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ABSTRACT: Machine-learning (ML) potentials trained with density functional theory
(DFT) data boost the sampling capabilities in first-principles global surface structure
determination. Particular data efficiency is thereby achieved by iterative training protocols
that blend the creation of new training data with the actual surface exploration process.
Here, we extend this to a staged training from small to large surface unit cells. With many
geometric motifs learned from small unit cell data, successively less new DFT structures in
computationally demanding large surface unit cells are queried. We demonstrate the fully
automatized workflow in the context of rutile RuO2 surfaces. For a Gaussian
approximation potential (GAP) initially trained on (1 × 1) surface structures, only
limited additional data are necessary to efficiently recover only recently identified
structures for the RuO2(100)-c(2 × 2) reconstruction. The same holds when retraining
this GAP for the (410) vicinal, the optimized structure of which is found to involve c(2 ×
2) reconstructed terraces. Due to the high stability of this structure, (410) vicinals appear
in the predicted Wulff equilibrium nanoparticle shape.

■ INTRODUCTION
First-principles surface structure determination has tradition-
ally been hampered by the high computational costs of the
underlying electronic structure calculations, prevalently
performed with density functional theory (DFT) and using
periodic boundary condition (PBC) supercells. These costs led
to severe limitations in the sampling capabilities of the
underlying potential energy surface (PES). Typically, this
sampling only involved the local geometry optimization of a
batch of trial structures, which are motivated by incomplete
experimental characterization or the chemical intuition of the
researcher. Whether the true global PES minimum correspond-
ing to the most stable structure is found or not depends,
critically, on the selected trial structure batch.
Even worse, detailed geometric insight is most desirable for

non-trivial surface structures like reconstructions or (extended)
defects including steps or facet edges. Such structures generally
need to be described in large surface-area supercells. The
exceeding costs of the corresponding DFT calculations then
further restrict the sampling (often permitting only a handful
of trial structures), while at the increased dimensionality of the
PES, ever more extensive sampling is likely necessary to
identify the global minimum structure. Till recently, seminal
rare attempts to overcome the sampling limitations of first-
principles structure determination by state-of-the-art global

geometry optimization techniques have been restricted to
rather small unit cell size problems and were possibly at the
reliability edge of the employed technique.1−7 The computa-
tional costs dictated, e.g., ultrafast cooling rates in simulated
annealing or only limited minima exploration in basin or
minima hopping.
Fortunately, this stalemate is now overcome by the advent of

machine-learning interatomic potentials (MLIPs).8−13 The
high-cost DFT calculations serve to efficiently train the MLIP
as a reliable PES surrogate that ideally maintains the
underlying DFT predictive quality.14 The actual sampling is
then performed on the lower-cost surrogate model, typically
allowing to increase the number of PES evaluations by several
orders of magnitude. Several studies have already heralded the
prospects of this MLIP-based first-principles surface structure
determination approach for increasingly complex systems.15−19

Most data-efficient with respect to the required DFT
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calculations are the emerging active-learning strategies that
iteratively extend the DFT training set by promising surface
geometries that are identified in the ongoing PES sam-
pling.20−24 Of particular interest especially for the determi-
nation of complex large surface-area structures is to achieve
maximum training of the MLIP while sampling a suitable (sub-
)space of smaller surface-area structures. When extending the
PES search to the larger surface-area cells of true interest, only
a minimum number of additional DFT calculations for such
computationally demanding structures are then needed to
refine the MLIP training and achieve an accurate PES
surrogate for the global optimization.
Here, we demonstrate and assess this concept in the context

of rutile RuO2 surfaces. Significant work has been dedicated to
this metallic oxide not least because of its activity in thermal
and electrochemical oxidation catalysis.25−28 Despite a
plethora of studies, surprisingly many questions nevertheless
remain for the detailed surface geometries exposed under the
various reaction conditions. Only quite recently, and using
MLIP-based global structure determination, did some of us
identify a new complexion-type surface structure for the
RuO2(101) facet even in the seemingly trivial space of (1 × 1)
surface unit cells.16,22,29 As explicitly validated by the
experiment, the high stability of this complexion under
strongly reducing conditions then leads to a preferred growth
along this crystallographic orientation.16 Similarly, and even
more recently, Hess et al.7 finally resolved a long-time
enigmatic c(2 × 2) reconstruction of the RuO2(100) facet
that is believed to be behind the observed deactivation of the
catalyst under O-rich CO oxidation reaction conditions25,30−32

This study was a tour-de-force using in parts direct DFT-based
simulated annealing with a concomitantly rather drastic
quenching and in parts manual construction of trial structures.
Revisiting this problem within an active-learning MLIP-
strategy allows not only to test and validate our small-to-
large surface area training protocol, but also to increase the
confidence in the direct DFT-based findings.
Indeed, we can fully confirm the findings of Hess et al.

within a massively increased and fully automatized sampling,
while simultaneously spending a dramatically reduced amount
of CPU time. This low computational cost allows us to further
extend the iterative learning and readily study the implications
of the c(2 × 2) reconstruction on the structure of the (110)/
(100) facet edge�a large surface-area problem that would be
completely intractable by direct DFT-based global structure
determination. In fact, the high stability of the identified edge
structure even changes the predicted equilibrium RuO2
nanoparticle structure with corresponding (410) vicinals
appearing in the Wulff shape, exactly as reported in high-
resolution electron microscopy studies.33

■ METHODS
Gaussian Approximation Potential. Gaussian approx-

imation potentials (GAPs) are a widely used class of MLIPs
based on a sparse variant of Gaussian process regression.8,11,34

The specific GAP employed in this work is analogous to the
one of our previous work,22 where we described the formalism
as well as the iterative-training protocol for (1 × 1) surface unit
cells in detail. We therefore content ourselves here with only a
brief recap for self-containment and refer to the previous work
for details.
As a PES surrogate, the GAP calculates the total energy EGAP

of the system from its atomic coordinates Xn as

(1)

It thus consists of a two-body (2B) E2B and a many-body
(MB) EMB energy contribution, which result from a sum over
all pairs of atoms i, j and a sum over all atoms i in the system,
respectively. The second sum in both contributions goes over a
set of M2B/MB representative data points and includes the
regression coefficients cm,2B/MB and the kernel basis functions
k2B/MB. The k2B/MB measure the similarity between two local
geometric descriptors (representations) computed from Xn. In
the 2B contribution, these descriptors are simply the
interatomic distances rij up to a specified cutoff radius rcut
that enter a squared exponential (Gaussian) kernel. In the MB
contribution, the descriptors are translationally, rotationally,
and permutationally invariant vectorial representations of the
local atomic environment χi based on the smooth overlap of
atomic positions (SOAP)35 that enter a second-order
polynomial kernel. All technical hyperparameters, including
the relative weights of the two contributions, δ2B/MB, the
SOAP, and kernel parameters, as well as the force-locality
derived radial cutoff rcut, cf. Figure S1, are tabulated in Table
S1, with all details of the hyperparameter selection process
described in ref 22.
To train the GAP with DFT data, an iterative refinement

workflow is used.22 This workflow starts with an initial minimal
set of training structures composed by the researchers.
Different canonical global geometry optimization runs
spanning a wide range of surface stoichiometries within the
targeted surface unit cell are then conducted based on the
resulting preliminary GAP. The structures generated this way
are compared to each other and to those already in the training
set via a kernel distance

(2)

Instead of averaged similarities of the atomic environments
in two configurations A and B,36,37 this kernel checks on the
presence of a single hitherto unknown atomic environment by
evaluating the minimal similarity kMB(χa, χb) between any two
atoms a ∈ A and b ∈ B. κcrit = 0.075 is employed as a system-
specific parameter to deem a new configuration sufficiently
different to be added to the training set after local DFT
optimization. After the corresponding augmentation of the
training set, the next refinement cycle continues by retraining
the GAP and subsequent new global geometry optimization
runs. Further cycles are repeated until either no new unknown
structures are identified or the out-of-sample error of the last
structures added to the training set decreases below a threshold
value. As only a small number of structures is added to the
training set in each refinement cycle, this out-of-sample error
assessed in the form of the root mean square error (RMSE) in
energies and forces with respect to the DFT references shows
strong fluctuations, cf. Figure S5. We therefore use an
exponential moving average (EMA)19
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(3)

with EMA(0) = RMSE(0) to evaluate the convergence of the
training procedure in refinement cycle i ≥ 1. We deem the
GAP to have attained convergence once the EMA drops below
8 meV/atom for energy and 0.15 eV/Å for forces. Having
intertwined the GAP training and the actual MLIP-based
global geometry optimization, the final set of training
structures constitutes also already the outcome of the surface
structure search, if the training was stopped because no further
unknown structures were found. If the training was stopped
because a low EMA indicates that the GAP has learnt all local
geometry motifs sufficiently well, we also compute all lowest
energy structures found in subsequent global geometry
optimization runs explicitly with DFT. In either case, all
lowest-energy structures discussed in the text correspond to
geometry-optimized DFT structures and their energetics.
Simulated Annealing. The MLIP-based global geometry

optimization is performed via molecular dynamics (MD)-based
simulated annealing (SA). The MD simulations are carried out
with the LAMMPS code,38 using the velocity Verlet
algorithm39 and 1 fs time steps. Exploiting the small volumetric
thermal expansion coefficients for RuO2,

40 we employ a
canonical NVT ensemble, controlling the temperature with an
efficient Berendsen thermostat.41 In the actual SA protocol, the
structures are heated from 200 to 1000 K and then quenched
back to 200 K with a constant heating and cooling rate of 1.6
K/ps. After each SA, the resulting finite-temperature structure
is fully optimized through conjugate gradient minimization
with the same convergence threshold as used for DFT
calculations described next.
In particular for the rugged (410) vicinal supercells, there is

a tendency that stable RuO4 units desorb from the surface
during the highest temperature part of the SA. We suppress
this with a harmonic repulsive potential that starts at the
topmost layer of the surface slab and rises to a value of 10 eV
at 10 Å above the surface. This potential is gradually reduced
during the cool-down process of the SA, so that it is no longer
present at the end of the cool down and beginning of the
geometry optimization. By construction, this confinement
potential has therefore no impact on the final structures and
their energetics, while fully allowing for any mass transfer of
surface species in lateral directions during the high-temper-
ature part of the SA.
Density Functional Theory. All DFT calculations are

performed using a plane-wave basis set and SG15 optimized
norm-conserving Vanderbilt pseudopotentials42 as imple-
mented in the Quantum Espresso software package.43 The
semi-local revised Perdew−Burke−Ernzerhof (RPBE)44 func-
tional is used to describe electronic exchange and correlation.
The kinetic cutoff energy for the expansion of the wave
function is set to 80 Ry, while that of the charge density is set
to 320 Ry. Brillouin-zone integrations are carried out on a grid
of k-points with reciprocal distances of 0.02 Å−1, producing an
(11 × 11 × 16) k-point grid for bulk rutile RuO2. Optimized
lattice parameters for bulk RuO2 are obtained by minimizing
the stress tensor and all internal degrees of freedom until the
external pressure falls below 0.5 kbar. Geometry optimization
for all slab calculations employs Broyden−Fletcher−Gold-
farb−Shanno (BFGS) minimization45−47 until residual changes
in total energy and all force components fell below 1.4 × 10−2

meV and 0.3 meV/Å, respectively. The high numerical

convergence achieved with these computational settings has
been demonstrated in ref 22.
All surface calculations are performed using PBC supercell

geometries, with a minimum vacuum separation of 20 Å.
Symmetric slab models involving at least seven trilayers of
RuO2 units were employed in the previous work that
established the GAP for the surface structure determination
within the sub-space of (1 × 1) surface unit cells of all five low-
index rutile facets.22 This GAP is the starting point of the
present investigation of the larger c(2 × 2)-RuO2(100) surface
unit cell and the (100)/(110) facet edge. For the DFT
calculation of corresponding c(2 × 2)-RuO2(100) structures
identified in the iterative-training protocol, we employed
symmetric slabs with at least 13 trilayers and a minimum
vacuum region of 20 Å. The facet edge is described within
either a (1 × 1)- or (2 × 1)-(410) surface unit cell with a
minimum thickness of 20 Å and the same 20 Å vacuum region.
The size of the (100) facet in the (2 × 1) surface unit cell is
then large enough to establish c(2 × 2) structures. PES barriers
to achieve the c(2 × 2) reconstruction are calculated via the
machine learning accelerated nudged-elastic band (NEB)
method AIDNEB.48−50 These barriers are computed with a
maximum uncertainty of the AIDNEB-internal surrogate
model of 0.02 eV until a convergence of the forces on the
climbing image of less than 0.03 eV/Å.
Ab Initio Thermodynamics. To assess the relative

stability of surface structures with differing chemical
composition, we adopt the ab initio thermodynamics
approach.51,52 Specifically, we consider the surfaces to be in
thermodynamic equilibrium with an oxygen-containing gas
phase and calculate the surface free energy of a structure
with specific Miller index (hkl) and chemical composition νs as

(4)

Here, is the Gibbs free energy of the surface system
described by a symmetric slab in a supercell with surface unit
cell area A(hkl). The chemical composition is described by νs,
the number of atoms of various species s (=Ru, O), and μs is
the chemical potential of the species s present in the system.
Assuming the surface to be in equilibrium with the

underlying bulk rutile RuO2 constrains the chemical potentials
of Ru and O to the Gibbs free energy (per formula unit) of
RuO2 bulk (i.e., ). In turn, the chemical
potential of O is set by the equilibrium with the surrounding O
gas-phase reservoir to . Here, EO is the total
energy of an isolated O2 molecule, including zero point energy
(ZPE) contributions.53,54 The relative O chemical potential
ΔμO depends on the finite temperature T and pressure p by
assuming the gas phase molecule as an ideal-gas like
reservoir.51,52 Lastly, in the difference of eq 4, the
condensed-phase Gibbs free energies can be approximated by
the DFT-computed total energies. In total, this allows to
reformulate eq 4 to its working form

(5)
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The thermodynamically most stable surface structure for any
given facet orientation (hkl) at any given ΔμO results as the
one with the minimum surface free energy. Combining the
minimum surface free energies of various facet orientations
within a Wulff construction55−58 allows to predict the
equilibrium nanoparticle shape under the corresponding gas-
phase conditions.

■ RESULTS AND DISCUSSION
RuO2(100)-c(2 × 2) Reconstruction. The starting point

of our iterative refinement workflow for the MLIP-based
structure search for the c(2 × 2) reconstruction is the GAP
trained in our previous work for the sub-space of low-index
RuO2-(1 × 1) surfaces.22 This GAP in turn was itself the
outcome of an iterative refinement. Its training was boot-
strapped with a DFT training set comprising atomic
information, gas phase O2 dimer data with varying O−O
bond lengths, and rutile RuO2 bulk unit cells at optimized and
constrained lattice constants with both optimized and
displaced internal coordinates. The set also contained all
inequivalent (1 × 1) surface structures that result from simple
bulk truncation at various crystal planes,59 where each time
both the bulk truncated and the locally DFT optimized
geometry was added to the pool. The iterative refinement
proceeded in nine cycles and was terminated because no
further unknown structures were found. In total, the SA runs
identified 63 new surface structures, for 43 of which the
protocol queried a subsequent DFT geometry optimization.
The bulk of the CPU cost for training thus amounted to these
DFT relaxations of (1 × 1) slabs.22
Bulk truncation of rutile RuO2 at different planes along the

(100) orientation gives rise to three (1 × 1) surface
terminations with differing relative O/Ru stoichiometries:
one metal-rich, one stoichiometric and one oxygen-rich
termination. From the perspective of a c(2 × 2) aka

surface unit cell, these three relative
stoichiometries can be described as a metal-rich termination
with a 0% (metal-rich, νO = 2νRu − 2), 50% (stoichiometric, νO
= 2νRu), and 100% (O-rich, νO = 2νRu + 2) additional O

coverage. In terms of relative O/Ru stoichiometries, the
doubled surface area of the c(2 × 2) cell thus allows for
intermediate surface compositions with 25% (νO = 2νRu − 1)
and 75% (νO = 2νRu + 1) additional O coverage. Note that for
the sake of the chemical picture, we specified the various νi for
one surface only. In the case of symmetric slabs with two
equivalent surfaces, these numbers need to be adapted to
match eqs 4 and 5 above.
Mirroring the above-described bootstrapping, we kick-start

the GAP for the c(2 × 2) structure search by adding the ideal
and the subsequently DFT geometry-optimized structure of
the two new intermediate surface compositions (25 and 75%)
to the training set. Essentially, the ideal structures result from
removing three or one O atom(s) from the O-rich bulk-
truncated (1 × 1) termination described in a c(2 × 2) cell,
respectively. Each refinement cycle then spans five parallel SA
runs for the five surface compositions (0, 25, 50, 75, and
100%). After 10 cycles, no further new structures are found
and the refinement is considered converged. In total, 18 new
symmetry-inequivalent structures with c(2 × 2) symmetry were
found across all 5 compositions.
Figure 1 compares the relative stabilities of all these new and

the previously known (1 × 1) structures from ref 22 within a
surface phase diagram. In the assumed equilibrium with a
surrounding oxygen gas phase, metal-rich surface compositions
(νO < 2νRu) have a positive slope with increasing O chemical
potential, while O-rich surface compositions (νO > 2νRu) have
a negative slope. We note that our iterative refinement
workflow involves the DFT geometry optimization of all newly
identified structures. Figure 1 is completely based on DFT
energetics. As can be seen, multiple new structures within the
0% surface composition class (most positive slope) are
significantly more stable than the conventional metal-rich (1
× 1) termination that results after bulk truncation and local
optimization. Eventually, the most stable of these new
structures becomes even more stable than the conventional
stoichiometric (1 × 1) termination at low O chemical
potentials. However, the latter happens only at ΔμO far

Figure 1. (Left) Surface free energies as a function of the oxygen chemical potential ΔμO for all previously known RuO2(100)-(1 × 1)
terminations (solid lines) and the new structures (dashed lines) identified here. The O-poor limit below which bulk rutile RuO2 is unstable is
indicated by a vertical dotted line.51 In the upper x-axis, the chemical potential dependence is converted into a temperature dependence at given
oxygen pressure. Three structures that are most stable in a range of O chemical potential above the bulk stability limited are highlighted in color:
the conventional (1 × 1) stoichiometric termination (blue line), the c(2 × 2)-* structure (yellow line), and the c(2 × 2)-O structure (red line).
(Right) Top and side views of these three structures. Ru and O atoms are depicted as large gray and small red spheres, respectively.
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below the O-poor limit, indicating the stability boundary of
bulk rutile RuO2.
Much more relevant are therefore two new O-rich structures

found within the 75 and 100% surface composition class
(negative slopes), which we will henceforth denote as O-rich
c(2 × 2)-* and O-superrich c(2 × 2)-O. For a range of ΔμO
above the O-poor limit, i.e., within the stability range of bulk
rutile RuO2, these two structures exhibit the lowest surface free
energies and would correspondingly be identified as
thermodynamically most stable in corresponding gas-phase
conditions. Top and side views of these two c(2 × 2)
reconstruction models are also shown in Figure 1. A visual
comparison suggests that these are indeed exactly the same two
structures that were also identified in the direct DFT-based
global optimization work of Hess et al.7 This perception is
quantitatively confirmed by the evaluated negligible kernel
distance of 0.006, cf. eq 2, between the respective O-rich c(2 ×
2)-* structures (unfortunately, no structure file for the O-
superrich c(2 × 2)-O was provided in ref 7). To further
facilitate the comparison to the previous work, we have added
the same labels for the varying prominent surface O and Ru
atoms into the structure views in Figure 1 as those used by
Hess et al.7 As discussed there, the high stability of the
reconstructions results from the formation of a tetrahedral Ru4f
surface complex, a motif that is well known as a highly stable
molecule under oxidative conditions.60

Hess et al. also employed MD-based simulated annealing for
their PES sampling. As this was directly performed with DFT,
the excessive computational cost of the corresponding ab initio
MD simulations forced them to apply an ultrafast quenching
with a cooling rate about 500 times faster than ours (825 vs 1.6
K/ps). In total, they could also only afford three SA runs, at
surface compositions 50, 75, and 100%. Even though they thus
spent a total of 33,000 DFT single-point calculations of c(2 ×
2) surface slabs for the total number of MD steps in all three
runs, this only yielded the O-rich c(2 × 2)-* structure as a
result of the 75% SA run. The O-superrich c(2 × 2)-O
structure was subsequently manually created by adding one
more O at the undercoordinated Ru4f atom of the O-rich c(2 ×
2)-* structure. In contrast, the present MLIP-based approach
found both structures without human interference and
spending only a total of 1307 DFT single-point calculations
of c(2 × 2) surface slabs during the geometry optimizations of
new structures in the bootstrapping and refinement cycle
starting from the (1 × 1) GAP-potential from ref 22. Even if
one generously accounts for the CPU time spent in the
training of this preceding (1 × 1) potential using undemanding
smaller unit cells, this is a reduction in the CPU cost at least by
∼90%. At the same time, the iterative MLIP-based structure
search affords a qualitatively increased PES sampling with
multiple SA runs for each surface composition and much
milder temperature protocols. Indeed, to highlight the benefit
of this, we used the converged GAP for two final SA runs at
surface compositions 75 and 100%. While during the prior
experiment, the O-rich c(2 × 2)-* structure formed readily
after 50.7 ps (corresponding to a temperature of ≈280 K), the
O-superrich c(2 × 2)-O structure formed in the latter run only
after 467.4 ps at around 900 K. Considering that the entire SA
runs of Hess et al. only lasted 13.2 ps, this could rationalize
why the latter structure could not be found in their search.
We stress though that the high computational efficiency of

our iterative MLIP refinement workflow results in part from its
clear focus on global geometry optimization. The resulting

GAP is by no means necessarily a comprehensive PES
surrogate model. It is deliberately only trained to accurately
cover (energetically low-lying) PES minima. Barrier regions
should only be described to a level that they can be overcome
in MD-based global optimization like simulated annealing. We
illustrate this here with the minimum energy profile for the
formation of the c(2 × 2)-* reconstruction. Mechanistically,
this formation may be initiated by the adsorption of an
additional O atom atop an undercoordinated Ru5f atom of the
(1 × 1) stoichiometric termination. A neighboring Ru5f then
shifts laterally to form a new bond with this top O atom.
Breaking two Ru−O back bonds to lattice oxygen atoms leads
to the creation of the tetrahedrally coordinated Ru4f complex.

7

If this process is modeled in a c(2 × 2) surface unit cell, this
corresponds to the entire surface flipping into the reconstruc-
tion at once. We therefore also consider a larger c(4 × 4)
surface unit cell, where four such complexes can be formed one
at a time. The DFT-calculated barriers for the collective flip in
the c(2 × 2) cell, as well as the first and fourth flip in the c(4 ×
4) cell, are contrasted to the barriers calculated with the
converged GAP in Table 1, with the detailed energy profiles

shown in Figure S3. While the barriers for the three different
mechanisms do not vary much and are reasonably low to
rationalize a fast kinetics towards the reconstruction, the
corresponding GAP barriers agree only at best semi-
quantitatively. Care has to be taken not to misinterpret the
trained GAP as a general-purpose force field for RuO2. On the
other hand, nothing would conceptually prevent the present
iterative refinement workflow to be adapted from minima to
transition state search. Finally, we note in passing that our
DFT barriers for this process are substantially lower than the
one reported earlier by Hess et al. (0.92 eV),7 a discrepancy
which we tentatively attribute to an omission of the factor of
two in their symmetric slab calculations with two surfaces.
RuO2(110)/(100) Facet Edge. The demonstrated high

computational efficiency of the iterative training workflow
should in principle increase further when moving to even larger
surface-area problems, as the GAP trained up to this stage has
already learned quite a variety of local geometric motifs. As
long as the large surface-area problem addressed does not
heavily draw on completely new motifs, only a restricted
number of additional and costly DFT training structures in the
large surface-area supercell should then be required to
accurately sample the new problem with the surrogate
potential. We demonstrate this idea for the RuO2(110)/
(100) facet edge. The detailed atomic structure of this edge is
of particular interest, as high-resolution transmission electron
microscopy images indicated the presence of a (410) vicinal
between the (110) and (100) facets of high-temperature air-

Table 1. Energetic Barriers for the Formation of the c(2 ×
2)-* Reconstruction through Flipping into a Ru4f Complex
as Calculated by DFT and the Converged GAPa

energy barrier (eV)

collective flip first flip fourth flip

DFT 0.43 0.40 0.45
GAP 0.16 0.14 0.10

aSee text for the three mechanisms considered in different surface unit
cells. The at best semi-quantitative agreement highlights that the GAP
trained for geometry optimization should not be misinterpreted as a
general-purpose RuO2 force field.
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calcined (900 °C) RuO2 nanoparticles that showed an
improved selectivity for the chlorine evolution reaction.33

Figure 2 shows side views of bulk-truncated (1 × 1) surface
unit cells of the (410) vicinal. The metal layers in this

orientation are either comprised of RuO6 octahedra pointing
with their apical axis into the (110) direction or of RuO6
octahedra pointing with their apical axis into the (11̅0)
direction. Depending on the truncation, this thus gives rise to
the two different O-rich terminations shown in Figure 2a,b. By
successively removing up to 8 surface O atoms in either of
these two terminations, a total of 18 different terminations can
be created that span the entire range of relative O−Ru
stoichiometries possible within this surface unit cell before the
next layering starts. Note that it does not matter which specific
or which combination of O atoms are removed, as there is

sufficient mass transport during the high-temperate part of the
SA global geometry optimization. Our GAP refinement cycles
thus comprise SA runs for each of these 18 relative
stoichiometries. After 9 cycles, a low out-of-sample error
signals that the GAP has learned all local geometry motifs
occurring in this surface unit cell sufficiently well. We then
double the size to a (2 × 1) cell, which is the smallest possible
cell size that would allow for the formation of the c(2 × 2)
reconstruction on (100)-oriented mini-facets. Again covering
all relative stoichiometries possible in this (2 × 1) cell, the out-
of-sample error stop criterion is reached after another seven
refinement cycles. Despite the drastically increased size of
these structures, in total, only another 2060 and 1000 DFT
single-point calculations for (1 × 1)- and (2 × 1)-(410) slabs
were queried for geometry optimizations of new training
structures during these refinements, respectively. Even though
the GAP is then trained sufficiently, new structures are still
continuously found in further SA runs. However, these
structures only correspond to energetically essentially degen-
erate rearrangements of the same geometric motifs in the huge
possible phase space of (2 × 1) surface unit cells. While the
energetics discussed in the following is thus converged, the
specific structures shown should therefore only be seen as
representative for a corresponding entire class of structures
featuring the various geometric motifs.
Figure 3 compares the surface free energies of the most

stable structures identified in the global geometry optimization
over the relevant range of oxygen chemical potentials.
Specifically, we compare the results obtained in the (2 × 1)
surface unit cell with those obtained in the more restricted (1
× 1) cell. As apparent, the larger cell allows to stabilize new
structures that are significantly more stable. In detail, there are
three structures (or better energetically degenerate structure
classes) that are each most stable over a certain ΔμO-range.
The representative structures for each class shown in Figure 3
reveal that the stabilization is in all cases due to the formation
of the tetrahedral Ru4f motifs that are also the stabilizing core
of the afore discussed c(2 × 2)-(100) reconstruction. In the
first structure stable up to ΔμO = −0.87 eV, protruding Ru
surface atoms sink down to form an additional bond to a sub-

Figure 2. Side views of bulk-truncated (1 × 1) O-rich RuO2(410)
surfaces. (a) Termination with the topmost layer comprising RuO6
octahedra pointing with their apical axis into the direction. (b)
Termination with the topmost layer comprising RuO6 octahedra
pointing with their apical axis into the (110) direction. Both
terminations exhibit alternating micro-facets in (100) and (110)
direction, as indicated by yellow and blue lines, respectively. Oxygen
atoms that are successively removed to create different relative
stoichiometries for the SA runs are marked with green crosses (see
text). The bulk unit cell with lattice parameters a and b is shown as a
black square, and (400) and (010) vectors are shown as dashed black
arrows. Ru and O atoms are depicted as large gray and small red
spheres, respectively.

Figure 3. (Left) Surface free energies for the (410) vicinal as a function of the oxygen chemical potential ΔμO. Results obtained after global
geometry optimization in the (2 × 1) (solid purple line) and in the restricted (1 × 1) (dashed purple line) surface unit cells are shown. In each
case, only the surface free energy of the most stable structure is drawn at each chemical potential. Kinks in the line thus indicate a change to another
structure with a different relative oxygen−Ru stoichiometry. The O-poor limit below which bulk rutile RuO2 is unstable is indicated by a vertical
dotted line.51 In the upper x-axis, the chemical potential dependence is converted into a temperature dependence at given oxygen pressure. (Right)
Side views of three representative stable (2 × 1)-(410) structures highlighted on the left. Ru and O atoms are depicted as large gray and small red
spheres, respectively.
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surface O atom, exactly as in the c(2 × 2)-* reconstruction, cf.
Figure 1�thereby smoothening out the corrugation of (110)
and (100) microfacets. At higher oxygen chemical potentials,
the other two structures then exhibit additional tetrahedral
Ru4f complexes as in the c(2 × 2)-O reconstruction. These
complexes are bound to the surface via either two or three O
vertices. In particular, the two-vertex motif has recently been
proposed as an intermediate species in the anodic corrosion
process.61 Its increased occurrence in particular in the structure
class that is most stable at the higher chemical potentials, ΔμO
> −0.17 eV, would then point to a particular role of the (110)/
(100) facet edge in the decomposition process.
Implications for the Wulff Particle Shape. The strong

reduction of the (100) and (410) surface free energies induced
by the c(2 × 2) reconstructions, cf. Figures 1 and 3, should
have bearings on the equilibrium shape of RuO2 nanoparticles.
The corresponding shapes have been computed through a
Wulff construction by Wang et al.66 This study systematically
considered all five symmetry-inequivalent low-index rutile
facets and all possible (1 × 1) bulk-truncated terminations at
them. Locally geometry optimizing these structures by direct
DFT calculations, the surface free energies were obtained
within the same ab initio thermodynamics approach as also
used here. Figure 4 shows Wulff shapes at varying oxygen

chemical potentials that we obtain with the present computa-
tional setup and drawing on exactly the same set of structures,
plus also the 18 locally geometry optimized (1 × 1) structures
that were employed to start the SA runs for the (410) vicinal.
The shapes obtained are essentially identical to those reported
by Wang et al., with minor quantitative differences mostly
arising from the different DFT exchange−correlation func-
tional employed by them (PBE67 vs the RPBE functional
employed here).
Overall, there is a strong change in the predicted equilibrium

shape toward more O-rich conditions. An octagonal cross
section at O-poor conditions gradually transforms into a
quadratic cross section, which goes hand in hand with a change
from a more columnar to an ultimately lenticular crystal habit.
The main driver for this is the strong lowering of the surface
free energy of O-rich (111) structures with increasing O

chemical potential, as shown in Figure S6 in the Supporting
Information. While the capping facets in the O-poor limit are
predominantly {101}, only {111} facets are thus eventually
exhibited at all at O-rich standard conditions, cf. Figure 4.
Notably, the {410} vicinal only appears with a negligible share
of the nanoparticle surface in a very small range around ΔμO =
−0.63 eV. Under any more O-poor conditions, the apical facets
are exclusively formed by directly touching {110} and {100}.
The predicted shapes can be compared to a range of

experiments that used different calcination pretreatments and
characterized the resulting RuO2 crystal shapes by electron
microscopy.33,62−65 The specific ΔμO-values chosen in Figure
4 correspond to these pretreatment conditions. By and large,
the predicted shapes are consistent with the experimental ones
obtained under more O-poor conditions, i.e., at ΔμO = −1.19
eV62,63 and ΔμO = −1.02 eV.33 However, neither do the Wulff
shapes exhibit the experimentally observed pronounced share
of {410} lateral facets and the concomitant irregular octagonal
shape in this ΔμO-range, nor was the predicted strong change
to fully lenticular habit seen in the experiments with more O-
rich pretreatments.65 While in the latter, lower temperature
calcination the experimental shapes could still partially be
affected by kinetics, Wang et al.66 suspected in their original
study that the omission of the at the time structurally unknown
c(2 × 2) reconstruction could be behind these differences
between computed and measured nanoparticle shapes.
Figure 4 also shows the predicted Wulff shapes, if the most

stable (100) and (410) structures identified by global
geometry optimization in this study are additionally consid-
ered. Indeed, the c(2 × 2) reconstruction motif thus taken into
account has an effect and brings the computed shapes into
better agreement with experiment. {410} vicinals are now
strongly present as lateral facets for the most O-poor chemical
potentials, leading to an irregular octagonal cross section. In
addition, the strong (100) surface free energy reduction due to
the c(2 × 2)-O structure, cf. Figure 1 and S7 in the Supporting
Information, stabilizes the presence of these facets in the Wulff
shape up until the highest ΔμO, thereby delaying the complete
switch to lenticular habit. Indeed, {410} vicinals exhibiting the
two-vertex bound Ru4f motif, cf. Figure 3, also have a more
pronounced share at these most O-rich conditions, supporting
the suggestion of Hess and Over61 that these species play a role
in the anodic corrosion process. Now that structural models
are established for this (110)/(100) facet edge, future detailed
mechanistic studies may hence develop an atomic-scale
understanding of this degradation, as well as of the connection
of this edge with the improved chlorine evolution reaction
selectivity reported for the high-temperature, O-poor calcined
RuO2 nanoparticles of Jirkovsky ́ et al.33

■ CONCLUSIONS
Using ML interatomic potentials as surrogates for first-
principles DFT calculations strongly boosts the sampling
capabilities in predictive-quality global surface structure
determination. However, this boost only becomes effective, if
the total human and CPU time invested into the generation of
the first-principles training data remains low compared to the
costs incurred in a direct DFT-based sampling. The resulting
imperative of high data efficiency is difficult to reconcile with
static a priori created data bases, given that the objective of the
sampling is to identify yet unknown geometric motifs. Iterative
or active learning protocols address this by querying new DFT
training data and refining the surrogate potential whenever the

Figure 4. Equilibrium Wulff nanoparticle shapes computed from
surface free energies of all five low-index facets and the (410) vicinal,
using (top) locally geometry optimized (1 × 1) structures and
(bottom) global geometry optimized structures (see text). Five
indicated O chemical potentials correspond to the calcination
pretreatment conditions used in experiments by Rosenthal et al.:
1073 K, 1 bar,62,63 Jirkovsky ́ et al.: 873 K, 0.1 bar,33 Lee et al.: 773 K,
1 bar,64 and Narkhede et al.: 573 K in 0.1 bar,65 as well as at standard
conditions of 300 K and 1 bar, from left to right.
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global optimization process identifies new geometric motifs
not yet appropriately captured in the data set. This way, the
algorithm focuses the CPU-expensive DFT calculations on
those structures really needed.
Here, we have further considered that the CPU cost rises

strongly with the size of the training structure that needs to be
computed. In surface structure determination, this applies
particularly to large surface unit cell problems that then require
huge supercell calculations. We correspondingly extended our
previously described iterative training protocol to proceed in
stages, where much of the ML surrogate training occurs already
during the initial sampling of small unit cell problems. With
many geometric motifs thus already learned from such
inexpensive small unit cell training data, less data queries and
refinement are then necessary during the sampling of the
exploding phase space of larger surface unit cell problems.
We have illustrated this automatized approach by applying

and refining our previously reported GAP potential trained on
RuO2(1 × 1) low-index surface structures to first explore
(100)-c(2 × 2) cells and then (410)-(1 × 1) and -(2 × 1) cells.
For both the prior low index and the latter vicinal, a
reconstruction involving tetrahedral Ru4f motifs proves critical.
This long time enigmatic reconstruction motif had only
recently been identified in a mixture of direct DFT-based
global optimization and handmade extensions and we here
recover it fully automatically at a minute fraction of the CPU
cost. The concomitant strong lowering of the surface free
energy of both surfaces over a wide range of O chemical
potentials extends their presence on the surface of Wulff
equilibrium nanoparticles and leads to an improved agreement
of the predicted shapes with experimental data. Notably, the
(410) vicinal is stabilized as a facet edge between lateral (110)
and (100) facets. While the established structural motifs at this
edge can serve as the basis for future mechanistic studies on
the reported role of this edge in anodic corrosion and in
improved selectivities, the degeneracy of structures involving
these motifs could also be relevant. The GAP refinement for
these larger surface unit cell problems stopped as no further
new geometric motifs were identified. However, in particular
for the largest (410)-(2 × 1) cell, the global geometry sampling
continued to find more and more structures that all involved
different arrangements of the same c(2 × 2)-reconstruction
motifs. At finite temperatures, all these energetically essentially
degenerate structures will be visited and the concomitant
structural fluxionality of the facet edge might be key to its
function.
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