method in action.

Needless to say, the S-method is just one of many similar methods attempting to improve on the

behaviour of the WD.

118 Stanković L. A method for time-frequency analysis, IEEE Trans. Sig. Proc. 42(1) 225 (1994).
119 Stanković L. et al. From the STFT to the Wigner distribution, IEEE Sig. Proc. Magazine

May 163 (2014). doi: 10.1109/MSP.2014.2301791
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10.5 Wavelet transform

By their nature Wavelet analyses are well disposed for the study of time-dependent or intermittent

signals. There is now a large body of work on the basis and application of wavelet analysis. A

comprehensive and highly accessible tutorial is given by Torrence & Compo. 120

The continuous wavelet transform (CWT) is defined as 121

W (a, τ) =

∫

∞

−∞

x(t) ψa(t− τ) dt = 〈 x(t) ψa(t− τ) 〉 (167)

where ψa(t) = |a|−1/2 ψ(t/a) is the scaled (by a - the dilution scale) and time translated (by

τ ) wavelet function and ψ(η) the scalable (or mother) wavelet base function. There are several

wavelet bases in use, cf. 120, the most popular perhaps being the original Morlet wavelet - a

sinewave windowed by a Gaussian

ψ(η) = π−1/4 e−η2/2 eı ωoη. (168)

Setting the scale factor ωo ≈ 2π in the 2nd exponential, allows an equivalent frequency ω = 2π/a

to be assigned to each scale a (note some authors use the scale number s = 1/awhere the scale is

comparable to a period). The corresponding frequency resolution is then ∆ω = ω/4 and the time

resolution ∆t = 2a, thus ∆ω ×∆t = π. 122 Torrence120 gives a good overview of the pros and

cons of the various wavelets, Morlet, Paul, Mexican hat and DOG ψ in terms of orthogonality,

complex vs real, wavelet width and shape.

There is also a discrete wavelet function, but here the continuous wavelet as applied to a discrete

data sequence xn is described as

Wn(a) =
N−1
∑

n′=0

xnψ
∗

(

(n′ − n)δt

a

)

(169)

where the subscript n is the time integer and n′ the time translation. Since eqn. (167) is essentially

a convolution, the CWT can be expressed as W = (1/
√
T ) F−1 {F(x)F(ψ)} which, in turn

allows an efficient computation via FFTs (with zero padding if necessary).

The wavelet power spectrum at scale a is defined as

SW
n (a) = |Wn(a)|2. (170)

As with the FFT power spectra the summed SW spectra, ie. the expected value E[|Wn(a)|2] = σ2

is the variance of the signal. That is, SW (a) is the scale distribution of the signal variance. Both

120 Torrence C. & Compo G.P. A practical guide to wavelet analysis, Bull. Amer. Meteor. Soc.

79 (1) 61 (1998).
121 Jordan D. et al Implementation of the continuous wavelet transform for digital time series

analysis, Rev. Sci. Instrum. 68 (3) 1484 (1997).
122 van Milligen B.Ph. et al Statistically robust linear and nonlinear wavelet analysis applied to

plasma edge turbulence, Rev. Sci. Instrum. 68 (1) 967 (1997).
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the Morlet and Paul wavelets are complex, thus Wn is complex, allowing SW to be expressed

in terms of amplitude and phase spectra. The DOG wavelet, however, is a real function, thus

Im(Wn) = 0 and the phase is undefined.

As with the STFT and HHT spectra (section 10.8) one can also define marginal spectra for the

WT. The Global wavelet spectrum is the time integrated (ie. summed over n index) marginal

spectrum, defined as

W
2
(a) = 1/N

N−1
∑

n=0

|Wn(a)|2 (171)

The Wn(a) spectrum can also be smoothed over adjacent time slices to increase the effective

spectral dof (ν) and thus enhance spectral peak significance. Averaging over a scale range a1−a2
will give the power within that scale (range) as a function of time 120 (equivalent to the HHT

marginals).

W
2

n ∝
j2
∑

j=j1

|Wn(aj)|2 (172)

Some interesting examples of wavelet usage in plasma physics include: Dose 123 who describes

an application to MHD analysis, with particular emphasis on correct interpretation, Farge 124

on the extraction and characterization of coherent features from noisy signals, ie. filtering (with

further refs. therein), and Mahdizadeh 125 also as a means of filtering intermittent features.

10.5.1 Cross-wavelet spectra

For multiple signals, corresponding wavelet cross-spectrum and cross-phase spectra can be com-

puted 126

Wxy(a) =
Wx(a)W

∗

y (a)

σx σy
θxy(a) = tan−1

{

ImW (a)

ReW (a)

}

. (173)

However, the raw wavelet coherence is unity γW (a) = 1, unless some form of spectral smoothing

or ensemble averaging is employed 122 which, one way or another reduces the temporal or scale

resolution of the spectrum. The use of wavelets for bandpass signal filtering, in either scale or

time, was also mentioned above, cf. 120

123 Dose V. et al Wavelet analysis of fusion plasma transients, Phys. Plasmas 4 (2) 323 (1997).
124 Farge M et al. Extraction of coherent bursts from turbulent edge plasma in magnetic con-

finement devices using orthogonal wavelets, Phys. Plasmas 13 042304 (2006).
125 Mahdizadeh N. et al. Investigation of intermittency in simulated and experimental turbulence

data by wavelet analysis, Phys. Plasmas 11 (8) 3932 (2004).
126 Santoso S. et al Time-series analysis of nonstationary plasma fluctuations using wavelet

transforms, Rev. Sci. Instrum. 68 (1) 898 (1997).
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10.5.2 End effects and Confidence limits

One of the major issues of using finite data lengths is the deterioration of the wavelet spectral

power at the beginning and at the end of the transform. Zero padding of the data prior to the

transform can mitigate, but the effect remains. It is common to mark the affected regions of the

|Wn(a)|2 plot with lines marking the so-called Cone of influence. See Torrence 120 for further

details.

Another issue is the confidence interval (CI, the range of confidence about a point) and the

significance level (SL, the minimum level of significance). As with the FFT spectrum, see section

6.5, their derivation depends on the assumed error distribution shape (ie. normal or Poisson etc.)

and the spectral type. For the temporally averaged wavelet coherence spectrum γWxy(a), van

Milligen 122 gives an estimate for the significance level

ǫ[γ̂xy(a)] ≈ 2

√

ωs

ω

1

N
(174)

where N is the number of samples, ωs = 2π/δt is the sample frequency and ω = 2π/a which

results from a reduced independence (dof) of the wavelet coefficients due to the finite time period

of the spectra averaging.

; Create data : Constant freq + Chirp .

npt = 2048 & nft = 256 & nst = 16

time = Findgen(npt)/Float(npt)

data = Sin(!pi*2*time*500.) + Sin(!pi*(time*16.)ˆ2)

; STFT

freq = Findgen(nft*2)*4. ; double length & scale

sP2 = Fltarr(128,nft*2)

tims = Fltarr(128)

wind = 0.5*(1.0-Cos(2.0*!pi*Findgen(nft)/Float(nft)))

zero = Fltarr(nft) ; zero padding

j = 0

kmx = (npt - nft) / nst ; 2048-256/16 = 112

FOR k = 0, kmx DO BEGIN

tims[k] = j+nft/2

b = FFT([data[j:j+nft/2-1]*wind,zero],-1) ; pad, window & FFT

sP2[k,*] = Abs(b*Conj(b))

j = j + nst

ENDFOR

sP2 = sP2[0:k-1,0:200] & tims=tims[0:k-1] & freq=freq[0:200]

; Continuous wavelet (scale vs. time)

wave = WV_CWT(data, ’Morlet’, 6, /Pad, Scale=scale)

wP2 = Abs(waveˆ2)/npt

FOR i = 0, npt-1 DO wP2[i,*]=wP2[i,*]/scale ; rescale power

freq = Float(npt)/scale

gws = Total(wP,1)/npt ; global wavelet spec.

Example. 21 : Code snippet (IDL) for STFT and Wavelet of a constant frequency sinewave plus

a chirping frequency - cf. fig. 35.
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Figure. 35: Example of (left) STFT and (right) DWT spectra, as contour plots (top) and 3D

perspective plots (bottom) for a constant sinewave plus a frequency chirp sinewave, using above

code snippet.

10.5.3 Wavelet bicoherence b2w

Wavelet transforms can also be applied to bispectra and bicoherence analysis of the non-linear

coupling of non-stationary signals. 127 The formulation is similar to that for FFT bispectral

analysis - see section 9.1 - except an element of temporal integration over a finite time interval T

which slides with the wavelet translation τ . Thus the wavelet cross-bispectrum is defined as

BW
xy(a1, a2) =

∫

T

W ∗

x (a, τ)Wy(a1, τ)Wy(a2, τ) dτ (175)

where 1/a = 1/a1+1/a2. For a Morlet type wavelet the scale a = 2π/ω translates to a frequency

and one can see the equivalence to the familiar ω = ω1 + ω2. From the bispectrum the wavelet

squared bicoherence is defined as

b2W (a1, a2) =
|BW (a1, a2)|2

∫

T
|Wx(a1, τ)Wy(a2, τ)|2 dτ |Wx(a)|2

. (176)

127 van Milligen B.Ph. Wavelet bicoherence: a new turbulence analysis tool, Phys. Plasmas 2

(8) 3017 (1995).
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When using bicoherence to study 3-wave coupling (in this case, wavelets) the interpretation only

really makes sense in the frequency domain. Thus, the scale conversion of a Morlet wavelet to a

frequency ω = 2π/a is most appropriate.

Finally, for the bw, van Milligen gives an estimate for the significance level as

∆b̂w/b̂w ≈ 2/
√
N (177)

where N is the number of samples. This is slightly better than for the FFT based bicoherence,

which might imply that the wavelet bicoherence estimate may have less uncertainty, ie. smaller

variance. For an example of computation see reference 127.

10.6 Adaptive AR modelling

Autoregressive (AR) spectra are particularly well suited to short data streams and thus can also

be applied to non-stationary data. Adaptive AR using, for example the Least Mean Squares

algorithm allows the regression coefficients a to vary or evolve or adapt with time, ie. a short-

form AR spectrum. 128

128 Ulrych T.J. & Ooe M. Chapter 3: Autoregressive and mixed autoregressive-moving average

models and spectra in Nonlinear methods of spectral analysis, 2nd edn. Springer (1983).
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10.7 Hilbert transform

The Hilbert transform (HT) is a type of (linear) operator which shifts the phase angle of a signal

by ±90◦, ie. π/2.

H{x(t)} =
1

π

∫

∞

−∞

x(τ)

t− τ
dτ = x(t) ∗ −1/(πt)

H{xn} =
∑

∞

k=−∞
xk

sin2[π(n−k)/2]
π(n−k)/2

(cf. ref.113) (178)

that is, the signal is convoluted with a linear time delay. The resulting H{x(t)} and x(t) have

the same power spectrum and auto-correlation function, but are orthogonal. Most computer code

packages, such as IDL, Python etc. provide a Hilbert transform routine.

Essentially the Hilbert transform creates an imaginary component of the signal: Im x(ω) =

H{Re x(t)}, which is used to form the analytic signal

z(t) = x(t)− ıH{x(t)} = a(t) exp(ı θ(t)) (179)

a pair of instantaneous magnitude and phase signals. Note, the analytic signal is equivalent to

the quadrature signal if a and θ are separable.

10.7.1 Hilbert spectral analysis

The Hilbert spectral analysis (HSA) method (cf. 129) uses the HT to produce a time-frequency

spectrum, aka the Hilbert (amplitude) spectrum. The approach is first to decompose the signal

into a set of real Intrinsic Mode Functions (IMF), cj(t) = aj(t) cos(θj(t)) plus a residual r(t)

x(t) =
J
∑

j=1

cj(t) + r(t) (180)

using, for example, the Empirical Mode Decomposition (EMD), as used in the HHT method or

the Iterative Filtering (IF) method - see section (10.8). The Hilbert transform is then applied to

each IMF component to produce their analytic signals from which their instantaneous frequen-

cies ωj(t) = dθj(t)/dt are obtained. For discrete signals the phase gradient can be computed

using forward (FFD) and backward finite difference (BFD) equations 130 The Hilbert spectrum is

then defined (for positive ωj(t)) as the sum of the IMF amplitude components

H(t, ω) =
J
∑

j=1

Hj(t, ω) =
J
∑

j=1

aj(t) at selected ω = ωj(t) (181)

The H(t, ω) enables the representation of signal amplitude as a function of time and instanta-

neous frequency in a three-dimensional or contour plot.

129 Huang N.E. et al The empirical mode decomposition and the Hilbert spectrum for nonlinear

and non-stationary time series analysis, Proc. Royal Soc. Lon. A 454 903-995 (1998)
130 Boashash B. Estimating and interpreting the instantaneous frequency of a signal: Part 1,

Proc. IEEE 80 (4) 520 (1992) and Part 2, Proc. IEEE 80 (4) 540 (1992).
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10.7.2 Envelope detection

Figure. 36: HT envelope detection: (a) ex-

ponential sinewave and (b) low frequency

modulation of broad-band fluctuations.

A particularly useful application of the HT is for

extracting the amplitude envelope of a signal. One

simply takes the modulus of the analytic signal and

then low-pass filter or smooth

Env(t) = LPF{|(x(t) + iH{x(t)}|} (182)

Env(t) can then be down-sampled if necessary. As

an example, fig. 36 shows: (a) the envelope of a

decaying sinewave, typical of a narrow band auto-

correlation function, and (b) an example of the so-

called envelope detection of amplitude modulated

(AM) broad-band fluctuations. A particular applica-

tion is the extraction of of flow oscillations from the

modulation of high frequency density turbulence. 131

Here, x(t) is high-pass filtered before taking the HT.

10.7.3 Complex demodulation

Complex, or quadrature demodulation is a well known method in the field of electrical engineer-

ing for extracting the modulation of a carrier wave. In time series analysis it offers a method of

analyzing non-stationary data to obtain the phase and amplitude variation of a chosen frequency

component as a function of time. Complex demodulation involves multiplying the signal with

a complex exponential followed by low-pass filtering. In the 1988 Powers paper 132 the starting

point is the assumption that the signal can be expressed as a set of a(t) cos[ωot+ θ(t)] sinusoids

where ωo is the selected carrier frequency and a(t) and θ(t) are its slowly time-varying amplitude

and phase. Numerically the demodulation is achieved by multiplying the signal by the complex

exponential 21/2 exp(−ı ω0t), where ω0 = j∆ω, then narrow-band-pass filtering with bandwidth

∆ω to recover the complex demod signal c(ωj, t) = a(ωj, t) exp[ı θ(ωj , t)]/2
1/2. The process is

repeated for each j = 0, . . . , J − 1. In principle the frequencies do not need to be harmonic.

The time varying (auto) power spectra is then simply Pxx(ωj, t) = |c(ωj, t)|2 = a2(ωj, t)/2. The

method can be extended easily to cross-power spectra Pxy(ωj, t) = cx(ωj, t) c
∗

y(ωj, t).

There is a certain duality with the HSA where the carrier modes are essentially IMFs and the

complex exponent action is the HT - although with different ordering. The multiple filtering

steps are computationally intensive, but an alternative approach is to inverse FT the frequency

windowed, phase shifted signal. 133

131 Conway G.D. et al Observations on edge GAM-turbulence interactions in ASDEX Upgrade,

Proc. 46th EPS Conf. on Plasma Phys. (Milan) P2.1091 (2019).
132 Powers E.J et al Spectral analysis of nonstationary plasma fluctuation data via digital com-

plex demodulation, Rev. Sci. Instrum. 59 (8) 1757 (1988).
133 Bizarro J.P.S. et al On complex demodulation and time-frequency distributions for broadband

reflectometry signals, Rev. Sci. Instrum. 70 (10) 1030 (1999).
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10.8 Hilbert-Huang transform HHT

In the Hilbert-Huang transform (HHT) method the intrinsic mode functions (IMFs) are obtained

using a sifting process called Empirical Mode Decomposition (EMD). The obtained IMFs are

then Hilbert spectral analyzed, cf. section (10.7.1), to produce a time-frequency plot. 134 129 135

The HHT is a somewhat unique method of analyzing non-stationary and nonlinear time series

data. Here the IMFs are not predefined basis functions, like sinewaves as in the Fourier or

wavelets in Wavelet transforms, but are essentially adaptively derived from the data itself using

a sifting process.

The EMD procedure is as follows:

(1) Identify alternating local extrema in the signal x(t), ie. a maxima followed by a min-

ima.
(2) Fit envelopes emax(t) to the local maxima and emin(t) to the local minima time se-

quences using, for example, cubic spline fits.

(3) Create a local running mean m1(t) = (emax(t)− emin(t))/2 signal.

(4) Subtract the mean signal to create a time-varying residual h1(t) = x(t)−m1(t).

(5) Check if h1(t) qualifies as an IMF (see note 1.)

if YES then c1(t) = h1(t) and store as an IMF

r1(t) = x(t)− c1(t) : create a new reduced signal

Repeat from step (1) until r is a trend, ie. contains no alternating max

and min.

if NO then Refine or sift h1(t) until it qualifies as an IMF.

Take h1(t) as input and repeat steps (2) - (5) creating new mean & residual

m11(t)

h11(t) = h1(t)−m11(t)

c1(t) = h1j(t)

Check stop criterion (note 2.) - else repeat from step (2) to create next cj .

With each successive IMF cj(t) the fine-structure is progressively removed from x(t) until only

a trend or bit noise remains.

Note 1: An IMF is defined as any function (not necessarily a sinusoid) that meets the following:

- It has at least 1 maxima and 1 minima and the difference between the number of local

extrema and zero crossings is 0 or 1

- The local running mean is zero.

Note 2: There are various criteria proposed for stopping the sifting, but the criterion proposed by

Huang is to check when the standard deviation of successive hk falls below a pre-defined value,

134 Huang Y.X. et al An amplitude-frequency study of turbulent scaling intermittency using

Hilbert spectral analysis, Euro. Phys. Lett. 84 40010 (2008).
135 Stallone A. et al. New insights and best practices for the successful use of Empirical Mode

Decomposition, Iterative Filtering and derived algorithms, Sci. Reports 10 15161 (2020).
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such as σs = 0.2

σj =

∑T
t=0 |hj−1(t)− hj(t)|2
∑T

t=0 h
2
j−1(t)

< σs (183)

Since the signal is decomposed in the time domain the length of each IMFs is the same as the

original signal, that is, the HHT preserves the characteristics of the varying frequencies.

Once the IMF modes cj(t) and residual rn(t) are obtained the signal can be reconstructed to

cross-check the accuracy of the decomposition

x(t) =
J
∑

j=1

cj(t) + rn(t) = Re
J
∑

j=1

Aj(t) exp(ı θj(t)) (184)

Finally, the Hilbert Transform is applied to each IMF cj(t), the instantaneous frequencies ωj(t)

and amplitudes aj(t) extracted, and then aj(t) summed over j to give the time resolved Hilbert

spectrum H(t, ω) - as per eqn. (181). From the Hilbert spectrum one can integrate over time to

give the marginal spectrum:

h(ω) =

∫ T

o

H(t, ω)dt (185)

or integrated over frequency to give the instantaneous energy density (IE):

IE(t) =

∫

ω

H2(t, ω)dω. (186)

Huang’s 1998 paper is best consulted for details of how to implement the method in practice,

together with important caveats, limitations and hints. 136

There are EMD codes in python readily available for those wishing to try this method.

136 Huang N.E. The empirical mode decomposition and the Hilbert spectrum for nonlinear and

non-stationary time series analysis, Proc. R. Soc. Lond. A 454 903 (1998).



A Short Manual to Discrete Time Series Analysis - G.D.Conway 89

11 Non-linear structure

In the late 1980’s the application of non-linear structure analysis techniques became rather pop-

ular, in particular in an attempt to characterize edge plasma turbulence in terms of fractal di-

mensions and strange attractors. However, techniques based on embedding dimensions were

computationally intensive, and the results difficult to interpret. Nevertheless, ..

11.1 Increments and difference functions

Increments are used in the analysis of non-linear structure buried within the time series. The

approach is to generate a time series of increments for each temporal τ or spatial |l| scale (ie. a

difference index or lag)

δx(l) = x(r + l, t)− x(r, t)

δx(τ) = x(t+ τ)− x(t) (187)

and then take the pdfs of the increments δx. At large scale separations the pdfs tend to original/

normal, but at small scales intermittency is revealed as broad tails (large Kurtosis) in the pdfs.

11.2 Structure functions

From the increments the structure function of order p is defined as:

Sp(l) = 〈(δx(l))p〉. (188)

The angular brackets 〈u〉 denotes the average of u. It is usual to limit p < 5. The structure

function can be used in calculating the Hurst exponent.

11.3 Hurst exponent

The Hurst exponent H is a popular non-linear estimator parameter which gives an indication of

the rate of decay of long-term behaviour (memory) of a time sequence. In particular, it may

indicate if a series has a long term trend (termed trending or persistence), or is likely to change

sharply (termed mean-reverting or anti-persistence).

H is usually defined in terms of the asymptotic behaviour of the (ensemble averaged) rescaled

range (see below) of a time series. (For n one can read τ .)

E[R(n)/S(n)] = CnH as n→ ∞ (189)

where R(n) is the range for n time points, S(n) is their corresponding standard deviation, and

C is a constant. From this one sees that the rescaled range scales with the number of points n to

the power of H . Usually H is extracted from a straight-line fit to a log-log plot of R(n)/S(n)

against n (at the mid to high-end of n values of course).
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The interpretation of the Hurst exponent is roughly as follows: 137

H < 0.5 : the series tends to revert back to its mean, ie. anti-persistent.

H = 0.5 : the series has a random or stochastic behaviour.

H > 0.5 : the series has a clear trend - persistent.

11.3.1 Generalized exponent

The basic Hurst exponent is a measure of the ‘size of changes’ (sometimes called the rate of

diffusive behaviour) as a function of time lag between observations, ie. the variance of the incre-

ments E[|x(t+τ)−x(t)|2]. This is the so-called aggregated variance method. Here one calculates

the lagged auto-covariance var(τ = k∆t) = 〈|xn+k − xn|2〉. If the series {xn} is random then

the var(τ) ∼ τ scales roughly with the lag τ . However, if there is a finite autocorrelation then

var(τ) ∼ τ 2H . The H factor is obtained from the gradient of log(var(τ)) vs log(τ ). The gen-

eralized Hurst form replaces the 2 in the exponent with the structure order p. That is the Hurst

exponent is a function H = H(p) of p. Thus one is essentially analyzing the scaling behaviour

of the structure function as a function of lag

Sp(τ) = 〈|x(t+ τ)− x(t)|p〉t ∼ τ pH(p) (190)

Figure. 37: Hurst analysis for 3 synthetic signals - a la Lewinson. 138 (Left) raw signals, (right)

Log-log plot of structure function of order p = 2 (variance) S2(τ) vs time lag τ .

Figure 37 shows an example of calculating the Hurst exponent using eqn. (190) with order p = 2,

ie. from the aggregated signal variances 138 using the code snippet below. Figure 37(left) shows

time traces and (right) lagged variance plots for three synthetic signals: (red) mean reverting

ln(x), (blue) a geometric random walk ln(
∫

(x)) and (black) strongly trending ln(
∫

(x + c)).

On the right, the log-log plot of the corresponding variance vs lag τ allows the H factor to be

extracted from a gradient fitted at moderate τ values.

137 Wikipedia - https://en.wikipedia.org/wiki/Hurst exponent (Dec. 2022).
138 Lewinson E. Introduction to the Hurst exponent - with code in Python, TDC

https://towardsdatascience.com/introduction-to-the... (2021).
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npt = 4000 & ntau = 1000 & tau = Indgen(ntau) & scl = 100. .

x = RandomN(seed, npt) ; Random norm. signal

x1 = Alog(x*2. + scl) ; Mean reverting

x2 = Alog(Total(x, /Cumul)+ scl) ; GRW via cumulative sum

x3 = Alog(Total(x+0.8, /Cumul) + scl) ; Trending

; Aggregate variance / std dev.

V1 = Fltarr(ntau) & V2 = Fltarr(ntau) & V3 = Fltarr(ntau)

FOR it = 0, ntau-1 DO V1[it] = Stddev(x1[it:*] - x1[0:npt-it-1])

FOR it = 0, ntau-1 DO V2[it] = Stddev(x2[it:*] - x2[0:npt-it-1])

FOR it = 0, ntau-1 DO V3[it] = Stddev(x3[it:*] - x3[0:npt-it-1])

: Hurst exponent from log-log (low end) gradient divide 2.

H1 = Alog10(v1[100]/v1[1])/2.

H2 = Alog10(v2[100]/v2[1])/2.

H3 = Alog10(v3[100]/v3[1])/2.

Example. 22 : Code snippet (IDL) calculating Hurst exponent, eqn. (190) with p = 2 - cf. fig. 37.

11.3.2 Rescaled range analysis

The rescaled range R/S is computed by creating from the signal x of length N a series of sub-

sets of {xn} of (0, . . . , n) of progressively shorter lengths n = N,N/2, N/4, . . .. Each sub-set

is then converted to a cumulative deviate about their mean

zt =
t
∑

i=1

(xi −m) (191)

for t = 1, ..n and m = (1/n)
∑n

i=1 xi. The range R(n) for each sub-set is computed as

R(n) = max(z1, ..., zn)−min(z1, ..., zn) (192)

which is then normalized by its corresponding standard deviation S(n) = [1/n
∑n

i=1(xi −
m)2]1/2. As n is progressively halved the number of sub-sets m of length n doubles, and these

sub-sets can of course be averaged to give R(n)/S(n) = 〈R(n)/S(n)〉m.

11.3.3 Fractal dimension D

The Fractal dimension D is more familiar as an index of pattern complexity and the topic of self-

similarity. In the context of a time or spatial series the fractal dimension 1 < D < 2 is related to

the Hurst exponent such that D = 2 −H where H varies between 0 and 1. Higher values of D

indicate smoother trends. There are a large number of publications on the dimensionality of edge

plasma turbulence in tokamaks etc. As a starting point see 139 for an example of anomalously

high D factors from density fluctuations in JET, and 140 for a detailed discussion and references.

Also multifractal analysis of MAST and Tore Supra edge turbulence via embedding functions 141

139 van den Brink A.M. et al Dimensionality analysis of chaotic density fluctuations in tokamaks,

17th EPS Conf. 14B I-199 (1990).
140 Budaev V. et al. Effect of rotating helical magnetic field on the turbulence fractal structure

and transport in the tokamak edge plasma, Nucl. Fusion 44 S108 (2004).
141 Rajković M. et al Characterization of local turbulence in magnetic confinement devices,

Nucl. Fusion 48 024016 (2008).
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11.4 Nonlinear correlation functions

When dealing with signals with a non-linear amplitude behaviour, aside from data transforma-

tions, there are a few non-linear correlation methods reported in the literature - ranging from

fairly simple to the exceedingly complicated. One of the simpler approaches uses the concept of

partial moments. 142 Here, 4 partial moments are defined: CL and CU are the lower and upper

co-partial moments, for when the data x(i) is below a target value l or above some target h value,

and DL and DU are the corresponding divergent partial moments. Which moment is appropriate

depends on whether x and y are above or below their respective targets - see reference 142 for

further details.

CL(p, hy|hy, x|y) = 1/N
N
∑

n=1

[max(0, hx − xn)
p ·max(0, hy − yn)

p] (193)

CU(q, lx|ly, x|y) = 1/N
N
∑

n=1

[max(xn − lx, 0)
q ·max(0, yn − ly)

q] (194)

DL(q|p, hx|hy, x|y) = 1/N
N
∑

n=1

[max(xn − hx, 0)
q ·max(0, hy − yn)

p] (195)

DU(p|q, hx|hy, x|y) = 1/N
N
∑

n=1

[max(0, hx − xn)
p ·max(yn − hy, 0)

q] (196)

where p and q are the degree. In practice one might set p = q = 2 and the targets h = l to either

zero or the x and y signal means etc. The correlation, linear or nonlinear, is then given by

ρxy =
CL(p, hx|hy, x|y)−DL(p, hx|hy, x|y)−DU(p, hx|hy, x|y) + CU(p, hx|hy, x|y)
CL(p, hx|hy, x|y) +DL(p, hx|hy, x|y) +DL(p, hx|hy, x|y) + CU(p, hx|hy, x|y)

(197)

The second approach are algorithms based on reconstructing vector dynamics from scalar time

series. They generally draw upon the formalism of strange attractors and involve the construction

of finite phase spaces from the signals using embedding techniques. 143

One such algorithm was developed by Ding 144 with the aim of resolving or quantify long-range

couplings and the ‘direction’ of coupling when the correlation is weak. The formulation is rather

complex and is not reproduced here and you are referred to the paper for further details.

Other useful references include 145 which presents an alternative parametric approach to the dy-

namical reconstruction.

142 Viole F. Deriving nonlinear correlation coefficients from partial moments, SSRN 2148522

(https://papers.ssrn.com/sol3/papers.cfm?abstract id=2148522) (2012).
143 Takens F. Dynamical systems and turbulence Springer-Verlag, N.Y. p366 (1981).
144 Ding W.X. Nonlinear radial correlation of electrostatic fluctuations in the STOR-M tokamak,

Phys. Rev. Lett. 79 (13) 2458 (1997).
145 Aguirre L.A. A nonlinear correlation function for selecting the delay time in dynamical

reconstructions, Phys. Lett. A 203 88 (1995).
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12 Conditional and non-stationary analysis

Many non-stationary signals exhibit strong, repetitious but intermittent events. Such features

commonly arise in the edge/scrape-off layer of fusion plasmas due to filaments and density blobs,

or the semi-regular ELM events in the H-mode edge plasma. The non-stationarity of these sig-

nals, observed in the non-time-invariance of the amplitude pdfs p(x), means that event dominated

signals require special treatment and analysis techniques. The basic characterization of intermit-

tency falls into two categories: (1) the variability or distribution in event amplitude, and (2) the

timing or frequency of events, and specifically the clustering of events. It is understood that both

parameters maybe spatially dependent. The section starts with a review of conditional, or event

triggered techniques for amplitude analysis, followed by event timing characterisation methods.

12.1 Event amplitude

Concerning event amplitude, the basic signal pdf and its moments are good indicators of inter-

mittency, specifically the pdf skewness as well as pdf tails resulting in large kurtosis values - as

well as non-time-invariance, that is the moments vary with time. Inter-dependencies between the

moments, such as between skewness and kurtosis behaviour are also commonly observed.

12.1.1 Conditional probability density functions

The conditional pdf is best described as the pdf of x, given condition y 146 and is often defined as

the ratio of two unconditional probabilities, the joint probability, see section 3, over the condition

probability (which must be greater than zero).

p(x | y) =
p(x, y)

p(y)
(198)

=
p(x ∩ y)
p(y)

(p(y) > 0). (199)

The condition can take many forms, such as the signal being greater than a certain value, or its

statistics satisfying a certain requirement. 147 Such conditionals are straightforward to implement.

12.1.2 Conditional (box-car) averaging

Conditional averaging (CA), aka box-car averaging, defines an event “averaged”signal as

〈x(τ)〉ca = 〈 x(t+ τ) | y(t) = yc 〉 (200)

=
1

N

N
∑

n=1

[xn+τ | yn = yc] (201)

where τ is a time lag and yc is the condition (eg. a trigger threshold) signal.

146 Hájek A. What conditional probability could not be, Synthese 137 273 (2003).
147 Bengston R.D. et al. Study of plasma edge turbulence via conditional probability density

functions, Proc. 22nd EPS Conf. vol.1-281 (1995).
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The trigger condition can be a simple threshold crossing, or quite complicated, such as a range,

or a gate, eg. yc1 ≤ y(t) ≤ yc2∧ δy(t) ≥ 0. The trigger can be derived from the signal x(t) itself,

or from a separate measured signal from a different location, or even from an external trigger

signal. 148 149 150 The CA essentially returns the average temporal evolution of a coherent feature

in the signal, but losses, of course, the dynamics of individual events. In addition, the resulting

‘shape’ may depend on the trigger gate threshold/window range, thus scanning the window may

be needed to recover the event shape dependences on the event (peak) amplitude.

The analysis procedure is usually a two-step process:

(1) Build the trigger signal by scanning the conditional signal for positions where the condition

y(t) = yc is met, marking the trigger positions tc with a 1.

(2) Sum the data segments around each trigger region of interest: tc ± τmax.

Particular attention is generally required to handle overlapping segments and multiple triggers

within an ensemble data segment etc.

Figure. 38: Example of box-car averaging of (a) an ELM-like intermittent signal with (b) spec-

tra and (c) wide threshold gate and non-normalized ensembles, and (d) a narrower gate with

normalized ensembles.

148 Huld T. et al Coherent structures in two-dimensional plasma turbulence, Phys. Fluids B 3

(7) 1609 (1991).
149 Filippas A.V. et al Conditional analysis of floating potential fluctuations at the edge of the

Texas Experimental Tokamak Upgrade (TEXT-U), Phys. Plasmas 2 (3) 839 (1995).
150 Teliban I. et al Improved conditional averaging technique for plasma fluctuation diagnostics,

Plasma Phys. Control. Fusion 49 485-497 (2007).
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Figure 38 shows examples of box-car averaging using the ELM-like signal of section 2.6 and

the approach illustrated in the code snippet below. In fig. 38(c) and (d) two different upper

and lower threshold gates are used to select the events to be averaged. Much care needs to be

given in designing the threshold condition code to avoid false triggers, that is, to ensure that

only the real peaks are selected and not all points within the gate range. In the code snippet the

extra shift(sig,1) command in the condition statement tries to ensure that only upward transitions

across the lower threshold are included.

The main difference between the two cases shown is that in (c) the detected peak traces are

ensemble averaged as they are, while in (d) each peak is normalized to unity before adding to the

ensemble. The result is that in (c) more weight is given to the larger peaks while in (d) all peaks

have equal weight. Nevertheless, in both case the ELM shape is faithfully recovered because

each peak has the same α decay rate. In real signals this can not be assumed and scanning the

gate conditions will be necessary. Note also in the normalized case the background level prior to

the peak is affected by the tail of close (almost overlapping) preceding peaks.

bsz = 15 & nb2 = 2 & dt = 1/5000. ; +/- box-car size .

tLo = 1.8 & tHi = 3.0 ; thresholds

itc = Where(sig GT tLo AND shift(sig,1) LT tLo AND sig LT tHi, nbc)

bca = Fltarr(2*bsz+1)

FOR i = 2, nbc-5 DO BEGIN ; sum events nb. -5 to

mxbc = Max(sig[itc[i]-bsz:itc[i]+bsz]) ; prevent overrun

bca = bca + sig[itc[i]-bsz:itc[i]+bsz] / mxbc

nb2 += 1

ENDFOR

bca /= Float(nb2) ; normalize no. events

ibc = Findgen(2*bsz+1)-bsz ; time lag array

; plot ibc*dt, bca

Example. 23 : Code snippet (IDL) demonstrating box-car detection and averaging - cf. fig. 38.

12.1.3 Conditional & Gated correlations

Not just conditional averaging is possible, but also conditional correlation, or gated correlation.

Here, the cross-correlation is of the form:

〈Rxy(τ)〉c = 〈 x(t)y(t+ τ) | z(t) = zc 〉 (202)

Rxy(n) =
1

N ′

N ′−1
∑

n=0

[xn yn+τ | zi = zc] (203)

where again the trigger signal can be the same as either one of the correlated signals (auto or

cross) etc. One can also think of the gated-correlation as a triple correlation with the 3rd signal

the gate (0 or 1) signal. The length of the correlation N ′ < N is restricted to around the event,

as well as the correlation lag τ = k∆t, where K < N ′ etc. to reveal time delays/propagation of

event appearance in spatially separated channels, or the mutation of propagating events, such as

filaments.

Another analysis option is the time dependent covariance - eqn. (45) - which would give a cor-
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relation or covariance map vs delay τ = k∆t at signal time t = n∆t between x(t) and y(t). As

above, the expectation (summation) would be performed over a narrow temporal window which

is moved/slid through the data window.

12.1.4 Wavelet analysis

If the basic temporal shape of the event is fairly constant (like a heartbeat for example) but is

variable in amplitude and time dilation, then one could form a wavelet basis function from the

event shape (which should satisfy the basic wavelet criteria) - see section 10.5 and footnotes - to

investigate the spectral / time distribution of the events. This of course also leads on to the wider

topic of pattern recognition etc.

12.2 Event timing

12.2.1 Level crossing

Signal level crossing, and specifically zero crossing, is an easy method to analyze event timing.

Here, the approach is to remove the effect of the signal amplitude and measure just the frequency

of events by via the points where the signal crosses some threshold. The amplitude and frequency

can be separated by transforming the signal into a telegraphic approximation (TA) - also called a

binary approx. BA - signal consisting of only zeros or ones, 151 152

ξ(t) =
1

2

(

x′(t)

|x′(t)| + 1

)

(204)

where x′n = (xn −ml) with ml is the threshold level. In the case of zero-crossing ml would be

the signal mean.

Figure. 39: Example of the (c) telegraphic approximation (TA) signal created from (b) a semi-

intermittent ELM-like signal driven by (a) an exponential signal from Gaussian white noise plus

a coherent sinewave. Red crosses in (c) mark binary transitions.

151 Sreenivasan K.R. et al Clustering properties in turbulent signals, J. Stat. Phys. 125(5/6) 1145

(2006).
152 Bershadskii A. et al “Clusterization” and intermittency of temperature fluctuations in turbu-

lent convection, Phys. Rev. E 69 056314 (2004).
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Figure 39 shows an example of the TA signal (right) created from a semi-intermittent event signal

(ELM-like: middle) formed from an exponential signal plus a low frequency sinewave (left) - as

described in section 2.6. In this example the trigger threshold is set fairly high (thr = 1.4) to

create a sequence of large amplitude, low frequency ELM-like events. The sinewave amplitude

is also adjusted such that a degree of semi-periodicity is imposed on some of the, otherwise

random, events. The behaviour of the TA ξ(t) signal contains much novel information.

12.2.2 Spectral exponent

One of the first tests is the spectral exponent. 153 154 Figure 40 shows the results of a collection

of analysis methods for two threshold event generation levels. Top row: small, frequent events

(thr = 0.6) and bottom row large, infrequent, semi-periodic events (thr = 1.6). Panels (b) &

(d) show respective event x(t) signal and TA ξ(t) signal spectra. For a stochastic process the

spectral indexes for the event and TA signals are expected to be related by

mTA = (mev − 1)/2. (205)

In fig. 40(d) the observed mev ≈ −5/3 would thus translate to a mTA = −4/3, which is indeed

the case for small events (thr = 0.6) were the signals are less skewed and closer to random. For

the more periodic event case (thr = 1.6), the TA spectral index seems closer to mTA ≈ −3/3.

12.2.3 Clustering exponent

Clustering of events is a common feature of intermittency and can be quantified by the number

of (zero-crossing) transitions nτ in the interval τ , ie. by counting when ξ(t) = 0 → 1 and

ξ(t) = 1 → 0. The clustering information is in the standard deviation of nτ about a running

mean. In the code snippet below the data stream is broken into many, successively shorter,

windows of lengths τ , over which variations in the zero-crossing count δnτ = nτ − 〈nτ 〉 about

the local (running) mean are squared, ensemble summed and then square-rooted to give the

standard deviation as a function of window length τ

〈 δn2
τ 〉1/2 ∼ τα (206)

which is expected to scale with τ to some exponent α, called the clustering exponent. Thus

plotting log 〈 δn2
τ 〉1/2 vs log τ should give a straight line over some τ region or other. For

Gaussian white noise α = −1/2, ie. no clustering. Deviations from −1/2, specifically a smaller

α would indicate a preferential clustering of events at that τ region. (Crudely speaking one could

think of τ as a proxy for scale.) Absence of clustering would thus indicate events are purely

random. In fig. 41 one sees that for both low and high event threshold values that the 〈 δn2
τ 〉1/2

scales solidly as α = −0.5 over several orders of τ magnitude. Thus there is no evidence of

event clustering in this synthetic data, even for the weakly semi-periodic event case.
153 Rajković M. et al Level-crossing function in the analysis of edge plasma turbulence, Nucl.

Fusion 49 095016 (2009).
154 Huang K.Y. et al Velocity and temperature dissimilarity in the surface layer uncovered by

the Telegraphic Approximation, Boundary-Layer Metrol. 180 385 (2021).
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Figure. 40: Top row: Event threshold set for small events (thr = 0.6) and bottom row: large

events (thr = 1.6). (a) Event/ELM signal, (b) TA signal, (c) amplitude pdf of ELM/event signal,

and (d) ELM and TA power spectra.
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npt = 32768L & dt = 1./5000. & thr = 1.2 & dfac = 1.35 .

tau = Fltarr(100) & sta = Fltarr(100) & dta = Fltarr(36000)

; Make TA and up-down transition signal

mlev = thr

xi = 0.5*((sig2-mlev)/Abs(sig2-mlev) +1.) ; TA

gxi = Abs(xi - shift(xi,-1))

itg = Where(gxi GT 0.9, nt1) ; Plot as crosses

; Clustering exponent

dtau = Float(npt)

idt = 0

WHILE dtau GT 2. DO BEGIN

dtau = dtau/dfac ; Each loop / by dfac

tau[idt] = dtau

idtau = Fix(dtau)

itp = 0

ilp = 0

WHILE itp LT npt-idtau-1 DO BEGIN

b = Where(gxi[itp:itp+idtau-1] GT 0.9, ntlp)

dta[ilp] = Float(ntlp)

itp += idtau

ilp += 1

ENDWHILE

sta[idt] = Stddev(dta[0:ilp-1]/dtau)

idt += 1

ENDWHILE

tau = tau[0:idt-1] & sta = sta[0:idt-1] ; Trim arrays

; Waiting times

ite = Where(sig2 GT thr, ndt)

dtg = Float(ite - Shift(ite, 1))

ddn = 0. & ddx = Max(dtg[1:idt-1]) & nbin = 10>ddx

dx = Abs(ddx-ddn)/Float(nbin)

xbind = (Findgen(nbind)*dx+ddn)*dt

ybind = Histogram(dtg, Max=ddx, Min=ddn, Binsize=dx)/Float(ndt)

Example. 24 : Code snippet (IDL) for generating TA signal and for analyzing intermittent signals

- cf. figs. 39, 40, 41 & 42.

Figure. 41: Clustering exponent plot of ELM-like event signal for (a) event threshold set for

small, frequent events (thr = 0.6), and (b) large, infrequent events (thr = 1.6).
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12.2.4 Waiting times

Concerning event timing, one characterization technique is to measure the distribution and statis-

tics of the event waiting times, the inter-event periods ∆ti = ti+1 − ti, where ti are the event

times. One can use either a threshold detection on the raw event signal to identify and mark the

onset time of each event, or use the TA signal and mark rising edges. The pdf of ∆ti is related to

the event persistence, ie. the unchangingness of the signal.

Figure 42 shows the waiting time pdf of the ELM-like test signal as (a) a log-norm plot and

(b) a log-log plot. If the pdf is log-normal - a characteristic of white noise - then the signal is

termed passive. 154 On the other hand, it the pdf is more log-log, ie. it has a power-law scaling,

then the fluctuation (turbulence) is classified as active. In fig. 42 the waiting time pdf (for the

large threshold case) is clearly seen to be log-norm, as may be expected for random noise driven

events. The red line in fig. 42(a) is an empirical fit to the log-norm plot: log(pdf(∆ti)) =

∆t−0.5
i ∗∆ts/thr where ∆ts is the signal sample period and thr the signal amplitude threshold

level. Note the −0.5 in the ∆ti exponent.

Figure. 42: Pdf plots of waiting times of ELM-like signal with event threshold for large, infre-

quent events (thr = 1.6) with (a) log-normal and (b) log-log axes.

An extension to the waiting time analysis is of course to build the event interval pdf(∆ti) as a

function of the event amplitude - as in fig. 41 for the clustering exponent. However, as with the

cluster exponent, the waiting time pdf in the this test case was generally invariant with event

amplitude since the events were all generated from the same random exponential signal.

There are many publications in this area. Some recent plasma turbulence references include 155

156 157

155 Cipciar D. et al Statistical properties of ion and electron temperature fluctuations in the edge

of the COMPASS tokamak, Plasma Phys. Control. Fusion 64 055021 (2022).
156 Theodorsen A. et al Statistical properties of a filtered Poisson process with additive random

noise: distributions, correlations and moment estimation, Phys. Scr. 92 054002 (2017).
157 van Milligen B.P. & Sanchez R. Complex features of plasma turbulence (Ch.3 of Analysis of

Turbulence in Fusion Plasmas), IOP Publishing UK (2022).
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