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Machine-learning (ML) interatomic potentials (IPs) trained on first-principles datasets are be-
coming increasingly popular since they promise to treat larger system sizes and longer time scales,
compared to the ab initio techniques producing the training data. Estimating the accuracy of MLIPs
and reliably detecting when predictions become inaccurate is key for enabling their unfailing usage.
In this paper, we explore this aspect for a specific class of MLIPs, the equivariant-neural-network
(ENN) IPs using the ensemble technique for quantifying their prediction uncertainties. We critically
examine the robustness of uncertainties when the ENN ensemble IP (ENNE-IP) is applied to the
realistic and physically relevant scenario of predicting local-minima structures in the configurational
space. The ENNE-IP is trained on data for liquid silicon, created by density-functional theory
(DFT) with the generalized gradient approximation (GGA) for the exchange-correlation functional.
Then, the ensemble-derived uncertainties are compared with the actual errors (comparing the re-
sults of the ENNE-IP with those of the underlying DFT-GGA theory) for various test sets, including
liquid silicon at different temperatures and out-of-training-domain data such as solid phases with
and without point defects as well as surfaces. Our study reveals that the predicted uncertainties are
generally overconfident and hold little quantitative predictive power for the actual errors.

I. INTRODUCTION

Machine-learning (ML) surrogate models for inter-
atomic potentials (IPs) trained on ab initio reference data
are playing an increasingly important role in condensed-
matter simulations. Such MLIPs promise to achieve a
converged treatment of the statistical mechanics of the
modeled atomistic systems, because they can address
both larger system sizes and longer timescales than the
computationally much more costly ab initio calculations.
Obviously, this also requires the MLIPs to retain an ac-
curacy that is at least comparable to that of the reference
data [1–3] To this end, many advanced frameworks [3–
7] have been proposed and employed to study a wide
range of physical mechanisms, such as phase transforma-
tions [8–10] as well as thermal transport in crystals [11–
14], chemical reaction processes [15–17], and more.

Accordingly, the basic motivation behind MLIPs is es-
sentially the same as that behind classical force fields and
semi-empirical interatomic potentials [18–24]. Those are
based on physically and chemically motivated equations
and therefore offer less flexibility than MLIPs. MLIPs
and force fiels share the same fundamental key problem:
What is their reliability when used for situations that are
different to those used for training? An answer to this
questions require to establish (i) quantitative uncertainty
estimates as well as a (ii) metric that measures the “dis-
tance” between prediction and training data points. To
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this end, one may determine the domain of applicability
of MLIPs [25], i.e., the domain outside of which MLIPs
will likely fail. However, this is challenging and hardly
ever done.

In this paper, we employ a more pragmatic route: In-
stead of determining the applicability domain via data-
science methods, we explore the applicability of MLIPs
and their uncertainty estimates for distinct, physically
motivated applications. Although frequently used terms
such as “different to the training data set”, “out-of-
training domain”, and “out-of-distribution data” are not
well defined in this case, this is still useful, since it fa-
cilitates the physical interpretation of the results. Ac-
cordingly, we here focus on the reliability of uncertainty
estimates obtained by MLIPs for different applications.
Obviously, if reliable uncertainty estimates existed, they
would also enable the identification of the domain of ap-
plicability.

Improving this nebulous situation is a pressing issue in
the field, since thermodynamic or kinetic simulations are
guaranteed to explore also uncommon regions of configu-
rational space that are likely not covered by the training
data set. An example may be that a rare event that
substantially influences the dynamics may be missed by
the MLIP. For instance, the rare, but spontaneous for-
mation of defects is know to be a key trigger for phase
transition and for limiting heat transport [26]. Were the
critical defect or the new phase not known beforehand,
they will not be part of the training data, so that it is
largely unclear if the MLIP would be able to find it at
all. Indeed, rare events of (so far) unknown nature are
key for many properties described by the statistical me-
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chanics of materials. Another example for this “out-of-
training domain” dilemma is crystal-structure prediction,
in which, by definition, a global configurational search is
performed to discover structural local minima that are
unknown during the training process. For these kind
of applications, it is essential that the surrogate mod-
els yields accurate predictions over the whole configura-
tional space, or, at least can reliably quantify the ex-
pected confidence/uncertainty for every predicted con-
figuration [27]. Let us emphasize that this question is
also pivotal to exploit active-learning strategies, e.g., in
the use cases described above. Reliable uncertainty esti-
mates are key to efficiently advance and improve MLIPs
in these approaches. Otherwise, the active learning may
just proceed in the wrong direction and, e.g., reinforce
the bias imposed by the initial training data.

Uncertainty quantification for ML models is model-
class specific task. For instance, Gaussian potential
(GP) models[28], which are based on Bayesian inference,
provide statistical uncertainty using posterior predictive
variances by construction. However, the reliability of
GPs’ built-in uncertainty estimates degrades in the “out-
of-training domain” [29]. A neural-network (NN) MLIP
does not inherently provide prediction variances, but a
properly created ensemble of NNs will yield a distribu-
tion of predictions for the target properties (for an MLIP,
energy and forces) and the variance of this distribution
can be used as a proxy for the uncertainty estimate. Such
ensemble may be created by varying (subsampling) the
training data [30], the NN structure[30; 31], the initializa-
tion of the NN training [32; 33], or combinations thereof.

Naturally, the use of ensembles increases the com-
putational workload for predictions considerably com-
pared to a single NN. Accordingly, several recent works
have proposed strategies and metrics to aid, improve,
and accelerate uncertainty estimates for NN MLIPs [34–
39]. These metrics typically show good performance,
especially in the context of active learning. Indeed,
more extended and systematic comparisons of several
uncertainty-estimate approaches tested on a broad range
of molecular, bulk, and surface systems have shown [40–
42] that the accuracy of these different methods is very
similar to each other, but slighlty lower than ensemble
methods, which show the highest reliability. Furthemore,
these studies revealed that all methods tend to underesti-
mate the uncertainties (i.e., they are overconfident). We
note that the thereto used “out-of-domain” data is much
more closely related to the training data than the physi-
cal test sets used in this work. Furthermore, a linear cor-
relation between uncertainty estimates and actual errors
was found in these works [41; 42], suggesting that reliable
error predictions for NN MLIPs can straighforwardly be
obtained by calibrating the uncertainty estimates.

In this work, we go beyond the previous studies and
explicitly explore the reliability of uncertainties for re-
gions in configuration space that are not necessarily well
covered by the actual training data. As discussed above,
these test sets are motivated by physical knowledge for

a well-known system, elemental silicon. In practice, we
thus construct an MLIP for elemental silicon by training
an NN ensemble (NNE) on liquid Si, i.e., on the ener-
gies and forces observed in high-temperature ab initio
MD simulations in the canonical ensemble over a repre-
sentative range of pressures viz. densities. This ensures
that the MLIP training data contains a quite diverse set
of configurations, since atoms in the liquid phase visit
many local geometries, explore different short-range or-
der and bonding situations. From a physical point of
view, it is hence reasonable to assume that the training
data largely also covers the physical and chemical situa-
tions found at lower temperatures, i.e, in different bulk
solids, defects, and surfaces. Next, we benchmarked the
NNE MLIP on the eight known crystal phases of Si [43],
as well as on important intrinsic point defects and on the
reconstruction of the Si (100) surface. In particular, we
analyze the uncertainty estimates on (formation) energies
of these structures. The latter are compared to the un-
certainty estimates of configurations in the liquid phase
at different temperatures and to the difference between
the NNE predictions and the ground-truth, henceforth
called actual errors. Our results show that the created
MLIPs provide a reasonably good qualitative description
of the tested systems. However, quantitative values, e.g.,
on defects formation energies, are not reliable, and this
may well have dramatic consequences for numerous ma-
terial’s properties. Crucially, the uncertainty estimates
as derived from the variance of the ensemble’s distribu-
tions are not able to reliably predict the actual errors.
For out-of-domain test data, one could not even use the
uncertainty estimates for a trusted warning if the results
obtained with such MLIPs are just slightly quantitatively
inaccurate or qualitatively wrong.
The structure of this paper is as follows: in section IIA

equivariant neural network ensembles (ENNE), i.e., the
model class for MLIPs discussed in this paper, are intro-
duced together with the adopted training and validation
protocol. We then report on the testing of the trained
ENNE-IP on liquid configurations not used for training
(section II B), the equations of state of the eight known
solid phases of silicon (section IIC), and defected struc-
tures (section IID). Next, in section II E, the reliability
of the uncertainty estimates for the trained ENNE-IP is
quantitatively analyzed.

II. RESULTS

A. Construction of Neural-Network-Ensemble
Interatomic Potentials

Figure 1 summarizes the workflow for training the
ENNE-IPs. The initial step involves the preparation of
the data sets that are used for training. For an MLIP
to be both accurate and applicable to new and not-
yet known situations, it is crucial that the training set
contains ample information regarding the possible local
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FIG. 1. Workflow of the creation of NN-ensemble MLIPs, i.e. of the overall training and testing process. (a) Radial distribution
functions of AIMD trajectories simulated at 5 different densities and T = 2000 K. (b) Randomly sub-sampled training sets
with different initialization of the NN parameters. (c) Construction of the NN-ensemble MLIP. n and d refer to the number of
atoms in one crystal structure and the dimension of the learned features from the neural network, respectively. (d) Systems
used for predictions and uncertainty estimates, including liquid silicon at different temperatures and “out-of-training-domain”
data such as solid phases with and without point defects as well as surfaces.

atomic environments and bonding situations. As the
atoms in a liquid visit a huge variety of local geome-
tries and interatomic interactions, we create the training
data set by ab initioMD (AIMD) simulations of liquid Si.
The many-electron exchange and correlation effects are
approximated by the generalized gradient approximation
(GGA), specifically, the PW91 exchange-correlation[44]
We find that it is important that the training data set
covers liquids at different densities: If the NN MLIP is
trained solely on liquid silicon at one density, we obtain
a systematic error when predicting the energies of liquid
silicon at other densities. Thus, we consider data from
liquid Si at different densities. As the number of densities
of the liquid-phase data increases, the error decreases,
reaching convergence at five densities (as demonstrated
in Fig. S1 in the electronic supplementary information,
ESI). The initial density for the AIMD of liquid Si was
chosen as the its experimental density at ambient pres-
sure and a temperature of 1 687 K [45]. The temperature
of the simulations used for training was set to 2 000 K,
which is well above the experimental melting tempera-
ture. The other densities (or pressures) were chosen in
the vicinity of this experimental density. The choice of

the training densities is dictated solely by the need to
sample physically relevant configurations.

In this work, the MLIP model class is the E(3) equiv-
ariant neural network (ENN) of Batzer et al. [46], as
implemented in the NequIP software. This approach has
been used on a challenging and diverse set of molecules
and materials, achieving state-of-the-art accuracy. As
represented in Fig. 1c, the MLIP is an ensemble of NNs,
consisting of M individual neural networks (M refers to
the size of the ensemble) with the same architecture but
different initial conditions (i.e., different randomly ini-
tialized sets of nodes’ weights). The actual error ϵi is
defined as the difference between the average predicted
value of the ENN ensemble (ENNE) IP and the DFT-
GGA ground-truth value. As estimator of the model un-
certainty for a given test configuration i, we use the stan-
dard deviation σi [33] of the predictions by the trained
ENNs in the ensemble. The next crucial step was to
determine the minimal value of M for which the model
uncertainty is converged. Previous studies have utilized
ensembles composed of a limited number of neural net-
works, with M ≤ 10, and the dependence between the
ensemble size and the level of model uncertainty has not
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been extensively studied [32; 33; 41]. We found (see Fig.
S3 in the ESI) that σ steeply increases with the ensem-
ble size and a plateau value is reached around M = 30.
Hence, we chose to use ensembles of this size in all of our
experiments. It is important to note that, at least for
the system investigated in this work, the use of M = 30
individual neural networks is necessary for obtaining con-
verged uncertainty estimates. Using M = 30 in actual
calculations is, however, expensive. Interestingly, we no-
tice that the plateau value for σ is in all studied cases
within a multiplicative factor 2–2.5 from the value ob-
tained by an ensemble with only 4 ENNs. This means
that, if σ turned out to be a good predictor for ϵ in gen-
eral, one might well use the unconverged average value
obtained with few NNs and scale it up. Further details
on the data generation, data set construction, and the
ensemble model are presented in the “Methods” section.

Our assessment of the converged size of the ensemble is
based on the strategy where the training set is fixed and
the members of the ensemble are trained starting from
different random initial guesses of the NN parameters.
We have looked into the Pearson pair correlation of the
errors over a hold-out (test) set of 1 000 configurations in
the liquid phase. In practice, the prediction of each NN in
the ensemble generates an array where each component is
the error ϵi for one test configuration and the pair corre-
lation between any two such arrays was recorded. A high
Pearson correlation among these arrays signals that the
NNs in the ensemble, despite having different values of
the training parameters, essentially make the same kind
of error on unseen data points. We found (Fig. S10 in the
ESI) that within the ensemble the Pearson correlation is
as high as 0.85 ± 0.04. Aiming at generating an ensem-
ble with less linearly correlated errors, we then trained
eight ensemble models, each on a different training set
of 5 000 configurations, extracted from a training pool
of 25 000 configurations in the liquid phase. Each en-
semble was composed of N = 30 members following the
different-initial-guess approach. However, we found (Fig.
S10 in the ESI) that also within this type of ensemble the
Pearson correlation of the errors, over the same test set
as defined above, was at least as high as among the 30
models in each ensemble (0.88± 0.05). In the following,
we therefore proceed analyzing the results for only one
ensemble, i.e., one training set and 30 models trained
with different initial conditions.

B. Liquid silicon

The performance of the ENNE-IP was at first eval-
uated by predicting the forces in liquid-Si configura-
tions not used for training, extracted from portion of the
AIMD trajectories outside the intervals from which the
training data had been extracted. The parity plot for the
force components, values predicted by the ENNE-IP vs
actual DFT-GGA values are depicted in Fig. 2. The pre-
dictive accuracy was evaluated based on the mean abso-

lute error (MAE) of the force components. The compari-
son between the DFT-GGA calculations and the ENNE-
IP’s predictions showed an MAE of 0.063 eV/Å for the
forces. The results reflect that the ENNE-IP accurately
captures the chemical and structural features of liquid
silicon at the temperature and pressure conditions used
for the training.

FIG. 2. The prediction of force components using the ENNE-
IP against the DFT-GGA-calculated forces for liquid-Si con-
figurations not used for training, from DFT-GGA trajectories.

We now generalize the situation and analyze the uncer-
tainty estimates of the ENNE-IP for various other sys-
tems, including liquid silicon at different temperatures
and solid phases, with and without point defects, as well
as surfaces (Fig. 1d).
Our first prediction examples on data not used for

training are still in the liquid phase of silicon, at dif-
ferent temperatures. As mentioned earlier, the training
data correspond to T = 2000 K, and now we study re-
sults for temperatures in the range from 1 600 to 2 600 K.
A histogram of the actual error of force components for
each temperature is shown in Fig. 3. We observe that
the distribution of actual errors is essentially independent
of the temperature difference between the liquid silicon
configurations in the predictions set and training set in-
creases.

C. Equations of state for 8 crystal phases of Si

Figure 4 displays the calculated equation of states for
8 crystal structures of silicon: the experimental ground-
state diamond structure, the closely related hexagonal
diamond, and the high-pressure structures β-Sn, bc8,
and st12, hexagonal close-packed (hcp), body-centered
cubic (bcc), and face-centered cubic (fcc) [43]. The full
lines are the DFT-GGA results and the dashed lines are
the results of our ENNE-IP. To facilitate the qualita-
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FIG. 3. Histograms of the actual error of force components
reveal an approximately Gaussian distributed error.

tive comparison, in the right panel of Fig. 4, the en-
ergy zeros are set independently for the ENNE-IP and
DFT-GGA results, so that the respective ground-state
configurations have zero energy. This implies a relative
downshift of all ENNE-IP results by 0.115 eV/atom com-
pared to the ground-truth DFT-GGA results. At a first
glance, one may conclude that the qualitative description
of both treatments is essentially the same. Obviously,
quantity can well affect the quality, and we see, for ex-
ample, that the ENNE-IP predicts that the hexagonal-
diamond structure is the most stable one, which is not
correct. The phase transition between the diamond and
the β-tin structure was compared by means of the Gibbs
construction (common tangent of the E(V) curves be-
tween the two phases, see Fig. S5 in the ESI). For ENNE-
IP, a value of 12.0± 3.1 GPa was found, to be compared
with 10.4 for DFT-GGA, thus in good agreement. The
detailed results for all studied structures, including the
equilibrium volume, the depth of the energy minimum
(cohesive energy relative to the ground state), and bulk
modulus (related to the curvature of the E(V ) curve) are
shown in Fig. S5 in the ESI.

Let us now look at the uncertainty estimates, if they
would at least give a warning about the reliability of the
results. The left panel of Fig. 4 shows the uncertainty
estimates σ (the colored bands) for the E(V ) curves of
each crystal structure calculated with ENNE-IP.

For reliable uncertainties, the colored bands should
contain the ground-truth values (solid lines). Even
though the larger the actual error (the vertical distance
between the solid and dahsed lines for each phase) the
larger the predicted uncertainties tend to be, the latter
are still overconfident, i.e., the ground-truth value is out-
side the range of the predicted uncertainties for most of
the volumes in the equations of state, for all phases.

To further analyze the relationship between estimated
uncertainty and actual error, we have plotted for the

cubic-diamond phase these two quantities at all investi-
gated volumes along the equation of state (Fig. 5). Not
only the desired behavior of having the actual error ϵ
smaller than the uncertainty σ is verified only in a small
interval, but, strikingly, overall σ is mostly not related to
ϵ, in particular, not monotonically. In other words, even
the practical solution of multiplying the uncertainty by a
factor in order to try and always bound the actual error,
appears to be unhelpful.

D. Defect Phase and Surface

The ENNE-IP is applied to more complex cases, the
solid phases with point defects as well as surfaces, in-
cluding diamond vacancy [47], hexagonal diamond inter-
stitial [48] and Si(100) surface[49; 50]. A rich complexity
of bonding emerges in vacancy/interstitial and on sur-
faces due to the subtle interplay of strain effects with
the chemistry of dangling bonds. This complexity makes
formation energies (surface energy), and particularly the
energies and geometries of various reconstructions, a sen-
sitive test of the accuracy of interatomic potential.
The formation energies of a vacancy and a hexago-

nal interstitial in Si, as well as the surface energy for the
Si(100) surface, were predicted using ENNE-IP. The con-
figurations in geometry optimizations from DFT-GGA
calculations were used as the test sets. It is worth noting
that the considered structures of vacancy and interstitial
are both 5× 5× 5 supercell of the eight-atom diamond
cubic cell, and that of the surface is 2× 1× 10 supercell.
These supercell sizes were found to be the converged ones
for the DFT-GGA calculations. As shown in panels a and
b of Fig. 6, both the actual error and uncertainty in the
formation energies of the vacancy and interstitial were
substantial, around 1 eV. Moreover, the results showed
that the actual value of the formation energy for these
vacancies is never included within the uncertainty inter-
val. Fig. 6c shows the surface energy of the tilted-dimer
2× 1 reconstruction, one of the low-energy configurations
of the (100) surface, which forms spontaneously from the
as-cut surface. ENNE-IP captures the tilted-dimer geom-
etry of the reconstructed surface in reasonable agreement
with the DFT-GGA calculations, but the predicted for-
mation energy is 0.5 eV lower than the DFT-GGA value
and, again the uncertainty interval does not include the
DFT-GGA value.
In Fig. 6, we also present the distribution of actual er-

rors from the ensemble. The results reveal that although
some individual models have actual errors that cross the
line where the error equals zero, the mean actual error
is still far from this line. This suggests that the uncer-
tainty may underestimate the actual error. To further
explore this issue, we also conducted an analysis of the
actual errors for various supercell sizes, as presented in
Fig. S6-S8 in the ESI. The results show that the size of
the supercell has little effect on both the uncertainty and
actual error.
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FIG. 4. Comparison of the equation of states of the ground-truth DFT-GGA calculations (full lines) and the predictions by
the ENNE-IP (dashed lines). Left panel: The energies predicted by the ENNE-IP are directly compared to the DFT-GGA
energies and the energy zero is set to the DFT-GGA ground-state configuration (minimum of the cubic diamond structure).
The colored band represent the uncertainty estimates for the ENNE-IP predictions. Right Panel: as a guide for the eye, the
ENNE-IP-predicted values are shifted 0.115 eV/atom downwards, so that the zero energy is set independently to the ground-
state configuration for both ENNE-IP (minimum of the hexagonal diamond structure) and DFT-GGA (same as left panel).

FIG. 5. Comparison of the predicted uncertainty σ and the
actual errors ϵ for the cubic diamond phase over the studied
volumes.

E. Predicted Uncertainty vs Actual Error

We calculated the actual error and uncertainty from
the ensemble (30 ENN models) for all configurations in
the test sets, including liquid silicon at 2 000 K, solid
phases, Si vacancies, Si interstitial, and surface Si(100).
This step aims to further understand the connection be-
tween uncertainty and actual error. The relationship be-
tween the actual error and uncertainty is displayed in Fig.
7. Fig. 7a shows the actual error vs uncertainty for liquid
silicon at various temperatures. For the uncertainty σ to
be considered a good predictor for the actual error ϵ or at
least an upper bound, the data points should lie around
the dotted lines (σ = |ϵ|) or mostly included within these
lines. For liquid Si, the data points reasonably fall near
or inside the dotted lines. One should notice also the
very low values for both quantities, as expected, since the

ENNs were trained on liquid silicon. Still, “large” values
of σ do not necessarily imply large errors ϵ, e.g., several
configurations exhibit vanishing error despite having a
σ > 1 meV/atom. Neither does a particularly low value
of σ guarantee high-accuracy predictions, e.g., the ma-
jority of configurations with σ < 1 meV/atom do not fall
within the σ = |ϵ| cone.

The result for the eight solid phases is shown in Fig.
7b, where all the points along the equations of state are
reported. Both σ and ϵ are much larger than for the
liquid case and the data points fall almost all in the re-
gion ϵ > σ, up to ϵ ∼ 5σ, varying depending on the type
of crystal phase and the volume. Moreover, in partic-
ular focusing on the diamond, hexagonal diamond, and
bc8 phases, the error is essentially unrelated to the un-
certainty, as the uncertainty spans a broad range of val-
ues when the volume is changed, while the error remains
(large and) almost constant. In Fig. 7c, we also include
the defect phases. Both actual errors and predicted un-
certainty are even larger and although the two quantities
roughly grow concurrently, there is hardly any useful re-
lationship between them. For instance, in the case of
the relaxation trajectory of the vacancy, where config-
urations are rather similar to each other, we observe a
huge change in predicted uncertainty (more than a fac-
tor 2) with the actual error staying essentially constant
around 1 eV.

We also checked the validity of these observations at
various sizes of the training data set and we found (see
Fig. S9 in the ESI) that the lack of useful relationship
between σ and ϵ holds at all dataset sizes, between 500
and 5 000 data points.
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FIG. 6. Test of the ENNE-IP on (a) Si Vacancy, (b) Si in-
terstitial and (c) Si(100) Surface. The solid line is the trajec-
tory of geometry optimization computed using the DFT (solid
lines) from the unrelaxed crystal structure to the relaxed one.
The dashed line is the trajectory of geometry optimization
computed using the ENNE-IP. The color area depicts the un-
certainty σ. The violin plots show the distribution of actual
errors. The black dot represents the mean actual error, the
orange lines are the median actual error, the boxes are the
quartiles, and the whiskers are the 5% and 95% actual error

III. DISCUSSION

Estimates for prediction uncertainty are important for
determining when MLIPs can be trusted. We constructed
a set equivariant-neural-network-ensemble IPs on the liq-
uid silicon and compared the uncertainty with actual er-
rors for various test sets, including liquid silicon at differ-
ent temperatures and out-of-training-domain data such
as solid phases with and without point defects as well
as surfaces. We use the standard deviation of the pre-
dicted values from the ensemble as an uncertainty esti-
mate. This popular approach to uncertainty calculation
has multiple advantages, including being simple to imple-
ment and parallelize, and maintaining desirable features
of the original regression model.

However, by analyzing a test set constructed to mimic
a crystal-structure search scenario, for a system that is
trained with configurations in the liquid phase, we found
that the predicted uncertainty is a poor predictor for the
actual error. Not only it is mostly overconfident (uncer-
tainty lower or much lower than the actual error) but
both quantity are hardly related. Indeed, we have anal-
ysed a few paths in the configurational space where the
two quantities change in opposite directions (uncertainty
decreases while error increases) or on varies and the other

stays constant. This aspect would hamper any attempt
to calibrate the uncertainties to create an upper bound
for the predicted errors, e.g., by just scaling the predicted
uncertainty by a constant factor. In fact, there could
always be a region of the configurational space where
the error would be even larger than such amplified un-
certainty, yet containing relevant, metastable structure,
such as technologically important defect structures.

Eventually, let us note that it is obviously possible to
choose as an upper bound for the trustworthy region an
uncertainty σ̂ equal to the maximum uncertainty ob-
served in the liquid-phase test data (∼ 2 meV/atom,
see Fig. 5) The ENN would then be retrained when-
ever larger uncertainties are met. However, this largely
defeats the original intention, since it would require re-
training in all the discussed cases, no matter if actual
qualitative or quantitative agreement is already achieved.
For instance, the uncertainties for the configurations used
for both the fcc and hcp equations of state have similar
values (i.e., around 2 mev/atom, see Figs 4, left panel,
and 7). However, on the one hand, the fcc equation of
state predicted by the ENNE-IP is quite accurate, i.e.,
the uncertainty band mostly overlap with the ground
truth in Fig. 4 and the (σ, ϵ) points are very close to
the σ = −ϵ line in Fig. 7. On the other hand, the predic-
tion on the hcp equation of state is much less accurate,
even from a qualitative point of view, i.e., it is predicted
to be less stable than fcc, contrary to the ground truth.
In other words, such a strategy would inherently imply
that the here discussed MLIPs are only applicable to the
system/conditions they have been trained on. This is
obviously not true, as the above fcc example showcases.
However, the here discussed ensemble-uncertainties pro-
vide only very limited guidance in disentangling trust-
worthy from unreliable regions.

Further research is needed on how to properly cali-
brate ensemble MLIPs, and an especially interesting av-
enue is, in our opinion, to explore whether there is an
accuracy-confidence trade-off. In some other ML appli-
cations instead of MLIPs, the distance to available data
in the latent space of a NN model is proposed to con-
trol actual error in chemical discovery [35; 40; 51]. These
works provide calibrations to improve uncertainty esti-
mates from feature distances or NN-predicted variances.
However, they do not demonstrate that the approaches
can be used more generally or propose directly calibrat-
ing ensemble errors. Domain of applicability (DA) [25]
is another potential method to calibrate current uncer-
tainty estimates. An extension of the original DA work
could provide a descriptive characterization, in terms of
inequalities on simple local-order descriptors, of regions
of the input space where the error is expected to be par-
ticularly large/low, thus offering the possibility to dy-
namically fine tune the numerical precision of the MLIP
(e.g., in terms of number of basis functions).
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FIG. 7. The ensemble uncertainty σ is plotted against the actual error ϵ, calculated as the difference between the predicted
value and the DFT-GGA calculated value for five test sets, including (a) liquid silicon, (b) bulk crystal structures, (c) Si
vacancy, Si interstitial atom, and Si(100) surface. The dashed line represents the ideal relationship between the actual error
and uncertainty, σ = |ϵ|. The crosses mark the minimum energy structure (according to ENNE-IP) in the equations of state
(panel b) or geometry optimization (panel c). In panel c, the energies are normalized, i.e., energy per atom for the bulk phases
(as in panels a and b), formation energy per defect for the defected phases, and surface energies per surface atom for the surface.
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All data can be found on the NOMAD archive (https:
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CODE AVAILABILITY
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the cited publication. All electronic structure calcula-
tions were done using FHI-aims, which is freely avail-
able for use for academic use (with a voluntary do-
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mpg.de/nomad-lab/ai-toolkit/tutorial-nequip
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APPENDIX: METHODS

A. Data Set

The first-principle calculations for liquid silicon, solid
phases of silicon, diamond vacancy, hexagonal diamond
interstitial and diamond surface Si(100) are performed
using DFT-GGA with the PW91 exchange-correlation
functional[52], implemented in the FHI-aims code using
‘light’ basis sets [53]. To simulate the structure of liquid
silicon, we use constant-pressure (P = 0 GPa) AIMD.
The calculations are performed at liquid silicon’s experi-

mental density (2.57 g/cm3). A 2× 2× 2 supercell of the
eight-atom diamond cubic cell (64 atoms) is heated from
T = 0 K to T = 5000 K for rapid melting over 5 000 1 fs
time steps and then equilibrated at T = 2000 K for 5 000
1 fs time steps. The other four AIMD simulations at dif-
ferent densities but the same temperature are performed,
which are randomly picked up around the experimental
density (namely, 1.89, 2.21, 2.94, and 3.36 g/cm3). This
means that there are five AIMD trajectories of liquid sil-
icon, each of which has 5 000 configurations. Their RDF
is calculated and averaged using the tools included in the
Atomic Simulation Environment package[54].
The mixed training set was constructed by randomly

sampling the same number of configurations from each
of the 5 AIMD trajectories. For instance, one configu-
ration was randomly selected from one AIMD trajectory
and a total of five configurations were gathered to form
the training set. In each experiment, a validation set
of N = 500 configurations was used for hyperparameter
optimization of the ENNE-IP, and the performance was
evaluated on a hold-out test set of 1 000 configurations.
To study the uncertainty of liquid silicon at extra tem-

peratures, 5 AIMD simulations were performed at tem-
peratures of 1 600 K, 1 800 K, 2 200 K, 2 400 K, and
2 600 K. These temperatures are between the experimen-
tal melting and boiling points of silicon (1 687 K and
2 628 K, respectively) at standard pressure. The simula-
tions were run for 5 000 1 fs time steps with a constant
experimental density of liquid silicon, and the initial con-
figuration was taken from the last configuration of the
melting trajectory at the same density. A test set consist-
ing of all 5 000 configurations from each AIMD trajectory
was created for each temperature.
For the potential energy surface, we deformed the lat-

tice to the target volume and relaxed it with respect to
the unit cell shape and atomic position, while approxi-
mately constraining the volume and also constraining the
symmetry to remain that of the initial structure. For di-
amond vacancy and hexagonal diamond interstitial, the
formation energy of 2× 2× 2, 3× 3× 3, 4× 4× 4 and
5× 5× 5 supercell of the eight-atom diamond cubic cell
are calculated. The formation energies Ef were obtained
from the total energies of the supercells with a defect,

Ef = Ed − Ebulk − ndµ

where Ed is the total energy of the defected supercell and
Ebulk is the total energy of the perfect supercell, which
we calculate for supercells of the same size as used in
the runs with the defects. µ is the chemical potential
of silicon, which we take as the total energy of silicon.
nd gives the number of silicon atoms that are added (nd

positive) or removed (nd negative). For diamond surface
Si(100), a (2× 1) supercell contains a slab of silicon L
layers thick (L = 2, 3, ..., 10) and the vacuum thickness
between adjacent slabs along the [001] direction is set at
15 Å. The three outermost layers of the slab are allowed
to relax, while the atoms of the other layers are kept in
their bulk positions. The surface energy γ is calculated
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from the following expression,

γ =
Eslab − ns × Ebulk

2A

where Eslab is the total energy of the surface slab. ns

is the number of atoms in the surface slab. Ebulk is the
bulk energy per atom. A is a measure of the surface
area. Here, we define A as the number of atoms on the
surface (equal to 2) for a better comparison swith defect
phases. For a slab, we have two surfaces and they are of
the same type, which is reflected by the number 2 in the
denominator.

B. Hyperparameter Optimization

The NequIP framework builds-in equivariance by im-
posing that the features at every hidden layer of the
neural network be direct sums of irreducible represen-
tations. In 3-dimension space, these can be interpreted
as spherical harmonics. For the practical construction of
networks, we selected the highest angular frequency or
degree for hidden layer features. We trained four differ-
ent, equal-size, neural networks with lmax of 0, 1, 2 and
3 on the training sets with different sizes of 500, 1 000,
2 000, 3 000, 4 000, and 5 000 configurations. Learning
curves for this experiment are presented in Fig. S2 in the
ESI, As expected, the training errors decrease with more
training data, and the equivariant networks with lmax
= 3 significantly outperform the invariant networks with
lmax = 0 and equivariant networks with lmax = 1, 2
for all data set sizes as measured by the MAE of force
components. Interestingly, good calibration in terms of
the MAE was obtained with relatively small training sets
and the MAE does not vary significantly when adding
more data in the neural networks with lmax = 3. Conse-
quently, we found that 5 000 configurations are sufficient
to build an accurate NN interatomic potential for liquid
silicon.

Then, another two key hyperparameters, the multiplic-
ity of the features and the cutoff radius, are optimized.
The results show that the optimal feature dimension is
16 and the optimal cutoff radius distance is 5.0 Å for
liquid silicon. Finally, networks with optimal hyperpa-
rameters are trained using a loss function based on a
weighted sum of energy and force loss terms (the weight-
ing of energy and force is 1 and 100 respectively). We
normalize the target energies by subtracting the mean
potential energy over the training set and scale both the

target energies and target force components by the root
mean square of the force components over the training
set. All models are trained using 4 interaction blocks,
a learning rate of 0.01 and a batch size of 1. The in-
variant radial networks act on a trainable Bessel basis of
size 8 and are implemented with two hidden layers of 32
neurons with SiLU nonlinearities between them. Con-
sidering the uncertainty of the models, we trained 5 NN
models, which have the same architecture but are initial-
ized independently, in all experiments of hyperparameter
optimization.

C. Uncertainty and actual error

Our approach to estimating the uncertainty of the
prediction of NNs relies on the prediction of an ensem-
ble model consisting of several instances. In detail, the
AIMD database of liquid silicon is randomly sub-sampled
into 8 smaller training sets. Then the ensemble model is
trained over a given training set by changing each time
the initial condition of each NN. Here, the members of
the ensemble ideally have the same architecture but are
initialized independently via the input of different seeds.
For the final prediction of the ensemble, we computed
the mean of the models’ predictions Pi,

Pi =
1

M

M∑
m

Pm
i

and for the uncertainty estimate, we computed the stan-
dard deviation σi of the set of predictions,

σi =

√√√√ 1

M

M∑
m

(Pm
i − Pi)2

where the subscript i gives configurations in the test set
(atomic indices for the force), and m iterates over models
of the ensemble. M is the number of neural networks in
one ensemble. P is the target property, including the
force component, the total energy of liquid silicon, the
total energy of solid phase, the formation energy of defect
silicon and the surface energy of the surface Si(100). The
actual error of the ensemble ϵi is calculated as follow,

ϵi =
1

M

M∑
m

(Pm
i − PDFT

i )
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