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The Green-Kubo (GK) method is a rigorous framework for heat transport simulations in materials. However,
it requires an accurate description of the potential-energy surface and carefully converged statistics. Machine-
learning potentials can achieve the accuracy of first-principles simulations while allowing to reach well beyond
their simulation time and length scales at a fraction of the cost. In this Letter, we explain how to apply the
GK approach to the recent class of message-passing machine-learning potentials, which iteratively consider
semilocal interactions beyond the initial interaction cutoff. We derive an adapted heat flux formulation that can
be implemented using automatic differentiation without compromising computational efficiency. The approach
is demonstrated and validated by calculating the thermal conductivity of zirconium dioxide across temperatures.
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The thermal conductivity tensor κ describes the ability of
a material to conduct heat when exposed to a temperature
gradient. Its computational prediction is of great interest for
the design of novel high-performance materials which are
needed, for example, as thermal barrier coatings in engines
[1] or thermoelectrics for waste heat recovery [2]. Such mate-
rials often feature complex structure and strongly anharmonic
potential-energy surfaces (PESs) [3,4]. This implies the need
to evaluate κ with a non-perturbative method such as the
Green-Kubo (GK) method [5–9].

In the GK approach, κ is expressed in terms of the integral
of the autocorrelation function of the instantaneous heat flux
J(t ) as observed in equilibrium molecular dynamics (MD)
simulations,

κ(T, p) = 1

kBT 2V
lim

t→∞

∫ t

0
dτ 〈J(τ ) ⊗ J(0)〉T,p, (1)

where kB is the Boltzmann constant, T is the temperature, V
is the simulation cell volume, and 〈·〉T,p denotes an ensemble
average at temperature T and pressure p.

High-accuracy MD simulations can be performed us-
ing density-functional theory (DFT) when the exchange-
correlation approximation is reliable [10]. For the evaluation
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of Eq. (1), this approach [11,12] suffers from its numerical
cost, which limits the system sizes and timescales that can
be treated, and therefore requires additional denoising and
extrapolation approaches [12–14]. The alternative, so far, has
been the use of semiempirical force fields (FFs) [15]. Here,
the interatomic interactions are described by a physically mo-
tivated analytical equation that includes free parameters which
are fitted to experimental or ab initio results. This classical
FF approach has been very successful, as it enables proper
consideration of the ensemble averages needed in Eq. (1).
However, the restricted flexibility of FFs may limit their gen-
erality and ability to model novel materials.

A new, more general class of FFs is the family of machine-
learning potentials (MLPs) which leverage techniques like
neural networks [16–21]. MLPs offer, in principle, unre-
stricted flexibility, but are limited to the mechanisms and
information that are provided by their training data. In local
MLPs, linear scaling with system size is achieved by using
the short-range nature of chemical bonding [22] to decompose
the total energy into contributions that depend only on local
atomic environments. However, a strict locality assumption
limits the flexibility and therefore accuracy of such MLPs.
Some FFs therefore include explicit long-range electrostatic
and van der Waals interactions [23–27]. Semilocal MLPs
[28–39] build up longer-range correlations iteratively from
local ones through message-passing mechanisms, thereby pre-
serving linear scaling with system size. They have recently
emerged as an alternative to strictly local MLPs and have
shown promising performance in benchmark settings and first
applications [35,36,40–42].

While local MLPs have been used to investigate thermal
transport via GK [43–50], more recent semilocal MLPs have
not yet been applied, partially because a heat flux formulation
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that incorporates message-passing mechanisms was lacking.
In this work, we fill that gap and extend the GK approach
to semilocal potentials. To this end, we derive a formula-
tion of the heat flux that explicitly accounts for semilocal
interactions, finding that the resulting thermal conductivity
significantly differs from a purely local form. While the com-
putation of this heat flux scales quadratically with system size,
we show that an alternative, yet equivalent, form based on an
extended auxiliary system can be introduced, leading to over-
all linear scaling and straightforward practical implementation
of the approach via automatic differentiation (AD) [51,52].
Using the SchNet message-passing neural network (MPNN)
[29,30], we demonstrate the accuracy and feasibility of large-
scale semilocal MLP thermal conductivity calculations for
zirconia (ZrO2), an oxide known for its strongly anharmonic
PES [53,54].

For any potential function U ({RJ}) of the atomic posi-
tions {RJ} that can be decomposed into atomic contributions
UI ({RJ}) such that U = ∑

I UI ({RJ}), the heat flux is given
by the classical equivalent of a formula by Hardy [55], which
we rederive in the Supplemental Material [56] to explicitly
account for periodic boundary conditions. This full “Hardy”
heat flux reads

J =
∑

I∈Rsc
J∈Rall

[
RJI

(
∂UI

∂RJ
· ṘJ

)]
+

∑
I∈Rsc

EI ṘI (2)

=: Jpot + Jconv, (3)

where RJI = RI − RJ is the atom-pair vector connecting
atoms I and J , ∂UI/∂RJ is the change in the energy contri-
bution UI with respect to moving atom J , ṘJ is the velocity of
atom J , and EI = UI + 1

2 mI Ṙ2
I is the total energy of atom I .

The double sum extends over all atoms Rsc in the simulation
cell, while Rall enumerates the full, infinite, bulk system.
As this work considers FFs and MLPs that explicitly define
atomic potential energies UI , total atomic energies EI and,
consequently, Jconv can be computed in a straightforward man-
ner. We therefore discuss only the more involved computation
of Jpot in the following, whereas the heat flux used for cal-
culating κ in this work is always equivalent to the full flux
given by Eq. (2). The nomenclature for heat flux contributions
and the relation of Eq. (2) to DFT formulations are further
discussed in the Supplemental Material [56].

Evaluating Jpot requires disentangling the contributions of
every atom, including those in the bulk, to every atomic po-
tential energy UI . This can be challenging for nonpairwise,
many-body potentials, leading to the development of special-
ized expressions for different FFs [57–62], many of which
were recently unified and shown to be equivalent to Eq. (2)
by Fan et al. [60].

In the next step, we introduce an interaction cutoff ra-
dius rc which defines an atomic neighborhood N (I ) = { RJ :
|RMIC

IJ | � rc, RJ ∈ Rsc } for each atom I using the minimum
image convention (MIC). The cutoff needs to be chosen such
that MIC wrapping happens outside the local neighborhood.
This leads to the notion of a local potential UI = UI ({ RMIC

IJ :
J ∈ N (I ) }). In an interatomic potential of this type, each
atomic potential-energy contribution is a function only of
outgoing atom-pair vectors RMIC

IJ with neighbors in N (I ),

and the corresponding incoming vectors RMIC
JI are treated as

independent variables. Then,

∂UI

∂RJ
=

∑
K∈N (I )

∂UI

∂RMIC
IK

∂RMIC
IK

∂RJ
= ∂UI

∂RMIC
IJ

. (4)

The corresponding local formulation of Jpot is then

Jlocal
pot =

∑
I∈Rsc

∑
J∈N (I )

RMIC
JI

(
∂UI

∂RMIC
IJ

· ṘJ

)
, (5)

where we note that the partial derivative of UI is now per-
formed with respect to the atom-pair vector RIJ , similar to
the heat flux formulation defined in Ref. [60]. The resulting
expression can be implemented efficiently with AD, as dis-
cussed in the Supplemental Material [56] and Ref. [63].

While being exact for local potentials, this formulation of
the heat flux does not apply to the semilocal case of MLPs
based on MPNNs. In such potentials, longer-range interac-
tions are introduced without explicitly increasing the cutoff
rc by building them up iteratively: Neighboring atoms are al-
lowed to exchange information for a fixed number of iterations
M [28]. Neighboring environments up to an effective cutoff
radius reff

c = Mrc therefore become correlated; atomic poten-
tial energies UI acquire a dependence on atom-pair vectors
outside of their immediate neighborhoods N (I ), rendering
Eq. (4) and, consequently, Eq. (5) inapplicable. In principle,
UI can depend on atom-pair vectors in all atomic neighbor-
hoods, UI = UI ({ RMIC

LK : L ∈ Rsc, K ∈ N (L) }), so

∂UI

∂RJ
=

∑
L∈Rsc

K∈N (L)

∂UI

∂RMIC
LK

∂RMIC
LK

∂RJ

=
∑

K∈N (J )

(
∂UI

∂RMIC
KJ

− ∂UI

∂RMIC
JK

)
, (6)

where we keep both terms since ingoing and outgoing
atom-pair vectors are treated independently. Substitution into
Eq. (2) yields the heat flux for the semilocal case

Jsemilocal
pot =

∑
I∈Rsc
J∈Rsc

K∈N (J )

RMIC
JI

[(
∂UI

∂RKJ
− ∂UI

∂RJK

)
· ṘJ

]
. (7)

This semilocal form of the heat flux generalizes Jlocal
pot defined

in Eq. (5) to semilocal MLPs . In the case of M = 1, the two
forms become identical.

Equation (7) reflects the standard construction of semilocal
MLPs; a double sum over all atoms is required, and its evalua-
tion formally scales quadratically with system size. As shown
in Fig. 1, a direct implementation of this form is therefore im-
practical. While force predictions for a semilocal MLP based
on the SchNet architecture [29,30] remain below 100 ms for
all system sizes investigated, the unoptimized calculation of
the heat flux dominates the computational cost by several
orders of magnitude at the system sizes required for the GK
method.

If the analytical form of UI were known, a lower-scaling
evaluation of the heat flux might be accessible by deriving
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FIG. 1. Computation time per time step for different system sizes
N for zirconia, evaluating a SchNet MPNN, for different heat flux
formulations on a single Tesla Volta V100 32 GB GPU. To estimate
the asymptotic scaling, a function proportional to Nx has been fitted
to the results for large N . Note that in this setup with limited memory,
the truly asymptotic limit cannot be reached.

and implementing analytical derivatives. Modern MLPs, how-
ever, typically rely on AD [51,52] for efficiently computing
derivatives without requiring detailed information about the
functional form of the MLP .

To take advantage of this, we now derive an adapted form
of the heat flux that preserves the implicit treatment of inter-
actions beyond local environments to retain the computational
efficiency of semilocal MLPs while explicitly attributing all
contributions to UI to bulk positions for Jpot in Eq. (2). This
is achieved by constructing an extended simulation cell that
includes all replicas that interact with atoms in the simulation
cell [64,65]. This yields a set of “unfolded” positions Runf,
consisting of the original simulation cell and a shell of replica
positions up to the effective cutoff radius reff

c = Mrc.
Atomic neighborhoods are then constructed without peri-

odic boundary conditions and the MIC. Interactions across
simulation cell boundaries are therefore now treated explicitly.
The potential energy obtained by summing over the original
simulation cell U remains unchanged in this construction.
This allows retaining the small cutoffs needed for efficiency
while enabling AD to distinguish derivatives with respect to
positions in the simulation cell and replica positions.

With this construction, Eq. (2) can be rewritten as

Junfolded
pot =

∑
I∈Rsc
J∈Runf

(
RI

∂UI

∂RJ
· ṘJ − RJ

∂UI

∂RJ
· ṘJ

)
. (8)

Both terms can be implemented efficiently with AD by exe-
cuting the sum over I before differentiation. For the first term,
this can be achieved by excluding RI from the computational
graph. For the second term, the sum can be simply moved
inside the derivative. Further details are given in the Supple-
mental Material [56]. The overall computational cost is then
proportional to Runf. Since the number of additional positions
is proportional only to the surface area of the simulation cell
and the number of interactions M, the overall asymptotic
linear scaling is restored, with |Runf| ∝ N + N2/3 (see Fig. 1).

To validate the approach, we benchmark the performance
of a semilocal MLP, in particular the SchNet [29,30] MPNN

architecture, for GK calculations on zirconia (ZrO2) and com-
pare our results to results obtained with size-extrapolated
ab initio GK [12], as well as GK with a local MLP [50], and
experimental measurements [66–68].

Training and validation data were generated using ab initio
MD in the NpT ensemble, with four different trajectories
heating up an initially tetragonal simulation cell with 96
atoms to target temperatures 750, 1500, 2250, and 3000 K. In
total, 10 000 single-point calculations were performed using
FHI-AIMS [69] and FHI-VIBES [70], using the PBEsol [71] func-
tional and otherwise following the computational approach of
Ref. [12].

On these data, we train a SchNet MPNN, implemented in
SCHNETPACK [72], with cutoff radius rc = 5 Å. We choose
an interaction depth M = 2, leading to an effective cutoff of
10 Å. In line with recent findings by others [36], we find this
to be sufficient, as test set error does not significantly decrease
for higher values of M or rc. Further details on the training
procedure, choice of hyperparameters, and testing of the MLP
can be found in the Supplemental Material [56].

We find that this simple approach yields an MLP capable of
describing the dynamics in monoclinic and tetragonal zirconia
up to temperatures of approximately 2000 K. In this tem-
perature range, the anharmonic vibrational density of states
matches that obtained from DFT. Beyond 2000 K, the oxygen
atoms become more mobile, and different types of dynamical
events are observed, in particular exchange-type oxygen diffu-
sion. This behavior is also present in the training data, in line
with recent literature [73], although slightly different diffusion
events are observed given the smaller simulation cells and
trajectory lengths. When diffusion increases at higher temper-
atures, the MLP becomes unstable. This might be due to the
limited amount of training data for these processes, especially
for thermodynamic conditions close to the tetragonal-to-cubic
phase transition. These observations suggest that an accurate
description of defect formation is necessary to investigate zir-
conia above 2000 K, which is beyond the scope of the current
work.

Figure 2 compares our efficient implementation with the
full semilocal heat flux, as well as the purely local heat
flux formulation. Due to the high computational cost of the
unoptimized implementation, we use a small simulation cell
with N = 768 atoms and rely on the noise reduction scheme
introduced in Ref. [14]. The results confirm that our imple-
mentation Junfolded

pot is equivalent to the semilocal heat flux
Jsemilocal

pot , while the local flux Jlocal
pot is not, underestimating the

thermal conductivity by approximately 40% due to missing
interactions beyond M = 1. A similar effect was observed
when formulations applicable to pairwise additive potentials
were used for many-body force fields [61,62].

Enabled by the computationally efficient access to J for
semilocal MLPs, we then predict the thermal conductivity of
zirconia across temperatures. Since the focus of the present
work is the heat flux, we do not treat the thermodynamics
of zirconia with the MLP but use experimentally determined
lattice parameters [74,75] to account for lattice expansion.
At 1400 K, both phases are investigated, as the monoclinic
phase is sufficiently stable during the course of the simula-
tions, which consist of 11 trajectories of 1 ns each, with an
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FIG. 2. Comparison of the integrals of the heat flux autocorrela-
tion function for different formulations of the heat flux. The efficient
reformulation of the heat flux Junfolded is equivalent to the full heat
flux Jsemilocal but not to Jlocal, which neglects semilocal interactions.
Results are given for an MPNN with M = 2 and zirconia at 300 K in
the monoclinic phase (top) and 1400 K in the tetragonal phase (bot-
tom) for a simulation cell with 768 atoms. Shaded regions indicate
standard error across 11 trajectories.

N = 1500 simulation cell. These settings yield fully size- and
time-converged results (see the Supplemental Material [56]
for details).

The results presented in Fig. 3 are in good agreement with
both experimental measurements in the monoclinic phase and
theoretical MLP predictions in the monoclinic and tetragonal
phases. As this work uses similar lattice parameters and the
same exchange-correlation functional as the work by Verdi
et al. [50], the observed close agreement is to be expected.
Remaining differences between the MLP results may be due
to the larger simulation cells used in the present work, en-
abled by the favorable scaling of computational cost due to
the efficient heat flux implementation, and the semilocal na-
ture of the employed MPNN. Compared to experiment, both
MLPs are found to systematically underestimate κ by approx-
imately 10% to 20%, which may be related to the intrinsic
approximation of a finite-range MLP or the underlying density
functional approximation. Larger differences are observed
with the size-extrapolated ab initio GK results reported by
Carbogno et al. [12], which, however, were computed for the
tetragonal phase at all temperatures. Additionally, due to the
high computational cost of first-principles calculations, only
three trajectories of 60 ps each were used, which is reflected
in the larger statistical error.

We conclude that the adapted GK approach for semilocal
MLPs introduced in this work can successfully and effi-
ciently predict the thermal conductivity of zirconia across
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FIG. 3. Thermal conductivity across temperatures computed
with an MPNN using M = 2 message-passing steps and experimen-
tally determined lattice parameters [74,75], compared with another
MLP without extrapolation [50], size-extrapolated ab initio GK
[12], and experimental measurements [66–68]. Error bars are shown
as given in the respective publications; the ones in the present
work reflect the standard error across 11 trajectories. Letters “t”
and “m” indicate results for the tetragonal and monoclinic phases,
respectively.

temperatures, using 10 000 first-principles calculations in to-
tal. Despite a moderate system size of 96 atoms for training,
fully size-converged results were obtained without requiring
additional extrapolation schemes.

In summary, we have demonstrated the feasibility of ap-
plying AD-based semilocal MLPs to the prediction of thermal
conductivities with the GK method. For this, we investigated
the impact of semilocal interactions on the heat flux and
derived an adapted heat flux Junfolded

pot that can be efficiently
implemented via AD. This heat flux has an asymptotically
linear runtime and requires no further restrictions on the form
of the potential. Its formulation is independent of the body-
order of the potential-energy function, making no distinction
between pair, angle-dependent, and many-body potentials. As
it relies on explicitly constructing an extended simulation cell,
it is applicable to semilocal MLPs with moderate effective
interaction ranges.

Data and code required to reproduce all figures can be
found at Zenodo [76]. First-principles calculations for the
training data are additionally available from the NOMAD
repository [77]. Further information and software can be
found in Refs. [56,78].
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