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ABSTRACT Single-molecule localization microscopy achieves nanometer spatial resolution by localizing single fluorophores
separated in space and time. A major challenge of single-molecule localization microscopy is the long acquisition time, lead-
ing to low throughput, as well as to a poor temporal resolution that limits its use to visualize the dynamics of cellular struc-
tures in live cells. Another challenge is photobleaching, which reduces information density over time and limits throughput and
the available observation time in live-cell applications. To address both challenges, we combine two concepts: first, we inte-
grate the neural network DeepSTORM to predict super-resolution images from high-density imaging data, which increases
acquisition speed. Second, we employ a direct protein label, HaloTag7, in combination with exchangeable ligands (xHTLs),
for fluorescence labeling. This labeling method bypasses photobleaching by providing a constant signal over time and is
compatible with live-cell imaging. The combination of both a neural network and a weak-affinity protein label reduced the
acquisition time up to �25-fold. Furthermore, we demonstrate live-cell imaging with increased temporal resolution, and cap-
ture the dynamics of the endoplasmic reticulum over extended time without signal loss.
WHY IT MATTERS Single-molecule localization microscopy (SMLM) allows visualization of cellular structures at the
nanoscale. However, SMLM requires low-molecular-density images, which results in long acquisition times and thus low
throughput. This further translates into a poor temporal resolution, limiting its application to visualize structural
dynamics in live cells. Another challenge is the loss of fluorescence signal because of photobleaching, reducing the
information density over time and limiting the accessible observation time for live-cell imaging.
Here, we reduce the acquisition time �25-fold using a neural network, and implement a live-cell compatible protein tag
that provides a constantly “renewed” fluorescence signal. We demonstrate multitarget imaging, increase the temporal
resolution in live-cell imaging, and capture the dynamics of the endoplasmic reticulum over extended time.
INTRODUCTION

A key element for understanding cellular architecture
lies in the ability to visualize biomoleculeswithnear-mo-
lecular spatial resolution using lightmicroscopy (1). For
most super-resolution techniques, a compromise has to
be made between temporal versus spatial resolution.
Imaging methods such as stimulated emission deple-
tion (STED) (2,3)andstructured illuminationmicroscopy
(4,5) are able to capture fast biological dynamics in live
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cells. In contrast, single-molecule localization micro-
scopy (SMLM)methods (6), suchas (fluorescence) pho-
toactivated localization microscopy ((F)PALM) (7,8),
(direct) stochastic optical reconstruction microscopy
((d)STORM) (9,10), and (DNA-) point accumulation in
nanoscale topography (PAINT) (11,12), can achieve a
spatial resolution in a range of only a few nanometers
(13), and even below, as recently demonstrated
by MINFLUX (14) and Exchange-PAINT (15). These
methods are dependent on the accumulation of
spatially isolated fluorescence emitters over time to
resolve a structure. Due to its working principle, SMLM
methods suffer from low temporal resolution, which
limits the throughput and the visualization of fast
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processes such as dynamics in live cells. Efforts have
been made to speed-up SMLM imaging using modified
DNA probes (16) and imaging buffer compositions
that promote shorter probe-to-target association
rates (17,18). Other exciting developments are deep
learning-assistedcomputational tools that successfully
demonstrated a reduction of the acquisition time. This
was achieved either by predicting super-resolved
SMLM images from sparse imaging data (19,20) or
from high-density imaging data (21–24). Recently, the
neural network (NN) DeepSTORM (21) was used to
accelerate DNA-PAINT image generation (25).

Another challenge is the loss of fluorescence signal
due to photobleaching. Noncovalentfluorophore labels
offer a significant advantage in various super-resolu-
tion imagingmodescomparedwithpermanently bound
dyes and fluorescent proteins (26). Here, the imaging
buffer containing the probe provides constant replen-
ishment of target protein labeling,minimizing the effect
of photobleaching. Imaging of live-cell dynamics can
essentially proceed indefinitely given a large enough
reservoir of dyes in the imaging buffer and good cell
viability. This concept has been successfully imple-
mented inmulticolor, 3D, and live-cell STEDmicroscopy
usingPAINT andDNA-PAINT labels (27,28). An exciting
new development is direct protein labeling using the
HaloTagasaprotein tag in combinationwithexchange-
able ligands for fluorescence labeling (xHTLs), which
reversibly and transiently bind to HaloTag (29). This
method allows direct labeling of target proteins, cir-
cumventing the need of secondary labels, provides a
constant signal over time, is compatible with live-cell
imaging, and was shown to be compatible with various
super-resolution imaging modalities (29,30).

In this report, we synergize direct protein labeling
using two HaloTag variants with exchangeable
HaloTag ligands (xHTLs) (29), high-density imaging
and image prediction with DeepSTORM (21). This
combination allowed us to reduce the acquisition
time significantly. Furthermore, we demonstrate multi-
color imaging and live-cell imaging with increased
temporal resolution, and capture the dynamics of the
endoplasmic reticulum (ER) over extended time.
MATERIALS AND METHODS

Cell culture and sample preparation

Stable cell lines were generated using the Flp-IN T-REx system
(Thermo Fisher Scientific, Waltham, Massachusetts). In brief, U-2
OS Flp-IN T-REx were cotransfected with pOG44 and pcDNA5/
FRT/TO-GOI plasmids (10:1) and selected with hygromycin B (50
mg/mL, Thermo Fisher Scientific, Waltham, Massachusetts)
following a published protocol (31). Thus, TOM20 tagged with dHa-
loTag 7 (dHT7) is expressed on the outer membrane of mitochondria
and CalR-KDEL tagged with HaloTag 7 (HT7) is expressed on ER,
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separated by a self-cleaving peptide sequence (T2A) (32), as
described in Kompa et al. (29). CRISPR-Cas9-mediated knockin
U-2 OS cells (33) that express vimentin-HT7 were a kind gift from
Prof. Stefan Jakobs (MPI for Multidisciplinary Sciences, Göttingen,
Germany).

U-2 OS stable cell lines were cultured in T-75 flasks (Greiner,
Kremsm€unster, Austria) at 37�Cand5%CO2 inDulbecco'smodifiedEa-
gle'smedium (DMEM)/F-12 (Gibco, Thermo Fisher Scientific,Waltham,
Massachusetts) containing 10% (v/v) fetal bovine serum (Gibco, Bill-
ings,Montana), 1% (w/v) penicillin-streptomycin (Gibco, ThermoFisher
Scientific, Waltham, Massachusetts), and 1% (v/v) GlutaMAX (Gibco,
Billings, Montana). Two days before imaging, 2 � 104 U-2 OS cells ex-
pressing the protein of interest were seeded on a fibronectin-coated
8-well chamber slide (Sarstedt, N€umbrecht, Germany) and the expres-
sion of pcDNA5/FRT/TO HT7-tagged protein was induced with 100–
250 mg/mL of doxycycline (Alfa Aesar, Ward Hill, Massachusetts).
PAINT imaging

For PAINT imaging in fixed cells, U-2 OS cells expressing the protein
of interest with an HT7 or dHT7 were fixed. For vimentin structure,
cells were fixed using 4% formaldehyde (FA) (Thermo Scientific, Wal-
tham, Massachusetts) in 1� DPBS for 20 min at room temperature.
TOM20-dHT7-T2A-CalR-HT7-KDEL-expressing cells were fixed using
3% FA and 0.1% GA (Electron Microscopy Science, Hatfield, Pennsyl-
vania) in 1� DPBS (Gibco, Billings, Montana, 14190094) for 20 min
at 37�C. For single-color imaging, one of two xHTL, SiR-Hy4 targeting
dHT7 on mitochondria and JF635-S5 targeting HT7 on vimentin or
the ER, was added to the cell sample at a final concentration of 5,
10, or 15 nM in 1� DPBS for high-density HT-PAINT and 500 pM
or 1 nM for ground truth (GT) measurements. To perform two-target
imaging, SiR-Hy4 targeting dHT7 was added to the cell sample at a
final concentration of 5 nM in 1� DPBS to image mitochondria. After
the first imaging round, cells were washed with 1� DPBS three
times, 5 min each. Then, JF635-S5 targeting HT7 was added to the
cell sample at a final concentration of 10 nM in 1� DPBS to image
the ER.

For live-cell imaging, before imaging, cells were washed once with
a prewarmed live-cell imaging solution (Thermo Fisher Scientific,
Waltham, Massachusetts). JF635-S5 or SiR-Hy4 was added to the
prewarmed live-cell imaging solution at a final concentration of 5–
15 nM. After an incubation time of 10 min, imaging was carried
out on an N-STORM microscope (Nikon, Tokyo, Japan) equipped
with an oil immersion objective (Apo, 100�, NA 1.49) and an
EMCCD camera (DU-897U-CS0-#BV, Andor Technology, Belfast,
UK). Fluorophores were excited with a collimated 647 nm laser
beam at an intensity of 0.71 kW/cm2 (measured at the objective
lens) for fixed cells and 0.32 kW/cm2 for live cells at highly inclined
and laminated optical sheet (HILO) mode.

PAINT data were acquired with an integration time of 150 ms in
fixed cells and 50 ms in live cells using active frame transfer
mode with an EM gain of 50, a preamp gain of 1, a readout rate of
5 MHz, and an effective pixel size of 157 nm. The PAINT image
was reconstructed from 400 to 25,000 frames depending on the
experiment. NIS Elements (Nikon, Tokyo, Japan), LCControl (Agilent,
Santa Clara, California), and Micro-Manager (34) were used for setup
control and data acquisition. For live-cell measurements, an uno
stage top incubator (Okolab, Campania, Italy) was used to keep
the cells at 5% CO2 and 37�C.
Image reconstruction

Super-resolution images that served as GT were generated with the
localization software Picasso (35). Localization of single molecules



was performed using the Localize module of Picasso. Single
molecules in each frame were identified with maximum likelihood
estimation for integrated Gaussian parameters. Postprocessing
was performed using the Filter and Render modules of Picasso.
Lateral drift was corrected using the redundant cross-correlation
function. Localizations were filtered for the width and height of the
point spread function (sx, sy) and the localization precision (lpx,
lpy). Localizations appearing in consecutive frames from the same
fluorophore were linked within a radius of four times the nearest-
neighbor-based analysis localization precision and a maximum
dark time of five consecutive frames (36).
Preparation of training data

To train the DeepSTORM model, a high-density emitter data set with
precisely known emitter localizations is required. This high-density
data with overlapping PSFs was generated by summing up the low-
density experimental PAINT data. A low-density data set was ob-
tained by measuring the U-2 OS-vimentin-HT7 stable cell line with
100 nM JF635-S5 in 1� DPBS. The measured data were localized us-
ing Picasso, and a localization list was obtained. To remove back-
ground signals, the localizations lists were filtered out according to
localization precision (lpx, lpy). The measured data with a mean den-
sity of 0.109 emitters/mm2 were used to generate high-density
training patches. Randomly selected patches from the low-density
data were summed to generate 30,000 high-density training patches
with amean density of 1.3 emitters/mm2 (17 px� 17 px) and, together
with the corresponding localization lists, were used for model training.
Summing of frames was done using a script available at https://
github.com/HeilemannLab/ImageSumming (ImageSumming version
1.0.0). The background value of high-density training patches was
adjusted to match the background of experimental high-density
patches.
Training and prediction of the NN

Training and prediction using DeepSTORM 2D was performed on the
ZeroCostDL4Mic platform (37) using Google Colab cloud computing
resources. For the NN training we utilized a single Tesla T4 GPU
(CUDA version 12.0 and Tensorflow version 2.12.0). We loaded the
30,000 artificially summed training patches into the DeepSTORM
notebook, where they were cropped to 16 px � 16 px and set the
number of patches per frame to 1. The upsampling factor was cho-
sen as 16 for fixed cells and 8 for live cells, which resulted in pre-
dicted images with a pixel size of 10 and 20 nm, respectively. The
different upsampling factors accounted for higher noise levels in
live-cell microscopy data. The NN was trained with a batch size of
256, number of epochs of 100, 15% validation split, and an initial
learning rate of 10�5.

The lateral drift of experimental high-density raw frames were cor-
rected using the NanoJ-Core plugin (38) available in Fiji (39) before
prediction with the trained model.

For prediction, a batch size of 1 was used and the threshold was
adjusted by comparing the total localization numbers of predicted
images and GT. To predict cellular structures in fixed cells, the
model trained with an upsampling factor 16 was used, and, for
live-cell measurements, the model trained with upsampling factor
8 was used. Training and prediction parameters are detailed in
Tables S1 and S2. A neighborhood size of 3 with activated local
averaging was used. After prediction, a super-resolution image
and the localization lists can be extracted via postprocessing of
the notebook. The localization list was converted into a Picasso-
compatible file format and rendered into super-resolution images
using Picasso.
Image quality assessment

To determine the minimum number of frames required to obtain a
reasonable quality of predicted images, the resolution was deter-
mined and several image similarity metrics were applied to the pre-
dicted images obtained with varying frame numbers. The spatial
resolution of GT and predicted images was determined using decor-
relation analysis (40).

To study the quality of predicted images using image similarity
metrics, DeepSTORM images were referenced against GT images.
A 2-px Gaussian blur was applied to GT and predicted images. The
images were set to 8-bit depth. In GT measurements of mitochon-
dria, a mask was generated for the target structure to compare the
similarity between GT and predicted image. Multiscale structural
similarity index was calculated using the MS-SSIM Fiji plugin (41).
To calculate Pearson's correlation, structural similarity index
(SSIM) (42), mean absolute error, peak signal/noise ratio, and lpips
(43), a custom Python script, were used.
Live-cell movie generation

To generate live-cell movies using the localization lists from high-
density HT-PAINT, we developed a custom Python script based on
the video generation script published at https://github.com/
alonsaguy/DBlink. Using the script, super-resolution images were
predicted from batches of 400 frames of the high-density data set
using a temporally moving window with a 20 frame overlap between
frame batches to maintain continuity of cell dynamics visualization.
The video length and the temporal resolution were controlled by
varying the window size and the number of overlapping window
frames. To suppress highly active fluorophore signals and improve
image contrast, the images were saturated according to the 99th
percentile and normalized each frame to be in the range [0, 1].
Then, a mean filter was applied to remove localizations related to
background noise. Finally, the localization maps were convolved
with a 1.5-px Gaussian kernel to obtain smooth structures in the
reconstruction. The final images were then stitched temporally to
generate a super-resolution movie of live-cell dynamics (Video S1:
30 fps, 1080 px � 720 px, 600 frames).
RESULTS

Model training and image prediction

SMLM provides nanometer spatial resolution yet suf-
fers from slow imaging speed, limiting throughput
and temporal resolution in live-cell imaging. One
strategy to increase the imaging speed is the
implementation of NNs that can predict SMLM
images from high-molecular-density images, such as
DeepSTORM (21) or DECODE (23). The performance
of these NNs can be further boosted by implementing
exchangeable fluorophore labels (26), which provide a
constant fluorescence signal for long imaging times.
For example, a previous study demonstrated that
DeepSTORM can accelerate DNA-PAINT imaging (25).

Here, we employ the NN DeepSTORM and use
HaloTag7 and exchangeable HaloTag ligands (xHTLs)
as direct protein labels (Fig. 1 A) (29). We reasoned
that high-density imaging with HaloTag7 (HT7) and
xHTLs and image prediction with DeepSTORM should
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FIGURE 1 Fast PAINT using HaloTags and exchangeable xHTLs (HT-PAINT) and a neural network. (A) Scheme of HT-PAINT in cells.
Exchangeable HaloTag ligands (xHTLs) are cell membrane permeable, fluorogenic, and provide a continuous fluorescence signal in PAINT
imaging. (B) The dynamics of cellular structures can be captured with HT-PAINT. Subsets of frames are used to generate a super-resolved
image. (C) High-density HT-PAINT prediction with DeepSTORM. (i) Experimental data with sparsely distributed emission events of single mol-
ecules are used to generate high-density training patches with precisely known localizations. (ii) Summed high-density patches are used to
train a DeepSTORM neural network. (iii) The trained model is used to predict super-resolution images from high-density HT-PAINT data. (iv)
DeepSTORM predicts a super-resolution image and (v) the localization lists can be extracted from the postprocessing of DeepSTORM. (vi) To
assess the quality of the predicted image, a GT data set with spatially isolated PSFs was measured from the same field of view and structural
similarity metrics were used to compare GT and predicted images. Scale bars, 5 mm.
reduce the acquisition time. A key feature of xHTLs is
that, in combination with fluorogenic rhodamine
dyes (44,45), these probes are cell permeable and
are applicable to live-cell imaging (29), which should
allow their use in visualizing the dynamics of cellular
structures in live cells with increased temporal resolu-
tion (Fig. 1 B).

To predict high-density SMLM data recorded with
HaloTag7-labeled proteins (HT-PAINT), we first trained
a DeepSTORM NN (21) using experimental training
data (Fig. 1 C). First, we recorded HT-PAINT data of
CRISPR vimentin-HaloTag7 in fixed U-2 OS cells with
a sparse emitter density (0.109 emitters/mm2) and
localized single fluorophore emitters using the Picasso
software (35). Small patches (16 px � 16 px) were
randomly selected from the low-density experimental
data set and summed up to generate high-density
training patches (1.3 emitters/mm2). The high-density
patches, together with the positions of the fluoro-
phores, were used to train a DeepSTORM model. We
trained two models with different upsampling factors:
for a first model, we applied an upsampling factor of
16 (model 16) to predict structures in fixed cells; for a
second model, we applied an upsampling factor of 8
(model 8) to predict structures in live cells. By applying
these DeepSTORM models on high-density HT-PAINT
4 Biophysical Reports 3, 100123, September 13, 2023
data sets, super-resolution images were predicted
and localization lists were extracted. To assess the
quality of predicted images, these were referenced to
a corresponding GT image obtained from low-density
imaging of the same field of view applying different
structural similarity metrics (Fig. 1 C).
Single model for various high-density SMLM targets

The model trained with an upsampling factor of 16
(model 16) was applied to predict SMLM images
from high-density HT-PAINT data of three cellular
structures, vimentin, TOM20 for mitochondria, and
CalR-KDEL for ER (Fig. 2) (the parameters used for
training and prediction are listed in Table S1). Cells ex-
pressing vimentin-HT7 were labeled with JF635-S5. A
low-density GT (25,000 frames) and a high-density
HT-PAINT data set (1000 frames) were recorded, and
a super-resolution image was predicted from the
high-density data set (Fig. 2 A). Visual inspection
shows a good similarity of the filament structure,
and a Pearson's correlation coefficient (PCC) of
0.474 was obtained. The spatial resolution was as-
sessed using decorrelation analysis (40) and yielded
21 nm (GT) and 20 nm (predicted), respectively.
HaloTag7 mutant dHT7 fused to a mitochondrial



FIGURE 2 Fast HT-PAINT of cellular structures. (A) Vimentin, (B) TOM20 (mitochondria), and (C) CalR-KDEL (endoplasmic reticulum) imaged
in fixed U-2 OS cells. For high-density HT-PAINT data, cells were labeled with 10 nM JF635-S5 (A and C) and 5 nM SiR-Hy4 (B). Wide-field images
and predicted super-resolution images were generated by the trained DeepSTORM model. For the prediction, high-density movies with 1000
frames were used; numbers indicate spatial resolution as determined through decorrelation analysis. The GT was measured with 1 nM xHTL
and localized from the same field of view with 20,000 frames (mitochondria) or 25,000 frames (ER) (vimentin). A single model trained with low-
density vimentin data is used to predict mitochondria and ER structures. Zoom-ins (i–vi) are shown for the ground truth and the prediction;
overlay images show the similarity of GT and prediction. The Pearson's correlation coefficients (PCCs) were calculated from the whole field of
view. Scale bars, 5 mm (overview) and 2 mm (zoom-in).
targeting sequence (TOM20) was expressed in U-2 OS
cells and labeled with SiR-Hy4, an xHTL that binds
preferable to dHT7 (29). Albeit that the SiR-Hy4 ligand
was not used for training the NN, the mitochondrial
structure was predicted with high structural similarity
to the GT, yielding a PCC of 0.748 (Fig. 2 B). Decorrela-
tion analysis yielded a spatial resolution of 20 nm
(GT) and 30 nm (predicted), respectively. To visualize
the ER, cells expressing CalR-HT7-KDEL were labeled
with JF635-S5, and a PCC of 0.748 was obtained
(Fig. 2 C). The spatial resolution was 25 nm (GT) and
30 nm (predicted), respectively. These data demon-
strate that a single trained model could be applied to
predict different cellular structures. Notably, the NN
was trained with data recorded for one xHTL only,
JF635-S5, and could be applied to structures labeled
with other xHTLs. We also analyzed the high-density
HT-PAINT data with a single-molecule localization
software, which was not capable of accurately recon-
structing the underlying cellular structures (Fig. S1).
In addition, we assessed the image similarity using
the MS-SSIM metrics (Fig. S2).
To assess how the quality of the predicted image
depends on the number of input frames, various image
similarity metrics were used (Figs. S3–S5). For that,
the localization lists obtained from a postprocessing
step in DeepSTORM were compared with the GT im-
age. The results indicate that, for the conditions
tested, 1000 input frames are sufficient to yield a pre-
dicted image with good quality, which translates to a
25-fold decrease in acquisition time.
Two-target and live-cell imaging

The data on single-target structure prediction indi-
cates that the trained model is independent of target
morphology. We then applied the model to two
different structures to perform dual-target multi-
plexing with HT-PAINT in the same cell (Fig. 3 A).
For that purpose, we used a cell expressing two
HaloTag7 mutants, HT7 and dHT7, that differ more
than 50-fold in their affinity for different exchangeable
ligands and allow selective two-target imaging in
cells (29). In the first step, we performed HT-PAINT
Biophysical Reports 3, 100123, September 13, 2023 5



FIGURE 3 Fast HT-PAINT of two targets and live-cell HT-PAINT. (A) Two-target HT-PAINT using orthogonal dHaloTag7 (TOM20, SiR-Hy4)
and HaloTag7 (CalR-KDEL, JF635-S5) with different xHTL specificity. Super-resolution images from the high-density HT-PAINT measurements
were predicted with DeepSTORM. Scale bar, 5 mm. (B) Live-cell HT-PAINT of CalR-KDEL-HaloTag7 labeled with JF635-S5 recorded for a total
time of 12.5 min at an integration time of 50 ms. Single super-resolved images were predicted from a subset of 400 raw image frames. Scale
bar, 2 mm. The yellow arrows point to dynamics in the ER structure. (C) Fluorescence signal stability during live-cell measurements shown as
normalized number of localizations per 100 frames.
of dHT7-tagged TOM20 labeled with SiR-Hy4. In the
second step, and after washing out the first xHTL,
CalR-HT7-KDEL was labeled with JF635-S5 and
imaged. The DeepSTORM NN was applied to these
high-density data, and two-target super-resolution im-
ages were generated by aligning the predicted images.

A key advantage of HaloTag7 and xHTL ligands is
their cell permeability and the possibility of live-cell la-
beling (29). We reasoned that HT-PAINT data recorded
in live cells should show an equal reduction in the
image acquisition time when used in conjunction
with DeepSTORM, which would increase the temporal
resolution. In addition, exchangeable xHTL should
enable observations for extended time periods without
signal loss, while their fluorogenicity suppresses back-
ground intensity.

To test this assumption, we recorded high-density
HT-PAINT data from a live cell expressing HT7-tagged
CalR-KDEL (ER) that was labeled with JF635-S5 (Fig. 3
B; Video S1). A total of 15,000 frames was recorded
(12.5 min) and analyzed with the model trained with
an upsampling factor of 8 (model 8), which accounted
for an increase in noise observed in live-cell imaging
data with a short integration time of 50 ms (see mate-
rials and methods). The parameters used for training
and prediction can be found in Table S2. Single su-
per-resolved images were predicted from 400 input
frames. We applied a sliding window and generated
predicted images at a step size of 20 input frames
(see materials and methods), yielding a video of su-
per-resolved snapshots with a temporal spacing of
1 s showing the dynamics of the ER in a live cell
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(Fig. 3 B; Video S1). Notably, the fluorescence signal
remained constant for the entire duration of the live-
cell imaging experiment (Fig. 3 C), confirming that
exchangeable xHTLs are efficient “renewable” target
labels for live-cell microscopy.
DISCUSSION

Although SMLM achieves nanometer spatial resolu-
tion, it suffers from slow imaging speed. Recently,
deep learning approaches such as DECODE (23),
DeepSTORM 2D (21), DeepSTORM 3D (21,22), and
ANNA-PALM (19) were developed to overcome
this limitation and to accelerate data acquisition
for SMLM.

In this article, we introduce a direct protein tag,
HaloTag7, in combination with weak-affinity and cell-
permeable ligands (29), which enable fast high-density
imaging in fixed and living cells. Using our approach,
wewere able to reduce imaging time for various cellular
structures without sacrificing the spatial resolution.
This is comparable with previous reports that used
NNs for image prediction from high-density imaging
data: for theDECODEnetwork, anaccelerationbyoneor-
der ofmagnitudewas reported (23), and DeepSTORM in
combination with DNA-PAINT achieves similar perfor-
mance (25).

Forfixed-cell imaging, the acceleration of SMLMdata
acquisition enhances the experimental throughput,
both in numbers of samples and sample size
(21,23,25). In addition, live-cell SMLM would profit
from such an increase in imaging speed, as it would



increase the temporal resolution. However, SMLMwith
covalent fluorophore labels imposes another limitation
to live-cell imaging, since the total observation time
would be limited by photobleaching. A solution here
is to employ live-cell compatible exchangeable fluoro-
phore labels, which “renew” the fluorescence signal
(26), and which were already shown to allow prolonged
observation times in live-cell STEDmicroscopy (27,30).
In this article, the availability of a live-cell compatible
protein tag, HaloTag7, in combination with exchange-
able fluorophore labels, xHTLs (29), allowed for high-
density SMLM (HT-PAINT) imaging in living cells for
extended observation times and without detectable
loss of signal. Compared with DNA-PAINT (25),
HT-PAINT shows similar performance in terms of
acceleration and spatial resolution; interestingly,
smaller differences for different xHTL concentrations
were observed (Figs. S3–S5). Taken together, high-
density HT-PAINT resulted in a temporal resolution
of seconds, while almost matching the spatial re-
solution of HT-PAINT in fixed cells. This demonstrates
that the dynamics of cellular structures are traceable
with SMLM methods by using a combination of
weak-affinity fluorophore labels and high-density
imaging, disentangling the so-far discussed interde-
pendency of spatial and temporal resolution for
SMLM (46,47).

Increasing the acquisition speed in DNA-PAINT
can also be achieved by modulating the binding
kinetics of DNA hybridization (16,18). High-density
HT-PAINT can match and, in some situations, exceed
the imaging speed achieved by these efforts; in
addition, it brings in the accessibility to intracellular
live-cell imaging, which DNA-PAINT has so far not
achieved. A live-cell-compatible variant that would
possibly allow high-density imaging is peptide-PAINT
(48). Another approach that achieved fast and long-
time SMLM of ER dynamics in live cells exploited the
shift of the on-off equilibrium of a self-blinking fluoro-
phore with polarity (49). This prolonged the observa-
tion time, yet still suffered from photobleaching. In
this work, we employ renewable fluorophores that
bypass photobleaching and ensure a constant fluores-
cence signal over time (Fig. 3 C). The temporal resolu-
tion reported by Takakura et al. (49) was achieved by
high-speed imaging in combination with high laser
intensities, which allowed increasing the readout fre-
quency. In our work, high-density PSF imaging at mod-
erate intensities in combination with a NN to localize
overlapping fluorophores, ensures the high temporal
resolution.

The implementation of other live-cell labels, e.g.,
membrane stains (50), protein-specific small-molecule
binders (51), or other weak-affinity protein labels that
might be tailored for SMLM (52), seem possible. The
combination with high-speed image acquisition (53)
could further increase the temporal resolution and
the throughput. Similarly, other NN-assisted methods
for fast super-resolution imaging can be combined
with live-cell high-density imaging, e.g., single-frame
super-resolution methods that build on fluctuation
analysis (20).

In conclusion, the combination of high-density im-
aging using exchangeable fluorophore labels and im-
age prediction using a NN increases the imaging
speed in fixed-cell and live-cell imaging up to 25-fold.
The experimental procedure can be implemented on
any SMLM microscope, without the need for specific
hardware. The DeepSTORM network is accessible
through the community effort ZeroCostDL4Mic (37).
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