Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Heat flux for semilocal machine-learning potentials

MPG-Autoren
/persons/resource/persons213541

Langer,  Marcel Florin       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons203282

Knoop,  Florian       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21413

Carbogno,  Christian       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons173798

Rupp,  Matthias       
NOMAD, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevB.108.L100302.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Langer, M. F., Knoop, F., Carbogno, C., Scheffler, M., & Rupp, M. (2023). Heat flux for semilocal machine-learning potentials. Physical Review B, 108(10): L100302. doi:10.1103/PhysRevB.108.L100302.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-525D-E
Zusammenfassung
The Green-Kubo (GK) method is a rigorous framework for heat transport simulations in materials. However, it requires an accurate description of the potential-energy surface and carefully converged statistics. Machine-learning potentials can achieve the accuracy of first-principles simulations while allowing to reach well beyond their simulation time and length scales at a fraction of the cost. In this Letter, we explain how to apply the GK approach to the recent class of message-passing machine-learning potentials, which iteratively consider semilocal interactions beyond the initial interaction cutoff. We derive an adapted heat flux formulation that can be implemented using automatic differentiation without compromising computational efficiency. The approach is demonstrated and validated by calculating the thermal conductivity of zirconium dioxide across temperatures.