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Abstract

Metal cations are essential to life. About one-third of all proteins require metal cofactors to

accurately fold or to function. Computer simulations using empirical parameters and classical

molecular mechanics models (force fields) are the standard tool to investigate proteins’ structural

dynamics and functions in silico. Despite many successes, the accuracy of force fields is limited

when cations are involved. The focus of this thesis is the development of tools and strategies

to create system-specific force field parameters to accurately describe cation-protein interactions.

The accuracy of a force field mainly relies on (i) the parameters derived from increasingly large

quantum chemistry or experimental data and (ii) the physics behind the energy formula.

The first part of this thesis presents a large and comprehensive quantum chemistry data set on a

consistent computational footing that can be used for force field parameterization and benchmark-

ing. The data set covers dipeptides of the 20 proteinogenic amino acids with different possible side

chain protonation states, 3 divalent cations (Ca2+, Mg2+, and Ba2+), and a wide relative energy

range. Crucial properties related to force field development, such as partial charges, interaction

energies, etc., are also provided. To make the data available, the data set was uploaded to the

NOMAD repository and its data structure was formalized in an ontology.

Besides a proper data basis for parameterization, the physics covered by the terms of the

additive force field formulation model impacts its applicability. The second part of this thesis

benchmarks three popular non-polarizable force fields and the polarizable Drude model against a

quantum chemistry data set. After some adjustments, the Drude model was found to reproduce

the reference interaction energy substantially better than the non-polarizable force fields, which

showed the importance of explicitly addressing polarization effects. Tweaking of the Drude model

involved Boltzmann-weighted fitting to optimize Thole factors and Lennard-Jones parameters. The

obtained parameters were validated by (i) their ability to reproduce reference interaction energies

and (ii) molecular dynamics simulations of the N-lobe of calmodulin. This work facilitates the

improvement of polarizable force fields for cation-protein interactions by quantum chemistry-driven

parameterization combined with molecular dynamics simulations in the condensed phase.

While the Drude model exhibits its potential simulating cation-protein interactions, it lacks de-

scription of charge transfer effects, which are significant between cation and protein. The CTPOL

model extends the classical force field formulation by charge transfer (CT) and polarization (POL).

Since the CTPOL model is not readily available in any of the popular molecular-dynamics pack-

ages, it was implemented in OpenMM. Furthermore, an open-source parameterization tool, called

FFAFFURR, was implemented that enables the (system specific) parameterization of OPLS-AA

and CTPOL models. Following the method established in the previous part, the performance of

FFAFFURR was evaluated by its ability to reproduce quantum chemistry energies and molecular

dynamics simulations of the zinc finger protein.

In conclusion, this thesis steps towards the development of next-generation force fields to accu-

rately describe cation-protein interactions by providing (i) reference data, (ii) a force field model

that includes charge transfer and polarization, and (iii) a freely-available parameterization tool.





Kurzzusammenfassung

Metallkationen sind für das Leben unerlässlich. Etwa ein Drittel aller Proteine benötigen Metall-

Cofaktoren, um sich korrekt zu falten oder zu funktionieren. Computersimulationen unter Ver-

wendung empirischer Parameter und klassischer Molekülmechanik-Modelle (Kraftfelder) sind ein

Standardwerkzeug zur Untersuchung der strukturellen Dynamik und Funktionen von Proteinen in

silico. Trotz vieler Erfolge ist die Genauigkeit der Kraftfelder begrenzt, wenn Kationen beteiligt

sind. Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung von Werkzeugen und Strategien

zur Erstellung systemspezifischer Kraftfeldparameter zur genaueren Beschreibung von Kationen-

Protein-Wechselwirkungen. Die Genauigkeit eines Kraftfelds hängt hauptsächlich von (i) den Pa-

rametern ab, die aus immer größeren quantenchemischen oder experimentellen Daten abgeleitet

werden, und (ii) der Physik hinter der Kraftfeld-Formel.

Im ersten Teil dieser Arbeit wird ein großer und umfassender quantenchemischer Datensatz

auf einer konsistenten rechnerischen Grundlage vorgestellt, der für die Parametrisierung und das

Benchmarking von Kraftfeldern verwendet werden kann. Der Datensatz umfasst Dipeptide der 20

proteinogenen Aminosäuren mit verschiedenen möglichen Seitenketten-Protonierungszuständen,

3 zweiwertige Kationen (Ca2+, Mg2+ und Ba2+) und einen breiten relativen Energiebereich.

Wichtige Eigenschaften für die Entwicklung von Kraftfeldern, wie Wechselwirkungsenergien, Par-

tialladungen usw., werden ebenfalls bereitgestellt. Um die Daten verfügbar zu machen, wurde

der Datensatz in das NOMAD-Repository hochgeladen und seine Datenstruktur wurde in einer

Ontologie formalisiert.

Neben einer geeigneten Datenbasis für die Parametrisierung beeinflusst die Physik, die von

den Termen des additiven Kraftfeld-Modells abgedeckt wird, dessen Anwendbarkeit. Der zweite

Teil dieser Arbeit vergleicht drei populäre nichtpolarisierbare Kraftfelder und das polarisierbare

Drude-Modell mit einem Datensatz aus der Quantenchemie. Nach einigen Anpassungen stellte

sich heraus, dass das Drude-Modell die Referenzwechselwirkungsenergie wesentlich besser repro-

duziert als die nichtpolarisierbaren Kraftfelder, was zeigt, wie wichtig es ist, Polarisationsef-

fekte explizit zu berücksichtigen. Die Anpassung des Drude-Modells umfasste eine Boltzmann-

gewichtete Optimierung der Thole-Faktoren und Lennard-Jones-Parameter. Die erhaltenen Param-

eter wurden validiert durch (i) ihre Fähigkeit, Referenzwechselwirkungsenergien zu reproduzieren

und (ii) Molekulardynamik-Simulationen des Calmodulin-N-Lobe. Diese Arbeit demonstriert die

Verbesserung polarisierbarer Kraftfelder für Kationen-Protein-Wechselwirkungen durch quanten-

chemisch gesteuerte Parametrisierung in Kombination mit Molekulardynamiksimulationen in der

kondensierten Phase.

Während das Drude-Modell sein Potenzial bei der Simulation von Kation - Protein - Wechsel-

wirkungen zeigt, fehlt ihm die Beschreibung von Ladungstransfereffekten, die zwischen Kation und

Protein von Bedeutung sind. Das CTPOL-Modell erweitert die klassische Kraftfeldformulierung

um den Ladungstransfer (CT) und die Polarisation (POL). Da das CTPOL-Modell in keinem der

gängigen Molekulardynamik-Pakete verfügbar ist, wurde es in OpenMM implementiert. Außerdem

wurde ein Open-Source-Parametrisierungswerkzeug namens FFAFFURR implementiert, welches



die (systemspezifische) Parametrisierung von OPLS-AA- und CTPOL-Modellen ermöglicht. In

Anlehnung an die im vorangegangenen Teil etablierte Methode wurde die Leistung von FFAF-

FURR anhand seiner Fähigkeit, quantenchemische Energien und Molekulardynamiksimulationen

des Zinkfingerproteins zu reproduzieren, bewertet.

Zusammenfassend lässt sich sagen, dass diese Arbeit einen Schritt in Richtung der Entwick-

lung von Kraftfeldern der nächsten Generation zur genauen Beschreibung von Kationen-Protein-

Wechselwirkungen darstellt, indem sie (i) Referenzdaten, (ii) ein Kraftfeldmodell, das Ladungstrans-

fer und Polarisation einschließt, und (iii) ein frei verfügbares Parametrisierungswerkzeug bereit-

stellt.
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Chapter 1

Introduction

Metal cations are essential to life. About one-third of the proteins in Protein Data Bank (PDB)

contain metal cations,1 which typically play a crucial role in shaping the three-dimensional struc-

ture of proteins and peptides, and therefore affect important properties, e.g. binding sites, catalytic

properties, and biological functions. A systematic bioinformatics survey reveals that among 1,371

different enzymes, 47% require metal cations to maintain their three-dimensional structure, and

41% are known to rely on metal cations in their catalytic centers.2 As an abundant cation in the

human body, zinc cations are required for the functional centers of more than 200 enzymes, for

example carbonic anhydrase, alkaline phosphatase, and glycerol phosphate dehydrogenase.3–5 Ex-

emplary, the Aβ sequences, group of Metallothioneins (MTs), and Zinc finger protein are discussed

here. The progressive neurodegenerative disease Alzheimer’s disease (AD) is associated with the

formation of senile plaques, which dominantly consist of aggregated Aβ40/Aβ42 in the brain.6,7

Numerous studies8–11 have reported that Zn2+, Cu2+, and Fe3+ may act as the seeding factor

of Aβ plaques and the existence of Zn2+ enhances Aβ aggregation. Histidine (His), Glutamate

(Glu), and Aspartic Acid (Asp) are the potential binding sites of Zn2+ in the Aβ sequence. Fig-

ure 1 (a) shows the structure of the Aβ(1-16)-Zn2+ complex. There are three His residues and

one Glu residue as binding centers that coordinate Zn2+. MTs were discovered in 1957 and were

identified as a family of low-molecular-weight, cysteine-rich, and metal-rich proteins present in all

living organisms.12,13 MTs play a role in protecting cells and tissues from heavy metal toxicity,

maintaining the homeostasis of intracellular free Zn2+, and controlling neuronal growth. There is

growing evidence that MTs play important roles in various human tumors, drug resistance, and

neurodegenerative diseases such as AD.14 In mammals, MTs are divided into four groups accord-

ing to their encoding genes: MT-1, MT-2, MT-3, and MT-4. Due to the high cysteine (Cys)

content (30%), MTs bind a variety of trace metals including zinc, cadmium, mercury, platinum,

and silver. MT-1 and MT-2 mainly bind Zn2+, and Cd2+ to a lesser extent. MT-3 binds Zn2+

and Cu2+ equally well.15 The structure of the β domain of human MT-2 is shown in Figure 1 (b).

Eleven deprotonated cysteines (Cys) are binding to 4 Zn2+ in the center of the β domain of human

MT-2. Zinc finger proteins are one of the most abundant protein groups. They can interact with

1



CHAPTER 1. INTRODUCTION

(c)(a) (b)

Figure 1: Structures of (a) of Aβ(1-16)-Zn2+ complex (PDB ID: 1ZE9), (b) β domain of human

MT-1 (PDB ID: 1MHU), and (c) zinc finger protein (PDB ID: 1ZNF).

DNA, RNA, and other proteins and thus participate in many cellular processes, including DNA

recognition, signal transduction, DNA repair, and so on.16 The structure of zinc finger proteins is

maintained by the zinc center coordinating cysteine and histidine. The structure of one of the zinc

finger proteins is shown in Figure 1 (c).

The detailed analysis of structure, dynamics, and function of the metal coordination architec-

ture within metalloproteins is an important addition to the understanding of metalloprotein func-

tions. Besides excellent experimental studies, computer simulations are playing important roles in

chemical research and life science. Computational chemistry provides insights from the electronic

level to even beyond the molecular level that are difficult or impossible to observe experimentally,

thus it complements experiments and provides further insight into underlying mechanisms. It is

desirable to reach such a detailed and fundamental theoretical understanding also of cation-peptide

interaction systems. Numerous computational studies investigated metalloproteins. For example,

Tamames et al.17 investigated the structural characteristics of Zn coordination spheres by a thor-

ough analysis on a data set of 994 proteins from the Protein Data Bank, complemented with DFT

calculations at the B3LYP/SDD level. Baldauf et al.18 studied the underlying nature of metal

cations altering peptide structures. Zhou et al.19 found that the Ca2+ binding site in the blood

protein von Willebrand Factor (VWF) regulates force-triggered unfolding for cleavage by classical

force-probe molecular dynamics (MD) simulations.

Classical MD simulations at the atomic scale are widely used to study the conformational dy-

namics of biomolecular systems. They reveal mechanisms that are difficult to observe experimen-

tally on small spatial and temporal scales.20 MD simulations have gained many successes ranging

from protein folding and aggregation21,22 to transmembrane protein dynamics.23 However, MD

simulations fail to reproduce or predict experimental results in some cases. These inadequacies

stem from the statistical errors due to the finite length of simulations and the systematic errors

caused by inaccurate models employed.20 Over the past 20 years, the development of hardware

(the computational power of central processing units (CPUs) doubles every 18 months according

2
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to Moore’s law24), optimized software25–28 and the enhanced sampling methods29 have signifi-

cantly reduced the statistical errors so that the systematic errors are detectable and alleviated.

Empirically parameterized force fields are typically employed in MD simulations because of their

speed advantage, which allows for larger system size, and longer simulation time scale compared to

quantum chemistry-based simulations. In spite of the many successes that have been made with

force fields in the simulation of bio-systems, the accuracy of force fields is far from ideal, especially

when it comes to the interactions of ionic species.30–33

The applicability of force fields depends on several factors, one of them is the accuracy and

scope of the parameterization data employed.20 No matter if the force field parameters were fitted

to computational or experimental reference data, the systems under investigation are typically

different from the training data. For example, the Lennard-Jones (LJ) parameters in OPLS were

derived from the vaporization calorimetry of pure organic liquids such as pyridine, benzene, or

tetrahydrofuran, while these parameters were later applied to the analysis of sugars, oligopeptides,

or proteins.34,35 The types of reference molecules that are employed in some of the classical force

fields are listed in Table 1. The assumption of transferability means that similar substructures

of different systems can be represented by the same set of parameters. Furthermore, many pa-

rameters of existing force fields are derived based on comparably small reference data sets, which

creates further uncertainty about the reliability of force fields. Parameters derived from a large

and high-quality data set, where molecules are as chemically similar as possible to the target sys-

tem and that cover a large relative energy range, may lead to more reliable force field results.

Experimental data are often limited, especially for metal complexes, and typically describe low

energy conformers, while transition states are lacking. Consequently, electronic structure calcula-

tions are often being used for force field parameterization due to their advantages of good accuracy

with affordable computational cost.36 In the case of proteins, their individual building blocks have

been investigated in many studies. For example, Rezac et al.37 created a QM data set containing

several smaller peptides and medium-sized macrocycles that can be of potential use for force field

parameterization and assessed the performance of popular QM methods. Kishor et al.38 investi-

gated conformations, energetics, and ionization potential of 20 amino acids with density functional

theory. These and similar studies have deepened our understanding of the fundamental structural

basic of peptides and proteins. However, the level of theory and the sampling methods applied

are highly diverse in these studies. For metal-cation containing systems, a sufficient amount of

experimental or computational data is lacking. Furthermore, the data is often not available in a

usable way.

The classical FF energy is composed as a sum of the so-called bonded and non-bonded in-

teractions. The details of FF methods are explained in section 2.1.6. Non-bonded interactions

are crucial for simulating the behavior of metalloprotein systems. The interactions between metal

ions and surrounding atoms are modeled as the sum of van der Waals (vdW) interactions and

electrostatic interactions. The strategies of deriving LJ parameters and partial charges in classical

force fields are listed in Table 2. The vdW interactions are typically described by the popular

3
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Table 1: List of reference molecules of fixed-charge force fields.

Family Reference molecules type Version Year

GROMOS amino acids 26C139 1982

amino acids, nucleic acids, lipids 53A5/53A640 2004

small molecules ATB1.041 2011

CHARMM amino acids CHARMM2242 1992

small molecules CGenFF43 2010

AMBER amino acids, nucleic acids ff9944 1999

small molecules GAFF45 2004

OPLS small molecules, amino acids OPLS-AA34 1996

carbohydrates OPLS-AA46 1997

12-6 LJ functional form in classical force fields. LJ parameters are usually obtained by fitting to

experimental properties. In recent years, approaches for deriving LJ parameters from quantum

chemistry calculations, for example employing the atoms-in-molecule (AIM) method,47 have been

proposed. Electrostatic interactions are described by the Coulomb potentials. Partial charges are

usually derived by two strategies: (i) fitting to experimental data, e.g. hydration free enthalpies40

(GROMOS 53A5/53A6), or (ii) derivation from quantum chemistry calculations (AMBER GAFF45

and CHARMM2242). These two strategies can also be used in combination (OPLS after 2005).48

Since the first strategy is time-consuming and requires extensive testing using Monte Carlo (MC)

or MD simulations to reproduce the target experimental properties, partial charge extraction from

quantum chemistry calculations tends to be preferred in the development of modern force fields.49

Using nonbonded interactions to simulate ionic interactions is able to reproduce the monovalent

situation closely. However, for divalent ion systems with higher electronegativity, the quality of

the classical force field decreases. One approach to overcome the limitations of classical force fields

in describing metalloprotein systems is to refine the classical force field parameters. Empirical

Continuum Correction (ECC)50–52 force fields take electronic polarization into account implicitly

in a mean-field way by scaling the charge of cations and residues. The force-matching method53,54

improves on the classical force fields by adjusting parameters to reproduce ab initio forces. Some

approaches55,56 refine the LJ parameters, or add a 1/r4 term to the standard 12-6 LJ potential,

resulting in a 12–6–4 LJ-type model to account for charge-induced dipole interactions. Notably,

LJ parameters and partial charges are intrinsically correlated and thus must be treated jointly.57

All of these refinements have been successful to some extent. However, they are still limited in

describing the high diversity of electrostatic environments in metalloproteins.

The limitations of classical force fields on simulating metalloproteins also stem from the un-

derlying assumption: the atomic charges are fixed. However, effects like polarization and charge

transfer, which proved to be very important for ionic systems, are ignored.64–66 Polarizable force

fields explicitly include polarization effects and allow the simulation of charge delocalization effects

in response to environmental changes. There are basically three classes of polarizable models: the

fluctuating charge (FQ) model, the induced dipole model, and the Drude oscillator model. The

FQ model67,68 allows redistribution of atomic charges to equalize electronegativity in response to

environmental changes, while maintaining overall charge conservation. In this way, charge transfer

4
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Table 2: List of parameterization strategies used for electrostatic interactions and LJ interactions in

the fixed-charge force fields.

Force field version Partial charge parameterization LJ parameterization

GROMOS 53A5/53A640 fitting liquid and hydration properties fitting liquid and hydration properties

GROMOS ATB1.041 B3LYP/6-31G* in implicit water with ESP taken from 53A6

CHARMM2242 HF/6-31G* in vacuum with ESP, scaling by 1.16 fitting liquid properties

CHARMM CGenFF43 trained BCI fitting liquid properties

AMBER ff9944 HF/6-31G* in vacuum with RESP taken from OPLS-AA

AMBER GAFF45 HF/6-31G* in vacuum with RESP or AM1-BCC taken from ff99

OPLS-AA34 fitting liquid and hydration properties, fitting liquid and hydration properties

gas-phase geometries, complexation energies gas-phase geometries, complexation energies

OPLS2.048 CM1A-BCC taken from OPLS-AA

ESP: charges fitted to electrostatic potential.58

RESP: charges derived by a restrained electrostatic potential fitting procedure.59

BCI: charges assigned using a bond-charge increment (BCI) scheme.43

AM1-BCC: AM1 atomic charges60 with bond charge corrections (BCCs) added.61,62

CM1A-BCC: a combination of the semiempirical CM1A63 charge and BCC.48

is simulated dynamically. The FQ models include: CHARMM-FQ,69 OPLS-AA-FQ,70 ABEEMsp

(atom-bond electronegativity equalization model with s- and p-bonds),71 etc. The FQ model is

one of the simplest polarizable models. It is orders of magnitude faster than quantum chemistry

calculations, while still creating reliable atomic charges for a set of compounds.72 However, FQ

models usually overestimate dipole moments and failed to simulate out-of-plane polarization ef-

fects, which are very important for the simulation of many functional groups such as aromatic

rings.69,73 Although researchers have attempted to include out-of-plane effects by adding virtual

charge sites, it has been proven to be inefficient due to the challenges of scaling simulations of large

systems.71

The induced dipole model calculates the electrostatic energy for each site based on its induced

dipole and the electrostatic field at that site.65 Well-known induced dipole models include the

AMOEBA (atomic multipole optimized energetics for biomolecular simulation) force field74 and

the SIBFA (sum of interactions between fragments ab initio) model.75 The induced dipole can be

represented by different strategies, for example, whether to consider higher multipole moments or

whether to consider higher order inductions (e.g. the induced quadrupole). In principle, including

higher order terms gives better accuracy, while the difficulty of parameterization and computational

cost increase. The Drude oscillator model simulates induced polarization effects by attaching a

particle carrying a charge to polarizable (heavy) atom via a harmonic spring. Beyond only including

charge transfer or polarization effects, there are models that include both of them. For example,

the charge transfer and polarization (CTPOL) model64,76 incorporates charge transfer and local

polarization effects into the framework of classical force field. The charge transfer between ligand

atoms and metal ions is significant if strong charge donors such as thiolate groups coordinating

to metal ions are present in metalloproteins.77 However, the inclusion of charge transfer into a

classical force field reduces the amount of charge on the metal connecting atoms and ions, thereby

weakening their charge/dipole-charge interactions. This can be compensated by introducing local
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CHAPTER 1. INTRODUCTION

polarization energies of metal ions and ligand atoms.

Numerous studies have shown that polarizable force fields yield better accuracy than classical

force fields, especially for systems containing divalent ions. For example, Jing et al.78 used the

AMOEBA model to predict the Ca2+ and Mg2+ selectivity in protein, whereas the classical force

field model AMBER failed even after parameterization. Yu et al.79 derived Drude parameters

for a large set of monovalent and divalent cations and demonstrated the good performance of

the Drude model for simulating ionic solvation in aqueous solutions. Ponder et al.80 showed

that although further refinement is necessary to reproduce solvation free energies of drug-like

molecules, the AMOEBA force field is especially successful in predicting protein-ligand poses in

comparison to classical force fields. Polarizable models have been shown to predict the water dimer

energy with similar accuracy as quantum chemistry calculations.81 However, models including

polarization do not always perform better than classical models, depending on the quality of the

parameters. Furthermore, polarizable models have received limited validation, which implies that

there is still room for improvement in the polarizable models. Reparameterization may be required

when applied to different systems, and polarizable models have more parameters and thus more

elaborate parameterization schemes.

Overall, we see two directions to improve the accuracy of simulations of metalloprotein systems:

• Include more physics in the force field formula, for example charge transfer and polarization

effects.

• Provide a sufficiently-accurate and available electronic-structure data set that covers a wide

range of conformational space to parameterize the force field.

Based on these points, this thesis starts with creating a uniform and comprehensive quantum

chemistry data set of amino-methylated and acetylated (capped) dipeptides of the 20 proteino-

genic amino acids with various possible protonation states and their interactions with selected

divalent cations.82 The data set covers a wide range of relative energies and properties relevant

to force field development. To make the data set accessible even to experts from other fields, an

ontological representation of the data set is provided. The details of this work are shown in section

4.1. In the second work as shown in section 4.2,83 Ca2+-dipeptide systems from the data set were

employed to benchmark the polarizable Drude FF and three widely used classical FFs, namely,

OPLS-AA, AMBER, and CHARMM (C36). In this work, we demonstrated improved accuracy by

adjusting parameters of Drude FF and by the explicit account of charge-transfer and polarization

effects (CTPOL) of the simulation of cation-dipeptide systems. Finally, since the parameteri-

zation is always time-consuming and labor-intensive, section 4.3 shows a developed open-source

parameterization tool that enables the parameterization of OPLS-AA and CTPOL models.

This doctoral thesis is organized as follows: Chapter 2 contains the theoretical background and

the methodology applied in this thesis. Chapter 3 summarizes the main results of publications. The

publications and contributions of each author are outlined in Chapter 4. Finally, the conclusion

and outlook of this thesis are presented in Chapter 5.
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Chapter 2

Theoretical Background

2.1 Methods to Calculate Potential Energy Surface

One of the major problems in computational chemistry is to select an appropriate level of theory

for a given problem.84 In our case, it is the choice of an appropriate method to sample and describe

the characteristics of the ion-dipeptide systems. This section will try to evaluate potential energy

surface (PES) with different theoretical models and levels of theory.

2.1.1 The Many-Body Hamiltonian

Most coupled electron-nucleus systems in the chemistry field can be described by a many-body

non-relativistic Hamiltonian. The Hamilton operator Ĥ consists of five terms:85

Ĥ = T̂n + V̂n−n + T̂e + V̂n−e + V̂e−e, (2.1)

where T̂n represents the nuclear kinetic energy operator, T̂e represents the electronic kinetic energy

operators, V̂n−n, V̂n−e, and V̂e−e represent the spin-independent Coulombic interaction between

nucleus-nucleus, electron-nucleus, and electron-electron, respectively. With the use of natural

units,86 i.e.

~ = 1,

me = 1,

|e| = 1,

4πε0 = 1,

(2.2)

7



CHAPTER 2. THEORETICAL BACKGROUND

these operators can be written as

T̂n =

M∑

k=1

(−i~∇~Rk
)2

2Mk
= −

M∑

k=1

∇2
~Rk

2Mk

T̂e =

N∑

j=1

(−i~∇~rj )2

2me
= −

N∑

j=1

∇2
~rj

2

V̂n−n =
1

2

M∑

k1 6=k2

1

4πε0

Zk1Zk2e
2

|~Rk1 − ~Rk2 |
=

1

2

M∑

k1 6=k2

Zk1Zk2

|~Rk1 − ~Rk2 |

V̂n−e = −
M∑

k=1

N∑

j=1

1

4πε0

Zke
2

|~Rk − ~rj |
= −

M∑

k=1

N∑

j=1

Zk

|~Rk − ~rj |

V̂e−e =
1

2

N∑

j1 6=j2

1

4πε0

e2

|~rj1 − ~rj2 |
=

1

2

N∑

j1 6=j2

1

|~rj1 − ~rj2 |
,

(2.3)

where ~Rk, Mk, Zk, and k are the position vector, mass, charge, and index for the M nuclear,

and ~rj , me, −e and j are the position vector, mass, charge and index for the N electrons. Solving

this Hamiltonian in a non-relativistic and time-independent quantum-mechanical framework means

solving the time-independent Schrödinger equation:

ĤΨ = EΨ, (2.4)

where E denotes the total energy and Ψ represents the many-body wave function of the system.

While the Schrödinger equation has 3M+3N degrees of freedom and the solution is not separable in

its variables. Thus, the exact solutions are only available for a few limited cases and approximations

have to be made to deal with it.

2.1.2 Born-Oppenheimer Approximation

The standard first step in solving the Schrödinger equation is to partially decouple the electron

from the nuclear motion. This is achieved via the Born-Oppenheimer approximation.87

The Born-Oppenheimer approximation relies on the fact that electrons are thousand times

lighter than a nucleus. Thus, electrons move much faster than nuclei, which means that the elec-

trons adapt to the movement of the nuclei instantaneously and, therefore, it is assumed the move-

ment of the nuclei cannot induce any electronic excitation. For this reason, the Born-Oppenheimer

approximation is also called adiabatic approximation. The many-body wave function Ψ can then

be separated into the nuclear wave function Ψn and the electron wave function Ψe:

Ψ(~R1, . . . , ~RM , ~r1, . . . , ~rN ) = Ψn(~R1, . . . , ~RM )Ψe(~R1, . . . , ~RM , ~r1, . . . , ~rN ). (2.5)

This allows the electronic part to be solved with the electron wave function depending only para-

metrically on the nuclear coordinates.

The Schrödinger equation can be written as


(
T̂n + V̂n−n

)
+
(
T̂e + V̂e−e + V̂n−e

)

︸ ︷︷ ︸
Ĥe


Ψ(~R1, . . . , ~RM , ~r1, . . . , ~rN ) = EΨ(~R1, . . . , ~RM , ~r1, . . . , ~rN ),

(2.6)
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in which the Hamilton operator is divided into two parts: the first part only depends on the

nuclear coordinates ~R1, . . . , ~RM , while the latter part, which is defined as electronic Hamiltonian

Ĥe, also depends on the electronic coordinates ~r1, . . . , ~rN . Insert Equation 2.5 into Equation 2.6,

and completely neglect the nuclear kinetic energy because of the adiabatic approximation, which

means assuming T̂nΨ(~R1, . . . , ~RM , ~r1, . . . , ~rN ) can be neglected, the total energy of the system is

given as:

E = V̂n−n + Ee(~R1, . . . , ~RM )

=
1

2

M∑

k1 6=k2

Zk1Zk2

|~Rk1 − ~Rk2 |
+ Ee(~R1, . . . , ~RM ).

(2.7)

The electronic energy Ee(~R1, . . . , ~RM ) can be obtained by solving the electronic Schrödinger

equation:

ĤeΨe(~R1, . . . , ~RM , ~r1, . . . , ~rN ) = Ee(~R1, . . . , ~RM )Ψe(~R1, . . . , ~RM , ~r1, . . . , ~rN ). (2.8)

Solving Equation 2.8 is a very difficult computational task. The challenge lies in the huge

number and the quantum nature of the electrons. For this reason, even if the nuclear motion is

ignored, an efficient handling of the electron problem is necessary. In the following sections, various

approaches to obtain approximate solutions to Equation 2.8 will be described.

2.1.3 Hartree-Fock methods

For a given Hamiltonian Ĥ, the ground state energy E0 is the minimum expectation value that

can be achieved for any normalized wave function, i.e.

E0 = min
Ψ
〈Ψ|Ĥ|Ψ〉, (2.9)

where

〈Ψ|Ĥ|Ψ〉 =

∫
Ψ∗ĤΨd~rN . (2.10)

The Dirac notation, or bra-ket notation, is used to simplify the notation. One of the oldest methods

to find the ground state wave function is based on this and is called the variational principle.85

In this approach, a set of trial normalized wave functions that depend on several parameters is

considered, and the expectation value of the energy is minimized in order to find the ground state

wave function and the corresponding energy.

An important simplification towards solving Equation 2.8 is the introduction of the independent-

particle model, which assumes that the motion of one electron is independent of the motion of all

other electrons. This means that the interactions between electrons are approximated, either by

ignoring all but the most important one or by taking the average interaction. While only the latter

has acceptable accuracy and is known as Hartree-Fock (HF) theory.88 In the Hartree-Fock model,

the wave function is described as the product of the single-particle wave functions:

ΨHF
e (~r1, . . . , ~rN ) = ψ1(~r1)ψ2(~r2) . . . ψn(~rn), (2.11)

9
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where the explicit parametric dependence on ~R1, . . . , ~RM has been omitted for simplicity. ψj

represents a single particle wave function or electron orbital. However, the Hartree Ansatz in

Equation 2.11 does not fulfill the Pauli principle,89 which states that two electrons can not have all

quantum numbers equal, by not taking the indistinguishability of electrons into account. In other

words, the total electronic wave function must be antisymmetric. This antisymmetry requirement

of the electronic wave function can be achieved by a Slater determinant:

ΨHF
e (~r1, . . . , ~rN ) =

1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(~r1) ψ2(~r1) . . . ψN (~r1)

ψ1(~r2) ψ2(~r2) . . . ψN (~r2)

. . . . . . . . . . . .

ψ1( ~rN ) ψ2( ~rN ) . . . ψN ( ~rN )

∣∣∣∣∣∣∣∣∣∣∣∣

. (2.12)

The spin dependencies have been ignored throughout. The method of finding the electronic ground

state by the variational principle using a Slater determinant as the ansatz of the wave function is

known as the Hartree-Fock method. The ground state energy EHF
e can be written as:

EHF
e = 〈ΨH

0 |Ĥe|ΨH
0 〉 =

N∑

i=1

Hi +
1

2

N∑

i,j=1

(Jij −Kij), (2.13)

where

Hi =

∫
ψ∗i (~r)

[
−1

2
∇2 −

M∑

k=1

Zk

|~Rk − ~r|

]
ψi(~r)d~r

Jij =

∫∫
ψ∗i (~r)ψ∗j (~r′)

1

|~r − ~r′|ψi(~r)ψj(~r
′)d~r~r′

Kij =

∫∫
ψ∗i (~r)ψ∗j (~r′)

1

|~r − ~r′|ψj(~r)ψi(~r
′)d~r~r′.

(2.14)

Jij represents the Coulomb integral and Kij represents the exchange integral. It should be noted

that Jij ≥ Kij ≥ 0 and Jii = Kii. The Coulomb “self-interaction” Jii is canceled by the corre-

sponding exchange term Kii. Thus, the HF method is said to be self-interaction free. With the

definition of Hartree energy EHartree and exchange energy Ex, Equation 2.13 can be written as:

EHF
e =

N∑

i=1

Hi + EHartree + Ex, (2.15)

where

EHartree =
1

2

N∑

i,j=1

Jij

Ex = −1

2

N∑

i,j=1

Kij .

(2.16)

The next step is to find a set of orbitals that minimize the energy, with the constraint that

all electron orbitals ψi are orthonormal. The Fock operator F̂ is an effective one-electron energy

operator. It is associated with the variation of the total energy and is given by:

F̂ = −1

2
∇2 −

M∑

k=1

Zk

|~Rk − ~r|
+ ĵ − k̂, (2.17)
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where the Coulomb operator ĵ and the exchange operator k̂ are given as:

ĵ(~r)f(~r) =

N∑

i=1

∫
ψ∗i (~r′)ψi(~r)

1

|~r − ~r′|f(~r)d~r′

k̂(~r)f(~r) =

N∑

i=1

∫
ψ∗i (~r′)f(~r)

1

|~r − ~r′|ψi(~r)d~r
′,

(2.18)

in which f(~r) is an arbitrary function. With the Fock operator, the Hartree-Fock differential

equations can be written as:

F̂ψi(~r) =

N∑

j=1

εijψj(~r), (2.19)

where εij are the Lagrange multipliers and is given by

εij = σijεj . (2.20)

Thus, the Hartree-Fock equations become

F̂ψi(~r) =

N∑

j=1

εiψi(~r). (2.21)

εi represents orbital energies of the single non-interacting electron orbitals.

Solving the Hartree-Fock equations is an eigenvalue problem. However, the Fock operator

depends on all orbitals (via the Coulomb and exchange operators). Thus, an iterative method

must be employed to solve the problem. With guessed initial orbitals ψi, the Fock operator can

be generated, which leads to new orbitals by solving the Hartree-Fock equations in Equation 2.21.

The new orbitals lead to an updated Fock operator. This process repeats until convergence.

It is clear that the total energy cannot be exact because the electron–electron repulsion is only

considered in an average way and consequently neglects the correlation between electrons. The

HF model is a kind of branching point in which either more approximations are involved, leading

to semi-empirical methods, or more determinants are added, thereby leading stepwise to the exact

solution of the electronic Schrödinger equation. The latter one is the so-called “post-Hartree-Fock”

techniques, which will be briefly discussed in the next section.

2.1.4 Post-Hartree-Fock Methods

As mentioned before, the HF model fails to capture the electron correlation. Thus, it can not well

describe systems that have strongly correlated electrons in the context of this work, in particular,

e.g. hydrogen-bonded and systems involving biomolecules. The correlation energy, Ecorr
e , is defined

as

Ecorr
e = Ee − EHF

e , (2.22)

where Ee represents the exact electronic energy in Born-Oppenheimer approximation and EHF
e

represents the Hartree-Fock energy given in Equation 2.13. Various methods have attempted to

capture the correlation energy based on the HF model.

The HF wave function is a determinant of the low energy orbitals or “occupied orbitals”. The

starting point for improving HF results is obviously to include more Slater determinants. The new

11
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series of determinants may be constructed by replacing one or more orbitals that are occupied in

the HF determinant with “unoccupied orbitals”. Depending on how many “occupied orbitals” are

replaced by “unoccupied orbitals”, the determinants are often referred to as Singles (S), Doubles

(D), Triples (T), Quadruples (Q), etc. The multi-determinant trial wave function can be written

as a linear combination of the HF wave function, ΨHF, and other determinants, Ψi,

Ψ = a0ΨHF +
∑

i=1

aiΨi. (2.23)

Three main methods are used to describe electron correlation: Configuration Interaction (CI),

Many-Body Perturbation Theory (MBPT), and Coupled Cluster (CC).

CI90 is based on the variational principle. The trial wave function is a linear combination of

determinants with expansion coefficients. The expansion coefficients are optimized to make the

energy a minimum. If all the possible electronic configurations are considered in the wave function,

this method is called full-configuration interaction (full-CI). Finding all expansion coefficients using

the variational principle is computationally extremely demanding, and truncating the expansion

by including excitations of only several electrons leads to size-consistency problems, i.e., the energy

of two non-interacting molecules is not twice the energy of one of them calculated at the same level

of approximation.

MBPT defines a Hamilton operator that consists of two parts, an unperturbed (H0) and a

perturbation (H ′). The perturbation operator H ′ is assumed to be smaller than H0 and can be

added as a correction by employing an independent-particle approximation. To apply perturbation

theory, the unperturbed Hamiltonian must be selected. The most common choice is to sum up the

Fock operators, resulting in Møller–Plesset (MP) perturbation theory.91 The second-order Møller-

Plesset (MP2) is a simple alternative to the full-CI method. It is the lowest non-vanishing correction

term to HF. For systems with a few hundred basis functions, the cost of MP2 can be similar or

lower than the cost of HF. MP2 typically can grasp 80–90 % of the correlation energy. However, it

does not follow the variational principle, which means that it is possible to find energy lower than

the exact energy given by the Born-Oppenheimer approximation. Furthermore, it overestimates

the correlation energy in systems containing anions, strongly electronegative atoms, or transition

metals, and it cannot be employed to describe metallic systems.

CC is not based on the variational principle but guarantees size consistency.92 It starts with

the definition of excitation operator T̂

T̂ = T̂1 + T̂2 + T̂3 + . . . . (2.24)

The i-th excitation operator Ti acting on the HF wave function Slater determinant generates all

excited Slater determinants

T̂1ΨHF
e =

occ.∑

i

unocc.∑

α

tαi Ψα
i , (2.25)

where Ψα
i represents the Slater determinant in which the “occupied orbital” i is replaced by

“unoccupied orbital” α, and tαi is the corresponding coefficient. The wave function ansatz of
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CC is expressed as:

ΨCC = eT̂ΨHF
e = (1 + T̂ +

T̂ 2

2!
+
T̂ 3

3!
+ . . . )ΨHF

e . (2.26)

The most commonly used expansion is CCSD(T)93 where T̂ is truncated at the Singles (S) and

Doubles (D) excitation levels, i.e., T̂ = T̂1 + T̂2 is solved, and triple excitation, T̂3, is added us-

ing Møller-Plesset perturbation theory. It provides excellent accuracy for non-covalent systems.94

Thus, it is often referred to as the “gold standard of quantum chemistry”. However, it is for-

mally scaled as O(N7), where N represents the size of the system, which results in extremely

expensive computations. In order to reduce the computational costs while maintaining the accu-

racy, many efforts have been made, such as the proposed domain-based local pair natural orbital

(DLPNO-)CCSD(T)95 approximation, which shows a near-linear scaling behavior with system size

N . CCSD(T) is often used as benchmark to validate approximations of lower-level, such as density

functional theory (DFT) methods. DFT will be presented in the next section as the main electronic

structure method in this thesis.

2.1.5 Density Functional Theory

The solution of the electronic Schrödinger equation (Equation 2.8) is the wave function Ψe, which

has 4N variables for a system containing N electrons, 3N spatial and N spin coordinates. The

complexity of a wave function increases exponentially with the number of electrons, making it

very difficult to describe. Density Functional Theory (DFT) is an electronic-structure method

that replaces the complex N-electron wave function Ψe with the electron density ρ(~r), which only

depends on 3 spatial coordinates.

Hohenberg and Kohn developed the theoretical footing of DFT and proved that it is possible

to calculate all the properties of systems with electron densities through their two well-known

theorems:96

1. The external potential is uniquely specified for a given ground state electron density ρ(~r).

2. The electron density that gives the energy minimum is the exact ground state density ρ0.

The proofs of these two theorems can be found in Reference97. Hohenberg and Kohn theorems do

not provide any practical use for obtaining the ground state energy or density since the functional

for the electronic energy is not provided.

The Kohn-Sham (KS) scheme provides a practical way to connect electron density with ground-

state energy. The use of a set of auxiliary orbitals to calculate the electron kinetic energy was

proposed by Kohn and Sham in 1965, which laid the foundation for the success of modern DFT

methods.98 The electronic density can then be calculated as a sum of single-particle KS orbitals:

ρ(~r) =

N∑

i

ψ∗i (~r)ψi(~r). (2.27)
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The total energy Ee[ρ(~r)] can be rewritten as a functional of the electron density ρ(~r)

Ee[ρ(~r)] = T [ρ(~r)] + EH[ρ(~r)] + Eext[ρ(~r)] + Exc[ρ(~r)]

= −1

2

N∑

i

〈ψ∗i (~r)|∇2|ψi(~r)〉+
1

2

∫∫
ρ(~r)ρ(~r′)

|~r − ~r′| d~rd~r
′ +

∫
Vext(~r)ρ(~r)d~r + Exc[ρ(~r)],

(2.28)

where T [ρ(~r)] represents the kinetic energy, EH[ρ(~r)] represents the Coulomb interaction energy or

Hartree term, Eext[ρ(~r)] is the interaction energy caused by the external potential Vext(~r), and all

the many-body complexities are addressed by the exchange-correlation functional Exc[ρ(~r)], which

is still unknown. Equation 2.28 is possible to be minimized with respect to the electron density

under the constraint
∫
d~rρ(~r) = n with the variational principle. Similar to the Hartree-Fock

theory, KS equations can be reduced to a system of single-particle equations,

(
−1

2
∇2 + vH(~r) + vext(~r) + vxc(~r)

)
ψi(~r) = εiψi(~r), (2.29)

vH(~r) =
∂EH[ρ]

∂ρ(~r)

vxc(~r) =
∂Exc[ρ]

∂ρ(~r)
,

(2.30)

where ψi(~r) is the KS spatial orbital, and εi is the orbital energy. The total energy then can be

expressed as a function of the eigenvalues:

Ee[ρ(~r)] =

N∑

i

εi −
1

2

∫
ρ(~r)vH(~r)d~r −

∫
ρ(~r)vxc(~r)d~r + Exc[ρ(~r)], (2.31)

where the double-counting terms are subtracted from the sum of the eigenvalues. KS equations

have to be solved self-consistently. Starting with a trial electron density, Equation 2.29 is solved

and thereby a new set of KS orbitals that yield an updated electron density. This procedure is

repeated until the total energy is minimized self-consistently.

DFT is a true ab initio technique if the exact expression of the exchange-correlation (xc)

functional would be known. The main deficiency of DFT is that the exact solution can not

be obtained. Many approximations have been made, which result in different density-functional

approximations (DFA). These approximations define the accuracy of DFA and are explained in the

following.

Local Density Approximation (LDA)

The Local Density Approximation (LDA) treats the electron density as a uniform electron gas.

The exchange-correlation energy functional ELDA
xc in LDA is given as:

ELDA
xc [ρ] =

∫
εxc[ρ(~r)]ρ(~r)d~r, (2.32)

where the the exchange-correlation energy of each particle εxc[ρ(~r)] is the energy of the uniform

electron gas. εxc[ρ(~r)] can be divided into two parts, exchange and correlation contributions,

εxc[ρ(~r)] = εx[ρ(~r)] + εc[ρ(~r)], (2.33)
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which leads to

ELDA
xc [ρ] = ELDA

x [ρ] + ELDA
c [ρ]. (2.34)

The exchange energy part has an analytical form, which can be written as:

ELDA
x [ρ] =

3

4

(
3

π

)1/3 ∫
ρ4/3(~r)d~r. (2.35)

The analytical form of the correlation energy is not known, but there are approximations, e.g. the

PZ-LDA99 and PW-LDA100 approximations, both obtained from quantum Monte Carlo calcula-

tions101 and VWN-LDA approximation.102 The LDA method is a good approximation for systems

where the electron density changes slowly, such as bulk metals. However, LDA fails for systems

where the electron density can not be treated as uniform. For example, molecular systems where

dispersion interactions are important.

The Generalized Gradient Approximation (GGA)

To improve the LDA, a non-uniform electron gas must be considered. One step in this direction

is the Generalized Gradient Approximation (GGA), which includes the gradients of the electron

density as a variable in the xc functional. The xc functional is given as:

EGGA
xc [ρ] =

∫
ρ(~r)εxc[ρ(~r)]fxc[ρ(~r),∇ρ(~r)]d~r, (2.36)

where εxc is the functional of the homogeneous electron gas, and fxc is the factor enhancement,

which varies in different GGA parameterization. One of the most widely used GGA xc functional

is the Perdew-Burke-Ernzerhof (PBE) functional.103 PBE is a non-empirical functional, which

means that all parameters are basic constants and there are no empirical parameters. In most

cases, GGA functionals show improvements over LDA in several properties, e.g. binding energies,

atomic energies, and energy barriers. Although GGA methods yield good results when analyzing

the structure of molecules, they are known to underestimate the binding energy of systems that

have weak interactions like hydrogen bonds.

Van der Waals Correction Schemes in Density-Functional Theory

Despite the many successes of DFT, DFAs in standard use are not well constructed to describe long-

range electron correlation effects. In particular, it can not properly describe long-range dispersion

effects or vdW interactions.104 While a good treatment of weak vdW interactions is crucial for an

accurate energetic description of biomolecules.105–107 The physical nature of the attractive vdW

interactions arises from the long-range part of the correlation of electronic density fluctuations.

One straightforward way to account for vdW interactions is to add empirical or semi-empirical

corrections to the DFA energy. Thus, the total energy is given as:

Etot = EDFA + EvdW, (2.37)

where EDFA represents the total energy yielded in DFA, and EvdW is the dispersion correction.

Since the dominant term of vdW dispersion interaction is the instantaneous dipole-induced dipole
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interaction, the vdW energy is proportional to the well-known 1/R6 potential:

EvdW = −1

2

∑

A 6=B

C6,AB

R6
AB

fdamp(RAB), (2.38)

where A and B represent two different atoms, RAB is the interatomic distance between two atoms,

C6,AB is the heteronuclear dispersion coefficient, and fdamp is the damping function. fdamp is em-

ployed to couple the short-range, which is mainly described by DFA, and long-range contributions

of the electron correlation. Thus it fulfills:

fdamp(RAB) →
RAB→0

0

and fdamp(RAB) →
RAB→∞

1.
(2.39)

Based on the definitions of C6,AB and fdamp, several approaches exist.

In the Casimir-Polder formula,108 the expression of the coefficient C6,AB is:

C6,AB =
3

π

∫ ∞

0

αA(iω)αB(iω)dω, (2.40)

where αA(iω) is the average dynamic polarizability, which can be measured experimentally, and ω

is the excitation frequency. Keeping only the leading term of the Padé series,109 the polarizability

can be approximated as:

αA(ω) =
α0
A

1− (ω/ωA)2
, (2.41)

where α0
A denotes the static polarizability and ωA is effective excitation frequency. Inserting

Equation 2.41 into Equation 2.40 and solving the integral analytically, the C6,AB can be written

as:

C6,AB =
3

2
α0
Aα

0
B

ωAωB
ωA + ωB

. (2.42)

The effective excitation frequency ωA of atom A for homonuclear C6,AA can be written as:

ωA =
4

3

C6,AA

(α0
A)2

. (2.43)

Inserting Equation 2.43 into Equation 2.42 yields:

C6,AB =
2C6,AAC6,BB(

α0
B

α0
A
C6,AA +

α0
A

α0
B
C6,BB

) . (2.44)

In this way, the C6,AB can be calculated with the free-atom parameters α0
A and C6,AA.110

Most schemes111–115 employ fixed empirical C6 coefficients for each atom. However, the actual

dispersion coefficients depend on the molecular environment around the atoms.116 The use of

fixed C6 coefficients leads to errors in dispersion interaction estimates. The popular Grimme

scheme117 introduces DFA-specific global scaling parameter to reduce the functional dependence

of the scheme.

A popular scheme proposed by Becke and Johnson in 2005116,118 uses non-empirical dispersion

C6 coefficients. The C6 coefficients in this scheme are obtained from the exchange-hole dipole

moment. Thus the KS-orbitals and the density of a system need to be provided. The damping

function is still empirical.
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The parameter-free pairwise Tkatchenko-Scheffler (TS) van der Waals scheme (vdWTS)119

incorporates ideas from both strategies above and is used in this thesis. Using the definition of

effective atomic volume, the formulation can be adjusted to be environment-dependent for an

atom in a molecule. With the atomic Hirshfeld partitioning scheme,120,121 the ratio of the effective

atomic volume (VA) referenced to the free atom (V free
A ) in vacuo VA

V free
A

is given by:

VA
V free
A

=

∫
r3ωA(~r)ρ(~r)d~r∫
r3ρfree

A (~r)d~r
, (2.45)

where r is the distance from the nucleus of atom A and a point, ρ(~r) is the total electron density,

ρfreeA (~r) is the electron density of the free atom A, and ωA(~r) is the Hirshfeld atomic partitioning

weight, which is given by:

ωA(~r) =
ρfree
A (~r)

∑all atoms
B ρfree

B (~r)
. (2.46)

With the definition of VA

V free
A

, the effective quantities are defined as:

C6,AA =

(
VA
V free
A

)2

Cfree
6,AA (2.47)

R0
A =

(
VA
V free
A

)1/3

R0,free
A , (2.48)

where R denotes the vdW radius. In this way, the C6 coefficients related to the electron density

still remain partly empirical due to the use of Hirshfeld partitioning.

In the TS scheme, the damping function is a Fermi-type function:

fABdamp
(
RAB , R

0
AB(ρ(~r))

)
=

1

1 + exp
[
−d
(

RAB

sRR0
AB(ρ(~r))

− 1
)] , (2.49)

where RAB denotes the distance between atoms A and B, R0
AB is the sum of the effective vdW

radii associated with atoms A and B (Equation 2.48), d is a free parameter affecting the steepness

of the damping and has been set to d = 20, and sR is a free empirical scaling coefficient that

adjusts the extent of the vdW correction for a given xc functional and is obtained by fitting to the

S22 data set.122 The TS scheme has been tested on a database that contains 1225 intermolecular

C6 pairs and showed a mean absolute error of 5.5% compared to experimental results regardless

of the employed xc functional.119

Basis set

The single-particle orbitals ψi can be expanded by a set of basis functions:

ψi =
∑

n

cniφn(r) (2.50)

All the DFT calculations in this thesis were performed with the all-electron code FHI-aims,123

which uses localized numeric atom-centered orbital (NAO) basis set. The minimal NAO basis is

composed of the core and functions of spherically symmetric free atoms and is exact for free atoms.

The shapes of the orbitals close to the nuclei are well described also for bonded atoms using the
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minimal NAO basis. The basis functions in FHI-aims are ordered as tiers according to the amount

of improvement that the basis functions yield to the total energy of dimers. The basis functions in

tier1 bring the largest improvement, while the basis functions in tier4 bring the smallest but still

noticeable improvements. This thesis employs two different sets of numerical defaults for atomic

species: light and tight settings. In the light settings, tier1 is used and the integration grids are

not so dense. The tier2 basis sets are utilized in the tight settings, and the integration grids are

more dense. The tight settings yield converged results and can be used for production calculations.

2.1.6 Force Fields

Unlike the methods described above, force field methods, also known as molecular mechanics (MM)

methods, do not treat the electrons of the system explicitly. They use atoms or groups of atoms as

the “building blocks”. The energy of a system is written as a parametric function of the nuclear

coordinates. The dynamics of atoms are described with classical mechanics, i.e. Newton’s second

law. Force field methods are especially useful when ab initio methods are unfeasible because of

the high computational cost and limited time scale, for example, conformational sampling and MD

simulations of proteins. Several classical and polarizable force field models are introduced in this

section.

Classical Force Fields

The classical (bio)molecular force field energy, EFF, can be written as a sum of energy terms, each

of them corresponding to the energy required to distort a molecule in a specific way:

EFF = Ebonds + Eangles + Etors + Eimproper + EvdW + Eele (2.51)

where Ebonds is the energy required for stretching a bond between two atoms, Eangles corresponding

to the energy for bending an angle, Etors represents the energy for rotation around a bond, EvdW

and Eele describe the nonbonded interactions between atoms.

We see that a force field is a combination of individual bonded and non-bonded terms that need

a set of parameters and atomic coordinates as input. The parameters in force fields are derived by

fitting to experimental data and/or higher-level quantum chemistry data. With the assumption of

transferability, i.e. structurally similar atoms in different molecules may share parameter values,

parameters are usually fitted for small molecules and subsequently applied in larger ones.

Conventional (classical) force fields that are commonly applied to describe biomolecular systems

include CHARMM36124 (Chemistry at Harvard Macromolecular Mechanics 36), AMBER-99125

(Assisted Model Building with Energy Refinement 99), OPLS-AA126 (Optimized Potentials for

Liquid Simulations - All-Atom), and so on. They all share a similar functional form. Here, we take
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OPLS-AA as an example, the bonded terms are the following:

Ebonds =

1−2atoms∑

bonds

1

2
Kr
ij

(
rij − r0

ij

)2
(2.52)

Eangles =

1−3atoms∑

angles

1

2
Kθ
ij

(
θij − θ0

ij

)2
(2.53)

Etors =

1−4atoms∑

dihedrals,n

V ijn
(
1 + cos

(
nφij − φ0

ij

))
(2.54)

Eimproper =

1−4atoms∑

improper

V ij2imp

(
1 + cos

(
2φij − φ0

ij

))
(2.55)

As shown in Equation 2.52, Ebonds is in the form of a harmonic oscillator, with the potential

being quadratic in the displacement of the bond length rij from the reference length r0
ij . K

r
ij is

the force constant for the i− j bond. Similarly, i and j in Equation 2.53 are atoms separated by

two bonds. Kθ
ij , θij , and θ0

ij are force constant, bond angle, and reference bond angle. Kr
ij , K

θ
ij ,

r0
ij and θ0

ij were derived from crystal structures, as well as from vibrational frequencies.39,127,128

Recently, quantum chemistry computations have been increasingly used to derive these parame-

ters.41,45 Torsional energy is described by a sinusoidal term as shown in Equation 2.54. Atom i

and j in the torsional term are separated by three bonds. V ijn is the force constant of a torsion,

n is the multiplicity, φij is the current torsional angle, and φ0
ij is the phase offset (typically 0 or

π). In CHARMM, n can be up to 6, while in AMBER and OPLS-AA, it is only considered up to

3 or 4.57 It should be noted that a rotational barrier comes from both torsional energy, as well as

from non-bonded (van der Waals and electrostatic) terms, therefore torsional parameters are highly

correlated with the non-bonded parameters.84 Torsional parameters are derived from experimental

data or fitted to quantum chemistry data depending on different force fields.34,127,129–133 The im-

proper torsional terms are employed to avoid unphysical out-of-plane distortions of planar groups.

Unlike the torsion angle-like term in Equation 2.55 used by OPLS-AA and AMBER, CHARMM

employs a basic harmonic functional form for improper torsional energy as shown in Equation:

2.56:

Eimproper =

1−4atoms∑

improper

Kij
imp

(
φij − φ0

ij

)2
, (2.56)

where Kij
imp is the force constant of an improper dihedral angle, φij is the current angle, and φ0

ij

is the reference angle.

Nonbonded terms are typically limited to describing vdW interactions and electrostatic inter-

actions. As shown in Equation 2.57 and 2.58, vdW interactions are described by a Lennard-Jones

6–12 term and electrostatic interactions are described by a Coulombic term.

EvdW =
∑

i<j

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
fij (2.57)

Eele =
∑

i<j

qiqj
rij

fij (2.58)

Nonbonded parameters include the LJ well-depth εij , minimum energy distance σij , and partial

atomic charges qi. Nonbonded interactions between third neighbors (1,4-interactions) are reduced
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in most force fields with various scale factors fij . LJ parameters are assigned according to dif-

ferent atom types that represent atoms in a specific chemical environment. The LJ parameters

between different atom types are calculated according to the combination rules.134,135 For exam-

ple, AMBER and CHARMM employ the Lorentz-Berthelot combination rule,136 which uses the

arithmetic mean for σij and the geometric mean for εij . While OPLS-AA employs the geometric

mean for both σij and εij . LJ parameters can be obtained by fitting to experimental densities

and heats of vaporization,34 or deriving from quantum chemistry calculations with exchange-hole

dipole moment (XDM) model137 or atoms-in-molecule (AIM) method.47 qi can also be derived by

fitting to experimental data, e.g. hydration free enthalpies in water,40 or extracted from quantum

chemistry data.35

Polarizable Force Field

Despite the many successes of classical FFs in MD simulations of biological systems, it is more

and more clear that the inclusion of electronic polarization will play a central role in the next

generation FFs.81 In this section, we introduce several popular polarizable FF models.

Induced dipole model

The induced dipole model describes polarization energy by summing up the interactions between

partial atomic charges and induced dipole moments.69,138–140 Ponder et al. added the interactions

between induced dipoles and higher permanent moments (up to quadrupoles) to the model.74,141

In the induced dipole model, an additional energy term Epol is added to the total energy. Epol can

be computed according to:

Epol = −1

2

∑

i

µiE
0
i , (2.59)

where the summation is over all atomic sites, µi is the dipole induced on atom i, and E0
i is the

electrostatic field at the polarizable site i generated by the current charge in the system. The factor

of 1/2 is a result of the induction cost for the formation of an induced dipole.142 The induced dipole

moment is proportional to the total electrostatic field, Ei:

µi = αiEi = αi


E0

i −
N∑

i 6=j

Tijµj


 , (2.60)

where the proportionality constant, αi, is the polarizability of the atom i, Tij is the dipole-dipole

interaction tensor (dipole field tensor):

Tij =
1

r3
ij

(
1− 3 ~rij ~rij

r2
ij

)
. (2.61)

Most point dipole models only consider the interactions between static charges and induced dipoles

to describe polarization effects. The AMOEBA model74 considers interactions between charges,

higher-order static atomic multipoles, and induced point dipoles. Therefore, Equation 2.60 is

modified by treating the static electric field by permanent multipoles instead of by permanent

atomic charges:

µi = αi


∑

j 6=i

T αijMj +
∑

k 6=i

T αβik µk


 , (2.62)
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where M (Mi = (qi,µi,x,µi,y,µi,z,Qi,xx,Qi,xy,Qi,xz . . .Qi,zz)
T ) is the permanent atomic multipole

component, and Tij =[Tα, Tαα, Tαβ , Tαγ , ... ,] α, β, γ = x, y, z is the interaction matrix.

Fluctuating Charge Model

The fluctuating Charge (FC) model introduces polarization effects by enabling the tuning of partial

charges according to the electric field of their environment. It does not introduce any additional

energy terms or particles to a classical FF. This can be performed based on electronegativity

equalization: charges flow between atoms until electronegativity of the atoms become equalized.

Classical Drude oscillator model

The classical Drude oscillator model describes polarization effects by attaching a massless charged

particle to each polarizable atom via a harmonic spring. For a given atom with charge q at the

atomic center in the system, a Drude oscillator (or Drude particle) is introduced with a charge qD

assigned. The charge on the atom is adjusted to q − qD to represent the net charge of the atom-

Drude oscillator pair. The Drude oscillator is attached to the atom harmonically with a force

constant kD. The position of the Drude oscillator is adjusted self-consistently to their local energy

minima. The displacement, d, of the Drude oscillator from the central atom can be calculated as:

d =
qDE

kD
, (2.63)

where E is the local electric field.

The induced dipole, µ, is calculated as:

µ =
q2
DE

kD
, (2.64)

which leads to a simple expression of polarizability, α,

α =
q2
D

kD
. (2.65)

Therefore, the only parameter in the classical Drude oscillator model is the combination of

q2
D and kD, which is responsible for the polarizability. It should be noted that the Drude model

only uses the Coulombic term that already exists in a classical FF. No additional interaction

terms are needed. Dipole-dipole interactions are balanced by additional charge-charge calculations.

Therefore, there is no need to calculate the dipole field tensor Tij in Equation 2.61, which greatly

saves computational costs. Paper II in this thesis tested the Drude model using a quantum

chemistry data set of cation-dipeptide systems.

CTPOL model

The CTPOL model combines charge transfer (CT) and polarization effects (POL) into classical

FF. Instead of a fixed-charge model, CTPOL takes into account the charge transfer from the ligand

atom L (O, S, N) to the metal cation. The amount of transferred charge, ∆qL−Me, is assumed to

depend linearly on the interatomic distance, rMe−L:

∆q(L−Me) = aLrMe−L + bL. (2.66)

at distances greater than the sum of the vdW radii of atoms i and j, rvdWij , charge transfer can be
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neglected. Thus, the charge qL on the ligand atom L can be calculated as:

qL = q0
L + ∆q(L−Me), (2.67)

where q0
L refers to the charge on atom L from a given classical FF.

The polarization energy can be computed as shown in Equations 2.59 and 2.60. The summation

is over the metal and the metal-bound atoms. A cutoff distance rcutoff , which equals to the sum of

the vdW radii of atoms i and j scaled by a parameter γ = 0.92, is introduced to avoid unphysically

high induced dipoles at close distances. If the distance rij between atoms i and j is smaller than

rcutoff , we set rij equal to rcutoff . The CTPOL model is tested in Paper II and implemented and

parameterized in Paper III of this thesis.

2.2 Molecular Dynamics Simulation

Molecular dynamics simulations are a computer simulation technique in which the thermodynamic

and kinetic properties of a set of interacting atoms can be calculated based on statistical mechanics.

Nowadays, it has become one of the most important methods to study the microscopic interactions

of biomolecules at the atomic level.143,144 In MD simulations, the nuclei are approximated as

classical particles and the dynamics are simulated by solving Newton’s second equation:

F = ma. (2.68)

The differential form of Equation 2.68 can be written as:

− dV

dr
= m

d2r

dt2
, (2.69)

where r contains the coordinates of all particles in the system, and V represents the potential

energy at position r. The equation is solved simultaneously in small time steps. The atomic

positions and velocities along with time form the so-called trajectory. Atomic positions and ve-

locities are information at the microscopic level. They describe the motion of particles and enable

the calculation of macroscopic observables such as pressure, energy, and so on. The basis of such

simulations is the integration of Equation 2.69. The predictive power of MD simulations is based

on the ergodic hypothesis, which assumes that the average of a small number of particles over a

long time is equivalent to the average of a large number of particles over a short time, i.e. time

averaging is equivalent to ensemble averaging.84

2.2.1 Integrators

There are several algorithms for the numerical integration of Equation 2.69. Each algorithm has

its advantages and disadvantages.
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The Verlet algorithm

Commonly used algorithms are the Verlet algorithm and its variations.145 The positions of parti-

cles, ri, after a small time step ∆t can be calculated by Taylor expansion:

ri+1 = ri +
∂r

∂t
(∆t) +

1

2

∂2r

∂t2
(∆t)2 + ...

= ri + vi(∆t) +
1

2
ai(∆t)

2 + ...,

(2.70)

where vi is the velocity at time ti, and ai is the acceleration at time ti. Similarly, the positions of

particles a small time step ∆t earlier can be written as:

ri−1 = ri − vi(∆t) +
1

2
ai(∆t)

2 + .... (2.71)

The trick with ∆t and −∆t allows to truncate the Taylor expansion. Combining Equation 2.70

with Equation 2.71 results in:

ri+1 = (2ri − ri−1) + ai(∆t)
2

ai =
Fi
mi

= − 1

mi

dV

dri
.

(2.72)

This is the classical Verlet algorithm146 for solving Newton’s equation. At the starting point, ri−1

is not available, but can be approximated from the Equation 2.70:

r−1 = r0 − v0∆t. (2.73)

The leap-frog algorithm

The velocity does not appear explicitly in the Verlet algorithm, which can be a problem for gener-

ating ensembles with constant temperature. This can be remedied by the leap-frog algorithm.147

Perform similar expansion of equations 2.70 and 2.71 with half a time step and then subtract:

ri+1 = ri + vi+ 1
2
∆t. (2.74)

The velocity is given as:

vi+ 1
2

= vi− 1
2

+ ai∆t. (2.75)

Equation 2.74 and equation 2.75 are the leap-frog algorithm.

The velocity Verlet algorithm

In leap-frog algorithm, the velocity is explicitly present, which promotes the coupling to external

heat bath. However, the position is always later than the velocity by half a time step. To eliminate

this abnormality, the velocity Verlet algorithm148 was introduced.

The equations of the velocity Verlet algorithm take the form:

ri+1 = ri + vi∆t+
1

2
ai∆t

2

vi+1 = vi +
1

2
(ai + ai+1)∆t.

(2.76)

23



CHAPTER 2. THEORETICAL BACKGROUND

2.2.2 SHAKE and RATTLE

The above algorithms solve Newton’s second equation by numerical integration. The time step

is an important parameter for MD simulations. The smaller the time step ∆t, the closer the

trajectory is to the “true” trajectory. Typically, it is an order of magnitude smaller than the

speediest mode in a system to get sufficient accuracy. The rotations and vibrations of a molecule

usually occur with frequencies in 1011 to 1014 s−, which means that the time step should be

on the femtosecond (fs) level or less. However, many important reactions happen over a long

time scale. For example, protein folding may happen in milliseconds or seconds. Simulating

such a process is computationally expensive and requires to be performed by incredibly large

number of time steps. Stretching vibrations, especially those containing hydrogen, are the fastest

process for molecules. However, these motions have relatively little effect on molecular properties.

Constraining bond lengths involving hydrogen atoms allows for larger time steps and therefore

reduces the computational cost of the simulation. Typically, constraining bond lengths allows to

increase the time step by a factor of 2 or 3.

Constraints can be done with SHAKE149 or RATTLE150 algorithms. The SHAKE algorithm

is mainly applied in combination with the Verlet algorithm. After adding constraints to the Verlet

algorithm, Equation 2.72 is expressed as:

ri+1 = (2ri − ri−1) +
(Fi + gs[ri,vi])

mi
(∆t)2, (2.77)

where gs represents force due to the constraint. Velocity can be obtained from coordinates. The

RATTLE algorithm was developed specifically for the Velocity Verlet algorithm. Similarly, under

constraints, Equation 2.76 can be written as:

ri+1 = ri + vi∆t+
(Fi + gRR(t))

2mi
∆t2

vi+1 = vi +
1

2mi
(Fi + Fi+1 + gRR(t) + gVR(t))∆t,

(2.78)

where gRR and gVR are two separate approximations related to the constraint force.

2.2.3 Molecular Dynamics Ensembles

Coordinates and velocities are microscopic properties of a system. They can be obtained by the

integration algorithms described above. The macroscopic properties of a system include volume

(V), pressure (P), and temperature (T). The concept of ensemble connects the microscopic proper-

ties of a system with the macroscopic properties. An ensemble is a collection of many microstates

but have an identical macrostate.151

Simple MD simulations produce micro-canonical ensemble (NVE). NVE ensemble corresponds

to an isolated system where the number of particles (N), volume (V), and energy (E) are fixed,

while temperature (T) and pressure (P) are fluctuating. The total energy of a system has two
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parts: kinetic energy and potential energy. It can be expressed as:

Etot = Ekin + Epot

=

N∑

i=1

1

2
miv

2
i + Epot.

(2.79)

The temperature and pressure can be calculated from:

Ekin =
3

2
NkBT

=
3

2
PV

(2.80)

where kB is the Boltzmann constant.

Typically, a NVT or NPT ensemble represents the reality of experiments better than a NVE

ensemble. Since the temperature is proportional to the average kinetic energy, it can be controlled

by scaling the velocities at each time step. One example is the Berendsen thermostat.152 The

Berendsen thermostat method couples the system to a “heat bath” that transfers energy to the

system. The rate of energy transfer is controlled by a parameter τ :

dT

dt
=

1

τ
(Tdesired − Tactual). (2.81)

The velocity scale factor, sv, is given by:

sv =

√
1 +

∆t

τ

(
Tdesired

Tactual
− 1

)
. (2.82)

Another widely used method is the Nosé–Hoover thermostat.153 In the Nosé–Hoover thermostat

method, the heat bath is taken as a part of the system and fictive dynamic variables are assigned.

The fictive dynamic variables change on the same footing with other variables.

The pressure can be maintained similarly by coupling to a “pressure bath”. In Berendsen

barostat method,152 the coordinates are scaled to change the volume of the system instead of

scaling velocities:

dP

dt
=

1

τ
(Pdesired − Pactual)

sc =
3

√
1 + κ

∆t

τ
(Pactual − Pdesired),

(2.83)

where sc is the scale factor of coordinates, and κ represents the compressibility of the system. The

pressure can also be held constant by the Nosé–Hoover method.

2.3 Optimization and Search

Many computational chemistry problems can be categorized as optimization problems in multi-

dimensional space. Optimization means finding a minimum point in a search space. But in many

cases, there are numerous different minima in a multi-dimensional space. The minimum with the

lowest value is the global minimum, while the others are all local minima. The interest may lie in

the global minimum or local minima in different cases. Optimization is a gigantic field. In this

thesis, we employ several optimization methods for different optimization problems:
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• The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm154 in Section 2.3.1 is used to per-

form geometry optimization on the Born-Oppenheimer potential energy surface. In this case,

the local minima are of interest.

• Flexible biomolecules have a large structure space. Proper conformational sampling methods

are often required to find the global minimum of the system. Two global optimization and

search methods, genetic algorithm (GA) in Section 2.3.2, and replica exchange molecular

dynamics (REMD) in Section 2.3.4, are employed to facilitate the conformational sampling.

• To determine the set of parameters in a force field, if the parameters enter the function in

a quadratic way, e.g. εij , the optimization of the function can be done by solving a set of

linear equations. In this case, regularized linear regression in Section 2.3.5 is employed.

• If the force field parameters don’t enter the function in a quadratic way, e.g. charge transfer

parameters aL and bL, the global optimization method particle swarm optimization (PSO)

in Section 2.3.3 is used.

2.3.1 Geometry optimization

There are several standard local optimization tools to deal with the task of geometry optimization

as described in reference.155 The molecular simulation code FHI-aims123 employs a slightly different

approach, which is reviewed in the following.

To find the local minima, the first and second derivatives with respect to atomic positions,

which are the force and Hessian matrix, are required. Assume xn is the set of atomic positions of

a system at the optimization step n. The corresponding force and Hessian matrix of the system

are:

fn = − ∂E
∂xn

Hn =
∂2E

∂x2
n

.

(2.84)

To determine that a point on the PES is a local minimum requires that fn = 0 and Hn be positive

semidefinite. If the values of fn = 0 and Hn are known, the PES around the local minima can be

written as second order Taylor expansion in a displacement sn as:

M(xn + sn) = En − fTn sn +
1

2
sTnHnsn. (2.85)

The calculation of the exact Hessian is computationally expensive. However, it is not necessary to

be known. One can use an approximate matrix to replace the exact Hessian matrix and update

it during the optimization. The most widely used approach to update the estimated matrix is the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm:154

Hn+1 = Hn −
Hn∆xn∆xTnHn

∆xTnHn∆xn
− ∆fn∆fTn

∆fTn ∆xn
, (2.86)

where ∆xn = xn+1 − xn and ∆fn = fn+1 − fn. The initial guess of the matrix is important in

this method and dramatically affects the efficiency of the optimization process. A different initial
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matrix may even affect the final results in some cases.156 The naive choice for the initial matrix is

to take the scaled identity matrix:

H0 = βI, (2.87)

where β > 0.

2.3.2 Genetic Algorithm

Genetic Algorithm (GA) is employed in this thesis to perform conformational sampling on the

high-dimensional PES. GA is one of the most popular proposed evolutionary algorithms, and it

is frequently used for global structural sampling of molecules.157–159 GA operators are mainly

selection, crossover, and mutation. GA follows the concept of survival of the fittest. Each solution

is like a chromosome, and each parameter corresponds to a gene. The fitness of solutions in a

population is evaluated by a fitness (objective) function. The GA algorithm starts with a pool

of random populations. Good solutions are selected while poor solutions are removed from the

pool. Selected solutions are employed to create new generations. Two solutions (parent solutions)

are combined to produce two new solutions (offspring solutions) by crossover. Different crossover

techniques can be employed.160–162 One or multiple “genes” are altered in the newly created

offspring solutions to introduce another level of randomness.

GA-based structural sampling combined with local optimization is easy to implement, stable,

no need to assume the importance of specific degrees of freedom, and does not need to provide

structural preferences. It has been proven to be robust for locating points close to the global

minimum. The GA-based structural sampling in this thesis is performed by the flexible, open-

source package Fafoom.163 Firstly, genetic algorithm at the PBE+vdwTS level with light basis is

employed to perform the structural sampling. Then a clustering scheme with clustering criterion

of 0.02 for RMSD of atomic positions and 0.02 kcal/mol for relative energy is applied to remove

duplicates. The obtained conformers are further relaxed using FHI-aims at the PBE+vdWTS level

with tight basis sets. Final conformers are obtained after clustering.

2.3.3 Particle Swarm Optimization

Particle swarm optimization (PSO)164 is a population-based algorithm and belongs to the group

of swarm-based algorithms. It mimics the navigation mechanism of birds in nature. In PSO, each

solution is considered as a “particle” that can move on a search landscape. Each particle adjusts

its position based on its historical positions and those of other particles. During the movement,

position vector and velocity vector are needed. The position vector (X) represents the value of

the interested problem, in our case, it’s a set of force field parameters, and the velocity vector (V )

represents the direction and speed of the movement.

The position vector of each step is defined as:

Xi(t+ 1) = Xi(t) + Vi(t+ 1), (2.88)
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where Xi(t) is the position of ith particle at tth iteration, and Vi(t + 1) is the velocity of ith

particle at the iteration t.

The velocity vector is defined as:

Vi(t+ 1) = wVi(t) + c1r1 (Pi(t)−Xi(t)) + c2r2 (G(t)−Xi(t)) , (2.89)

where Vi(t) is the velocity of ith particle at tth iteration, w is the inertia weight, c1 and c2 are the

individual coefficient and social coefficient, respectively, r1 and r2 are random numbers between

[0, 1], Pi(t) and G(t) are the best solutions found by the ith particle and all particles until iteration

t, respectively, and Xi(t) is the position of ith particle at iteration t.

In Equation 2.89, the first term considers how much of the previous velocity should be main-

tained. The second term is the so-called cognitive component, which represents the individual

intelligence. Pi(t) is the best position of the particle so far. The third term represents the social

intelligence. Therefore, the movement of each particle is affected by individual and social intelli-

gence and by that dragged towards the best regions of search space. The PSO starts with a random

set of particles. Each particle has a random position vector and velocity vector. Parameters of w,

c1 and c2 are initialised. Then, particles move in different directions in the search space. Positions

of particles are updated until the end condition is satisfied.165

2.3.4 Replica-exchange Molecular Dynamics

The original replica-exchange method166 was applied with Monte Carlo simulations.167–169 It was

then combined with molecular dynamics and formed the method of replica-exchange molecular

dynamics (REMD).170 The basic idea of REMD is to run MD simulations of multiple replicas of

the system under study simultaneously. Each simulation is in the canonical ensemble at different

temperatures. Thus, the replica-exchange method is also called parallel tempering. Figure 2 shows

the schematic representation of REMD method. REMD is not an optimization technique per se,

but in this thesis, we use it to explore the structural space of bio-molecules. The combination of

REMD, clustering, and local optimization forms a global search technique.

Standard MD simulations are of limited use when performing conformational sampling on

potential energy surfaces with many minima. Due to the inflexible nature of MD, sampling can

easily be trapped in metastable minima on the surface, resulting in incomplete sampling. At high

temperatures, barriers are easier to overcome and the trajectory is less likely to be trapped in

local minima. While the local energy surface around local minima can be accurately sampled at

low temperatures. The REMD method combines these two advantages by swapping replicas at

different temperatures after a specific MD simulation time. In this way, a random walk through

a predefined discrete temperature space is introduced, which enables the simulation to overcome

the energy barrier and sample a wider space. In REMD simulations, swaps occur between replicas

with neighboring temperatures. When two replicas are swapped, not only atomic positions but also

their momenta are swapped. To adapt the momenta of the replicas to new temperature, the easiest
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Figure 2: The schematic representation of replica-exchange molecular dynamics method. Five

replicas swap between five different temperatures. MD simulations are performed in-between the

swaps.

way is to scale the momenta according to the approach proposed by Sugita and Okamoto:171

p′i =

√
Tnew

Told
pi, (2.90)

where pi are the old momenta of particle i, Told and Tnew are the temperatures before and after

the swap, respectively. In this way, the average kinetic energy is preserved as 3
2NkBT . The prob-

ability of accepting a swap between ensembles i and j is determined by the Metropolis acceptance

criterion:172

Pβi←βj
= min

[
1, e−(βj−βi)(E(Ri)−E(Rj))

]
, (2.91)

where βi = 1/kBTi, and E(Ri) is the potential energy of the ensemble i with configuration R.

2.3.5 Regularized Linear Regression: Ridge Regression and LASSO

Multiple linear regression is to investigate the relationship between two or even more independent

variables (xi) and one dependent variable (yi). For a multiple linear regression model, assume

a data set contains n samples, (x1, y1), (x2, y2), . . . , (xn, yn), where xi is the input vector

containing p predictor variables, i.e.

xi =




1

xi1

xi2
...

xip




, (2.92)

and yi is the i-th output value. The multiple linear model specifies a linear relationship between

xi and the expected value ŷi, that is,

ŷi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip, i = 1, . . . , n, (2.93)
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where βd, d = 0, 1, . . . , p represent linear regression coefficients. If we define the coefficient vector

β as:

β =




β0

β1

...

βp



, (2.94)

vector Y as:

Y =




y1

y2

...

yn



, (2.95)

and matrix X as:

X =




xT1

xT2
...

xTn




=




1 x11 x12 . . . x1p

1 x21 x22 . . . x2p

...
...

...
. . .

...

1 xn1 xn2 . . . xnp



, (2.96)

we can obtain Equation 2.97 from Equation 2.93

Ŷ = Xβ. (2.97)

The regression coefficients can be obtained by the method of least squares.173 With the property

of matrix, Equation 2.97 can be written as:

XT Ŷ = XTXβ. (2.98)

Thus, assuming the rank of the matrix X equals to p + 1 so that (XTX)−1 is well defined, the

least squares estimators β̂ can be obtained by

β̂ = (XTX)−1XTY . (2.99)

Equation 2.97 can be further written as

Ŷ = X(XTX)−1XTY . (2.100)

Thus the residual sum of squares (RSS) can be obtained by

RSS =

n∑

i=1

(
Yi − Ŷi

)2

= Y T
(
I −X(XTX)−1XT

)
Y ,

(2.101)

where I represents the identity matrix.

The matrix XTX may be ill-conditioned, or even singular if there are high correlations among

predictor variables or a large number of predictors (p > n), which means that the inverse matrix of

XTX is numerically unstable, thus further leading to numerically unstable least squares estimates

β̂.174 Various regularization or shrinkage regression175 techniques can be used to address this
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problem. These techniques impose a constraint on the model parameters, which ‘shrinks’ the

regression coefficients towards zero, aiming to stabilize them. This can be achieved by adding a

penalty term, F (β0, . . . , βp), to the objective function that needs to be minimized

D =

n∑

i=1

[
Yi − xTi β

]2
+ F (β0, . . . , βp). (2.102)

Ridge regression176,177 employs a quadratic form for the penalty function, i.e. square of the

magnitude of the coefficients. Thus, the objective function can be written as

D =

n∑

i=1

[
Yi − xTi β

]2
+ λ

p∑

l=1

β2
l , (2.103)

where λ represents a regularization or tuning parameter. λ acts as the Lagrange multiplier of the

constraint. Equation 2.103 is equivalent to

D =

n∑

i=1

[
Yi − xTi β

]2
subject to

p∑

l=1

β2
l ≤ λ, (2.104)

and can be written in matrix notation as following

D = (Y −Xβ)
T

(Y −Xβ) + λβTβ. (2.105)

Minimizing D gives the equation178

(XTX + λI)β = XTY , (2.106)

where I denotes the identity matrix. Thus, the ridge regression estimates β̂ are given by

β̂ = (XTX + λI)−1XTY . (2.107)

Compared to Equation 2.99, a diagonal “ridge” (λI) is added to XTX matrix so that it always

has an inverse, which further stabilizes the ridge regression estimates β̂.

We can see that when λ → 0, the objective function D becomes similar to the linear regression

objective function, while the larger its value, the stronger the coefficients’ size penalized from

Equation 2.107. Hoerl and Kennard179 showed that there are always some λ (> 0) such that the

residual sum of squares RSS is smaller than for the ordinary least squares estimators.

The penalty term in Ridge regression is the so-called “L2” penalty, one can also use the “L1”

penalty in the objective function D , which results in the LASSO (least absolute shrinkage and

selection operator)180 model:

D =

n∑

i=1

[
Yi − xTi β

]2
+ λ

p∑

l=1

|βl|. (2.108)

Unlike Ridge regression, there is no clear expression for the estimator β̂, but a number of solutions

are required. The use of “L1” penalty sets some of the estimators to 0, meaning that only a subset

of the original estimators is obtained, which is the so-called sparse solution. LASSO regularization

does not only act as shrinkage regression, but also a variable selector, it suppresses the low-impact

predictor variables to 0. Although Ridge regression usually has higher predictive capability when
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there is high multicollinearity among predictor variables, LASSO regression is often used for large

number of predictor variables or overdetermination.178

The tuning parameter λ in Ridge regression and LASSO regression is often chosen by k-fold

cross-validation approach.181 One advantage of cross-validation is that it reduces over fitting with-

out saving a subset of the data set for internal validation.182

2.4 Data Management

The data generated in this thesis has great potential for force field parameterization and further

applications, e.g. machine learning or benchmarking. To make the data available to experts in

force field development, or even to experts in other scientific fields, the data storage should fulfill

the so-called FAIR principles:183 findable, accessible, interoperable, and re-usable.

• “Findable” means that the data and corresponding meta-data should be easy to find. Meta-

data is the so-called data about data. It is a set of attributes necessary to annotate, charac-

terize, and ultimately reproduce data. For example, a DFT total energy calculated with a

specific functional and atomic positions. The total energy is seen as data, while the functional

and atomic positions are the input to the calculation, necessary to reproduce the data, and

therefore metadata for that calculation. The total energy can also be meta-data for further

analysis.

• “Accessible” requires open and free authentication and authorization protocols.

• “Interoperable” requires the data to be able to integrate with other data, different applica-

tions or workflows.

• “Re-usable” is the biggest benefit of FAIR data handling. The data should be easy to apply

to other applications or workflows.

Several repositories have been developed to store and share data. Some of them use meta-

data schemes to annotate data and make the data accessible through application programming

interface (API). Furthermore, Semantic Web technologies are developed to enable a machine to

“understand” the data by enriching the web with machine-processable information.184 Ontologies

are most closely related to the development of the Semantic Web. Several repositories, the concepts

of Semantic Web and ontologies are outlined in the following.

2.4.1 Repositories

There are several repositories available for storing molecular computational data. To name some of

them, ioChem-BD platform185 supports data curation, storage, indexing data, and search engine

services. It supports 11 computer codes. Complete input and output data are not stored in

ioChem-BD. Some results in ioChem-BD are translated into CML (Chemical Markup Language),

a chemistry-oriented XML language, and can be downloaded. The Benchmark Energy & Geometry
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Database (BEGDB)186 contains highly accurate QM calculations of molecular structures, energies,

and properties. The data is listed in a table. Complete input and output data are also not available.

The Novel Materials Discovery (NOMAD) Repository & Archive is explained in more detail as it

is used to store data in this thesis.

NOMAD Repository & Archive supports over 40 computer codes and stores over 11 million

entries.187 It contains complete input and output files, so that the calculations can easily be

repeated or continued. Each entry/calculation has a unique identifier. In addition, undivided

entries can be curated into data sets for which a DOI can be assigned to make the data citable. In

addition to raw data, a meta-data schema NOMAD Metainfo188 is used to annotate and structure

data. Data as well as meta-data from electronic-structure theory, e.g., structure, energy, program,

are well organized in NOMAD Metainfo in a standardized, code-independent format. Information

in NOMAD Metainfo can be explored through an API. The widely adopted JSON format is used

to store data, which improves the interoperability of the data.

The NOMAD Repository & Archive fulfills the FAIR principles. The meta-data schema and

unique paths for each term make the data finable (F). The API connected to the meta-data

schema ensures accessibility (A). Using widely processable format like JSON to store data improves

interoperability (I). Storing all raw data makes data better re-usable (R). The ontologies developed

in this thesis aim to further improve the accessibility and interoperability.

2.4.2 Semantic Web

Before introducing the concept of ontologies, we need to describe the concept of the Semantic Web.

As the definition from Berners-Lee et al.,189 Semantic Web “is an extension of the current web in

which information is given well-defined meaning, better enabling computers and people to work in

cooperation”. It refers to the vision of an intelligent network. Tim Berners-Lee presented his plan

for Semantic Web Architecture at the XML 2000 conference190 (Figure 3). Items in Figure 3 are

Identifiers: URI Character Set: UNICODE

Syntax: XML

Data interchange: RDF

Taxonomies: RDFS

Ontologies: OWL

Unifying Logic

Trust

User interface and applications

Querying:
SPARQL

Proof

Figure 3: Semantic Web layer cake, based on Berners-Lee190 and Reference.191

briefly introduced in the following:

• Uniform Resource Identifier (URI) and its extension, the internationalized resource

identifier (IRI), represent unique entities.
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• Unicode refers to the text standard expressed in most of the world’s writing systems. For

example, the latex source of this thesis is written in unicode UTF-8.

• Extensible Markup Language (XML) is a standard syntax to serialize and store data.

It enables users to build human-readable as well as machine readable documents in a tree

structure.192 XML tags contain meta-data and represent the data structure, while it does

not impose semantic restrictions on the meta-data in these documents.193

• The Resource Description Framework (RDF) is used for encoding, exchange, and

reuse of metadata. The information about resources is represented in graph form. The RDF

description is based on the triple relation: subject-predicate-object. Subject and predicate are

usually resources identified uniquely by URIs or IRIs, while object can be a literal. Unlike

XML, no assumptions about data structures are required in RDF.

• RDF Schema (RDFS) is an extension of RDF. It provides classes and properties and

therefore provides the basic building blocks of concepts.

• Web Ontology Language (OWL) extends the RDFS and is syntactically embedded in

RDF. OWL provides additional vocabulary to express relations between classes (e.g. dis-

jointness), cardinality (e.g. “exactly one”), characteristics of properties (e.g. symmetry),

and much more. Thus it provides greater machine interpretability than XML, RDF, and

RDFS.193

• SPARQL is a query language. It can be used to query RDF, RDFS, and OWL.

To make sure that all results are trustworthy for users or applications, all semantics should be

proofed and only based on trusted inputs.

2.4.3 Ontologies

Ontology is a word borrowed from philosophy. In philosophy, ontology is the study of being - about

what kind of things exist. Nowadays, it is borrowed by computer science as a semantic knowledge

organization system (KOS). A widely cited description of ontologies is made by Gruber,194 which

is that “An ontology is an explicit specification of a conceptualization.” Later, Studer et al.195

updated the definition as “An ontology is a formal, explicit specification of a shared conceptualiza-

tion, where ‘formal’ means the ontology should be machine readable; ‘explicit’ requires all concepts,

properties, relations, functions, constraints, and axioms to be explicitly defined; ‘shared’ emphasizes

that the ontology represents consensual knowledge, e.g. that it is accepted by a group; and ‘con-

ceptualization’ is an abstract model of some phenomenon in the world.” However, the definition

is still rather abstract. To make it easier for beginners to understand: an ontology defines a com-

mon vocabulary for researchers who need to share information by including machine-interpretable

definitions of basic concepts in a domain and relations among them.196

The main components of an ontology include classes, properties, instances, and axioms. Classes

are the focus of most ontologies. They represent concepts of entities in a domain. A class can have
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sub-classes that describe more specific concepts and a set of individual instances. Properties allow

users to assert general facts about classes and specific facts about individuals. They also capture

relationships between classes. Like classes, properties can have sub-properties. Once the classes and

properties are defined, an ontology is produced. Instances are the “thing” that a class represents.

For example, “zinc” is an instance of class “atom”. Strictly speaking, as a conceptualisation of a

domain, an ontology should not contain any instances. To further understand this, two concepts

need to be distinguished: ontology and knowledge graph. There are two types of statements in

computer science. The terminological component consisting of TBox statements defines classes and

properties. The TBox statements build a conceptual framework to express actual facts. The facts

or data are represented with the vocabulary defined by TBox in so-called assertion components.

The assertion component consists of ABox statements, and instances belong to the ABox. In

summary, the TBox is usually an ontology and the ABox contains the facts or data stored in the

schematic definitions by the TBox. TBox and ABox together form a knowledge graph composed of

the ontology and the data. However, sometimes it’s difficult to define things as classes or instances.

For example, one can state “zinc” is an instance of class “atom”. It could be argued that “zinc”

is a class that represents different instances of zinc, e.g. Zn0 and Zn2+. This is a well-known open

question of ontology management. Finally, axioms are the facts in an ontology.

An ontology is developed to share a common understanding of knowledge in a domain among

people or software agents. Sharing data with ontology also fulfills the FAIR principles. Ontologies

ensure that data and meta-data are both human-readable and machine-readable, thereby enabling

automatic discovery of data (F). In principle, any question framed in ontology logic can be an-

swered in finite steps by ontology query language. This ensures accessibility (A). Ontologies ensure

interoperability (I) by presenting data in a formal language and format. Ontologies can be easily

connected to other ontologies or applied to other applications, making the data re-usable (R).

Through these principles, data is extensible, accessible, and automatically processed.

There is no correct way to develop an ontology. Typically, developing an ontology is an iterative

process. Developers start with a rough ontology, then revise and refine the ontology iteratively

by using it in applications or discussing with experts. Ontologies can be developed in two ways:

bottom-up or top-down. The bottom-up approach starts with an existing database and extends

the specific concepts in the database to connect upper-level concepts. This is a practical way to

present and explore data quickly. After the data is populated, a knowledge graph is built. The

top-down approach starts with the most general concepts and properties, regardless of the existing

database. Both approaches have their advantages and users can choose which approach to use

based on their purpose. The two approaches can also be used in combination.

There are several typical steps in developing ontologies. Before developing an ontology, the

scope and usage of the ontology need to be determined. The scope of an ontology can be defined

by considering which questions the ontology should be able to answer. Then, one should check for

existing ontologies that can be reused. Reusing existing ontologies may be necessary if one wants

to link their ontologies with other ontologies. The next step is to write down important terms
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and define classes and the hierarchy. Once the classes and hierarchy are defined, one can define

properties and restrictions on properties. Classes are connected to each other through properties.

Finally, individual instances are created.
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Chapter 3

Summary of main results

This chapter summarizes the main results of the publications that make up this thesis. Details

of methodologies and secondary results are not included in this chapter and can be found in the

respective publications in Chapter 4. The main purpose of the work underlying this thesis is to

pave the way for accurate simulation of metalloproteins. To that end, we performed a systematic

study and presented the results through three papers.

• Paper I82 presents a quantum chemistry data set of amino-methylated and acetylated

(capped) dipeptides with possible protonation states and several divalent cations (Ca2+,

Mg2+ and Ba2+) that can be used for FF parameterization.

• Paper II83 benchmarks a polarizable Drude FF, and three widely used classical FFs, OPLS-

AA, AMBER, and CHARMM (C36) against the quantum chemistry data set from Paper I,

and demonstrates how QM-driven parameterization and the explicit consideration of charge

transfer and polarization effects can improve the simulation of cation-protein interactions.

• Paper III presents an open source parameterization tool, which enables the parameterization

of classical FF OPLS-AA as well as CTPOL model, which is a FF model that includes charge

transfer and polarization effects.

Classical force field parameterization has been used to improve the accuracy of metalloprotein

simulations, and has been successful to some extent.50,56,72 However, it is still limited due to the

complex electrostatic environment in metalloproteins. An alternative approach is to introduce

more physics, e.g. charge transfer and polarization effects, to the FF framework. Studies have

shown that polarizable FFs better reproduce experimental as well as high-level quantum chemistry

results than classical FFs.65,197 Explicit inclusion of charge transfer and polarization effects plays

an important role in the development of next-generation force fields. However, more complex

functions or more energy terms result in more parameters, which makes the parameterization

even more challenging. Thus, large and sufficiently accurate data sets are needed. The reference

data for force field parameterization can be experimental data or computational data. However,

experimental data of ion-containing systems are limited and lack less stable conformations. Due
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respectively. Classes in different ontologies are labeled with different colors. Solid lines represent

properties, and dashed lines indicate the property of “has subclass”.

to the good accuracy and affordable computational cost, DFT data has been used for force field

development198 and has been shown to improve force field accuracy.199 Although several studies

have provided a solid basis for conformational and energetic assessment of protein building blocks,

these data vary in approximations and sampling methods. Furthermore, data is often not available

in a straight forward usable way.

We believe that better FF start with better data. Hence we provide a DFT data set that covers

a wide range of amino-methylated and acetylated (capped) dipeptides to simulate the diverse

chemical spaces in proteins in Paper I.82 The data set contains:

• 20 proteinogenic amino acids including possible protonation states of side chains;

• three divalent cations (Ca2+, Mg2+, and Ba2+);

• 21,909 stationary points on the PES with a wide range of relative energies up to 4 eV;

• properties related to force fields development, such as partial charges related to electrostatic

interactions, interaction energies related to cation-protein interactions, and so on.

All data are calculated on consistent computational footing. The reliability of the xc-functional

and sampling method employed was evaluated in previous studies.105,163 These characteristics

make the data set suitable for various uses, such as force field development, machine learning,

and force field benchmarking. To make the data available to the community, we shared the data

set via the NOMAD Repository & Archive. However, only electronic structure theory data and

the corresponding meta-data are represented in the NOMAD archive. The conceptual knowledge

about force field related secondary data of our study such as atom type and connectivity is hidden
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Figure 5: (a) Number of conformers, RMSD as well as Boltzmann-weighted RMSD (wRMSD)

of the four FFs relative to the quantum chemistry interaction energies for each dipeptide-Ca2+

system. RMSD and wRMSD are in kcal/mol. (b) Characteristic snapshots of N-lobe of the human

calmodulin (CaM) protein in simulation with CHARMM36 (left) and Drude-wRMSD (right) mod-

els, respectively. Green spheres in the figure represent the Ca2+ ions binding with sites in Loop I

and II. Gold spheres represent the Ca2+ ions recruited from solutions. (c) The distribution of the

contacts between Ca2+ and COO− with different FF models.

somewhere in the files, which hinders the automatic access and processing of the data. To alleviate

this, several ontologies were developed to represent the data set. An ontology defines a machine-

readable common vocabulary of concepts in a domain and relations between them. Figure 4 (a)

shows the hierarchy of the developed ontologies. Two existing ontologies, European Materials

Modelling Ontology (EMMO) and Amino Acid Ontology, were reused. In this way, Amino Acid

Meta-Info (AAMI) is connected to upper-level concepts and is easily linked to more ontologies.

Some of the high level classes and properties of AAMI are shown in Figure 4 (b) to give an

overview of how AAMI is organized and how concepts are linked to each other. In principle, all

questions in the ontology logical framework can be answered in several steps. Data queries can

be done using the query language SPARQL. This query and answer framework further makes the

data interoperable and re-usable.

To assess the reliability of force field models in describing cation-dipeptide interactions, the

DFT data set in Paper I was used to benchmark four force field models in Paper II. The

four force field models include one polarizable Drude model and three classical models, CHARMM

(C36),124 AMBER (AMBER10),129 and OPLS-AA.126 Figure 5 (a) displays the RMSDs as well as
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Boltzmann-weighted RMSDs (wRMSDs) between the four FFs and quantum chemistry interaction

energies for different dipeptide-Ca2+ systems. Boltzmann-weighted RMSDs put more weight on

low-energy conformations during the evaluation. Clearly, the Drude model is more accurate than

the other three non-polarizable FFs for almost all dipeptide-Ca2+ systems. For two systems, Glu-

Ca2+ and Asp-Ca2+, we observe unphysically large energies when two polarizable atoms come

too close to each other. This so-called polarization catastrophe occurs between Ca2+ and oxygen

atoms in our test set and can be remedied by implementing the Thole damping factor.

With the optimized pair-wise Thole parameter and LJ parameters, the Drude models no longer

exhibit the polarization catastrophe phenomenon and yield much smaller RMSDs of interaction

energies than the three non-polarizable FF models. It was also found that in addition to the Thole

parameter, the optimization of the LJ parameters is also essential to better reproduce the DFT

interaction energies. The optimized Drude parameters were then evaluated by MD simulations

with the N-lobe of the human calmodulin (CaM) protein. Studies have shown that non-polarizable

FFs overestimate the coordination number (CN) between Ca2+ and CaM protein.52 The number

of Ca2+ cations binding to a single CaM protein can be up to 20 with non-polarizable FF instead

of the expected 4.52 Figure 5 (b) shows the snapshots from the MD simulations of CaM protein

with CHARMM36 and optimized Drude model (Drude-wRMSD). The probability distributions

of the Ca2+ – carboxylate CNs are shown in Figure 5 (c). The average CN of the CHARMM36

simulation is 8.5, while all Drude simulations yield a smaller average CN of 4. This work showed

how a combination of a large and comprehensive quantum chemistry database and condensed-phase

MD simulations can drive force field development to simulate important metalloproteins.

Although the Drude model has shown its potential to better simulate metalloproteins, it may

still have its limitations when charge transfer effects are significant. Studies have shown that the

charge perturbation on the ligand atoms caused by Ca2+ is significant, and this impact occurs

not only in the first coordination shell, but also in the second shell.200,201 The CTPOL model

incorporates charge transfer and polarization effects into the classical FF formula. Paper II

tested the CTPOL model with Glu-Ca2+ and Asp-Ca2+ systems. The results showed that the

inclusion of polarization effects can better reproduce the DFT interaction energies than classical

FFs, while the introduction of charge transfer effects can further improve the accuracy of FF. It

was also found that tuning the LJ parameters is critical after extending the standard FF to the

CTPOL model.

Based on the fact that most polarizable FFs are subject to limited validation, they may need to

be re-parameterized when they are used on new systems. However, re-parameterization is always

time-consuming and tedious. Especially for the parameterization of polarizable FFs due to the more

complex formulation and more parameters. Several tools are available for the parameterization of

non-polarizable FFs,202–204 while tools for polarizable FFs are still lacking. FFParam205 provides

the parameterization for Drude model, however, parameterization tools for CTPOL model are

not yet available. Paper III implements CTPOL model on OpenMM and introduces the open

source parameterization tool FFAFFURR, which supports the parameterization of OPLS-AA and
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Figure 6: (a) Workflow of CTPOL parameterization. Parameters in blue boxes are derived from

DFT calculations, parameters in coral boxes are obtained by Lasso or Ridge regression, and pa-

rameters in green boxes are obtained by PSO. (b) The absolute error distribution after each step

in the workflow of AcCys−NMe-Zn2+, and the absolute error of OPLS-AA with fully optimized

parameters (opt-opls) (c-f) The structures of interaction center of zinc finger protein after 40 ns

MD simulation with different parameter sets. (g) Charge transfer along time with parameter sets

CTPOL and opt-CTPOL.

CTPOL model. Since it has been found that both the Drude model and the CTPOL model require

LJ parameterization in Paper II,83 FFAFFURR provides the parameterization of all energy terms

in the OPLS-AA and CTPOL models. Users can choose which energy term to adjust according to

their needs in practical applications.

The performance of FFAFFURR was evaluated by its ability to reproduce relative energy hi-

erarchies at the DFT level and by comparing the statistics of condensed-phase MD simulations.

Figure 6 (a) and (b) display the workflow of CTPOL parameterization and the absolute error distri-

bution after each step in the workflow of AcCys−NMe-Zn2+. Cysteine coordinated to Zn2+ serves

as the center of many metalloproteins and has been reported to have significant charge transfer.77

Figure 6 (b) shows that the absolute errors between FFs and DFT energies are significantly im-

proved after the introduction of charge transfer for AcCys−NMe-Zn2+. After the full optimization

of either parameter set, the CTPOL model better reproduces DFT energies than OPLS-AA.

Then, MD simulations of zinc finger protein (1ZNF) were used to validate the parameter set

parameterized on the model peptides. Figure 6 (c) shows the structure of the interaction center

of zinc finger protein after 40 ns MD simulation with OPLS-AA. The two histidines left the Zn2+
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center after the simulation. One potential usage of FFAFFURR is to optimize the parameters for

the interaction center. The pair-wise LJ parameters of Zn2+ and atoms of histidine were optimized

to obtain a new parameter set (opt-OPLS-AA). After the simulation, there was still one histidine

leaving the interaction center as shown in Figure 6 (d). Then we tried to extend the opt-OPLS-AA

model to the CTPOL model by introducing charge transfer and polarization term (opt-CTPOL)

and succeeded in preserving the correct coordination number of the interaction center. To evaluate

the effect of optimized pair-wise LJ parameters in the opt-CTPOL model, we tested the pure

CTPOL model (CTPOL), which is the original OPLS-AA parameter set with charge transfer and

polarization term introduced. It was found that the CTPOL model also preserved the correct

coordination number of the interaction center. However, Figure 6 (g) shows the values of charge

transfer along time with parameter sets CTPOL and opt-CTPOL. The data in the left panel are

from a 40 ns MD simulation, and the data in the right panel are from 40 individual 1 ns simulations

with different initial structures. The initial structures were derived from a short continuous MD

simulation. The left panel shows that the charge transfer is more stable with opt-CTPOL, and the

right panel further proves that the stability of the simulation using CTPOL is influenced by the

initial structure. Overall, the results show that CTPOL model with the parameters derived from

DFT data of model peptides can better simulate zinc finger proteins than classical FF, and the

parameterization of LJ parameters is essential.

In conclusion, in the three papers that make up this thesis, I demonstrate:

• The creation of a comprehensive DFT data set for FF parameterization.

• The use of ontologies and FAIR data.

• Testing of classical and polarizable FF.

• Implementation of the CTPOL model and a parameterization tool.

• Testing of CTPOL model through MD simulations.
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Chapter 4

Publications

This Chapter presents the published scientific manuscripts which form the core of the thesis. The

publications are organized thematically rather than chronologically. Before the manuscripts, an

introductory page which represents publication title, authors’ names, reference, URL, DOI and

authors’ contributions is provided.

43





4.1 Paper I: Better force fields start with better data: A

data set of cation dipeptide interactions
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Better force fields start with better 
data: A data set of cation dipeptide 
interactions
Xiaojuan Hu    ✉, Maja-Olivia Lenz-Himmer    & Carsten Baldauf    ✉

We present a data set from a first-principles study of amino-methylated and acetylated (capped) 
dipeptides of the 20 proteinogenic amino acids – including alternative possible side chain protonation 
states and their interactions with selected divalent cations (Ca2+, Mg2+ and Ba2+). The data covers 
21,909 stationary points on the respective potential-energy surfaces in a wide relative energy range 
of up to 4 eV (390 kJ/mol). Relevant properties of interest, like partial charges, were derived for the 
conformers. The motivation was to provide a solid data basis for force field parameterization and 
further applications like machine learning or benchmarking. In particular the process of creating all 
this data on the same first-principles footing, i.e. density-functional theory calculations employing the 
generalized gradient approximation with a van der Waals correction, makes this data suitable for first 
principles data-driven force field development. To make the data accessible across domain borders and 
to machines, we formalized the metadata in an ontology.

Background & Summary
Metal cations are essential to life: one third of the proteins in the human body require metal cofactors1,2. By 
shaping the structure of proteins, cations affect biological processes like molecular recognition or enzyme activ-
ity. Understanding the structure, dynamics, and function of metalloproteins is in the ongoing focus of many 
researchers, we summarize a few examples that involve simulation approaches: Tamames et al. analyzed zinc 
coordination spheres in a data set from the Protein Data Bank and complemented with DFT-B3LYP calcula-
tions3. Sala et al. investigated folding of Pyrococcus furiosus rubredoxin (PfRd), which includes an iron ion, with 
classical molecular dynamics (MD) simulations4. A calcium binding site in the blood protein von Willebrand 
Factor (VWF) regulates force-triggered unfolding for cleavage and therewith its activity in primary hemosta-
sis, as illustrated by classical force-probe MD simulations5. Gogoi et al. investigated protein-metal ion binding 
affinities by analysing MD simulations of 49 different cation-protein complexes6. Metal cations can alter peptide 
structure by interacting with backbones and thereby enforcing non-Ramachandran geometries7. Cations can, 
by repulsion or attraction, also substantially reduce the conformational flexibility of functional sidechains8,9.

MD simulations of biomolecules typically rely on additive force fields, where distinct terms describe bonded 
and non-bonded interactions based on empirically derived parameters. Studies have shown that the accu-
racy of force fields is especially limited when describing interactions involving ionic species10–13. In particular 
non-bonded interactions are critical, but of course the effect that nearby located cations exert on bonds is almost 
impossible to grasp by the combination of bonded and non-bonded interactions in a general-purpose force field. 
Modeling of electrostatic interactions via pairwise Coulomb potentials is based on assigning partial charges to 
atoms14. Partial charges are derived by: (i) fitting to experimental data (GROMOS and OPLS prior 2005), e.g. by 
fitting partial charges to reproduce hydration free enthalpies15,16, (ii) deriving partial charges from QM calcula-
tions (Amber and Charmm)17,18, or the combination of the two strategies (OPLS after 2005)19.

The reliability of a force field also depends on the physics behind the formulation. The failures of established 
biomolecular force fields when describing cation-peptide systems may result from a central underlying assump-
tion – modeling atoms by fixed point charges and neglecting charge transfer and polarization effects, while both 
are crucial to ionic systems20–23. Introducing more physics to the model appears a promising route to improve 
force fields: The inclusion of electronic polarization and charge transfer plays a central role in the next genera-
tions of biomolecular force fields24–26. However, including additional terms leads to force fields with way more 

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany. ✉e-mail: xhu@fhi.mpg.de;  
baldauf@fhi.mpg.de
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parameters, which makes parameterization more challenging27,28, in particular in the absence of high-resolution 
experimental data of less stable conformations, i.e. higher-energy structures29. To summarize, we see three main 
challenges:

•	 The availability of sufficiently-accurate electronic-structure data as well as choosing the “right ways” to derive 
e.g. partial charges from it.

•	 Designing the formulation of next-generation force fields that also include, for example, charge transfer and 
polarization.

•	 Finding sets of parameters (force fields) for such potentials in the absence of experimental data at sufficient 
spatial and time resolution.

Thorough studies have deepened our understanding of the conformational basics of individual building 
blocks, e.g.30–41. However, these studies are highly diverse with regards to the approximations made to model and 
to search the potential energy surfaces (PES) of the respective molecular systems; furthermore, the data is often 
not available. The availability of uniform and comprehensive computational data at an appropriately accurate 
level of theory has the potential to substantially increase the predictive power of force fields42. In order to provide 
such amino acid data sets for force field development on consistent computational footing, we extend previous 
work43 by focusing on dipeptides as models of amino acid building blocks in polypeptide chains in complex with 
the divalent cations Mg2+, Ca2+, and Ba2+, which play prominent roles in physiology: Mg2+ takes structural, cat-
alytic, and regulatory roles44 regulating ion channels, mitochondrial function, and cell’s pH and volume45. Ca2+ 
levels regulate muscle contraction, hormone secretion, metabolism, ion transport, division, etc46. Mg2+ and Ca2+ 
may compete for the same binding sites47. Ba2+ can cause cardiac irregularities and affect the nervous system 
presumably by blocking potassium channels48.

Combining these 3 cations with the proteinogenic amino acids in all meaningful side chain protonation 
states results in a data set that covers a wide range of molecular systems, see Fig. 1.

For the 21,909 stationary points, properties relevant to force field development were computed, details can 
be found in the Methods section. Making the data FAIR49,50 – as in findable, accessible, interoperable, and reus-
able – is a challenge. In particular as we want to make the data available also to experts from other domains of 
science or to autonomous agents. To that end, we make the data freely available and also provide ontologies. An 
ontology defines a common vocabulary of basic concepts in a domain and relations among them51. The benefit 
is primarily that these definitions are machine-readable. This allows for interoperability between resources and 
databases as well as data interpretation across data collections. Through developed ontological representation 
of the data set, it can be connected to upper level concepts and thereby made machine-usable, which in turn 

Fig. 1  The molecular systems in this study are dipeptides of the 19 proteinogenic amino acids that differ in 
the side chain R and the proteinogenic imino acid proline. Where applicable, different protonation states were 
considered.
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enables automatic access and querying of the data. Ultimately, researchers can share their data with experts from 
other domains as well as making data available to machine intelligence.

Methods
Figure 1 summarizes the molecular systems in this study. Including the protonation states, we have to consider 
26 dipeptides in 4 complexation states (bare, Ca2+, Mg2+, Ba2+) which results in the 104 systems for which our 
structure searches identified 21,909 stationary points. For each of these stationary points, not only structure 
and energy are provided, but also further properties relevant to force field development, namely: van der Waals 
energies, interaction energies as well as electron densities and derived properties like the electrostatic poten-
tial, diverse partial charge models, and effective atomic volumes. By that, our dipeptide-cation data set allows 
one to explicitly assess subtle, but important, effects of local changes in the electrostatic environment due to 
peptide-cation interaction.

Sampling method.  A hierarchical structure search that is described in detail in reference43 was employed 
to locate stationary points on the potential energy surfaces of the 104 molecular systems. The initial global con-
formational searches of all dipeptides with/without Ca2+ were performed by a basin hopping search strategy52,53 
using the OPLS-AA force field16. Secondly, a refinement using density-functional theory calculations was per-
formed. All electronic-structure calculations were performed with the all-electron, full-potential code FHI-aims 
utilizing numeric atom-centered basis functions54–56. The PBE generalized-gradient exchange-correlation func-
tional57 augmented by Tkatchenko’s and Scheffler’s pairwise van der Waals correction58 was employed, and is 
referred to as PBE+vdW throughout this work. Stationary points that resulted from the FF-based pre-sampling 
were subjected to DFT-PBE+vdW relaxations with light settings. Next, a local first-principles based sampling 
step by ab initio replica-exchange molecular dynamics (REMD)59,60 employing DFT-PBE+vdW with light 
settings, was applied to the identified set of structures. Conformers were extracted every 10 steps from REMD tra-
jectories and clustered with a k-means clustering algorithm61. Obtained conformers went through relaxation with 
PBE+vdW (light computational settings), clustering and further relaxation with PBE+vdW (tight com-
putational settings) to obtain the final conformational hierarchies. Initial structures of Mg2+ and Ba2+ binding 
dipeptides were obtained by substituting Ca2+ cation in dipeptide binding a Ca2+ cation. Subsequently, those were 
put into the procedure from ab initio REMD simulations to relaxation with PBE+vdW (light computational 
settings) to obtain final conformers as described before. These structures were further relaxed by PBE+vdW with 
tight computational settings.

Fig. 2  Schematic representation of the workflow employed to derive properties of each conformer. Calculation 
steps were displayed in boxes with different background colour. Gray boxes indicate tools employed in each 
step. Parallelograms represent input and output files in each step. Links to custom codes are listed in Section 
Code availability.
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Property calculations.  Property calculations were performed on all structures obtained by the sampling 
method described above. This includes also high energy conformers. Figure 2 shows the processes involved in the 
property calculations; the individual steps are described in detail below. From the PBE+vdW DFT calculations 
with tight computational settings using FHI-aims, we collect in Step 1 total energies, vdW energies, interaction 
energies, electron densities, electrostatic potential, Hirshfeld partial charges62, and effective atomic volumes. 
Based on the effective atomic volumes V eff per atom we provide, the effective vdW radii (Reff

0 ) and the polarizabil-
ity ( eff

0α ) of an atom in a molecule can be calculated as follows58,63:
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in which, Rfree
0  and αfree

0  are the vdW radii of reference free-atom and static dipole polarizability (which can be 
taken from either experimental data or high-level quantum chemical calculations), respectively. Vfree is the vol-
ume of the free atom in vacuo, r3 is the cube of the distance from the nucleus of atom i, ω →r( )i  is the Hirshfeld 
atomic partitioning weight for atom i, →n r( ) is the total electron density, and n r( )i

free →  is the electron density of 
the free atom i.

The basic property resulting from a DFT calculation is the electron density, which – for each entry in our 
data set – was stored on a discrete grid of points with a spacing of 0.05 Å in a rectangular volume, which spans 
the whole molecule plus 14 Bohr (7.4 Å) beyond the outermost nuclei. The electrostatic potential exerted by a 
molecule on its environment may be used to derive partial charges. To that end, for each entry in the data set, 
five molecular surfaces were created by increasing the van der Waals radii of all atoms in the molecule (molecule 
with cation) by factors between 1.4 and 2.0. Points on these surfaces were represented in a cubic grid of each 35 
grid points in x, y, and z direction. For these points, the electrostatic potential was evaluated. For biomolecular 
force fields, atomic partial charges are a crucial ingredient for computing the pairwise Coulomb term of the 
non-bonded interactions. We provide three types of partial charges:
•	 Hirshfeld atomic charges, computed by FHI-aims, were derived based on the Hirshfeld partitioning 

scheme58,62. The Hirshfeld atomic charge qi of atom i is given by
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→  is the associated electron density associated with 

atom i.

ω→ = → →n r r n r( ) ( ) ( ) (5)i i

where n r( )→  denotes the total electron density, r( )iω →  is the Hirshfeld atomic partitioning weight for atom i. 
r( )iω →  is given by

r
n r

n r
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free

free
ω → =
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∑ →

•	 Bader charges were being computed in Step 2.1 using the Bader Charge Analysis tools64–66 provided by the 
Henkelman group based on the electron density cube file produced in Step 1. The atoms in molecules (AIM) 
partitioning method uses what is called zero flux surfaces to distribute electron density among the atoms. 
Such zero flux surface is a two-dimensional surface on which the charge density is a minimum perpendicular 
to the surface. In molecular systems, the charge density typically reaches a minimum somewhere between 
pairs of neighboring nuclei. This can be seen as the natural place to separate atoms from each other. These 
borders between atoms define the electron density region associated with a given atom, from which the par-
tial charges are being calculated.

•	 In Step 2.2, RESP partial charges67–69 were computed using Antechamber70 from the AmberTools package71. 
A two-stage restrained electrostatic potential (RESP) fitting procedure67 was employed as implemented in 
Antechamber.

In the final Steps 3.1 and 3.2, data was collected and files converted to established formats. Geometry infor-
mation is provided in three formats: the FHI-aims input format, the xyz format generated by Open Babel72, 
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and PDB files that are readable by the CHARMM-GUI portal73 and the openMM7 package74. Connectivity and 
atom type information – needed for the PDB format – was gathered based on atomic distances by the Python 
script conn_convert.py. Furthermore, energies and partial charges were tabulated for convenient usage. 
Interaction energies Einter between cation and dipeptide were calculated as follows:

= − −E E E E (7)inter complex dipeptide cation

where Ecomplex corresponds to the potential energy of the dipeptide-cation complex, Edipeptide is the potential 
energy of the dipeptide alone fixed in the cation bound conformation, and Ecation is the potential energy of the 
isolated cation.

Further data and properties can be extracted from the raw and normalized data75 that is available from the 
NOMAD Repository and Archive76. The data set was deposited as populated ontology in OWL format77 in the 
EDMOND repository of the Max Planck Society. The construction of the ontology is described in the following 
subsection.

Ontology construction.  Ontology construction is an iterative process involving many steps from defining 
common vocabularies, identifying the most important concepts and their relations to modelling such concepts 
in a semantically correct and still useful and applicable way. It can be used to enrich, annotate, and link data that 
is then called linked data and usually expressed in a semantic triple format consisting of subject, predicate, and 
object78. The main components of an ontology are classes, properties, individuals and axioms. Classes are the 
focus of most ontologies and are descriptions of concepts in a domain and represent a specific set of individuals. 
“Ala” is a class in the Amino Acid domain, thus each single Ala conformer in our data set is an individual of class 
“Ala”. Properties describe features and attributes of classes and individuals. Properties can connect classes and 
individuals. For example, hasProperty can connect classes “Ala” and “Charge” as a property. Axioms are state-
ments that all together define what is the truth in a given domain. In this work, the ontology builder Protégé79 
and the python package Owlready280 were employed to build ontologies in the OWL2 Web Ontology Language 
(http://www.w3.org/TR/owl2-overview) which is based on RDF – the Resource Description Framework (http://
www.w3.org/TR/rdf-primer). Subjects and predicates are named using Internationalized Resource Identifiers 
(IRIs) (https://tools.ietf.org/html/rfc3987), while the object position can be filled by an IRI or a literal value (e.g. 
string or number). Ontologies created in this work have been tested with the OWL reasoner FACT++81.

Data Records
Raw data and normalized data of the DFT calculations for this amino acid dipeptide data set is available from the 
NOMAD repository (http://nomad-repository.eu) via the https://doi.org/10.17172/NOMAD/2021.02.10-175.  
The NOMAD Archive contains all raw input, output, and property calculation files for download, while the 
NOMAD Repository contains normalized data, i.e. a digest of the DFT calculations. Data in the NOMAD 
Repository and Archive is provided on the basis of the Creative Commons Attribution 3.0 License (CC BY 3.0) 
as it is stated in the NOMAD terms (https://nomad-lab.eu/terms).

The extracted data in form of a populated ontology in OWL format is available download via the https://
doi.org/10.17617/3.5q10.17617/3.5q77 under the Creative Commons Attribution 4.0 license (CC BY 4.0). In the 
following two subsections, we briefly introduce the data and the concept of the provided ontology.

DFT data set.  The distribution of the 21,909 stationary points of the amino acid dipeptide (plus cation) 
systems over the different amino acid building blocks is summarized in Fig. 3. This data is in particular intended 
for training energy functions in machine learning approaches in the context of force field development and 
parameterization. Consequently, it consists not only of geometries with total energies for preferred low-energy 
conformers. Instead, DFT-PBE+vdW calculations also included high-energy conformers. The data we provide 
is particularly focused on parameterizing non-bonded interactions: The above-mentioned cation-peptide inter-
action energies were already used to tune force fields parameters of non-bonded interactions26,82. The comparison 
to DFT-based vdW energies computed with the Tkatchenko-Scheffler formalism58 is useful to evaluate or adjust 
the non-bonded Lennard-Jones parameters ε and σ. Importantly, due to the spread over high and low energy 
conformations, diverse substructures and environments (due to cation binding), a range of partial charge values 
is sampled that informs about polarization and charge transfer. To that end, the electronic structure is simplified 
into partial charge models, based on Hirshfeld partitioning or Bader AIM analysis of the electron density. The 
electron density, in combination with the nuclear charges, also defines the electrostatic potential (ESP) around 
the molecule, which can be used to derive force field parameters related to electrostatic interaction83. The electron 
density has been used before to derive environment-specific force fields84. Electron densities for a large set of 
molecules have been used to predict partial charges based on machine learning85,86, to that end, an average over 
similar substructures in different molecules was used.

The data is first of all made available as a set of files. The different files, their content, and which programs to 
read or write them are given in Table 1. A direct way to access the data is to download the compressed archive75 
and browse the folder structure that is given in Fig. 4 or download from the same source the normalized data 
in json-files.

This way of representing data however limits the automated access to the data by artificial agents or by 
researchers from other domain, as the metadata to the data is somewhat hidden. In order to alleviate this, the 
next section details the ontology which we developed in order to provide an extensible, machine-interpretable 
and machine-usable model for the automated access and post-processing of the data set.

Ontology.  AAMI (Amino Acid Meta-Info) is an ontology created “bottom-up” to specifically represent the 
meta-information of this amino acid-cation data set in a machine-understandable and machine-processable way. 
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AAMI does not only contain metadata of properties, it also covers processes of analysis, such as inputs, outputs, 
and tools in each process and their roles, which further makes data interpretable and understandable. Two exist-
ing ontologies were re-used in AAMI: the European Materials Modelling Ontology (EMMO) (https://emmc.
info/emmo-info), which provides a representational framework for materials modelling and characterization 
knowledge, and the Amino Acid Ontology (http://bioportal.bioontology.org/ontologies/AMINO-ACID), which 
provides structured knowledge of amino acids and their properties. By reusing existing terms in EMMO and 
Amino Acid Ontology rather than creating the ontology from scratch, terms in AAMI were connected to upper 
level concepts and can be potentially linked to further ontologies. Moreover, users are able to take advantage of 
data and annotations that are already used in those ontologies and can by that also rely on concepts that were 
already agreed upon in a bigger community. The primary aim of AAMI is to make our data set FAIR (Findable, 
Accessible, Interoperable, and Reusable)49, in particular accessible, interoperable and reusable. The elements of 
AAMI can be found in Fig. 5. In the AAMI ecosystem, we created:

Fig. 3  Numbers of stationary points of each molecular system covered in this study.
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	 1.	 The cluster structure ontology (CSO) represents concepts and relations for structure description of 
non-periodic systems, EMMO was imported, and 351 classes and 2053 axioms were created.

	 2.	 The cluster property ontology (CPO) describes properties of non-periodic systems. CSO was imported, 
and 450 classes and 2984 axioms were created.

	 3.	 The force field ontology (FFO) represents concepts in force fields, e.g. atom type and atom class. Amino 
acid ontology and CPO were imported, and 563 classes and 4453 axioms were created.

	 4.	 AAMI represents concepts and relations in the amino acids-cation data set. FFO was imported, and 787 
classes and 5466 axioms were created.

	 5.	 The different instances of AAMI-D-* are knowledge graphs created from the data set in this study. Such 
graph is build by populating AAMI with the data for an amino acid, e.g. ALA, ARG, etc., from this data set. 
The asterisk represents the name of the corresponding amino acid.

Partial high level class organization and some of the classes and relations of AAMI are shown in Fig. 6 to give 
an overview of the organization of the ontology and how terms from each ontology are related to each other.

The primary use of AAMI is to annotate database records. However, since ontologies were developed with the 
OWL2 Web Ontology Language, which represents data by sets of subject-predicate-object statements, so-called 
triples, the underlying computational logic enables automatic inference and querying over data repositories. 
In principle, any question framed in the respective mathematical logic can be answered in a finite number of 
steps. However, such reasoning capabilities are currently limited to description logic. Data query can be done 
with the ontology and linked data query language, SPARQL (https://www.w3.org/TR/sparql11-query). A user 
can query for sub-classes, relations between classes, functional annotation, and so on. Stardog Studio (https://
www.stardog.com/studio) can be used as a triple store and employed to perform the SPARQL queries. A tutorial 
of SPARQL query language using Stardog Studio can be found in the following link: https://www.stardog.com/
tutorials/sparql/. We provide two sample queries in this work to guide users to build their own queries.

Before any queries, a set of namespace prefixes were declared to abbreviate IRIs, e.g. the knowledge graph of 
alanine dipeptide was imported as an example under the PREFIX ala.

File name Description Code/Format

FHI-aims Input Files

geometry.in Cartesian coordinates of the complexes FHI-aims

control.in Input file with technical parameters for electronic structure 
calculations FHI-aims

FHI-aims Output Files

FHIaims.out Main output the electronic structure calculations, contains: total 
energy, vdW energy and effective atomic volume etc. FHI-aims

cube_001_total_density.cube.bz2 Cube file representation of the electron density (bzip2 
compressed) FHI-aims

potential_esp_1.cube.bz2 Cube file representation of the electrostatic potential (bzip2 
compressed) FHI-aims

hirsh.chrg Hirshfeld charges Self-made

Geometries

coords.xyz Coordinate file xyz format

residue.pdb Coordinate file CHARMM

[cation].pdb Separate coordinate file for each of the cations Ca, Ba, Mg CHARMM

openmm.pdb Coordinate file OpenMM

Bader AIM calculations

ACF.dat, AVF.dat, BCF.dat, bader.out Information of Bader charge analysis Bader

nuclear.chrg, bdr.chrg Information of Bader charge analysis Self-made

bader.chrg Bader charges Self-made

RESP calculations

geometry.respout2, resp_files.tar.gz RESP charge information Antechamber

resp.chrg RESP charges Self-made

Aggregated output

geometry.ext Collection of coordinate and charge information Self-made

energies.dat Collection of total energy and interaction energy Self-made

Table 1.  List and description of file types in the data set.



8Scientific Data |           (2022) 9:327  | https://doi.org/10.1038/s41597-022-01297-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

The main query form in SPARQL is a SELECT query. A SELECT query has two main components: a list of 
selected variables and a WHERE clause for specifying the graph patterns to match. For example, according to the 
graph shown in Fig. 6, we can query for Bader charges of atoms which have atom type of “1” in Amber10 with a 
SELECT query as follows:

Fig. 4  Schematic representation of the folder structure of the data. Each folder, as exemplified for the Ca2+-
coordinated cysteine dipeptide, contains multiple properties per system.
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Fig. 5  Hierarchy of the ontologies linked to amino acid-cation meta-info (AAMI). Details of the ontologies and 
relations among them are described in Section Ontology.

Fig. 6  Partial high-level class structure of AAMI ontology. Ovals represent classes, where classes from different 
ontologies are color coded. Rectangles represent literals. Solid lines are properties and dotted lines represent the 
relation of ‘has subclass’.



1 0Scientific Data |           (2022) 9:327  | https://doi.org/10.1038/s41597-022-01297-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

The resulting list shows all atoms of type “1” in Amber10, i.e. hydrogen atoms bound to a peptide bond nitro-
gen, and their Bader charges:

Another useful query is DESCRIBE, which returns all the outgoing edges of a node. DESCRIBE is most 
useful when we don’t know much about the ontology and want to quickly see the terms used in the triples. For 
example, we can query “describe individuals which belong to class Atom_C” with DESCRIBE query within the 
alanine dipeptide knowledge graph:

In the following, we display part of the output of the query, from which we can see that an indi-
vidual “Atom_C_9_alaD_Ca_conf_0017” belongs to class “Atom_C” and has properties of 
“AtomicChargeBader_1.35427”, “position9” and so on.

With tools like Stardog Studio, the results of such query can be written out in various file formats for further 
usage, e.g. XML,JSON-LD for triples output or CSV for tabular output.

Technical Validation
The reliability of the DFT-PBE + vdW level of theory for amino acids and amino acids binding divalent cations 
was evaluated before43. In this reference, single-point energy calculations were performed on all structures of 
alanine (Ala) and phenylalanine (Phe) amino acids in isolation, as well as binding with a Ca2+ cation employing  
Møller-Plesset second-order perturbation theory (MP2)87,88. For the structures of the amino acids Ala and  
Phe without cation bound, mean absolute errors (MAE) within chemical accuracy (1 kcal/mol) were estimated 
for PBE + vdW. A different long-range dispersion method, the many-body dispersion model (PBE + MBD)89, 
didn’t show significant improvements for isolated amino acids. Also the usage of a hybrid exchange-correlation 
functional, PBE0 (PBE0 + MBD)89, did not significantly improve the MAEs. However, the maximum error of 
Phe was reduced from 2 kcal/mol to 1.3 kcal/mol. MAEs were slightly higher with PBE + vdW when Ca2+ was 
involved. They reached 1 kcal/mol and 2 kcal/mol for Ala + Ca2+ and Phe + Ca2+, respectively. Employing both, 
many-body dispersion and the hybrid functional PBE0, improved the MAE to about 1 kcal/mol. In a manuscript 
on histidine-zinc interactions11, DLPNO-CCSD(T)90,91 was employed to benchmark several DFAs as well as 
the wave function-based MP2 method. The evaluated systems are (a) negatively charged acetylhistidine (AcH) 
with and without a Zn2+ cation, and (b) neutral AcH with and without a Zn2+ cation. The results showed that 
PBE+vdW gave an acceptable accuracy. In conclusion, PBE+vdW appears to be a valid starting point for studies 
on cation-peptide systems.

The validation of the sampling method can be elucidated by the work in ref. 92. A genetic algorithm was 
employed to do the sampling of the low-energy segment in the conformational space of seven dipeptides: 
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Glycine (Gly), Alanine (Ala), Phenylalanine (Phe), Valine (Val), Tryptophan (Trp), Leucine (Leu), Isoleucine 
(Ile). Conformers from our previous data set43 were used as reference points and both studies agree in their 
overall structure findings.

The potential usage of our data set has been confirmed in ref. 26. In this work, our data set was used to assess 
the accuracy of existing FFs by their abilities to reproduce quantum mechanical (QM) interaction energies of 
Ca2+-dipeptide. By relating the parameter space to conformational space, the utility of our data set as a reference 
for future optimization of polarizable force fields is illustrated.

An assessment of the reliability of Bader charge analysis of bare dipeptides as well as dipeptide-Ca2+ and 
dipeptide-Mg2+ complexes is shown in Fig. 7. The number of electrons from Bader charge analysis yielded high 
errors in some structures of dipeptide-Ca2+, reaching 2 electrons. This error apparently results from too wide 
grid spacing at regions of rapid density change (near “heavy” cores) when writing the electron density to cube 
files, the input for the Bader analysis code. Changes in electron density are particularly large close to the cations 
in the investigated clusters, so in principle grid spacings adjusted to the respective systems would be required. 
Overall, however, the mean errors of each amino acid are around 0. The errors of dipeptide-Mg2+ have the same 
trend, but are smaller than the errors of dipeptide-Ca2+ due to the smaller radius of Mg2+. Ba2+ is much heavier 
than Ca2+ and Mg2+, the rise in density close to the atomic center is much steeper. To analyze the Bader charges 
of dipeptide-Ba2+ complexes, a much smaller grid spacing is needed. However, this will result in electron density 
cube files that are impractically large for an overview study of this extend. So in this work, we did not present the 
electron density and Bader charges of dipeptide-Ba2+ complexes.

Usage Notes
Attention, the download of the whole archive of raw data is about 1.5 TB in size (compressed). Structures in 
this data set are stationary-point geometries, most of them can be expected to be minima, yet there are certainly 
also saddle points. All files in the NOMAD repository can be downloaded through curl based on upload and 
entry IDs (variables: upload_id and entry_id below). The command below downloads all files in one 
calculation:

The metadata for the DFT calculations can in part be browsed at the NOMAD Archive page (https://www.
nomad-coe.eu/the-project/nomad-archive/archive-meta-info). There are numerous tools to perform SPARQL 
queries, e.g. Stardog Studio (https://www.stardog.com/studio), Protégé79, RDFLib (https://github.com/RDFLib/
rdflib), Apache Jena (https://jena.apache.org), and so on. The licenses of Protégé, RDFLib, and Apache Jena are 

Fig. 7  Error in numbers of electrons from Bader analysis of Dipeptide (a) bare, (b) with Ca2+ and (c) with 
Mg2+. The upper and lower lines of the rectangles mark the 75% and 25% percentiles of the distribution, the 
orange and yellow horizontal lines in the box indicate the median (50% percentile) and mean value, and the 
upper and lower lines of the “error bars” depict the 99% and 1% percentiles. Crosses represent the outliers.
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BSD 2-Clause, BSD 3-Clause and Apache License 2.0, respectively; using Stardog Studio requires for a license 
from the developers.

Code availability
All custom codes used in this study have been uploaded to Github93.

Received: 15 August 2021; Accepted: 18 March 2022;
Published: xx xx xxxx

References
	 1.	 Permyakov, E. Metalloproteomics, 2 (John Wiley & Sons, 2009).
	 2.	 Bertini, G. et al. Biological inorganic chemistry: structure and reactivity (University Science Books, 2007).
	 3.	 Tamames, B., Sousa, S. F., Tamames, J., Fernandes, P. A. & Ramos, M. J. Analysis of zinc-ligand bond lengths in metalloproteins: 

trends and patterns. Proteins: Structure, Function, and Bioinformatics 69, 466–475 (2007).
	 4.	 Sala, D., Giachetti, A. & Rosato, A. Molecular dynamics simulations of metalloproteins: A folding study of rubredoxin from 

Pyrococcus furiosus. AIMS Biophys 5, 77–96 (2018).
	 5.	 Zhou, M. et al. A novel calcium-binding site of von Willebrand factor A2 domain regulates its cleavage by ADAMTS13. Blood 117, 

4623–4631 (2011).
	 6.	 Gogoi, P., Chandravanshi, M., Mandal, S. K., Srivastava, A. & Kanaujia, S. P. Heterogeneous behavior of metalloproteins toward 

metal ion binding and selectivity: insights from molecular dynamics studies. Journal of Biomolecular Structure and Dynamics 34, 
1470–1485 (2016).

	 7.	 Baldauf, C. et al. How cations change peptide structure. Chemistry–A European Journal 19, 11224–11234 (2013).
	 8.	 De, S., Musil, F., Ingram, T., Baldauf, C. & Ceriotti, M. Mapping and classifying molecules from a high-throughput structural 

database. Journal of Cheminformatics 9, 1–14 (2017).
	 9.	 Ropo, M., Blum, V. & Baldauf, C. Trends for isolated amino acids and dipeptides: Conformation, divalent ion binding, and 

remarkable similarity of binding to calcium and lead. Scientific Reports 6, 1–11 (2016).
	10.	 Vitalini, F., Mey, A. S., Noé, F. & Keller, B. G. Dynamic properties of force fields. The Journal of Chemical Physics 142, 02B611_1 

(2015).
	11.	 Schneider, M. & Baldauf, C. Relative energetics of acetyl-histidine protomers with and without Zn2+ and a benchmark of energy 

methods. arXiv preprint arXiv:1810.10596 (2018).
	12.	 Maksimov, D., Baldauf, C. & Rossi, M. The conformational space of a flexible amino acid at metallic surfaces. International Journal 

of Quantum Chemistry 121, e26369 (2021).
	13.	 Marianski, M., Supady, A., Ingram, T., Schneider, M. & Baldauf, C. Assessing the accuracy of across-the-scale methods for predicting 

carbohydrate conformational energies for the examples of glucose and α-maltose. Journal of Chemical Theory and Computation 12, 
6157–6168 (2016).

	14.	 Wang, J. & Kollman, P. A. Automatic parameterization of force field by systematic search and genetic algorithms. Journal of 
Computational Chemistry 22, 1219–1228 (2001).

	15.	 Oostenbrink, C., Villa, A., Mark, A. E. & Van Gunsteren, W. F. A biomolecular force field based on the free enthalpy of hydration and 
solvation: the GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry 25, 1656–1676 (2004).

	16.	 Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational 
energetics and properties of organic liquids. Journal of the American Chemical Society 118, 11225–11236 (1996).

	17.	 Wang, J., Cieplak, P. & Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating 
conformational energies of organic and biological molecules? Journal of Computational Chemistry 21, 1049–1074 (2000).

	18.	 Riniker, S. Fixed-charge atomistic force fields for molecular dynamics simulations in the condensed phase: An overview. Journal of 
Chemical Information and Modeling 58, 565–578 (2018).

	19.	 Shivakumar, D., Harder, E., Damm, W., Friesner, R. A. & Sherman, W. Improving the prediction of absolute solvation free energies 
using the next generation opls force field. Journal of chemical theory and computation 8, 2553–2558 (2012).

	20.	 Allen, T. W., Andersen, O. S. & Roux, B. Energetics of ion conduction through the gramicidin channel. Proceedings of the National 
Academy of Sciences 101, 117–122 (2004).

	21.	 Roca, M. et al. Theoretical modeling of enzyme catalytic power: analysis of “cratic” and electrostatic factors in catechol 
O-methyltransferase. Journal of the American Chemical Society 125, 7726–7737 (2003).

	22.	 Zeng, J., Jia, X., Zhang, J. Z. & Mei, Y. The F130L mutation in streptavidin reduces its binding affinity to biotin through electronic 
polarization effect. Journal of Computational Chemistry 34, 2677–2686 (2013).

	23.	 Li, Y. L., Mei, Y., Zhang, D. W., Xie, D. Q. & Zhang, J. Z. Structure and dynamics of a dizinc metalloprotein: effect of charge transfer 
and polarization. The Journal of Physical Chemistry B 115, 10154–10162 (2011).

	24.	 Xie, W., Pu, J. & Gao, J. A coupled polarization-matrix inversion and iteration approach for accelerating the dipole convergence in a 
polarizable potential function. The Journal of Physical Chemistry A 113, 2109–2116 (2009).

	25.	 Ngo, V. et al. Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins. Journal of 
Chemical Theory and Computation 11, 4992–5001 (2015).

	26.	 Amin, K. S. et al. Benchmarking polarizable and non-polarizable force fields for Ca2+–peptides against a comprehensive QM dataset. 
The Journal of Chemical Physics 153, 144102 (2020).

	27.	 Liang, G., Fox, P. C. & Bowen, J. P. Parameter analysis and refinement toolkit system and its application in MM3 parameterization 
for phosphine and its derivatives. Journal of Computational Chemistry 17, 940–953 (1996).

	28.	 Faller, R., Schmitz, H., Biermann, O. & Müller-Plathe, F. Automatic parameterization of force fields for liquids by simplex 
optimization. Journal of Computational Chemistry 20, 1009–1017 (1999).

	29.	 Cisneros, G. A., Karttunen, M., Ren, P. & Sagui, C. Classical electrostatics for biomolecular simulations. Chemical Reviews 114, 
779–814 (2014).

	30.	 Rezac, J., Bm, D., Gutten, O. & Rulisek, L. Toward accurate conformational energies of smaller peptides and medium-sized 
macrocycles: MPCONF196 benchmark energy data set. Journal of Chemical Theory and Computation 14, 1254–1266 (2018).

	31.	 Jurečka, P., Šponer, J., Černý, J. & Hobza, P. Benchmark database of accurate (MP2 and CCSD (T) complete basis set limit) 
interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Physical Chemistry Chemical Physics 8, 
1985–1993 (2006).

	32.	 Goerigk, L. et al. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group 
thermochemistry, kinetics and noncovalent interactions. Physical Chemistry Chemical Physics 19, 32184–32215 (2017).

	33.	 Dohm, S., Hansen, A., Steinmetz, M., Grimme, S. & Checinski, M. P. Comprehensive thermochemical benchmark set of realistic 
closed-shell metal organic reactions. Journal of Chemical Theory and Computation 14, 2596–2608 (2018).

	34.	 Yu, W. et al. Extensive conformational searches of 13 representative dipeptides and an efficient method for dipeptide structure 
determinations based on amino acid conformers. Journal of Computational Chemistry 30, 2105–2121 (2009).



13Scientific Data |           (2022) 9:327  | https://doi.org/10.1038/s41597-022-01297-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

	35.	 Kishor, S., Dhayal, S., Mathur, M. & Ramaniah, L. M. Structural and energetic properties of α-amino acids: A first principles density 
functional study. Molecular Physics 106, 2289–2300 (2008).

	36.	 Selvarengan, P. & Kolandaivel, P. Potential energy surface study on glycine, alanine and their zwitterionic forms. Journal of Molecular 
Structure: THEOCHEM 671, 77–86 (2004).

	37.	 Császár, A. G. & Perczel, A. Ab initio characterization of building units in peptides and proteins. Progress in Biophysics and Molecular 
Biology 71, 243–309 (1999).

	38.	 Schlund, S., Müller, R., Grassmann, C. & Engels, B. Conformational analysis of arginine in gas phase–A strategy for scanning the 
potential energy surface effectively. Journal of Computational Chemistry 29, 407–415 (2008).

	39.	 Riffet, V., Frison, G. & Bouchoux, G. Acid–base thermochemistry of gaseous oxygen and sulfur substituted amino acids (Ser, Thr, 
Cys, Met). Physical Chemistry Chemical Physics 13, 18561–18580 (2011).

	40.	 Baek, K., Fujimura, Y., Hayashi, M., Lin, S. & Kim, S. Density functional theory study of conformation-dependent properties of 
neutral and radical cationic L-tyrosine and L-tryptophan. The Journal of Physical Chemistry A 115, 9658–9668 (2011).

	41.	 Floris, F. M., Filippi, C. & Amovilli, C. A density functional and quantum Monte Carlo study of glutamic acid in vacuo and in a 
dielectric continuum medium. The Journal of Chemical Physics 137, 075102 (2012).

	42.	 Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational 
cost. Chemical Science 8, 3192–3203 (2017).

	43.	 Ropo, M., Schneider, M., Baldauf, C. & Blum, V. First-principles data set of 45,892 isolated and cation-coordinated conformers of 20 
proteinogenic amino acids. Scientific Data 3, 1–13 (2016).

	44.	 Huang, H., Li, D. & Cowan, J. Biostructural chemistry of magnesium. regulation of mithramycin-DNA interactions by Mg2+ 
coordination. Biochimie 77, 729–738 (1995).

	45.	 Romani, A. M. Cellular magnesium homeostasis. Archives of biochemistry and biophysics 512, 1–23 (2011).
	46.	 Forsen, S. & Kordel, J. Calcium in biological systems (1994).
	47.	 Grauffel, C., Dudev, T. & Lim, C. Why cellular di/triphosphates preferably bind Mg2+ and not Ca2+. Journal of Chemical Theory and 

Computation 15, 6992–7003 (2019).
	48.	 Mahmoud, W. E. Functionalized ME-capped CdSe quantum dots based luminescence probe for detection of Ba2+ ions. Sensors and 

Actuators B: Chemical 164, 76–81 (2012).
	49.	 Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3, 1–9 (2016).
	50.	 Wittenburg, P., Lautenschlager, M., Thiemann, H., Baldauf, C. & Trilsbeek, P. FAIR practices in Europe. Data Intelligence 2, 257–263 

(2020).
	51.	 Noy, N. F., et al. Ontology development 101: A guide to creating your first ontology (2001).
	52.	 Wales, D. J. & Doye, J. P. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters 

containing up to 110 atoms. The Journal of Physical Chemistry A 101, 5111–5116 (1997).
	53.	 Wales, D. J. & Scheraga, H. A. Global optimization of clusters, crystals, and biomolecules. Science 285, 1368–1372 (1999).
	54.	 Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Computer Physics Communications 180, 

2175–2196 (2009).
	55.	 Havu, V., Blum, V., Havu, P. & Scheffler, M. Efficient O (N) integration for all-electron electronic structure calculation using numeric 

basis functions. Journal of Computational Physics 228, 8367–8379 (2009).
	56.	 Ren, X. et al. Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-

centered orbital basis functions. New Journal of Physics 14, 053020 (2012).
	57.	 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Physical Review Letters 77, 3865 (1996).
	58.	 Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom 

reference data. Physical Review Letters 102, 073005 (2009).
	59.	 Swendsen, R. H. & Wang, J.-S. Replica Monte Carlo simulation of spin-glasses. Physical Review Letters 57, 2607 (1986).
	60.	 Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters 314, 141–151 

(1999).
	61.	 Wong, M. A. & Hartigan, J. Algorithm as 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C 

(Applied Statistics) 28, 100–108 (1979).
	62.	 Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theoretica Chimica Acta 44, 129–138 (1977).
	63.	 DiStasio, R. A., Gobre, V. V. & Tkatchenko, A. Many-body van der Waals interactions in molecules and condensed matter. Journal 

of Physics: Condensed Matter 26, 213202 (2014).
	64.	 Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Computational 

Materials Science 36, 354–360 (2006).
	65.	 Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved grid-based algorithm for Bader charge allocation. Journal of 

Computational Chemistry 28, 899–908 (2007).
	66.	 Yu, M. & Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. The Journal of Chemical Physics 134, 064111 

(2011).
	67.	 Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for 

deriving atomic charges: the RESP model. The Journal of Physical Chemistry 97, 10269–10280 (1993).
	68.	 Singh, U. C. & Kollman, P. A. An approach to computing electrostatic charges for molecules. Journal of Computational Chemistry 5, 

129–145 (1984).
	69.	 Fox, T. & Kollman, P. A. Application of the RESP methodology in the parametrization of organic solvents. The Journal of Physical 

Chemistry B 102, 8070–8079 (1998).
	70.	 Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Antechamber: an accessory software package for molecular mechanical 

calculations. J. Am. Chem. Soc 222, U403 (2001).
	71.	 Salomon-Ferrer, R., Case, D. A. & Walker, R. C. An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary 

Reviews: Computational Molecular Science 3, 198–210 (2013).
	72.	 O’Boyle, N. M. et al. Open Babel: An open Chemical toolbox. Journal of Cheminformatics 3, 1–14 (2011).
	73.	 Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. Journal of Computational 

Chemistry 29, 1859–1865 (2008).
	74.	 Eastman, P. et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Computational 

Biology 13, e1005659 (2017).
	75.	 Hu, X. & Baldauf, C. Cation-coordinated conformers of 20 proteinogenic amino acids with different protonation states. NOMAD 

https://doi.org/10.17172/NOMAD/2021.02.10-1 (2021).
	76.	 Draxl, C. & Scheffler, M. The NOMAD laboratory: from data sharing to artificial intelligence. Journal of Physics: Materials 2, 036001 

(2019).
	77.	 Hu, X., Lenz-Himmer, M. O. & Baldauf, C. The ontology representation for a data set of cation-coordinated conformers of 20 

proteinogenic amino acids with different protonation states. EDMOND https://doi.org/10.17617/3.5q (2021).
	78.	 Al-Aswadi, F. N., Chan, H. Y. & Gan, K. H. Automatic ontology construction from text: a review from shallow to deep learning 

trend. Artificial Intelligence Review 53, 3901–3928 (2020).
	79.	 Musen, M. A. The protégé project: a look back and a look forward. AI Matters 1, 4–12 (2015).



1 4Scientific Data |           (2022) 9:327  | https://doi.org/10.1038/s41597-022-01297-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

	80.	 Lamy, J.-B. Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs for 
biomedical ontologies. Artificial intelligence in medicine 80, 11–28 (2017).

	81.	 Tsarkov, D. & Horrocks, I. FaCT+ + description logic reasoner: System description. In International Joint Conference on Automated 
Reasoning, 292–297 (Springer, 2006).

	82.	 Wang, J. et al. Development of polarizable models for molecular mechanical calculations. 4. van der Waals parametrization. The 
Journal of Physical Chemistry B 116, 7088–7101 (2012).

	83.	 Li, Y. et al. Machine learning force field parameters from ab initio data. Journal of Chemical Theory and Computation 13, 4492–4503 
(2017).

	84.	 Cole, D. J., Vilseck, J. Z., Tirado-Rives, J., Payne, M. C. & Jorgensen, W. L. Biomolecular force field parameterization via atoms-in-
molecule electron density partitioning. Journal of Chemical Theory and Computation 12, 2312–2323 (2016).

	85.	 Rai, B. K. & Bakken, G. A. Fast and accurate generation of ab initio quality atomic charges using nonparametric statistical regression. 
Journal of Computational Chemistry 34, 1661–1671 (2013).

	86.	 Bleiziffer, P., Schaller, K. & Riniker, S. Machine learning of partial charges derived from high-quality quantum-mechanical 
calculations. Journal of Chemical Information and Modeling 58, 579–590 (2018).

	87.	 Møller, C. & Plesset, M. S. Note on an approximation treatment for many-electron systems. Physical Review 46, 618 (1934).
	88.	 Head-Gordon, M., Pople, J. A. & Frisch, M. J. MP2 energy evaluation by direct methods. Chemical Physics Letters 153, 503–506 

(1988).
	89.	 Ambrosetti, A., Reilly, A. M., DiStasio, R. A. Jr & Tkatchenko, A. Long-range correlation energy calculated from coupled atomic 

response functions. The Journal of Chemical Physics 140, 18A508 (2014).
	90.	 Riplinger, C. & Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. The Journal of 

Chemical Physics 138, 034106 (2013).
	91.	 Riplinger, C., Sandhoefer, B., Hansen, A. & Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural 

orbitals. The Journal of Chemical Physics 139, 134101 (2013).
	92.	 Supady, A., Blum, V. & Baldauf, C. First-principles molecular structure search with a genetic algorithm. Journal of Chemical 

Information and Modeling 55, 2338–2348 (2015).
	93.	 Hu, X. XiaojuanHu/AA_property_calculation: First release of AA_property_calculation. Zenodo https://doi.org/10.5281/

zenodo.5672781 (2021).

Acknowledgements
X.H. is grateful for a doctoral fellowship by the China Scholarship Council. All authors acknowledge funding 
by the Federal Ministry of Education and Research of Germany for the project STREAM (“Semantische 
Repräsentation, Vernetzung und Kuratierung von qualitätsgesicherten Materialdaten”, ID: 16QK11C).

Author contributions
X.H. performed the calculations of all conformers, curated the data, constructed the ontology, and wrote the 
manuscript. M.L. helped with the construction of ontology and contributed to the manuscript. C.B. designed the 
study, curated the data, and wrote the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.H. or C.B.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2022



4.2 Paper II: Benchmarking polarizable and non-polarizable

force fields for Ca2+–peptides against a comprehensive

QM dataset

K. S. Amin, X. Hu, D. R. Salahub, C. Baldauf, C. Lim and S. Noskov.

J. Chem. Phys. 153, 144102 (2020)

DOI: 10.1063/5.0020768

Author contributions: K.S. Amin and I contributed equally to this work. C. Baldauf and

I calculated and organized the QM data set. I assessed the accuracy of OPLS-AA and Amber

by their abilities to reproduce hierarchies of thousands of Ca2+–dipeptide interaction energies in

the QM data set. K.S. Amin assessed the accuracy of CHARMM36 and Drude model. K.S.

Amin optimized the selected cation–peptide parameters in Drude model. I parameterized and

evaluated the CTPOL model. K.S. Amin, D.R. Salahub and S. Noskov did the MD simulations in

condensed-phase.

61





J. Chem. Phys. 153, 144102 (2020); https://doi.org/10.1063/5.0020768 153, 144102

© 2020 Author(s).

Benchmarking polarizable and non-
polarizable force fields for Ca2+–peptides
against a comprehensive QM dataset
Cite as: J. Chem. Phys. 153, 144102 (2020); https://doi.org/10.1063/5.0020768
Submitted: 06 July 2020 • Accepted: 18 September 2020 • Published Online: 08 October 2020

Kazi S. Amin,  Xiaojuan Hu,  Dennis R. Salahub, et al.

COLLECTIONS

Paper published as part of the special topic on Classical Molecular Dynamics (MD) Simulations: Codes, Algorithms,

Force fields, and Applications

ARTICLES YOU MAY BE INTERESTED IN

A practical guide to biologically relevant molecular simulations with charge scaling for
electronic polarization
The Journal of Chemical Physics 153, 050901 (2020); https://doi.org/10.1063/5.0017775

Polarizable and non-polarizable force fields: Protein folding, unfolding, and misfolding
The Journal of Chemical Physics 153, 185102 (2020); https://doi.org/10.1063/5.0022135

Scalable molecular dynamics on CPU and GPU architectures with NAMD
The Journal of Chemical Physics 153, 044130 (2020); https://doi.org/10.1063/5.0014475



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Benchmarking polarizable and non-polarizable
force fields for Ca2+–peptides against
a comprehensive QM dataset

Cite as: J. Chem. Phys. 153, 144102 (2020); doi: 10.1063/5.0020768
Submitted: 6 July 2020 • Accepted: 18 September 2020 •
Published Online: 8 October 2020

Kazi S. Amin,1 Xiaojuan Hu,2 Dennis R. Salahub,3 Carsten Baldauf,2 Carmay Lim,4,5,a)

and Sergei Noskov1,a)

AFFILIATIONS
1CMS – Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary,
2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

2Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
3Department of Chemistry, CMS – Centre for Molecular Simulation, IQST – Institute for Quantum Science
and Technology, Quantum Alberta, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

4Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
5Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan

Note: This paper is part of the JCP Special Topic on Classical Molecular Dynamics (MD) Simulations: Codes, Algorithms,
Force Fields, and Applications.
a)Authors to whom correspondence should be addressed: carmay@gate.sinica.edu.tw and snoskov@ucalgary.ca

ABSTRACT

Explicit description of atomic polarizability is critical for the accurate treatment of inter-molecular interactions by force fields (FFs) in molec-
ular dynamics (MD) simulations aiming to investigate complex electrostatic environments such as metal-binding sites of metalloproteins.
Several models exist to describe key monovalent and divalent cations interacting with proteins. Many of these models have been devel-
oped from ion–amino-acid interactions and/or aqueous-phase data on cation solvation. The transferability of these models to cation–protein
interactions remains uncertain. Herein, we assess the accuracy of existing FFs by their abilities to reproduce hierarchies of thousands of
Ca2+–dipeptide interaction energies based on density-functional theory calculations. We find that the Drude polarizable FF, prior to any
parameterization, better approximates the QM interaction energies than any of the non-polarizable FFs. Nevertheless, it required improve-
ment in order to address polarization catastrophes where, at short Ca2+–carboxylate distances, the Drude particle of oxygen overlaps with the
divalent cation. To ameliorate this, we identified those conformational properties that produced the poorest prediction of interaction energies
to reduce the parameter space for optimization. We then optimized the selected cation–peptide parameters using Boltzmann-weighted fitting
and evaluated the resulting parameters in MD simulations of the N-lobe of calmodulin. We also parameterized and evaluated the CTPOL
FF, which incorporates charge-transfer and polarization effects in additive FFs. This work shows how QM-driven parameter development,
followed by testing in condensed-phase simulations, may yield FFs that can accurately capture the structure and dynamics of ion–protein
interactions.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0020768., s

I. INTRODUCTION

Molecular dynamics (MD) simulations are making great strides
in research on biomolecular phenomena. This is largely due to
increased computational power and superior numerical techniques,

which allow researchers to model and simulate a variety of large
biomolecular systems on experimentally accessible time scales of
milli-seconds.1–4 We can now exploit higher computational effi-
ciency to incorporate much needed theoretical improvements,
broadening the applicability of MD models for the next generation
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of biomolecular research.3,5,6 The majority of current MD simula-
tion studies rely on classical force fields (FFs) such as CHARMM,4

AMBER,7 GROMOS,8 and OPLS-AA.9 However, these additive FF
models fail to provide sufficient accuracy for several important bio-
logical systems, particularly those involving crucial metal–protein
interactions.3,6,10–16 One of the major limitations in the otherwise
successful additive FF approximation is the lack of explicit treatment
of an atom’s electronic degrees of freedom, a crucial determinant
of realistic molecular behavior in metalloprotein systems, especially
those with divalent cations. Although additive FF refinements such
as ECCR,17–19 adaptive force-matching algorithms utilizing ab initio
energies for the refinement of additive force fields,20,21 or the 12-6-4
form of the Lennard-Jones (LJ) potential have been successful to a
degree in this regard,16,22,23 they are still limited in their scope due to
the diversity of electrostatic environments found in proteins.

An alternative approach is to account for the polarization of
each atom explicitly in the general molecular mechanics (MM)
framework.3,6,24–26 There is strong and rapidly growing evidence
that in many cases, polarizable FFs reproduce experimental ther-
modynamics data as well as high-level quantum mechanical (QM)
results more accurately than fixed-charge models. For instance,
compared with fixed-charge models, they predict better ion solva-
tion enthalpies and free energies,3,27–30 protein–ligand recognition
and binding,3,6 and the pKa of amino-acid residues in water and pro-
tein environments.31 The explored approaches vary from the imple-
mentation of fluctuating charge schemes to models relying on the
induced-dipole approximation, each with apparent advantages but
also with caveats. Fluctuating charge (FQ) models simulate charge
transfer dynamically by redistributing the atomic charges to equal-
ize electronegativity, while keeping the total charge conserved.25,26

Notable FQ models are CHARMM-FQ and ABEEMsp (atom-bond
electronegativity equalization model with s- and p-bonds).32,33 One
of the major drawbacks of FQ models is that they fail to capture
out-of-plane polarization effects, which are critical for describing
many common functional groups such as aromatic rings. Attempts
to include out-of-plane effects using virtual charge sites can also
prove to be inefficient due to challenges in scaling to simulation
systems containing thousands of atoms.33

Induced-dipole models explicitly account for polarizability by
implementing a dynamic electric dipole that responds to changes
in the surrounding electrostatic environment. Notable FFs that use
this approximation are the CHARMM Drude oscillator model,3

AMOEBA (atomic multipole optimized energetics for biomolecular
simulation),28,29 and SIBFA (sum of interactions between fragments
ab initio) FFs.24,34 Some of these methods can be expanded beyond
dipolar approximations by including higher order multipole terms
and also by accounting for charge transfer.6,26

One area that remains as a frontier for the development of
polarizable FFs is the chemically accurate description of cation–
protein interactions, particularly divalent ions such as Ca2+ and
Mg2+. Efforts in the last decade show that polarizable FFs model
divalent ion–protein interactions more accurately than their non-
polarizable counterparts. For instance, the AMOEBA polarizable FF
has recently been used to predict more accurate relative binding
free-energies and Ca2+ or Mg2+ selectivity of model soluble protein
systems, where non-polarizable FFs fail even after extensive param-
eterization efforts.35 Roux and colleagues36 performed an exhaus-
tive optimization of Drude parameters and showed the superior

performance of Drude polarizable FFs in studies of aqueous salt
solutions of monovalent and divalent cations. Li et al.10 investigated
the parameter space required to accurately describe gas-phase inter-
action energies between physiological cations and a set of protein
binding sites. The gas-phase QM energies were used as a refer-
ence dataset to guide Drude FF development with ion–carboxylate
interactions noted as a potential focus of parameter optimization.
While the parameters were shown to provide excellent performance
in various reduced models of binding sites,11,37 their extension to
MD simulations of ion–protein interactions and transport in porin
proteins elucidated remarkable issues leading to a hindered ion dif-
fusion in the protein interior as well as apparent over-binding to the
protein.38,39

Recently, Villa et al. showed, using the Drude FF, that it is
possible to capture the complex interaction surface of Mg2+ with
methyl phosphate in the condensed phase, illustrating the feasibility
of developing accurate and transferable polarizable potential func-
tions for metal–ligand interactions.40 However, success in the final
deployment of next-generation polarizable FFs depends critically
on assessing (i) the vast chemical space presented by the variety
of side chains found in proteins and (ii) the strategies for explic-
itly including charge transfer terms in the case of strongly inter-
acting cations. In metalloproteins containing strong charge donors
such as negatively charged carboxylate or thiolate groups lining the
metal-binding site, ligand → cation charge transfer is significant.15

However, ligand → cation charge transfer reduces the magnitude
of partial charges on the metal-ligating atoms and cation in con-
ventional additive FFs, thus attenuating their charge/dipole–charge
interactions. This can be compensated by including the local polar-
ization energies of the cation and its ligands. Based on these physical
principles, Sakharov and Lim41,42 developed the CTPOL FF, which
incorporates charge transfer and local polarization effects directly
into the additive potential functions, for metalloprotein simulations.

In this paper, we used data from a large set of structures
and energies based on density-functional theory (DFT) calcula-
tions that was created by an exhaustive structure search by Ropo
et al.43,44 The dataset comprises the proteinogenic amino acids in
various protonation states and their amino-methylated and acety-
lated (capped) dipeptides bound to Ca2+ and other divalent cations.
Using such data, we follow a complementary alternative to the estab-
lished molecular-fragment approach. Based on the ion–dipeptide
geometries and interaction energies in the dataset, we compare the
performance of the polarizable Drude FF with three fixed-charge
FFs, namely, CHARMM (C36), AMBER, and OPLS-AA. The goal
of this comparative study is to (i) assess the ability of modern FFs to
accurately describe peptide–divalent cation interactions in a com-
plex chemical space, (ii) reduce the chemical space for future FF
development by locating atom-types of interest to provide insight
into how we may reduce the parameter space for optimization, and
(iii) assess the impact of the explicit account of charge-transfer (CT)
and local polarization effects between the protein host and the bound
cation using the CTPOL approach. First, we identified the chemi-
cal space where the Drude FF fails. We then show how this can be
amended by parameterization of a few selected parameters using two
different objective functions. By relating parameter space to confor-
mational space, we illustrate the utility of first-principles methods
such as DFT as a reference and the choice of objective function for
the future optimization of polarizable FFs.
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II. THEORY AND METHODS

A. Cation–dipeptide reference structures

The DFT-based references were built from a large dataset of
dipeptide structures, as depicted in Fig. 1, where R represents an
amino-acid side chain. The dataset includes various cations and bare
amino acids and dipeptides, with over 45 000 stationary points on
the respective potential-energy surfaces.43,44 In this paper, we stud-
ied only the Ca2+-bound dipeptides with a total of 2583 confor-
mations. The conformations and total energies of each molecular
system were calculated using the Perdew–Burke–Ernzerhof (PBE)
generalized-gradient exchange-correlation functional, chosen after
testing several other functionals.45,46 Energies were corrected for van
der Waals interactions using the Tkatchenko–Scheffler formalism.47

PBE with a pairwise dispersion correction represents a good com-
promise between accuracy and computational cost. This choice of
the functional was validated in the original dataset article.43,44,46 Fur-
thermore, the generalized gradient approximation (GGA) functional
PBE has been shown to produce acceptable mean-absolute errors in
comparison to coupled cluster calculations for related systems.46 The
focus of the cited work is to check whether one can represent the
complexity of an all-electron approach with an extended force field;
thus, “any” DFT method would suffice.

All the electronic structure calculations were carried out using
the numeric atom-centered basis set all-electron code FHI-aims.48

The standard tight settings of FHI-aims for all species were used. The
initial global conformational search was performed by a basin hop-
ping search strategy using the OPLS-AA FF,9 and the energy minima
identified were subsequently relaxed using PBE+vdW with light set-
tings.49 The identified set of structures was then subjected to a fur-
ther first-principles refinement step by ab initio molecular dynamics
with replica-exchange to enhance sampling.50 The obtained con-
formers were further relaxed using PBE+vdW (tight settings) and
clustered using a k-means clustering algorithm with a cluster radius
of 0.3 Å to obtain the final conformation hierarchies.51 The dataset
shows good agreement with available experimental data for gas-
phase ion affinities.43,44 A two-stage restrained electrostatic poten-
tial (RESP) fitting procedure was employed to obtain partial atomic
charges for various ion–peptide conformations based on electro-
static potentials calculated with FHI-aims48 at the level of theory
described above. RESP calculations were performed on a radial grid
of point charges fixed in a cubic space around the ion–peptide com-
plex. The 5 radial shells of point charges were generated in a region
between 1.4 and 2.0 multiples of the atomic vdW radius. The cubic
grid for RESP calculations contained 35 point charges along x, y,

FIG. 1. Structure of a dipeptide, with a variable side chain (R) that extends from
the alpha-carbon (Cα), which can be any one of the 20 proteinogenic side chains,
plus a few variations of His, namely, HSD (with hydrogen on Nδ), HSE (with hydro-
gen on Nε), and HSP (with hydrogens on both nitrogens), which are the standard
protonation states found in C36 and Drude FFs.

and z directions, respectively, to assess the electrostatic potential
(ESP) around the ion–peptide complex. The Antechamber suite of
the AmberTools package7 was used for RESP charge fitting.52

B. Additive force fields for peptide–ion interactions

All the additive FFs used in this study rely on the fixed-charge
representation illustrated in Fig. 2. In additive FFs, atoms are rep-
resented as hard spheres with point charges (“balls” in the figure)
and bonds as springs (“sticks” in the figure) with a number of
intra-molecular terms to account for bond, angular and dihedral-
improper degrees of freedom.

The intra- and inter-molecular interactions in a polyatomic
system can be described by a potential-energy function given by

UFF = ∑
bonds

Kb(b − b0)2 + ∑
1−3bonds

KUB(S − S0)2 + ∑
angles

Kθ(θ − θ0)2

+ ∑
dihedrals,n

Kψ,n[1 + cos(nψ − δn)] + ∑
improper

Kχ(χ − χ0)2

+∑
i<j εij
⎡⎢⎢⎢⎢⎣(

σij
rij
)12 − 2(σij

rij
)6⎤⎥⎥⎥⎥⎦ +∑

i<j
qiqj

4πϵrij
. (1)

In Eq. (1), K, b0, θ0, S0, χ0, n, δn, εij, σij, and q are empirically deter-
mined parameters. The force constants [K and parameters of the
harmonic terms (b0, S0, θ0, χo, n, and δn)] are usually obtained using
analysis of QM vibrational modes. The partial charges qi are gener-
ally obtained by fitting to electrostatic potential surfaces obtained via
QM. After determining the bonded parameters and partial charges,
the Lennard-Jones (LJ) terms (εij, σij) are finally fitted to reproduce
both gas-phase QM energies and condensed-phase thermodynamics
such as experimental hydration free energies.

FIG. 2. Ball and stick model of classical
FFs. Left: configuration of a proper dihe-
dral. Right: configuration of an improper
dihedral.
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In the present study, we examine the accuracies of the following
popular additive FFs: OPLS-AA,9 AMBER,7 CHARMM36m,4 and
CHARMM Drude FF with latest protein parameters3,53 (see Sec. II
C). OPLS-AA and AMBER employ a functional form similar to that
used by CHARMM, except that (i) OPLS-AA and AMBER do not
use the Urey–Bradley (UB) form for the intra-molecular angular
potential, and (ii) in AMBER and OPLS-AA, the standard dihedral-
angle torsion term is used for the out-of-plane distortions, which
corresponds to the improper term in Eq. (1). The AMBER FF used
in this work is AMBER10.54 OPLS-AA and AMBER data in this
paper were calculated using openMM7, a high performance toolkit
for molecular simulations.55 The CHARMM36m FF4 used to model
dipeptide–cation interactions was used with a set of non-bonded
fix (NBFIX) terms directly from the CHARMM-GUI portal without
any modifications.56

C. The Drude polarizable force field

In the Drude polarizable FF, an additional particle is attached
to every polarizable (heavy) atom, as depicted in Fig. 3. This particle
is assigned to a point partial charge and a constant mass of 0.4 amu
or 0.8 amu. The spring constant may also be a non-diagonal tensor,
which can capture anisotropic polarizability. The lone-pair parti-
cles are used to better represent the charge distribution in diverse
chemical groups found in proteins. The auxiliary Drude particles are
included in the extended Lagrangian framework57 and added to the
set of particles that contribute to the Coulomb electrostatic energy in
Eq. (1). They also contribute energy due to displacement from their
host nuclei, given by Eq. (2),

ED = 1
2∑p KD,pd2

p. (2)

D. Electrostatic interactions and polarization
catastrophe

The transfer of the developed parameters for metalloproteins
to condensed-phase simulations is complicated by several issues
including polarization catastrophes as well as the limited set of
protein sites used by Li et al.10 The polarization catastrophe or
over-polarization phenomenon is due to fundamental differences
between QM and polarizable FFs, which neglect electron–electron
overlap and charge-transfer effects. When a polarizable atom is

close to a charged atom or another highly polarizable atom, one
or both of them may over-polarize, and the mutual inductance of
dipoles can cause a chain reaction that induces over-polarization
of other atoms, thus amplifying the effect. The phenomenon has
been observed in systems with high charge density4 and has been
documented previously with the Drude polarizable FF, especially
when divalent ions and charged moieties are involved.3 A popu-
lar method for handling over-polarization in the Drude polarizable
model relies on the implementation of a Thole damping function
that screens the Coulomb potential at short distances.58 The Thole
function, Eq. (3), effectively screens the electrostatic interaction
at short distances, leaving the long-range interactions untouched,
using a distance-dependent function,59

Sij(r) = 1 − ⎛⎝1 +
tijr

2(αiαj) 1
6

⎞⎠exp
⎡⎢⎢⎢⎢⎣
−tijr
(αiαj) 1

6

⎤⎥⎥⎥⎥⎦. (3)

In Eq. (3), tij is a pair-specific Thole factor between atoms i and j,
α are the atomic polarizabilities, and r is the interatomic distance.
The damping effect applies not only to the atomic nuclei but also
to the Drude particles. This prevents a polarization catastrophe at
short distances, while maintaining the electrostatic interactions at
longer distances. The effective distance and strength of damping are
controlled by the Thole factor, tij.

The effect of such a function on the Coulomb potential is
depicted in Fig. 4. Essentially, it corrects the Coulomb potential to
treat the atom as if it were a smeared charge distribution, removing
the singularity of a point charge. Though Thole damping is effec-
tive against over-polarization, it contains some inadequacies because
it does not account for many-body polarization effects.60 However,
optimizing the exponent of the Thole function (tij) may improve
the accuracy61 and aid the description of cation–peptide interaction
energies.

E. Assessment of the cation–dipeptide interaction
energies

The ion–dipeptide interaction energies for all additive models
obtained on the basis of QM geometries from the dipeptide dataset
use infinite cutoffs. The ion–dipeptide interaction energies for polar-
izable models were obtained by relaxing the Drude particles via

FIG. 3. Schematic of a Drude polarizable atom and resulting FF. Left: conceptual depiction of electron density around an atom polarized by an external electric field, E⃗. Middle:
Drude model of the same atom, with Drude particles in blue. The Drude particles have a mass of mD and charge of qD, whereas the parent nucleus has a mass of mN and a
charge of qN . The distance d is controlled by a spring with the force constant KD. Right: a physical dipole with field lines representing potential gradients.
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FIG. 4. Effect of Thole damping function for various tij . Each curve represents a
particular screening factor (tij ) where the color represents its value. The top panel
shows Sij as a function of distance r, and the bottom panel shows the correspond-
ing screened Coulomb potential energy (kcal/mol). The dashed line represents the
infinite Thole limit, where there is no screening [Sij (r) = 1 ∀ r ].

steepest-descent for 500 steps followed by adopted-basis Newton–
Raphson minimization for 100 steps to a final gradient of 10−5 kcal
mol−1 Å−1, with the atomic positions restrained by a force constant
of 107 kcal mol−1 Å−2 to the reference QM geometry from the dipep-
tide dataset. To evaluate the accuracy of the different FFs, we calcu-
lated the root-mean-squared deviation (RMSD) for each ion-bound
dipeptide as follows:

RMSD = [ 1
N ∑i (Ei

QM − Ei
MM)2] 1

2

, (4)

where N is the total number of conformations and Ei is the interac-
tion energy of the ith conformation.

F. Charge transfer modeling with the CTPOL FF

The CTPOL model41,42 incorporates charge transfer and local
polarization effects into additive force fields by modifying the con-
ventional Coulombic term to account for ligand → cation charge
transfer and including an additional term in the potential func-
tion (see below) to account for the induced polarization due to
the bound cation. It enables incorporation of partial-charge transfer
and induced polarization effects into an existing additive potential
function as follows:

UCTPOL
Nonbonded = EvdW + ECT

stat + Epol. (5)

The electrostatic interactions in CTPOL include dynamic charge
transfer between the bound cation and atoms comprising its coor-
dination shell (O,S, and N). The amount of charge transferred by a

metal-ligating atom (L) to a metal cation (Me) is assumed to depend
linearly on the interatomic distance, rMe–L, and is given by

ΔqMe–L = aLrMe–L + bL. (6)

The aL and bL coefficients in Eq. (6) were obtained using Parti-
cle Swarm Optimization (PSO) and reproducing the relative QM
interaction energies as the objective function. PSO relies on a pop-
ulation of solutions, called particles, which move through the high-
dimensional parameter space with directed velocity vectors to find
optimal solutions.62,63 PSO was performed via the python package
pyswarm.64 The amount of charge transferred, ΔqMe−L, is added to
the partial charge on atom L from a given classical FF to yield the net
partial charge on atom L at any given simulation time step, t,

qL = q0
L + ΔqMe−L. (7)

The polarization energy Epol can be computed according to

Epol = −1
2∑i μi ⋅ E0

i , (8)

where the summation is over the cation and the metal-ligating
amino-acid heavy atoms, μi is the dipole induced on atom i, and E0

i is
the electrostatic field produced by the current charges in the system
at a polarizable site i. Polarizabilities of each atom type are taken as
the average value of all corresponding effective atomic polarizabili-
ties from the DFT data. Following previous work,41,42 we employ a
cutoff distance rijcutoff equal to the sum of the vdW radii of atoms i
and j scaled by a parameter γ = 0.92 so that interatomic distances rij≤ rijcutoff are set equal to rijcutoff to avoid unphysically high induced
dipoles at close distances to each other and to the permanent electric
charges. The additive AMBER10 FF54 was used to describe dipep-
tides and long-range interactions between Ca2+ and dipeptides. The
atom-type definitions for CTPOL developed in our work are shown
in Fig. SI 1. The implementation and calculations of the CTPOL
model were performed with openMM7.55

G. MD simulation protocol

To evaluate the performance of the various Drude polarizable
FF parameters used in this paper, we ran MD simulations on the
truncated structure of the N-lobe of the human calmodulin (CaM)
protein (PDB 1CLL),65 containing Ca2+-bound EF-hand loops I and
II. We used the CHARMM-GUI platform56 to build a truncated
CaM with Ca2+ bound to two characterized sites solvated in a neu-
tralizing 150 mM CaCl2 aqueous solution. The original crystal struc-
ture (1CLL) was solved in the acidic solution (pH = 5.0), containing
50 mM MgCl2, 5 mM CaCl2, and 50 mM NaOAc.65 We chose a
higher than physiological concentration of CaCl2 to test ion inter-
actions with the highly charged protein surface. The cubic simula-
tion box (63.9 × 63.9 × 63.9 Å3) contained 1 protein molecule, 28
Ca2+, 43 Cl−, and 8133 TIP3P water molecules.66 The solvated sys-
tem was first minimized using a staged-protocol of CHARMM-GUI
for 60 ns (10 ns for each stage) using NAMD2.14b1,67 with posi-
tional constraints applied to heavy protein atoms. The system was
then simulated for 250 ns in a constant-pressure ensemble (NPT) at
T = 298.15 K without any positional constraints using a time step of
2 fs. The electrostatic interactions were treated using the Parti-
cle Mesh Ewald (PME) method68 with a grid spacing of 1 Å and
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sixth-order interpolation with a real space cutoff of 12 Å. The LJ
interactions were smoothly switched off from 10 Å–12 Å. The atom-
pair list was updated every 20 steps. The LJ and electrostatic interac-
tions were computed every time step. The SHAKE algorithm (RAT-
TLE)69 was used to maintain the geometry of all bonds involving
hydrogen. The polarizable simulation system was built using a pre-
equilibrated box described above with the CHARMM-GUI/Drude-
Prepper option.70 The latest Drude FF for proteins53 was used with
different Thole parameters for Ca2+–O(carboxylate) interactions (as
described in Sec. III).

Langevin dynamics with a dual-thermostat scheme was used to
propagate the atoms and auxiliary Drude particles with the extended
Lagrangian formalism implemented in the NAMD package.67,71 The
thermostat acting on heavy (non-Drude) particles was set to Tatom
= 298.15 K. The Langevin damping coefficient was set to 5.0 ps−1.
Production runs of 250 ns were performed with TDrude = 0.5 K and
a spring constant for the atom–Drude bond of 1000 (kcal/mol)/Å
for the different parameter sets considered in our work. The first
50 ns were discarded for all analyses shown in the text. A damping
constant of 20.0 ps−1 was applied to Drude particles.57 A “hard-
wall” constraint was used to prevent large displacements of Drude
particles in the case of strong electrostatic interactions expected in
the simulation of divalent cation–protein interactions.72,73 The hard-
wall constraint distance was set to 0.2 Å, and a time step of 0.8 fs was
used in all MD simulations performed with Drude FFs.

III. RESULTS AND DISCUSSION

A. Force-field performance in modeling
ion–dipeptide interactions

The values of RMSD in cation–dipeptide interaction energies
relative to the QM dataset and prior to any parameter optimization
are plotted in Fig. 5. It is evident that the Drude polarizable FF is
more accurate than the non-polarizable FFs for almost all the stud-
ied dipeptide structures, with average RMSDs significantly lower
than 100 kcal/mol. When Ca2+ is in close proximity to charged car-
boxylate moieties, the auxiliary Drude particle of the oxygen atom is
pulled onto the cation by undamped electrostatic forces [Fig. 6(a)],
which causes the magnitude of the electrostatic energy to escalate
above computational threshold values of 108 kcal/mol, resulting in
unusually large RMSDs. However, even though the overall RMSD
is better for Drude compared with C36, the lowest three confor-
mations are in fact better captured by C36 [Fig. 6(b)]. The clear
outliers for the Drude FF are the interactions of Ca2+ with neg-
atively charged Asp and Glu side chains. Analysis of the outliers
indicates that this discrepancy is caused by the over-polarization
catastrophe phenomenon (see Sec. II D). Interestingly, although the
polarization catastrophe in both Glu and Asp is due to the Drude–
cation overlap, it occurs more frequently in Glu-dipeptide than in
Asp-dipeptide, where it only occurs in one conformation. This is
probably because the longer side chain of Glu allows a greater num-
ber of stable conformations, in which Ca2+ is close to the back-
bone oxygens and the carboxylate group. This appears to be a pre-
ferred coordination state for the ion when interacting with these
dipeptides.

Figure 7 provides further details on the chemical space where
the polarization catastrophe occurs. The Squared Difference (SD)

FIG. 5. Number of conformations and RMSD relative to the QM-interaction ener-
gies for each dipeptide residue. RMSDs are plotted for each of the four FFs prior
to any optimization or correction. For Asp and Glu, the Drude RMSDs are on the
order of 107 due to polarization catastrophe. wRMSD is the Boltzmann-weighted
RMSD defined in Eqs. (9) and (10) (see below).

of the interaction energy is on the order of 1016 kcal/mol due to
the polarization catastrophe in regions close to the two carboxy-
late oxygens. In Glu-dipeptide, the Drude FF evidently fails in the
region where there is a significant electronic overlap (<2.2 Å) due
to the polarization catastrophe discussed above. Although the aver-
age distance from ligating oxygen atoms to Ca2+ ranges from 2.37 Å
to 2.41 Å,74 a survey of high-resolution (<2.0 Å) PDB structures
containing nonredundant Ca2+ sites reveals several structures with
Ca–O distances <2.2 Å. Li et al.10 used chemical structures of Ca2+-
containing peptides with average coordination distances of 2.39 Å
in determining non-bonded parameters for Ca–O interactions and,
therefore, have not considered conformations with a significant
electronic overlap in their parameter determination. In particular,
Figs. 6 and 7 highlight the significance of possible electron over-
lap between Ca2+ ions and the OE1, OE2, OD1, and OD2 atom
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FIG. 6. (a) Polarization catastrophe in ASP dipeptide when Ca2+ is in close prox-
imity to the OD2 atom. The Drude particle of OD2 (atom-type DOD2) is abnormally
pulled away from its parent nucleus by the electrostatic force of Ca2+, which also
has its Drude particle (DCAL) abnormally far from its host nucleus. (b) Comparative
analysis of conformation-specific dipeptide: Ca2+ interaction energies between var-
ious FFs and QM. For Drude, conformations 69–94 and 96 experience polarization
catastrophe.

types. In the Drude FF, all four of these atoms are described by a
single atom type, namely, OD2C2A, and, thus, have the same set
of parameters. Note that Thole screening between this atom type
and Ca2+ has not been implemented in the original FF, and Thole
screening parameters were introduced only for ion–water oxygen
interactions.36 In Sec. III B, we show that its inclusion is vital to avoid
over-polarization.

B. Reduction of parameter space and avoiding
polarization catastrophe

The parameters that most significantly determine the interac-
tion energies between a metal cation and an Asp-/Glu-dipeptide
are the non-bonded LJ parameters ϵ, σ, between the carboxyl oxy-
gen and the ion as well as the electrostatic forces between them.
The partial charges had been carefully parameterized and are dif-
ficult to change due to their large degree of interdependency. The

FIG. 7. (a) Drude FF squared energy deviations of Glu represented as functions of
two collective variables—the distances in Å of Ca2+ to OE1 and OE2 carboxylate
oxygen atoms of Glu. Red dots represent each of the Glu conformations as a
function of these two collective variables. Colors represent the SD between the QM
and MM energy. The region where polarization catastrophe occurs is circled and
has SD values of ∼1016. (b) QM interaction energies for Ca2+–dipeptide fragments
as functions of the two collective variables described above for (a). Both surfaces
are obtained by triangle-based linear interpolation of the data.

same is true for the polarizabilities and the Drude particle spring
constants. However, the NBFIX option in CHARMM invokes pair-
specific Thole screening factors tij and pair-specific LJ parameters
σij, which would ideally be driven and optimized against a panel of
condensed matter simulations. It is important to note that the LJ
parameters apply only to the nuclei, which are constrained to posi-
tions derived from QM reference structures; hence, optimization of
LJ parameters will affect the total energy of the system but not the
geometries of the Drude particles,53,75 which do not experience any
LJ potentials. Since the nuclei are constrained to the QM-optimized
geometry, the only degrees of freedom during energy minimization
are those of the Drude particle positions. Thus, including a pair-
specific Thole screening factor will affect not only the energy of the
system but also the locations of the Drude particles, although their
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impact is relatively small except when there is a significant electron
overlap.

To illustrate the effect of the pair-specific Thole parameter (tij)
between the carboxylate oxygen and Ca2+, we calculated the Drude-
FF interaction energies between Ca2+ and Asp-/Glu-dipeptide for
three different values of tij and compared them with QM interac-
tion energies in Fig. 8. By default, if a pair-specific Thole is not
specified for non-bonded pairs, tij = ∞ for that pair, i.e., Sij = 1,
and there is no electrostatic screening of the Coulomb potential.
This is represented by the dashed line in Fig. 8. We also computed
the interaction energies at tij = 3.0 and tij = 2.6, where tij = 2.6
results in a stronger electrostatic damping. Figure 8 illustrates the
utility of the pair-specific damping factor in controlling polariza-
tion catastrophes in problematic conformations, without substan-
tially altering the energy surface in the rest of the conformational
space. For Glu [Fig. 8(a)], the catastrophe occurs in a large num-
ber of conformations, increasing the chances of it occurring in real
simulations. For Asp [Fig. 8(b)], the catastrophe occurs in a much
lower energy region; thus, it could be problematic even though
only one conformation suffers from this phenomenon. Further-
more, even when the Thole parameter is introduced, if it is not
strong enough (tij = 3.0), then some conformations can still have
unrealistically low energies due to the tendency to overpolarize, but
they are still of the same order of magnitude as the QM minimum
energies. This may result in hard-to-detect over-polarization phe-
nomena in simulations and hampers the development of balanced
polarizable FFs.

C. Local environmental effects in backbone
carbonyl–Ca2+ interactions

The dipeptide–cation dataset allows one to explicitly assess
subtle, but important, effects of local changes in the electrostatic

FIG. 8. Interaction energies of the Drude FF compared with QM for three val-
ues of the pair-specific Thole parameter for interaction between Ca2+ (CALD) and
Glu/Asp carboxylate oxygen (OD2C2A). The values of the Thole parameter are
tij =∞ (dashed line), 2.6 (green), and 3.0 (red), which are illustrated for modeling
interaction energy between Ca2+ and Glu (a)- and Asp-dipeptide (b), respectively.

environment on the peptide–ion interactions. The chemical space
mapped out in the current QM dataset is a good representative
of the Ca2+-binding sites found in the PDB surveys,76,77 which
show Asp/Glu carboxylates to be the most frequent first-shell lig-
ands followed by the backbone carbonyl and water ligands. In
accord with the trends found in the PDB surveys, the most com-
mon atoms that coordinate Ca2+ are the carboxylate oxygens for
the Asp-/Glu-dipeptide (OE1, OE2, OD1, and OD2) and the acety-
lated terminal carbonyl oxygen (OY) or backbone carbonyl oxygen
(O) for the other dipeptides, as shown in Table SI 1. Therefore,
the dataset enables the exploration of the potential impact of the
local changes in the chemical environment on the peptide–Ca2+

interactions.
In the Drude protein FF, OY and O are represented by the

same atom type (OD2C1A), which, while making the parameter
exploration easier, may reduce the accuracy in the description of
ion–ligand interactions. Indeed, the SD between the MM and QM
interaction energies as a function of Ca2+–OY and Ca2+–O distances
in FigG. SI 2 indicates a slight asymmetry in interaction energies
resulting from the acetylation and an increase in polarity of the coor-
dinating carbonyl oxygen, which is not captured in the FF if the same

FIG. 9. Boltzmann weights applied to Glu-dipeptide–Ca2+ interactions. (a) Boltz-
mann weight vs conformation ID at various RTs (0.593–32). The blue curve is the
corresponding reference QM interaction energy. (b) Boltzmann-weighted squared
deviations with RT = 8 (wSD) and unweighted squared deviations (SDs) plotted for
the Drude FF interaction energies.
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TABLE I. Parameter change summary for the pair-specific Ca-OD2C2A Thole parameter (tij ) and LJ parameter (σ ij ).a

Parameter DRUDE DRUDE_T2.6 DRUDE-wRMSD

tij (NBTHOLE) N/A 2.600 00 1.400 00
σij(NBFIX) (Å) 3.515 00 3.515 00 2.891 43
RMSD (Asp) (kcal/mol) 2.28 × 107 28.93 8.43
RMSD (Glu) (kcal/mol) 8.17 × 107 24.00 12.99

aThe last column lists the parameters of DRUDE_OPTIMUM also illustrated by Fig. SI 3.

atom type is used for both OY and O. The deviations from QM cal-
culated interaction energies generally occur when the Ca2+–OY and
Ca2+–O distances are between 2.10 Å and 2.25 Å, where a significant
electronic overlap (repulsion) exists.

D. Optimizing parameters against DFT energies
using a Boltzmann-weighted RMSD

It is crucial to consider carefully how to evaluate the relation-
ships between energy surfaces represented in MM models and the
DFT-based energy surfaces. Since it is not possible to fit all parts
of the two surfaces to arbitrary precision, which parts of the sur-
faces are most important? A common and very successful approach
is to focus on a set of selected interaction directions and meticu-
lously scan them using resulting QM data to fit the function. One
fitting criterion often used is the RMSD between the two surfaces
defined in Eq. (4). This method puts more weight on parts of the
energy surface whose absolute values are larger. However, the weight
on the minima may not be enough. The true weight of each ion posi-
tion should closely represent the Boltzmann weight of the system
at those positions. One way to account for this is to have a higher
density of reference structures near the minima, with the number
of grid points for sampling being proportional to the Boltzmann
weight. This could be more expensive, depending on the number
of points. Another approach is to take a grid of points, calculate the
Boltzmann weights a posteriori, and apply them to the fitting func-
tion. Taking this approach yields an adjusted scoring function, the
Boltzmann-weighted RMSD (wRMSD),

wRMSD = [∑
i
wi(Ei

QM − Ei
MM)2] 1

2

, (9)

where we have modified the RMSD in Eq. (4) by including a
Boltzmann factor,

wi = A exp[−Ei
QM

RT
], (10)

where A is the normalization constant (so that ∑i wi = 1) And RT
is the “temperature factor” that does not has any physical meaning,
but affects the flatness of the distribution.

Figure 9 shows an example of applying Boltzmann weights to
the Glu-dipeptide–Ca2+ system. Figure 9(a) shows how the Boltz-
mann weights (wi) vary with increasing RT. The higher the QM
interaction energy, the less the weight, but the temperature fac-
tor (RT) determines the degree of relative importance of the lower
energy conformations. RT = ∞ is the same as using the RMSD
since all weights would be identical, whereas low values of RT will

put more relative weight on the minima. Figure 9(b) shows how
the weighted squared deviation differs from the unweighted one
for RT = 8. While the weighted squared deviations generally put
more emphasis on low-energy conformations near the QM minima,
it does blow up for conformations where polarization catastrophes
occur. Thus, with an appropriate choice of RT, one can get a scor-
ing function for the parameter optimization that puts more weight
on the low-energy minima, but can still detect large outliers at other
energies.

Supplementary material, Table S1, shows that in the majority
of Glu- and Asp-dipeptide conformations, the nearest atoms to Ca2+

are OE1, OE2, OD1, and OD2, which are given as a single atom type:
OD2C2A. This means that they are identical in their non-bonded
interaction with ions. Thus, to optimize the interactions of Ca2+

with carboxylate-containing dipeptides, we targeted the pair-specific

FIG. 10. RMSD estimated with Eq. (4) for the ensemble of conformations of
Glu:Ca2+ (top panel) and Asp:Ca2+ (bottom panel) for various FFs used in our
study. Drude data are shown for the Thole parameter set to 2.6 (D-T2.6) and opti-
mized LJ and Thole parameters using Boltzmann-weighted RMSD (wRMSD-D).
CTPOL parameters were fitted for the AMBER10 FF with (i) only a local polariza-
tion response term (POL), (ii) unrestricted charge-transfer contribution (CTPOL),
and (iii) with restricted charge-transfer contribution (CTPOL-R).
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FIG. 11. Partial charge of ligand atoms in
Ca2+–Glu-dipeptide vs distance between
an atom and Ca2+. (a) and (b) show
charges for the carboxylate oxygens
(atom-types 127 and 128, as shown in
Fig. SI 1). (c) and (d) show charge vs
distance dependence for backbone nitro-
gen (atom-type 118) and backbone oxy-
gen (atom-type 726), respectively. All
charges are shown in electron units. The
red line represents the atom’s partial
charge in the standard AMBER10 FF.
The calculated RESP partial charges are
shown for comparison as green dots.

interaction between the Ca2+ (i) and OD2C2A (j) and optimized the
Thole parameter tij (NBTHOLE) and the LJ σij parameter (NBFIX).
This was done by running Drude interaction energy calculations for
eight different NBTHOLE values, each with eight different NBFIX
values, resulting in 64 different parameter combinations. The NBT-
HOLE values ranged from 1.2 to 2.6, whereas the NBFIX values
ranged from 2.72 to 3.92. For each of these parameter combina-
tions, the wRMSD given by Eq. (9) was calculated for Glu- and
Asp-dipeptide interaction energies, and the global minimum with
respect to the wRMSD was chosen as the optimum parameter set.
The changes in parameters are summarized in Table I.

Figure SI 3 shows the improvement in accuracy due to the
new parameter set over the original one. The optimized Drude FF

(referred to as Drude-wRMSD) no longer displays any polarization
catastrophe and gives a much closer fit to the QM interaction ener-
gies, particularly near the minima. It is apparent from Fig. SI 3, Fig. 8,
and Table I that electrostatic optimization via the Thole parame-
ter alone cannot reproduce QM energies. The LJ σij-parameter also
has to be changed in order to match QM energy across a broader
range of conformations. Optimization of Thole and LJ parameters
has not only produced better RMSDs between QM and MM ener-
gies but also reduced the fluctuations in the energy trend. This
implies that the ranking of conformations by energy more closely
resembles the ranking of QM energies for most of the conforma-
tional space. However, the plateau region of the QM energy of Glu-
dipeptide, which is present in other FFs (see Fig. 6) as well as in

FIG. 12. (a) The N-lobe of the CaM pro-
tein with Loop I and II with two bound
Ca2+ ions (gold spheres). The positions
of the aspartate residues are shown in
red sticks, while glutamates are shown
in green sticks. The Ca2+ ions from the
bulk solution are shown as magenta
spheres. Water molecules and Cl− ions
are not shown for clarity. (b) Time traces
of the RMSD for protein heavy atom
coordinates relative to the x-ray structure
(PDBID:1CLL) for the C36 and Drude
FFs. First 50 ns of all MD runs were dis-
carded, and only production runs of 200
ns were used.
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Drude_T2.6, is absent for this parameter set. The weighted RMSD
function puts a very low weight on this part of the conformational
space due to the high energies. However, this is an important part
of the conformational space as it comprises the conformations with
the shortest distances between Ca2+ and the carboxylate oxygens. A
larger exploration of the parameter space may be required to rem-
edy the discrepancy in this region, and the scoring function may also
need to be revisited in order to treat these regions on a more equal
footing.

E. The extent of charge transfer in cation
interactions with carboxylate groups

Although future development of a balanced Drude FF for
cation–protein interactions is under way, it may still be limited when
charge-transfer effects between a cation and coordinating ligands
are significant. We have previously performed a PDB survey to elu-
cidate the effect of the secondary shell ligands on cation-binding
to metalloproteins using DFT and DFT-tight binding (TB) meth-
ods.11,76 We found that perturbation of the charges on coordinating
ligands due to Ca2+-binding is significant, amounting up to 15%–
20% of partial-charge change on the coordinating oxygen atoms.
This effect is not limited to ligands in the first coordination shell,
but impacts ligands in the second shell, albeit to a lesser extent.
Since the CTPOL formalism41,42 incorporates both local polariza-
tion (POL) and charge-transfer (CT) effects into the interaction
energy (see Sec. II F), we employed this FF model to study partial-
charge transfer for the two challenging Asp–Ca2+ and Glu–Ca2+

systems to potentially present a strategy for FF re-calibration of
cation–peptide interactions. Importantly, it allows one to investigate
a model containing just a local polarization response term (POL) or
a model that additionally includes the charge-transfer contribution
(CTPOL).

Table SI 2 summarizes the parameters in the CTPOL FF used,
namely, atomic polarizabilities and charge transfer aL and bL coef-
ficients in Eq. (6) fitted for the AMBER10 FF (see Sec. II). The
coefficients in Eq. (6) used QM interaction energies as the input.
It is important to note that the choice of QM level of theory
for the reference dataset affects the absolute values of the total
energies. However, Ngo et al.11 studied different all-electron DFT
functionals and showed that the absolute binding energies com-
puted using different functionals and basis sets can vary by up
to 10% depending on the method, but the corresponding relative
binding energies vary by only 4%–5% relative to calculations per-
formed with higher basis sets. Hence, our study will focus on the
trends and elucidate areas to pay attention to in metalloprotein FF
development.

The RMSD values in Fig. 10 demonstrate the apparent usabil-
ity of Drude FFs with a control for polarization catastrophes via a
carefully developed set of NBFIX/Thole parameters for simulating
larger systems. It also shows that a standard force field (in this case
Amber10) extended by a local polarization term [Eq. (8), POL] can
be optimized against available higher-level data. This POL FF sig-
nificantly improves the performance of the original FF. Adding a
charge transfer term (CTPOL) without any constraints on the charge
transfer extent led to further improvement in the RMSD, as evident
in Fig. 10(b). However, the charge transfer parameters in Eq. (6)
yield unphysical partial charges such as a negative charge on Ca2+,

probably because they were determined to reproduce the relative
QM interaction energies as the objective function without any con-
straints on the amount of charge transfer. Hence, they compensate
for the inherent errors of the standard AMBER10 FF, which yields a
RMSD from QM energies that is generally greater than that of C36
(Fig. 5). One way to address this issue is to restrict the amount of
charge transfer in the model denoted as CTPOL-R. Figure 11 shows
how this improves the charges on a few selected atoms, particularly
the carboxylate oxygens of Glu-dipeptide [Figs. 11(a), 11(b), and
11(d)].

However, implementing this fix alone leads to an RMSD of
35.7 kcal/mol, which is clearly not satisfactory. If, however, we
re-optimize the original AMBER10 FF vdW parameters of atoms
involved in direct interactions with Ca2+, we obtain a reasonable
RMSD of 15.4 kcal/mol for CTPOL-R (CTPOL with restricted
charge transfer), which is comparable to the RMSD of CTPOL with-
out any restriction (16.4 kcal/mol). The list of adjusted vdW param-
eters is provided in supplementary material, Table SI 3. Although,
the resulting charge transfer term is only about 2 kcal/mol, tweaking
the original parameters of the AMBER10 FF was crucial for simulta-
neously correcting the signs of the charge transfer and reducing the
RMSD.

F. Evaluation of Drude-FF parameters
in metalloprotein simulations

The Drude, Drude_T2.6, and Drude-wRMSD polarizable FF
parameters were assessed and compared with the C36 parameters by
using them in MD simulations of the N-lobe of the human calmod-
ulin (CaM) protein shown in Fig. 12(a). The RMSD values for all
FFs collected in Fig. 12(b) are comparable, with significant flexibil-
ity observed for loops I and II (RMSD ∼ 2.4 Å–2.7 Å). The highest
RMSD values are observed for the truncated portion of the central
helix and are related to partial bending and unwinding (region-
specific RMSD > 3.5 Å). While similar dynamics has been reported
for the central helix in nuclear magnetic resonance (NMR), spec-
troscopic and modeling studies,18,78–80 it may still be driven by the
choice of the reduced model.

Table II compares the coordination numbers of Ca2+ in Loop
I and Loop II binding sites obtained with different FFs and the

TABLE II. Calcium coordination numbers for EF-hand Loop I and Loop II sites.a

Excluding water (including water)

Loop I Loop II

C36 6.45 (7.31) 6.71 (7.64)
Drude 5.95 (7.31) 5.55 (6.45)
Drude-T2.6 5.84 (7.01) 5.81 (6.91)
Drude-wRMSD 5.99 (5.99) 5.95 (5.97)
ECCR74 5.94 (7.00) 7.03 (7.04)
1CLL60 6.00 (7.00) 6.00 (7.00)
aCa2+ coordination numbers were determined by integration over the first peak of the
ion-oxygen RDF, which included oxygen atoms of water and amino-acid residues in the
RDF calculations; numbers with parentheses include both protein and water ligands,
whereas those without exclude the water ligand.
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scaled-charge approach referred to as ECCR17,18 with those found
in the x-ray structure. The high-resolution (1.7 Å) crystal struc-
ture (PDBID:1CLL) with the positions of the crystallographic waters
resolved shows six protein ligands and a water molecule directly hep-
tacoordinated to the divalent cation in each site. An important and
unique feature of the binding sites reported in 1CLL is the presence
of bidentate (Glu) and monodentate coordination (Asp) modes.65

The reproduction of the monodentate coordination by aspartates
present in the x-ray structure represents a significant challenge for
the additive FFs, where partial charge is distributed equally between
two coordinating oxygens.18,81 Indeed, the C36 FF exhibits a shift
from monodentate to predominantly bidentate coordination for the
binding site in loop II (Asp 56) and to a lesser extent in loop I (Asp
22), resulting in an average of more than six calmodulin oxygens in
the calcium coordination shell.

Interestingly, the scaling approach used in the ECCR study
with the charge on Ca2+ scaled down to +1.5e still led to bidentate

coordination in Loop II. The authors suggested that the coordina-
tion number of 7 observed in the charge-scaling approach is due to
the recruitment of an additional aspartate (Asp 64) into the ion coor-
dination.18 In contrast, we did not observe stable coordination by
Asp 64 in any of our simulations. All of the Drude models resulted
in protein coordination numbers between 5.55 (Drude) and 5.98
(Drude-wRMSD), showing predominantly monodentate coordina-
tion for both aspartates (Asp 22 and Asp 56) in accord with the
coordination mode reported in the x-ray structure.18 The Drude-
wRMSD model shows a near ideal coordination mode for the pro-
tein ligands, but fails to reproduce the retention of a Ca2+-bound
water molecule in Loop I and Loop II.

Analysis of minimal distances between Ca2+ and protein lig-
ands reveals a potential issue that may explain why the Drude-
wRMSD model resulted in the release of a water molecule from
the first coordination sphere. The Drude-wRMSD model rou-
tinely shows unphysical distances <1.5 Å between the cation and

FIG. 13. (Top) Characteristic snapshots of a single EF-hand CaM in the solution with 150 mM CaCl2 with contact numbers 9 and 4 observed in simulations with C36 (left)
and Drude-wRMSD (right) FFs, respectively. In both snapshots, the two Ca2+ ions bound to sites in Loop I and II are shown as green spheres, while Ca2+ ions recruited from
the bulk solutions are shown as gold spheres. Asp and Glu residues of CaM are shown as red sticks. Bottom left: The distribution of the contacts between Ca2+ and COO−
reported for all FFs considered in this work. Bottom right): Time traces for CN calculated with different FFs.
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negatively charged lone pairs located on the carbonyl or carboxy-
late oxygens, both for ions bound to sites in Loop I and Loop
II and those recruited from the bulk phase to coordinate solvent-
exposed residues. This issue has also been noted in all the simula-
tions performed with the original Drude parameters for Ca2+ with
ion–oxygen lone-pair distances as short as 1.55 Å, the correspond-
ing Ca2+–O(carboxylate) coordinating distances between 1.9 Å and
2.2 Å, and the first peak of the radial distribution function (RDF)
located at 2.05 Å, which is significantly shorter than 2.30 Å–2.45 Å
observed in other proteins.74 The first peak in the RDF between Ca2+

present in the bulk solution and carboxylate oxygens is located at
2.10 Å for Drude-wRMSD and at 2.35 Å for Drude. The introduc-
tion of the Thole parameter equal to 2.6 combined with adjusted
NBFIX values appears to correct this issue. Using the Drude-T2.6 FF,
the shortest ion–lone-pair distance is 1.83 Å, the average distance is
1.96 Å, and the first peak in the RDF between Ca2+ and the carboxy-
late oxygens is located at 2.40 Å, in accord with the results of the
PDB surveys.74,76 The unphysically short ion coordination distances
observed in Drude-wRMSD lead to an “over-stabilization” phe-
nomenon and presumably an over-binding on the protein surface,
as suggested by studies of ion transport in ryanodine receptors37 and
porins.39

Recent comparative analysis of MD simulations and capil-
lary electrophoresis experiments for dications binding to insulin17,19

indicates that specific and very tight binding of cations in the phys-
iological pH range leads to over-accumulation of mobile charges on
the protein surface modeled with non-polarizable FFs.17 For exam-
ple, up to 20 Ca2+ were reported to bind stably to the full CaM struc-
ture, in stark contrast with the anticipated four ions bound to sites
present in the EF hands.17 By introducing ECCR corrections with
CHARMM36 parameters, the overall number of Ca2+ ions reduced
drastically to ∼6, or 3 cations per lobe. To compare the performance
of the polarizable FFs considered in our study to results reported
by Duboué-Dijon et al.,17 we computed probability distributions for
the Ca2+–carboxylate contact number (CN). The contact distance
R between a cation and an Asp/Glu carboxylate group was defined
based on the position of the first minimum in the RDF between Ca2+

and the carboxylate carbon atom. It was set to R = 4.1 Å in accord
with R = 4.0 Å used by Duboué-Dijon et al.19 While our simulation
results obtained for a single CaM lobe containing two sites in Loop I
and II cannot be directly compared with those obtained by Duboué-
Dijon et al.17,19 for the full CaM structure, the overall trend appears
to be similar. In simulations using the C36 FF, the average CN is 8.5
with a single carboxylate group coordinating up to two cations for
up to hundreds of nanoseconds (see Fig. 13). Compared to C36, the
average CN of 4 for all the Drude models studied is much smaller.
However, the Drude-wRMSD features a very broad distribution with
CN up to 6 routinely present.

The charge scaling used by Duboué-Dijon et al.17,19 led to the
destabilization of the cation-binding sites present in the EF hands
(Loop I and Loop II sites) in under 60 ns of production MD runs.
In our simulations, however, no cation unbinding from Loop I and
Loop II was observed in 200 ns. We used 150 mM CaCl2, which
is expected to increase the cation concentration at the protein sur-
face. In simulations performed with Drude parameters, no cation
exchanges were observed; e.g., once Ca2+ is recruited from the bulk
solution to the binding pocket, it remained bound for the whole
duration of the simulation. This is especially apparent with the

original Drude force field, where CN gradually rose from 2 to 3 and
then to four cations stably bound to the carboxylate residues fac-
ing the solution (Fig. 13). For the Drude-wRMSD simulations, the
cations bound to Loop I and Loop II remain coordinated by pro-
tein atoms only, and no water molecule was recruited to the first
coordination shell.

IV. CONCLUSIONS AND OUTLOOK

In summary, we have performed a comprehensive benchmark-
ing of the existing FFs for Ca2+–dipeptide interaction energies
against a comprehensive QM dataset. Several areas for the potential
improvement of metalloprotein models in the context of the polar-
izable FFs were identified, notably, undamped electrostatic forces
causing the Drude oxygen to overlap with Ca2+ [Fig. 6(b)] when it is
near the Asp/Glu carboxylate. We show how this may be ameliorated
by an illustrative parameterization of Ca2+ interaction energies with
Glu/Asp-dipeptides using RMSD and weighted RMSD approaches.
This leads to a better performance for the reproduction of the gas-
phase energetics with some notable exceptions present in the broad
conformational space sampled in the QM dataset. With the CTPOL
method, problems related mainly to unphysical charges on Ca2+

arose in parameterizing the same Glu/Asp-dipeptide in a similar
region of the conformational space. This was substantially reme-
died by imposing restrictions on the amount of charge transfer and
reparameterizing some of the original parameters of the additive FF.
However, none of the parameter sets tested in our study are at a
stage where they can be recommended for large-scale metalloprotein
simulations in the condensed phase.

We have taken a first step toward relating the parameter space
to the conformational space with the current analysis. By express-
ing the conformational space in terms of distances between the
cation and coordinating atoms, we may determine better parame-
ter subspaces using RMSD and wRMSD of interaction energies for
fitting. The next logical goal would be to test other scoring func-
tions such as binding energies rather than interaction energies, or
relative interaction energies instead of absolute interaction ener-
gies. Each set of optimized parameters obtained for a subset of the
dataset and parameter space should be tested by performing con-
densed matter simulations. This would allow us to identify the strat-
egy that produces the best relative improvement, which can then
be applied to the whole dataset with a larger parameter space. The
combination of QM-led initial parameter development and com-
prehensive testing in the condensed phase would help us to capture
more accurate dynamical and structural properties of ion binding to
biomolecules.

While a comprehensive QM dataset complements sparse exper-
imental data and helps us to elucidate the key problems in parame-
terization, certain gas-phase QM conformations may not be perti-
nent in a solvated protein environment where the effective dielec-
tric constant is generally >1. In the future, we advocate the use of
micro-solvated QM systems such as metal-bound dipeptides sur-
rounded by nearby water molecules or larger solvated QM/MM
systems with potential applications of force-matching algorithms.20

Another avenue for future work would be to derive CTPOL parame-
ters and systematically optimize the original FF parameters to repro-
duce micro-solvated QM or solvated QM/MM data as well as avail-
able experimental hydration structures and relative hydration free
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energies of all cations of the same charge.82 Such a parameteriza-
tion approach would lead to force fields that can better reproduce
the complex environments of biologically important metalloproteins
containing more than one type of cation.

SUPPLEMENTARY MATERIAL

See the supplementary material for atom-type definitions in
various FFs, parameters for the CTPOL-R/AMBER10 model, and
figures for additional energy scans.

ACKNOWLEDGMENTS

The work in SYN and DRS labs was supported by the Natu-
ral Sciences and Engineering Research Council of Canada (NSERC)
(Discovery Grant No. RGPIN-315019 to SYN and Discovery Grant
No. RGPIN-2019-03976 to DRS). C.L. thanks Academia Sinica
(Grant No. AS-IA-107-L03) and the Ministry of Science and Tech-
nology, Taiwan (Grant No. MOST-98-2113-M-001-011), for sup-
port. K.S.A. is supported by the University of Calgary Provost Doc-
toral Fellowship. X.H. is grateful for a doctoral fellowship by the
China Scholarship Council. The calculations for this submission
were enabled by funding from the NSERC-RTI program used to
acquire the CPU–GPU cluster www.glados.ucalgary.ca and by the
Resource Allocation Award from Compute Canada. Panel A molec-
ular graphics was prepared using python package NGLView. Figure
6 of Ref. 83 has been prepared with python package NGLView.

AUTHORS’ CONTRIBUTIONS

K.S. Amin and X. Hu contributed equally to this work.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1D. J. Huggins, P. C. Biggin, M. A. Dämgen, J. W. Essex, S. A. Harris, R. H. Hench-
man, S. Khalid, A. Kuzmanic, C. A. Laughton, J. Michel, A. J. Mulholland, E. Rosta,
M. S. P. Sansom, and M. W. van der Kamp, Wiley Interdiscip. Rev.: Comput. Mol.
Sci. 9(3), e1393 (2019).
2R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu, and D. E. Shaw, Annu. Rev.
Biophys. 41, 429–452 (2012).
3J. A. Lemkul, J. Huang, B. Roux, and A. D. MacKerell, Chem. Rev. 116(9), 4983–
5013 (2016).
4J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. L. de Groot, H. Grub-
müller, and A. D. MacKerell, Jr., Nat. Methods 14(1), 71–73 (2017).
5E. Flood, C. Boiteux, B. Lev, I. Vorobyov, and T. W. Allen, Chem. Rev. 119(13),
7737–7832 (2019).
6Z. F. Jing, C. W. Liu, S. Y. Cheng, R. Qi, B. D. Walker, J. P. Piquemal, and P. Y.
Ren, Annu. Rev. Biophys. 48, 371–394 (2019).
7R. Salomon-Ferrer, D. A. Case, and R. C. Walker, Wiley Interdiscip. Rev.:
Comput. Mol. Sci. 3(2), 198–210 (2013).
8M. M. Reif, P. H. Hünenberger, and C. Oostenbrink, J. Chem. Theory Comput.
8(10), 3705–3723 (2012).
9G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, and W. L. Jorgensen, J. Phys.
Chem. B 105(28), 6474–6487 (2001).

10H. Li, V. Ngo, M. C. Da Silva, D. R. Salahub, K. Callahan, B. Roux, and S. Y.
Noskov, J. Phys. Chem. B 119, 9401–9416 (2015).
11V. Ngo, M. C. da Silva, M. Kubillus, H. Li, B. Roux, M. Elstner, Q. Cui, D. R.
Salahub, and S. Y. Noskov, J. Chem. Theory Comput. 11(10), 4992–5001 (2015).
12X. D. Peng, Y. B. Zhang, H. Y. Chu, Y. Li, D. L. Zhang, L. R. Cao, and G. H. Li,
J. Chem. Theory Comput. 12(6), 2973–2982 (2016).
13H. MacDermott-Opeskin, C. A. McDevitt, and M. L. O’Mara, J. Chem. Theory
Comput. 16(3), 1913–1923 (2020).
14J. Yoo and A. Aksimentiev, Phys. Chem. Chem. Phys. 20(13), 8432–8449 (2018).
15T. Dudev and C. Lim, Chem. Rev. 114(1), 538–556 (2014).
16P. Li and K. M. Merz, Chem. Rev. 117(3), 1564–1686 (2017).
17E. Duboué-Dijon, M. Javanainen, P. Delcroix, P. Jungwirth, and H. Martinez-
Seara, J. Chem. Phys. 153(5), 050901 (2020).
18M. Kohagen, M. Lepšík, and P. Jungwirth, J. Phys. Chem. Lett. 5(22), 3964–3969
(2014).
19E. Duboué-Dijon, P. Delcroix, H. Martinez-Seara, J. Hladílková, P. Coufal,
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Table SI 1: The most common nearest atom-types per residue. To obtain the frequency column for a 

given dipeptide, we first determined the 3 closest atom-types to Ca2+ for each conformation. Then we 

made a frequency chart of all possible pairs of atom-types from this data. This table reports the most 

frequent pair for each dipeptide, and its corresponding frequency (number of conformations in which 

the pair is among the 3 closest atom-types to Ca2+ divided by the total number of conformations). 

Residue Type 1 Type 2 Frequency (%) 
Ala OY CY 66.7 
Arg OY CY 51.1 
Asn OD1 OY 50.0 
Asp OD2 OD1 87.0 
Cys OY O 84.1 
Gln OY OE1 57.4 
Glu OE1 OE2 97.9 
HSD OY O 56.3 
HSE OY O 60.4 
HSP OY CY 74.7 
Ile OY O 82.1 
Leu OY O 72.9 
Lys OY CY 59.1 
Met OY O 92.6 
Phe OY O 82.8 
Pro O OY 66.7 
Ser OY O 50.0 
Thr OY O 51.8 
Trp OY O 70.7 
Tyr OY O 60.7 
Val OY O 81.0 
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Table SI 2: Summary of the parameters used for CTPOL/AMBER10 model for Glu:Ca2+ system. 

Type Element  α (Å3) aL(e/Å) bL(e) 
51 N 0.922 -0.1240 0.5244 

58 O 0.740 -0.2960 1.2282 

59 O 0.739 -1.2054 5.0010 

61 O 0.731 -0.3002 1.2456 

118 N 0.920 -0.1778 0.7516 

127 O 0.730 -0.8433 3.4988 

128 O 0.730 -0.6495 2.6947 

130 O 0.737 -0.1688 0.7004 

719 N 0.899 -0.2056 0.8694 

726 O 0.735 -0.1952 0.8096 

53 C 1.469   

55 C 1.417   

57 C 1.499   

60 C 1.471   

120 C 1.473   

122 C 1.426   

124 C 1.405   

126 C 1.475   

129 C 1.473   

721 C 1.308   

724 C 1.334   

725 C 1.454   

1979 Ca 10.864   
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Table SI 3: Optimized LJ parameters for CTPOL/AMBER10 model for Glu:Ca2+ system. 

Atom Type-Ion Type σ (nm) ε (kJ/mol) 
118, 1979 0.3161 0 

119, 1979 0.2939 0 

120, 1979 0.3265 0 

121, 1979 0.296 0 

122, 1979 0.3249 0 

123, 1979 0.2936 0 

124, 1979 0.3241 0 

125, 1979 0.2923 0 

126, 1979 0.3265 0.0957 

127, 1979 0.3133 0 

128, 1979 0.3133 0.1798 

129, 1979 0.3267 0 

130, 1979 0.3142 0.0914 

719, 1979 0.3151 0 

720, 1979 0.2914 0 

721, 1979 0.3206 0 

722, 1979 0.2894 0 

723, 1979 0.2904 0.2402 

724, 1979 0.3217 0 

725, 1979 0.326 0 

726, 1979 0.3142 0.1202 

 

 

  

FIG. SI 1: Definition of atom types used in CTPOL (numbers) and C36/Drude (parentheses) for A) 

Asp and B) Glu. 
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FIG. SI 2: (A) Drude FF squared energy deviations vs distance (Å) between Calcium and the two 

backbone carbonyl oxygens (O and OY). The red-dots represent all of the conformations of the 20 

dipeptides:Ca2+. The conformations of GLU and ASP that result in polarization catastrophe have been 

removed in order to reveal the trends for other conformations. (B) The corresponding QM interaction 

energies projected. Both surfaces are obtained by triangle-based linear interpolation of the data.   

 

  

FIG. SI 3: Comparing Drude-FF ion-dipeptide interaction energies before and after parametrization.  
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Abstract

The accuracy of classical force fields (FFs) has been shown to be limited for the simula-

tion of cation-protein systems despite their importance in understanding the processes

of life. Improvements can result from optimizing the parameters of classical FFs or by

extending the FF formulation by terms describing charge transfer and polarization ef-

fects. In this work, we introduce our implementation of the CTPOL model in OpenMM,

which extends the classical additive FF formula by adding charge transfer (CT) and

polarization (POL). Furthermore, we present an open-source parameterization tool,

called FFAFFURR that enables the (system specific) parameterization of OPLS-AA

and CTPOL models. The performance of our workflow was evaluated by its ability

to reproduce quantum chemistry energies and by molecular dynamics simulations of a

Zinc finger protein.
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1 Introduction

Metal ions are essential in biological systems and are involved in physiological functions

ranging from maintaining their structural stability to directly participating in catalytic ac-

tivities.1 Approximately one-third of all proteins contain metal ions.2 As an abundant cation

in the human body,3 Zinc is known to play an important role in enzyme catalysis or protein

folding/stability. In aqueous solutions, Zn2+ normally coordinates with six water molecules

in an octahedral coordination geometry. However, in a protein environment, Zn2+ is often

observed to form a tetrahedral coordination structure with four ligating amino acid residues,4

commonly His and Cys. Due to the nature of electrostatic interactions, Zn2+ also tends to

be close to negatively charged residues such as Asp or Glu. Zn2+ is involved in various bio-

logical functions by interacting with these residues. For example, metallothioneins (MTs)5,6

are present in all living organisms and are involved in various diseases.7–9 Under physio-

logical conditions, the four mammalian MT isoforms have Zn3Cys9 clusters and Zn4Cys11

clusters in their centers as functional groups. Zinc finger proteins are another well-studied

class of Zinc-containing proteins. They play essential roles in DNA recognition, regulation of

apoptosis, and protein folding.10,11 The most well characterized Zinc finger proteins feature

a binding domain with two Cys and two His residues. The study of the classical Cys2His2

Zinc finger structures is crucial for a better understanding of their broader functions.

Molecular dynamics (MD) simulations employing molecular mechanics (MM) are widely

used in the study of complex biological processes, such as protein folding, protein dynamics,

and enzyme catalysis because of their ability to model systems at atomic scales ranging in

sizes from thousands to millions of atoms and time scales of milli-seconds.12–14 The majority

of current MD studies employ classical force fields (FFs) such as OPLS-AA,15 AMBER,16

CHARMM17 and GROMOS.18 It is a challenge for classical force field models to describe

metal–protein interactions due to the strong local electrostatic field and induction effect,19–24

for example, computer simulation of Zinc-containing proteins has been a long-standing chal-

lenge that appears hard to tackle without explicit treatment of charge-transfer or polar-
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ization. One approach to improve the accuracy of force fields is to refine the parameters

by fitting the model to more and more accurate experimental data or quantum mechanical

(QM) calculations. For example, force-matching algorithms25 were used to fit parameters to

reproduce ab initio forces. Empirical Continuum Correction (ECC)26–28 force fields scale the

charges to implicitly take electronic polarization into account. Several works29,30 tune the

Lennard-Jones (LJ) parameters or use a 12-6-4 LJ-type model to simulate charge-induced

dipole interactions. These efforts have been successful to some extent, however, reparame-

terization is often time-consuming and labor-intensive. There are a few automatic param-

eterization tools, for example, CHARMM General Force Field (CGenFF),31 LigParGen,32

and Antechamber.33,34 These programs typically generate missing parameters for a given

system based on analogies with atom types and the relevant parameters available in the

corresponding FF or through parameter estimation algorithms.35 However, the accuracy of

assigning approximate parameters to a specific system is limited, and parameters already

present in a given FF may also need to be optimized. FFparam36 and ForceBalance37 enable

the tuning of existing FF parameters. All these parameterization tools share a common

assumption of transferability, which assumes a set of parameters optimal for small organic

molecules for a given atom type can be applied in a wide range of chemical and spatial con-

texts. It is well known that the presence of electron donors and acceptors can significantly

affect molecular properties by polarization effects.38 LJ parameters are also sensitive to the

local environment39,40 and long-range electrodynamic screening.41 In this regard, a funda-

mentally different approach to derive environment-specific or molecule-specific parameters

is proposed in references.42–44 However, parameters still remain fixed despite structures and

environments changing over the course of, e.g., MD simulations.

Another approach to improve FF accuracy in metalloprotein simulations is to introduce

more physics to the model. Including polarization effects is a significant step to improve force

fields.45,46 There is growing evidence that polarizable force fields describe ionic systems more

accurately than classical force fields. It has been found that the inclusion of polarization

6



plays an important role in the simulation of ion channels,47 enzyme catalysis,48 protein-ligand

binding affinity49 and dynamic properties of proteins.50

At present, there are three main groups of polarizable force fields, fluctuating charge, in-

duced point dipoles, and Drude oscillator models.51 The fluctuating charge models simulate

polarization effects by allowing charge to flow through the molecule until the electronegativi-

ties of atoms become equalized, while keeping the total charge unchanged.52 One drawback of

the fluctuating charge model is that it fails to capture out-of-plane polarization of planar or

linear chemical groups. The fluctuating charge formula can also be used in conjunction with

induced point dipoles as a complementary approach to account for charge transfer (CT).53

A notable model is SIBFA (Sum of Interactions Between Fragments Ab initio Computed).54

The induced point dipole models describe polarization energy as the interaction between

static point charges and induced dipole moments. Notable induced point dipole models

include OPLS/PFF,55 AMBER ff02,56 and AMOEBA.57,58 The performance of the induced

point dipole models strongly depends on the accuracy of polarizability parameters.

The Drude oscillator model simulates the distortion of the electron density by attaching

additional charged particles (the oscillators) to each polarizable atom. Despite many suc-

cesses of the Drude oscillator model,19,59,60 it may be limited when charge transfer between

cation and coordinating ligand atoms is significant, for example, Cys− coordinated to metal

ions.61 Ngo et al.62 and Dudev et al.63 showed that the charge located on the coordinating

ligand is significantly perturbed due to the presence of Ca2+. The effect exists not only in

the first coordination shell, but also in the second shell. Thus, including the description of

charge transfer is critical for the development of next-generation polarizable FFs.

The CTPOL64,65 model incorporates charge transfer (CT) and polarization effects (POL)

into classical force fields. The inclusion of charge transfer reduces the amount of partial

charge on cation and cation coordinating atoms. Thus, their charge/dipole–charge inter-

actions are weakened. Local polarization energy between cation and coordinating ligands,

which also depends on the partial charge, is introduced for compensation.

7



Although numerous studies have shown that polarizable models perform better than

classical force fields in the simulation of metalloproteins, they have received only limited

validation. Therefore, reparameterization may be necessary when applied to different sys-

tems. Our previous study21 has shown how QM data66,67 drive the parameter development

of Drude and CTPOL models. However, most parameterization tools focus on classical force

field models. FFparam36 provides parameterization of Drude model; a CTPOL parameteri-

zation tool is not yet available.

In this work, we implemented the CTPOL model in OpenMM.68 The code of this imple-

mentation is shared on github.69 Furthermore, we present a new open-source tool, FFAF-

FURR (Framework For Adjusting Force Fields Using Regularized Regression), which facili-

tates the parameterization of OPLS-AA and CTPOL models for a specific system in question,

e.g. peptide system or peptide-cation system. One advantage of FFAFFURR is the rapid

construction of FFs for troublesome metal centers in metalloproteins. In this work, the new

parameters obtained from FFAFFURR are validated by the comparison of FF energies and

QM potential energies and MD simulations in the condensed phase using a Zinc finger protein

as an example.

2 Methods

2.1 OPLS-AA functional form

OPLS-AA is one of the major families of classical force fields. It is used as the starting point

of parameterization in this work. OPLS-AA uses the harmonic functional form to represent

the potential energy shown in eq. 1.

EFF = Ebonds + Eangles + Etorsions + Eimproper + EvdW + Eele (1)
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where EFF is the potential energy of the system. Ebonds, Eangles, Etorsions and Eimproper

correspond to bonded or so-called covalent terms of bond stretching, bond-angle bending,

dihedral-angle torsion, and improper dihedral-angle bending (or out-of-plane distortions) in

the molecules. EvdW and Eele are nonbonded terms. They describe van der Waals (vdW)

and Coulomb (electrostatic) interactions, respectively.

The energy terms in eq. 1 are depicted in detail in eq. 2.

EFF =
1−2atoms∑

bonds

1

2
Kr
ij

(
rij − r0

ij

)2
+

1−3atoms∑

angles

1

2
Kθ
ij

(
θij − θ0

ij

)2
+

1−4atoms∑

dihedrals,n

V ij
n

(
1 + cos

(
nφij − φ0

ij

))

+
1−4atoms∑

improper

V ij
2imp

(
1 + cos

(
2φij − φ0

ij

))
+
∑

i<j

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
fij +

∑

i<j

qiqj
rij

fij

(2)

where Kr
ij, Kθ

ij, V ij
n , and V ij

2imp are force constants, r0
ij and θ0

ij are the reference bond

length and bond angle, rij, θij and φij are current bond length, bond angle and dihedral

angle, respectively, n is the periodicity, φ0
ij is the phase offset, σij is the distance at zero

energy, εij sets the strength of the interaction, qi and qj are the charges of the two particles,

and fij is the scaling factor for short distances (i.e. “1-4 pairs”) of nonbonded interaction.

In OPLS-AA, the pairwise LJ parameters σij and εij are calculated as the geometric mean

of those of individual atom types (σi and εi).

Classical force field simulations were performed using OpenMM7, a high performance

toolkit for molecular simulations.68

2.2 CTPOL model

The CTPOL64,65 model introduces charge transfer and polarization effects into classical force

fields. Instead of a fixed-charge model, CTPOL model takes the charge transfer from ligand

atoms L (O, S, N) to metal cation into account. The amount of transferred charge, ∆qL−Me,

9



is assumed to depend linearly on the inter-atomic distance, rMe−L

∆qL−Me = aLrMe−L + bL. (3)

The charge transfer is negligible at distances greater than the sum of the vdW radii of atoms

i and j, rvdW
ij . Thus, charge on ligand atom L, qL, can be calculated as

qL = q0
L + ∆qL−Me, (4)

where q0
L refers to the charge on atom L in a fixed-charge model.

Polarization energy, Epol
r , can be computed as

Epol
r = −1

2

∑

i

µi ·E0
i , (5)

where µi is the induced dipole on atom i and E0
i is the electrostatic field produced by the

current charge distribution in the system at the polarizable site i. The summation is over

the metal and the metal-bonded residues. A cutoff distance rcutoff , which is equal to the sum

of the vdW radii of atoms i and j scaled by a parameter γ = 0.92, is introduced to avoid

unphysically high induced dipoles at close distance. If the distance between atom i and j,

rij, is smaller than rcutoff , we set rij equal to rcutoff . The only parameter here is the atomic

polarizability:

µi = αiEi, (6)

where Ei is the total electrostatic field on atom i due to the charges and induced dipoles in

the system.

In this work, we have implemented the CTPOL model on OpenMM via a python script,

which can be found at https://github.com/XiaojuanHu/CTPOL_MD.69 This represents a

proof-of-concept implementation, which runs on CPUs. Further code optimization and a

transfer to GPUs will likely speed up simulations substantially.
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2.3 Reference data set

To evaluate the performance of the parameterization protocol on dipeptide and dipeptide-

cation systems, we created a quantum chemistry data set. The data set consists of six

models: (1) AcAla2NMe; (2) AcAla2NMe+Na+; (3) deprotonated cysteine: AcCys−NMe,

which often plays as the interaction center of metalloproteins; (4) AcCys−NMe+Zn2+; (5)

AcCys−2 NMe+Zn2+, and (6) AcHisDNMe+Zn2+. The structures and energy hierarchies are

shown in Figure 1. The data set can be found on the NOMAD repository via the DOI:

10.17172/NOMAD/2023.02.03-1.70

AcAla2NMe
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AcCys NMe+Zn 2+
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Figure 1: Structures and energy hierarchies of reference data in this study.

All DFT calculations in this work were performed with the numerical atom-centered ba-

sis set all-electron code FHI-aims.71–73 The PBE74 generalized-gradient exchange-correlation

functional augmented by the correction of van der Waals interactions using the Tkatchenko-

Scheffler formalism75 (PBE+vdWTS) was employed. The choice of functional has been val-

idated in previous articles.66,76 For each conformation, several types of partial charges were

provided. Hirshfeld charges77 are derived based on the Hirshfeld partitioning scheme.77,78
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ESP charges77,79 are derived by fitting partial charges to reproduce the electrostatic poten-

tial. RESP charges80 are extracted by a two-stage restrained electrostatic potential (RESP)

fitting procedure80 within the Antechamber suite of the AmberTools package.16 The elec-

trostatic potential was evaluated on a set of grids in a fixed spatial region located in a cubic

space around the molecule. The 5 radial-shells were generated in a radial region between 1.4

and 2.0 multiples of the atomic vdW-radius. The cubic space contains 35 points along x, y,

and z directions, respectively.

The conformers of AcAla2NMe, AcAla2NMe+Na+, and AcHisDNMe+Zn2+ were obtained

by a conformational search algorithm as shown in the studies of Rossi et al.81 and Schneider

et al.23 First, a global conformational search was performed with the basin-hopping ap-

proach82,83 at the force field level (OPLS-AA).84 The scan program of the TINKER molec-

ular modeling package85,86 was employed to perform the basin-hopping search strategy. An

energy threshold of 100 kcal/mol for local minima and a convergence criterion for local ge-

ometry optimizations of 0.0001 kcal/mol were used. All obtained conformers were relaxed at

PBE+vdWTS level with tier 1 basis set and light setting employed. A clustering scheme was

then applied to exclude duplicates using the root-mean-square deviations (RMSD) of atomic

positions. Finally, further relaxation was accomplished at the PBE+vdWTS level using tier

2 basis set and tight setting.

The conformers of AcCys−NMe, AcCys−NMe+Zn2+, and AcCys−2 NMe+Zn2+ were ob-

tained with the genetic algorithm (GA) package Fafoom.87 First, a GA search at the PBE+vdWTS

level with light basis set was employed for structure sampling. Then a clustering scheme with

a clustering criterion of RMSD of 0.02 Å for atomic positions and a relative energy of 0.02

kcal/mol was applied to remove duplicates. The obtained conformers were further relaxed

with FHI-aims71–73 at the PBE+vdWTS level with tight basis set. Final conformers were

obtained after clustering. Both conformational search protocols have been well validated.81,87
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2.4 Parameter optimization

Optimization methods used in this work include LASSO (least absolute shrinkage and selec-

tion operator)88 regression, Ridge regression89 and particle swarm optimization (PSO).90,91

If the parameters enter the force field function in a quadratic way, e.g. V ij
n , the optimiza-

tion can be performed by solving a set of linear equations. In this case, LASSO and Ridge

regression were employed to treat the potential overfitting. The regularization parameter λ

in LASSO and Ridge regression was selected by 10-fold cross-validation. LASSO and Ridge

regression were performed with Python’s scikit-learn92 library. If the parameters can not be

obtained by solving a set of linear equations, e.g. charge transfer parameters aL, PSO was

employed. Similar to GA, PSO is a powerful population-based global optimization algorithm.

It relies on a population of candidate solutions, called particles, and finds the optimal solu-

tion by moving these particles through a high-dimensional parameter space based on their

position and velocity. PSO was performed with the python package pyswarm.93

2.5 FFAFFURR

Force field parameterization in principle has three iterative and challenging steps:94

1) Definition of the optimization problem (selection of reference data, objective of the

optimization, and force field parameters to adjust): High quality QM data has been

used for FF parameterization and is likely continue to be an essential part of next-

generation FF development.95 FFAFFURR uses high quality QM data as described

in section 2.3 as the reference. In principle, the parameters of every energy term in a

force field have to be optimized since the parameters of all terms are interdependent,

only adjusting one energy term may cause parameter inconsistency. Users can choose

which energy terms to tune according to specific problems. OPLS-AA parameters are

used as initial parameters.

2) Force field parameterization: The framework and algorithms used in FFAFFURR are
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explained in this section.

3) Validation of optimized parameters: The performance of the FF parameter sets ob-

tained from FFAFFURR is evaluated by the ability to reproduce the DFT (or any

other high-level method) potential energies and by the MD simulations.

Some practical points were considered when establishing the FFAFFURR framework:

(i) the framework should be straightforward to set up and use, (ii) it should be easy to

extend with other FF parameters or functional forms, and (iii) the result should be imme-

diately usable by a molecular simulation package. FFAFFURR acts as a “wrapper” between

the molecular mechanics package openMM68 and the ab initio molecular simulation pack-

age FHI-aims.71–73 The code reads QM data directly from the output of FHI-aims and the

output itself is a parameter file that can be processed by openMM. FFAFFURR is de-

signed as the next step of the genetic algorithm package Fafoom.87 Conformers obtained

by Fafoom through global search can be directly parsed to FFAFFURR. FFAFFURR is an

open source tool and can be found at https://github.com/XiaojuanHu/ffaffurr-dev/

releases/tag/version1.0.

2.5.1 Bond and angle parameterization

Kr
ij, Kθ

ij, r0
ij and θ0

ij are empirical parameters of bond-stretching and angle-bending terms.

The “spring” parameters Kr
ij and Kθ

ij are unaltered in FFAFFURR. The focus simply lies

on the “torsional” and “non-bonded” parameters. Bond-stretching and angle-bending terms

intend to model small displacements away from the lowest energy structure. We adjust r0
ij

and θ0
ij by simply taking the average of the respective bond or angle over all local minima

in the quantum chemistry data set.

2.5.2 Torsion angle parameterization

The torsion angle term represents a combination of the bonded and nonbonded interactions.

It has been reported that torsional parameters fitted to gas phase QM data perform similarly
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to those fitted to the experimental data.95 Although torsional parameters can be derived from

vibrational analysis or using vibrational spectra as target data, this approach is complicated

and requires a more elaborate treatment.36,96,97 In the case of the torsion term, force constants

V ij
n and V ij

2imp can be tuned by LASSO or Ridge regression to minimize the difference between

the FF and QM torsional energies. The “torsions contribution” from QM ẼQM
torsions is calculated

as:

ẼQM
torsions = EQM

total − EFF
nonbonded − EFF

bond − EFF
angle, (7)

where EQM
total represents the total energy of conformer from QM calculation, EFF

nonbonded, EFF
bond

and EFF
angle represent energies of nonbonded terms, bond term, and angle term from FF

calculation, respectively.

2.5.3 Electrostatic parameterization

A key difference between FFs is how they derive atomic partial charges. Deriving charges

from QM data is widely used. The workflow of FFAFFURR tested three choices of partial

charges: Hirshfeld,77,78 ESP77,79 and RESP80 charges. The charge of each atom type of the

force field is defined as the average value of QM charges. The scaling factor fij used to

scale the electrostatic interactions between the third neighbors (1,4-interactions) can also be

adjusted by fitting to minimize the difference between the FF and QM energies.

2.5.4 LJ parameterization

Pair-specific Lennard−Jones (LJ) interaction parameters (referred to as NBFIX in the CHARMM

force fields) have been proven to better describe the interaction between cations and car-

bonyl groups of a protein backbone.19 FFAFFURR employs pairwise Lennard−Jones (LJ)

parameters instead of values determined by the combination rule.

In recent years, progress has been made in the calculation of pairwise dispersion inter-

action strength from the ground-state electron density of molecules.98–100 The interatomic

pairwise parameter σij can be derived using the atomic Hirshfeld partitioning scheme, which
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has already been used in the pairwise Tkatchenko-Scheffler vdW model. With the concept

of the vdW radius, the LJ energy can be written as

Evdw =
∑

i<j

εij

[(
Rmin
ij

rij

)12

− 2

(
Rmin
ij

rij

)6
]
fij, (8)

where Rmin
ij refers to the atomic distance where the vdW potential is at its minimum. With

the definition of the effective atomic volume, Rmin
ij is estimated as the sum of effective atomic

van der Waals radii of atom i and atom j. The effective vdW radius of an atom is given by

R0
eff =

(
V eff

V free

)1/3

R0
free, (9)

where R0
free is the free-atom vdW radii that correspond to the electron density contour value

determined for the noble gas on the same period using its vdW radius by Bondi.101 Pairwise

σij can be calculated as

σij = 2−1/6Rmin
ij . (10)

The εij parameter from eq. 8 can be tuned by fitting FF LJ energies to reproduce QM vdW

energies by LASSO or Ridge regression.

2.5.5 Deriving charge transfer parameters

In all Zinc finger proteins and most enzymes, Zn2+ coordinates to four ligands. However,

due to the setup of the QM data set with monomeric and dimeric peptides, the cations have

coordination numbers (CNs) of one or two. Therefore we added a correction factor for CN

in eq. 3

∆qL−Me =
1

CNk
(aLrMe−L + bL). (11)

k, aL, and rcutoff can be adjusted by PSO. The target objective of fitting can be QM potential

energy, QM interaction energy, or electrostatic potential. bL can be calculated with the

assumption that charge transfer is zero at cutoff distance.
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2.5.6 Polarization energy

To get the value of atomic polarizability αi in eq 6, we use the definition of effective polar-

izability of an atom in a molecule, where the free-atom polarizabilitiy is scaled according to

its close environment with a partitioning:

αeff =

(
V eff

V free

)
α0

free, (12)

where V eff and V free are the same in eq. 9, and α0
free is the isotropic static polarizability.

αi is taken by averaging over all atoms with the same atom type in the quantum chemistry

data set. FFAFFURR also supports to slightly adjust αi by fitting force field energies to

reproduce QM energies via PSO.

2.5.7 Boltzmann-type weighted fitting

The quantum chemistry data set covers a wide range of relative energies. By transition-

ing from, in our case, DFT to an additive force field, even including charge transfer and

polarization, we reduce dimensionality of the energy function and therewith to represent

the PES. Consequently, a force field, describing, e.g., such a cation-protein system, cannot

fully reproduce a DFT PES. Hence, it is advisable to focus on accuracy of certain areas of

the PES. RMSD between two surfaces is a common fitting criteria, but this approach gives

more weight to areas of the energy surface with larger absolute values, while the real weight

should more closely represent the Boltzmann weight of the energy surface. Consequently,

we calculate Boltzmann-type weights and apply them as a scoring function. The weighted

RMSD, wRMSD, is given as:

wRMSD =

[
N∑

i=1

wi(E
FF
i −∆EQM

i )2

] 1
2

, (13)

17



where RMSD is modified by including a Boltzmann-type factor,

wi = A exp

[
−EQM

i

RT

]
, (14)

where A is the normalization constant (so that
∑
wi = 1) and RT is the “temperature factor”

that has no physical meaning in the context of this application, but affects the flatness of

the distribution. Our previous work21 has shown how Boltzmann-type weighted RMSD

with appropriate choice of RT can be utilized as objective function for force field parameter

optimization. Therefore, we implemented Boltzmann-type weighted fitting in FFAFFURR

by scaling the energies with the corresponding Boltzmann-type weights.

2.6 Validation of new parameters

2.6.1 Assessment of the energies

To evaluate the performance of the parameterization, energies of conformers in the test set

calculated with optimized parameters were compared to DFT energies by mean absolute

errors (MAEs) and maximum errors (MEs). The MAE for the relative energies between FF

energies and QM energies is calculated as

MAE =
1

N

N∑

i=1

|∆EFF
i −∆EQM

i + c|, (15)

where N is the number of conformers in a given data set. ∆Ei refers to the energy difference

between conformer i and the lowest-energy conformer in the set. The adjustable parameter

c is used to shift the FF or QM energy hierarchies to one another to get the lowest MAE.

ME is calculated as:

ME = max
i∈N
|∆EFF

i −∆EQM
i + c|. (16)
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2.6.2 Molecular dynamics simulations

We performed MD simulations of the NMR structure 1ZNF102 with different parameter

sets to evaluate the performance of FFAFFURR. All MD simulations were performed using

OpenMM7.68 The structure of 1ZNF was placed in a cubic box of 68 Å side length filled with

TIP3P water. Four Cl− were added to neutralize the system. Then energy minimization was

performed with the steepest descent minimization. To equilibrate the solvent and ions around

the protein, we continued 100 ps NVT and 100 ps NPT equilibration at a temperature of

300 K. SHAKE constraints were applied to heavy atoms of the protein. Then independent

MD simulations were performed with a time step of 2 fs. In all calculations, the long-

range electrostatics beyond the cutoff of 12 Å were treated with the Particle Mesh Ewald

(PME) method.103 The LJ cutoff was set to 12 Å. The LJ and electrostatic interactions were

computed every time step. For the simulations with the CTPOL model, charge transfer

and induced dipoles were updated every 10 steps. Covalent bonds and water angles were

constrained.

3 Results and discussion

To assess the performance of FFAFFURR and describe which protocol to use to create the

parameter set, we optimized the parameters of OPLS-AA with FFAFFURR and extended the

OPLS-AA model by the CTPOL model. The quality of optimized parameters was assessed

by assessing the structural stability of the Zinc finger motif in MD simulations.

3.1 OPLS-AA parameterization

Although studies have shown that it is difficult to implicitly incorporate the polarization ef-

fect into classical FFs,21,104 fine-tuning parameters of fixed-charge models to describe cation-

protein systems is still attractive due to its low computational cost and easier parameteriza-

tion. Here we tested the performance of the fixed-charge model OPLS-AA parametrized
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by FFAFFURR. Five systems were tested: (1) AcAla2NMe; (2) AcAla2NMe+Na+; (3)

AcCys−NMe; (4) AcCys−NMe+Zn2+; and (5) AcCys−2 NMe+Zn2+. AcAla2NMe and AcAla2NMe

+ Na+ were used as toy models since the polarization effect caused by Na+ is minor. On the

contrary, Cys− is one of the ligands that interact with Zn2+ in proteins, and charge transfer

between Cys− and Zn2+ is significant. For each system, 80 percent of the conformers were

randomly selected as the training set, and the remaining 20 percent were used as the test

set.

We first demonstrate the functionality of FFAFFURR on the example of OPLS-AA pa-

rameterization. The key steps of OPLS-AA parameterization are briefly described in Figure

2 (a). We showed the ability to reproduce PES by optimizing parameters of bonds, angles,

electrostatic interactions, LJ interactions, and torsional interactions. Users can choose which

energy items to adjust according to their needs. In Figure 2 (a), the parameters in blue boxes

are derived from DFT calculations and the parameters in coral boxes are fitted by LASSO

or Ridge regression as described in Section 2.5. Here, we only tested RESP partial charges,

LASSO method in εij deriving, and Ridge regression in V ij
n deriving. The parameterization

protocol followed the order shown in Figure 2 (a).

Figure 2 (b-f) shows the comparison of FF energies with optimized parameters after each

step in Figure 2 (a) to QM energies. Noticeably, charges for AcAla2NMe, AcCys−NMe and

AcAla2NMe+Na+ were not altered since the original charges yielded errors lower than av-

erage RESP charges from QM calculations, while average RESP charges were employed

for AcCys−NMe+Zn2+ and AcCys−2 NMe+Zn2+. Figure 2 (e) and (f) indicate that us-

ing average RESP charges significantly reduces absolute errors for AcCys−NMe+Zn2+ and

AcCys−2 NMe+Zn2+. This could be due to the capture of charge transfer to some extent.

In the case of AcAla2NMe and AcCys−NMe, the MAEs were improved from 2.72 kcal/-

mol and 3.59 kcal/mol to 0.61 kcal/mol and 0.98 kcal/mol, respectively, which are better

than the chemical accuracy 1 kcal/mol. In the case of AcAla2NMe+Na+, the MAE was

improved from 3.99 kcal/mol to 1.67 kcal/mol. Although the optimized MAE is higher than
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the chemical accuracy, the maximum error is significantly reduced. However, in the cases of

AcCys−NMe+Zn2+ and AcCys−2 NMe+Zn2+, the MAEs were improved from 51.75 kcal/mol

and 43.47 kcal/mol to 16.8 kcal/mol and 16.59 kcal/mol, respectively. Although this is a

great improvement, the MAEs are much higher than other systems, the calculations based

on these parameters still have no predictive power. This confirms the necessity of explic-

itly including charge transfer and polarization effects to describe the divalent ion-dipeptide

systems. We note that for dipeptides and dipeptides with monovalent cation systems, the

greatest influence factor is the optimization of torsional parameters. Previous studies by

some of us76,105 have shown that cations strongly modify the preferences of torsion angles.

While for dipeptides with divalent cations, the adjusting of charge plays the most important

role. This further confirms that the capture of charge transfer and polarization is crucial for

the accurate description of systems with divalent cation. We also note that the maximum

errors are greatly reduced after the parameterization of LJ interactions of the five systems.

3.2 CTPOL parameterization

The CTPOL model introduces both local polarization and charge-transfer effects into clas-

sical force fields. We investigated the performance of the CTPOL model on the cation-

dipeptide systems: AcAla2NMe+Na+, and two challenging systems AcCys−NMe+Zn2+ and

AcCys−2 NMe +Zn2+. The major steps of the CTPOL parameterization workflow are depicted

in Figure 3 (a). As already mentioned, the parameters in blue boxes are derived from DFT

calculations and the parameters in coral boxes are fitted by LASSO or Ridge regression. Fur-

thermore, the parameters in green boxes are obtained by PSO. Noticeably, αi is tuned twice.

In step 3, αi is taken as the average effective polarizability calculated from ab initio method.

In step 5, we tried to slightly tune αi by PSO. An additional round of parameterization from

step 4 to step 5 can be performed to better optimize the FF parameters.

Absolute errors of each step in Figure 3 (a) are illustrated in Figure 3 (b-f). Absolute

errors of optimized OPLS-AA (opt-opls) are also shown in Figure 3 to compare the per-
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Figure 2: (a) Workflow of the parameterization of OPLS-AA in four major steps. Differ-
ent colors represent different fitting methods. Parameters in blue boxes are derived from
DFT calculation, and parameters in coral boxes are tuned by LASSO or Ridge regression.
(b-f) Box plots of absolute errors of OPLS-AA parameterization major steps (OPLS-AA,
step 1, step 2, step 3, step 4) for the test set of (b) AcAla2NMe, (c) AcCys−NMe, (d)
AcAla2NMe+Na+, (e) AcCys−NMe+Zn2+ and (f) AcCys−2 NMe+Zn2+. The upper and lower
lines of the rectangles mark the 75% and 25% percentiles of the distribution, the horizontal
line in the box indicates the median (50 percentile), internal colored dash line indicate the
mean value, and the upper and lower lines of the “error bars” depict the 99% and 1% per-
centiles. The crosses represent the outliers. Black dash line indicates the chemical accuracy,
which is 1 kcal/mol.
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formance of FFAFFURR on OPLS-AA and CTPOL models. As shown in Figure 3, the

introduction of polarization effects in step 3 didn’t improve the accuracy much, and the er-

rors of AcAla2NMe+Na+ system even increased. This may be due to the fact that classical

force fields already include part of polarization effect, since the charges come from fitting to

reproduce quantum mechanical or experimental electrostatic field distribution.65 Including

charge transfer from ligand atoms to cation reduces atomic charges, therefore compensat-

ing for the electrostatic potential. Not surprisingly, errors are significantly reduced after

including charge transfer as displayed in Figure 3. After the parameterization, the MAEs of

AcAla2NMe+Na+, AcCys−NMe+Zn2+ and AcCys−2 NMe+Zn2+ reached 1.45 kcal/mol, 7.42

kcal/mol, and 8.12 kcal/mol, respectively. In contrast, the MAEs of the optimized OPLS-AA

are 1.67 kcal/mol, 16.8 kcal/mol, and 16.59 kcal/mol, respectively. Apparently, the inclusion

of charge transfer and polarization effects better describes systems involving cations than

classical force fields, especially for systems with divalent cations.

3.3 Weighted fitting

To focus the fitting on the low energy part of the PES, we applied Boltzmann-type weights

to the scoring function during the fitting of charge transfer parameters. In Figure 4,

AcCys−NMe+Zn2+ system is taken as an example. Figure S1 shows the Boltzmann-type

weights (wi) along QM relative energies with different temperature factor (RT) values. The

weight decreases as the relative energy increases. And larger RT values put less weight on

low energy conformations. Figure 4 shows the difference in mean absolute errors between

unweighted fitting and weighted fitting with RT = 16. In Figure 4, the height of the bar

represents the mean absolute error for conformers whose relative energies are smaller than

the right node of the bar. Interestingly, the weighted fitting improves accuracy a lot in the

low-energy region, while high-energy regions do not get worse.
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Figure 3: (a) Workflow of full CTPOL parameterization in five major steps. Different colors
represent different fitting methods. Parameters in blue boxes are derived from DFT calcula-
tion, parameters in coral boxes are tuned by LASSO or Ridge regression, and parameters in
green boxes are tuned by PSO. (b-d) Box plots of absolute errors of CTPOL parameteriza-
tion major steps (OPLS-AA, step 1, step 2, step 3, step 4, step 5) and OPLS-AA with full
optimized parameters (opt-opls) for test set of (b) AcAla2NMe+Na+, (c) AcCys−NMe+Zn2+

and (d) AcCys−2 NMe+Zn2+. The upper and lower lines of the rectangles mark the 75% and
25% percentiles of the distribution, the horizontal line in the box indicates the median (50
percentile), internal colored dash line indicate the mean value, and the upper and lower lines
of the “error bars” depict the 99% and 1% percentiles. The crosses represent the outliers.
Black dash line indicates the chemical accuracy, which is 1 kcal/mol.
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Figure 4: Absolute errors of QM and optimized FF energies by weighted/unweighted fitting
of AcCys−NMe+Zn2+ system. The height of the bar represents the mean absolute error for
conformers whose relative energies are smaller than the right edge of the bar.

3.4 Validation with molecular dynamics simulations

Zinc fingers106 are extremely common DNA binding motifs found in eukaryotes which coor-

dinate one or more zinc ions.107 Multiple fingers can combine together to carry out many

complex functions, such as regulating DNA/RNA transcription,106,107 protein folding and

assembly, lipid binding, Zinc sensing,10 and even protein recognition.108

The 1ZNF PDB structure102 is one of the first Zinc finger structures to be resolved

experimentally. It is also the simplest, containing only 25 amino acids and one Cys2His2

Zinc binding domain where the Zinc ion is in a stable coordination geometry consisting of

cysteine sulfurs and histidine nitrogens in the first coordination shell (see Figure 5). Due

to its compact size, the 1ZNF structure provides an ideal case study for an MD validation

of a FFAFFURR parameterization workflow. One potential application of FFAFFURR to

this system is to optimize selected parameters for the interaction center (Figure 5 (b)), since
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(a) Protein backbone and Zn2+ interac-
tion center.

(b) Close-up of interaction center

Figure 5: A view of the protein structure from the 1st model of the NMR strucutre 1ZNF.
The numbers in the atom names refer to the residue number. The sulfurs are from Cys4 and
Cys7, while the nitrogens are the NE2 nitrogens of His20 and His24.

that is the region of most complexity.

In this paper, we used an approach similar to Li et al.,109 giving the residues in the

interaction center unique residue names to distinguish them from similar residues in the

rest of the protein. This allows us to target only atom-types within the binding domain

for parameterization, without affecting the parameters of similar atom-types away from the

binding site.

Four parameter sets were tested with MD in this study, as described in Table 1. For the

unparameterized OPLS-AA force-field, we observed unbinding of the two histidine residues

from the Zn2+ interaction center after 40 ns of simulation, as shown in Figure 7. To try and

prevent this, we parameterized pair-wise LJ parameters between atoms in HisD and Zn2+.

The parameters that are optimized are listed in Table S2. The LJ parameters between atoms

in Cys and Zn2+ are keep untouched since we haven’t seen strange behaviors between Cys

and Zn2+. The parameterized LJ parameters were used in opt-OPLS-AA and opt-CTPOL

sets. In the CTPOL and opt-CTPOL models, charge transfer was introduced for S/N/O

atoms in the binding site, and polarization effects between non-hydrogen atoms and Zn2+

were added.
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Table 1: Parameter sets used for MD simulation. The determination of LJ parameters from
FFAFFURR is described in 2.5.4. optimized parameters are listed in Table S2 and S3.

Parameter set Pair-wise LJ parameters of atoms in HisD and Zn2+ CT + POL
OPLS-AA original No
opt-OPLS-AA from FFAFFURR No
CTPOL same as OPLS-AA Yes
opt-CTPOL from FFAFFURR Yes

The protein backbone structure and binding domain are better preserved with

charge transfer and polarizability

We ran three 40 ns long simulation with each of the four models listed in Table 1. We also

used the 37 experimental NMR structures of 1ZNF to compare structural features between

our simulations and NMR observations. Figure 6 shows the RMSD of each of the parameter

sets, using the first model of the NMR structures as a reference. In the same figure, we also

plot the RMSD of the 37 NMR models with respect to the the same first model to see how

much variation occurs among those.

It is clear from Figure 6 that both the overall structure and binding domain are in better

agreement with the NMR structures when charge transfer and polarizability are taken into

account. With opt-OPLS-AA, there is a marginal but noticeable improvement over OPLS-

AA, but in both OPLS-AA and opt-OPLS-AA force fields the binding domain breaks apart.

This is evident from the RMSD of the backbone, as shown in the bottom panel of Figure

6. This is primarily due to the Histidines breaking away from the binding with Zn2+, as

supported by Figure S2.

The RMSDs of OPLS-AA and opt-OPLS-AA deviate far from the NMR model, particu-

larly the RMSDs of the binding site only. We observed in our simulations that with OPLS-

AA, the two histidine residues in the binding site stray uncharacteristically far from Zn2+.

Even with optimization the pair-wise LJ parameters of Zn2+ and histidine (opt-OPLS-AA),

we observed one of the histidines escaping the binding domain. Figure 7 (a) and (b) shows

snapshots of such conformations after 40 ns. Similar problems with binding domain stability
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Figure 6: RMSDs of MD trajectories from the NMR structure of 1ZNF (Model 1), calculated
for different parameter sets. Top: the protein backbone atoms only. Bottom: the binding
site containing Zn, S4, S7, N20, and N24, as shown in Figure 5. The densities of RMSD
values are shown on the right, using Kernel Density Approximation,110,111 where the dashed
line is the RMSD distribution obtained from NMR data of 1ZNF with respect to the first
model of the PDB.

(a) OPLS-AA (b) opt-OPLS-AA (c) CTPOL (d) opt-CTPOL

Figure 7: Snapshots showing the conformation of binding site after 40 ns of simulation.
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have been observed in previous studies, where the Zn2+ escapes from the coordination center

in non-polarizable FF simulations.104,112

However, both CTPOL and opt-CTPOL preserve the binding domain of Zn2+, with both

histidines and both cysteines coordinating the Zn2+ ion throughout the 40 ns simulations

(snapshots of Figure 7 (c) and (d)). This emphasizes that explicitly including charge transfer

and polarization effects is critical for a proper description of the binding domain, and hence

the overall structure of Zinc fingers.

Lennard Jones parameterization further stabilizes the CTPOL model

To evaluate the effect of optimized pair-wise LJ parameters we compared the CTPOL model

without any LJ parameterization (CTPOL) to the CTPOL model with LJ parameterization

(opt-CTPOL). From Figure 6, it may appear that such optimization has little effect, and

in fact may slightly worsen the overall structure due to the higher RMSD of the backbone.

However, while both models preserve the interaction center much better than OPLS-AA and

opt-OPLS-AA, opt-CTPOL appears to produce a much more stable binding domain than

CTPOL. This can be seen when we recompute RMSD after varying the initial conditions.

To test the impact of initial conditions, we ran 40 independent 1ns long simulations, with

the initial frame randomly chosen from a 4 ns MD simulation and random initial velocities.

These are reasonable initial conditions that should exhibit similar behaviour, as they are

taken from a simulation. Figure 8 shows that while the 40 ns trajectory of CTPOL using

the crystal structure as starting point is more or less stable, when running simulations from

different initial conditions, this stability is not guaranteed, as seen from the spikes in RMSD.

On the other hand, opt-CTPOL appears to be stable for all initial conditions.

A reason for this is the abnormal charge transfers to Zinc in CTPOL as seen in Figure 9.

This occurs around the same time as the binding domain fluctuations in Figure 8 . A closer

inspection of the distances between Zinc and coordinating nitrogens (Figure 10) reveals that

these fluctuations are perfectly correlated with these distances. As the binding site breaks
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Figure 8: RMSD of CTPOL and opt-CTPOL vs 1st model of NMR, with 40 trajectories
of 1 ns concatenated into one. The dotted lines represent concatenation boundaries of the
trajectories.
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Figure 9: Charge transfer as a function of time for (left) a continuous 40 ns trajectory
from one stable initial structure, and (right) 40 independent 1 ns simulations concatenated
together. The dashed vertical lines mark the concatenation boundaries. The 40 × 1 ns
simulations were started from different initial conditions randomly chosen from a continuous
MD simulation, with randomized velocities.
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down, the coordinating histidines containing these nitrogens move far away, as much as 9 Å

away, but the sulfurs remain in close proximity at all times. At such distances, the charge

transfer contribution of the nitrogens drop to zero, and the only contribution are from the

sulfurs, and hence the lower total charge transfer. However, opt-CTPOL appears to have no

such fluctuation in either the 40 ns or 40 × 1 ns trajectories.

Charge transfer and relevant distances in CTPOL
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Figure 10: Coordinating nitrogen and sulfur distances (left y-axis) and charge transfer (right
y-axis) vs time for a continuous trajectory (left) and 40 independent concatenated trajecto-
ries. In cyan, we have the charge transfer, in green, the average of the distances of Zn-N20
and Zn-N24, and in yellow the average of the distances of Zn-S4 and Zn-S7. Out of the 40
independent simulations, the average distance of Zn-N20/24 rises above 3 Å 8 times.

These unfolding events within 1ns occur about 20% of the time for CTPOL, thus making

CTPOL without LJ-optimization unreliable.

Coordination structure and composition in opt-CTPOL shows improvement with

a caveat.

To evaluate how parameters affect the coordination of Zn2+, we plotted the radial distribution

function of non-hydrogen protein atoms around the cation in Figure 11 (top).
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Continuous 40 ns trajectory
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Figure 11: Coordination analyses of continuous 40 ns trajectory. a) RDF of all non-
hydrogen protein atoms, with the distance ranges of selected peaks. b) Composition of each
peak, where atoms of the same type and residue are lumped together. The Y-axis represents
the average fraction of conformations in which each of the atoms appear within the peak
range.
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40× 1ns trajectory
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Figure 12: Coordination analyses of 40× 1 ns trajectory. a) RDF of all non-hydrogen
protein atoms, with the distance ranges of selected peaks. b) Composition of each peak,
where atoms of the same type and residue are lumped together. The Y-axis represents the
average fraction of conformations in which each of the atoms appear within the peak range.
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We can see immediately that NMR and opt-CTPOL have a similar peak structure, but

the distances are shorter in opt-CTPOL. In CTPOL, the first and second peaks, containing

Nitrogens and Sulfurs respectively, overlap completely and are indistinguishable. This is not

the case in the NMR models, where the Sulfur and Nitrogen peaks are quite distinct. In

contrast to CTPOL, the opt-CTPOL peaks are distinct, with only a small percentage (<

2%) of trajectories showing Nitrogens in the 2nd peak dominated by Sulfur. These features

are also seen in similar analyses of the 40× 1 ns trajectories (Figure 12). This is the first of

a series of analyses in this paper that shows that CTPOL does not reproduce NMR binding

domain as well as opt-CTPOL even for the stable continuous 40 ns trajectory.

After identifying the peaks, and selecting a range of distances (Figure 11 (top)), we

determined which atoms comprise each peak and what fraction of the trajectory these atoms

remain in that peak, as shown in Figure 11 (bottom). The 1st and 2nd peaks in CTPOL

appear to be contaminated by other atom types which do not appear in NMR peaks at all.

In the 40 × 1 ns trajectory, since CTPOL binding site has been shown to break apart in a few

cases, it is no surprise that water also appears in Peak 1 of CTPOL (Figure 12 (bottom)).

The opt-CTPOL model has no other atom-types in the first peak, and only relatively few

others in the 2nd peak not present in NMR.

We should note that the NMR model we used does not contain any explicit water

molecules. To determine if waters could be present in the binding site, we looked at 15

Zinc finger X-ray crystallography structures from the Protein Data Bank113 (PDB) website

(http://www.rcsb.org/pdb/) to find binding sites which are similar to this one (see S4 for a

full list). We looked at binding sites which had a total of 2 histidines and 2 cysteines, similar

to 1ZNF. We found 8 binding sites from the 15 crystal structures, and the smallest water

distance to Zn2+ was 4.38 Å, well outside even the 3rd peak range in the NMR models. We

further relaxed the matching criterion for the binding site to any binding site that contains

a total of 4 histidines or cysteines (i.e., the number of coordinating histidines and cysteines

sum to 4, but does not have to be 2 each). This resulted in a total of 60 binding sites. From
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these, we found the smallest water distance to be 3.98 Å, still beyond the peak 3 range.

Thus, the inclusion of water in the 1st and 2nd peak, as is the case in CTPOL model,

is uncharacteristic of Zn-finger binding sites of similar nature to 1ZNF. The opt-CTPOL

model does a better job of keeping the water outside these peaks, with only a small fraction

of waters in the 2nd peak.

Angle and distance distributions

Figure 13: Binding site with Zn2+ at the cen-
ter (grey atom), the sulfurs from Cys7 (S7)
and Cys4 (S4), the NE nitrogens from His20
(N20) and His24 (24). Hydrogens have been
removed for clarity. The yellow triangle on
top has vertices on Zn, S4 and S7, while the
blue triangle at the bottom has vertices on
Zn, N20 and N24. The angle between the
planes of these triangles are used for plotting
the distributions in Figure 15. The red and
blue arrows (~Sbi and ~Nbi) are vectors that
bisect angles S7-Zn-S4 and N20-Zn-N24 re-
spectively. The distributions of angle θ be-
tween these two bisectors are plotted on Fig-
ure 15 (b). The distributions of some of the
distances between the 5 atoms shown in this
figure are shown on Figure 16, while the dis-
tributions for some of the angles are shown
on Figure 14.

To further evaluate the stability and accuracy of the binding domain in the CTPOL and

opt-CTPOL frameworks, we analyzed a number of geometric quantities which are defined in

Figure 13 and its caption. Here we only consider the 40 ns continuous trajectory for which

the binding domain is stable for CTPOL, since these geometric quantities would not make

sense for the 40× 1ns trajectory where the binding domain destabilizes.

Figure 14 shows the distribution of most of the angles that the coordinating atoms make

with Zn2+. Additionally, Figure 15 (a) shows the distributions of angles between the planes
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shown in Figure 13, and Figure 15 (b) shows the distributions of the angles between the

bisectors, also defined in Figure 13. It is quite clear that opt-CTPOL reproduces the NMR

distributions of angles as well or better than CTPOL. The distribution of the S4-Zn-S7

angle appears to agree particularly well with NMR, as does the angle between the bisectors.

While the CTPOL 40 ns trajectory showed a slightly better overall RMSD from Figure 6, it

is clearly not reproducing these angles as well as opt-CTPOL. This implies that opt-CTPOL

is maintaining the shape of the binding domain better, which is in accordance with the RDF

distribution and peak analysis of Figure 11.
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Figure 14: Probability distribution of angles over the continuous 40 ns trajectories of CTPOL
(blue) and opt-CTPOL (orange) and over 37 NMR models (black dashed). The correspond-
ing atoms are depicted in Figure 13. The distributions were calculated using Kernel Density
Estimation.110,111 The vertical lines represent the averages of each distribution.

Furthermore, we see from Figure 16 that the distances of opt-CTPOL binding domain

are consistently shorter than those of the experimental NMR structures. This is in line with

the RDF analysis of Figure 11, where we see similar peak structure of opt-CTPOL, but at

shorter distances. On the other hand, CTPOL distances do not appear to have a consistent

relation to the NMR distances. For instance, the distances of S*-Zn and N*-Zn (top left)

show that opt-CTPOL distances trend the same way as NMR, i.e., the N*-Zn distances

are significantly shorter than S*-Zn distances. For CTPOL, it turns out to be almost the
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Figure 15: (a) Probability distributions of angle between the S7-Zn-S4 and N24-Zn-N20
planes as depicted in Figure 13. (b) Angle between S4-Zn-S7 and N20-Zn-N24 bisectors,
which are depicted in Figure 13 as ~Sbi and ~Nbi, respectively.

opposite, with plenty of overlap between the two distributions, and thus their 1st and 2nd

peaks in Figure 11 also overlap.
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Figure 16: Probability distribution of distances (using Kernel Density Estimation110,111) over
entire trajectory (for simulations) and over 37 models (for NMR data).
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4 Conclusion and outlook

The development of accurate force field parameters for cation-peptide systems is a major

obstacle in metalloprotein simulations. One approach to facilitate the development of new

force field parameters is to construct tools to derive parameters from QM calculations. Our

previous work21 has shown that QM-driven parameterization of Drude and CTPOL models

may improve the accuracy of the description of ion-protein interactions in MD simulations.

However, the Drude model may be limited when charge transfer effects are significant. Fur-

thermore, the additional particles attached to polarizable atoms by the Drude model are

light. To capture the vibrations of these light particles, the time step of the Drude model

must be small, which makes the Drude model computationally more expensive than the

CTPOL model.

In this regard, FFAFFURR is developed as a python tool to facilitate the parameteri-

zation of classical and polarizable CTPOL models. In this paper, we chose to parameterize

OPLS-AA as an example. However, the tool should also work with other similar force fields

such as CHARMM and AMBER once the code for parsing parameters is generalized.

QM calculations from FHI-aims can be automatically parsed to FFAFFURR, and the

output parameter files of FFAFURR can be directly processed by the molecular dynamic

package OpenMM. All energy terms in OPLS-AA and CTPOL models can be tuned by

FFAFFURR. The performance of optimized parameters in each energy term was evaluated

by the comparison of FF energies and QM potential energies. Users can choose which energy

term to adjust in practice. We showed that the CTPOL model outperforms OPLS-AA in

terms of QM energy reproduction for divalent-dipeptide systems.

One potential usage of FFAFFURR is the rapid construction of FFs for troublesome

metal centers in metalloproteins. We tested this function by performing MD simulations

on the 1ZNF Zinc finger protein102 and comparing simulation results with NMR models.

With the parameters optimized from FFAFFURR, we found that both CTPOL and opt-

CTPOL better reproduce the overall structure of the protein. However, to better stabilize
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and reproduce structural features of the binding domain, LJ optimization (opt-CTPOL) was

necessary, since CTPOL alone had some shortcomings in correctly reproducing the binding

domain, or keeping it stable under various initial conditions. The LJ optimization resulted

in coordination composition and geometry that better agrees with the NMR models than

CTPOL alone. On the other hand, the optimization of LJ does lead to a somewhat shrunken

binding domain. Whether this is a major concern remains to be seen with further studies,

such as calculations of relative binding affinities with other metals, or other macroscopic

analyses of similar systems which could be verified experimentally.

In summary, FFAFFURR has a wide range of functions and can provide almost all the

functions required for the cation-peptide parameterization process. FFAFFURR helps users

to get rid of labor-intensive steps in FF optimization.

Despite the success of FFAFFURR in this study, we see several directions to discuss in

future research. Note that only the parameters of the Zinc finger protein interaction cen-

ter were optimized with FFAFFURR in the MD simulation, while the standard OPLS-AA

parameters were used for the rest of the protein. While our study indicates the compati-

bility of the optimized parameters with the standard FF parameters, this may need to be

investigated in more detail in a future study. One characteristic of FFAFFURR is that it

can be employed to derive parameters for a specific system. This helps to grasp the specific

environment of the system. However, QM calculations are required when a new system is

under investigation. We created a data set of cation-dipeptides containing several divalent

cations, which can be automatically parsed to FFAFFURR.67 If the user’s system goes be-

yond the scope of the dataset, an in-house genetic algorithm package Fafoom87 can be used

to generate conformers and do the QM generation fast and automatically.
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Figure S1: Boltzmann-type weights vs. relative QM energies at various RTs of
AcCys−NMe+Zn2+ system.



Table S1: Atom types in HisD+Zn2+ and Cys−+Zn2+.

HisD+Zn2+ Cys−+Zn2+

Atom Atom type Atom Atom type
C 2177 C 1177
CA 2166 CA 1166
CB 2446 CB 1148
CD2 2448 H 1183
CE1 2447 HA 1086
CG 2449 HB2 1085
H 2183 HB3 1085
HA 2086 N 1180
HB2 2085 O 1178
HB3 2085 SG 1142
HD1 2445
HD2 2091
HE1 2092
N 2180
ND1 2444
NE2 2452
O 2178
Zn 834

Table S2: The optimized LJ parameters. Epsilon = 0 means the LJ interaction is neglected.
LASSO tends to focus on only important factors while neglecting insignificant ones.

Type1 Type2 Sigma (nm) Epsilon (kJ/mol)
2178 834 0.31933 0.00024413
2448 834 0.331094 0
2183 834 0.32642 0.001277
2446 834 0.32934 0.03138
2177 834 0.330867 0
2092 834 0.288564 0
2091 834 0.288564 0
2180 834 0.319954 0
2447 834 0.329767 0
2444 834 0.31992 0.25885
2445 834 0.29663 6.7250
2085 834 0.294726 0
2086 834 0.294726 0
2184 834 0.325209 0
2452 834 0.32598 0.00153
2166 834 0.331252 0.01205
2449 834 0.33125 0.01205
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Table S3: The CTPOL parameters. The a and b are parameters in eq. 11, r is the cutoff
distance. The correction factor k in eq. 11 is set as 3.418.

Type Polarizability (nm3) a b r (nm)
1142 0.002668 -1.037 0.323 0.312
1178 0.000729 -0.246 0.072 0.294
1180 0.00093 -0.478 0.129 0.270
2178 0.000721 -2.667 0.722 0.271
2180 0.000901 -0.635 0.172 0.270
2452 0.000952 -0.593 0.193 0.325
2444 0.000879 -2.424 0.843 0.348
444 0.000879
452 0.000952
834 0.004383
166/2166/1166 0.001454
447/2447 0.001341
448/2448 0.001416
80 0.001316
1177 0.001473
446/2446 0.001397
177/2177 0.001441
178 0.000721
184 0.001292
449/2449 0.001446
180 0.000901
1148 0.001475
96 0.000724
250 0.001394
246 0.000906
235 0.001339
81/82 0.001431
243 0.000864
94 0.001457
108 0.001497
214 0.000858
213 0.001685
230 0.000810
179 0.000904
165 0.001425
90 0.001471
251 0.001417
216 0.001504
109 0.000711
99 0.001439
245 0.001410
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Figure S2: Average of the two Zn-N distances, where the N are the NE2 atoms of the two
histidines in the binding site, as a function of time.

Table S4: PDB ids of Zn fingers. N4HC denotes number of Zn binding sites with 4 His and
Cys residues, whereas N2H2C denotes the number of Zn binding sites with exactly 2 His and
2 Cys. The last column denotes the distance of the closest water molecule to the Zn ion.

PDBid Zn_sites N4HC N2H2C Min H2O dist
1MEY 8 7 7 4.38
4QF3 4 4 0 3.98
6UEI 4 4 0 4.24
6UEJ 4 4 0 4.30
2PUY 4 4 0 4.35
6FI1 4 4 0 9.00
6FHQ 4 4 0 4.04
5YC3 2 2 0 6.49
3T7L 2 2 0 4.41
3U9G 4 4 0 4.26
4Q6F 8 8 0 4.32
3IUF 1 1 1 5.42
4BBQ 8 8 0 4.44
5YC4 2 2 0 6.60
5Y20 2 2 0 5.66
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Figure S3: Probability distributions of select dihedral angles. (top) The dihedral angle
between the two coordinating histidine planes. The planes were determined using the CG,
CD, and CE atoms of histidine. (bottom) The dihedral angle between plane defined by His1
CG, CD, and CE1 atoms, and plane defined by His1 CG, ND, and NE atoms. This is to
check for internal distortion of the plane. The values are close to 180 (instead of 0) because
one set of atoms goes clockwise, and the other counter clockwise, when defining the planes.
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Chapter 5

Conclusions and Outlook

In this thesis, I study force field development for cation-dipeptide systems. The simulation of

metalloproteins is a long-standing challenging topic. Bonded force field models of the cation binding

site succeed in maintaining the correct coordination number of the protein interaction center by

employing covalent bonds between cations and ligands atoms. However, cations are artificially fixed

at the interaction center, so the bonded models can not simulate the formation and disassembly of

metalloproteins or the transmembrane passage of ions. With the three manuscripts that make up

this thesis, I contribute to the development of the next-generation non-bonded force field models

for cation-dipeptides simulations:

• The first part of this thesis provides a large and comprehensive quantum chemistry data

set of cation-dipeptides as a solid database for force field development or benchmarking.

The representation by an ontology makes the data set fulfill the FAIR principles: findable,

accessible, interoperable, and re-usable.

• The second part of the thesis benchmarks three popular non-polarizable FFs: CHARMM36,

AMBER10, OPLS-AA, as well as a polarizable Drude model using the QM data set. The

result shows that the polarizable Drude model performs better in reproducing the DFT

interaction energies than non-polarizable models. However, several Thole factors and LJ

parameters need to be parameterized to ameliorate the polarization catastrophe. The op-

timized parameters were validated by MD simulation of a metalloprotein. Since the Drude

model can be limited in case of significant charge transfer effects, the CTPOL model that

explicitly takes charge transfer and polarization effects into account was also tested.

• The third part of the thesis implements the CTPOL model and provides an open source

python tool FFAFFURR that enables the parameterization of OPLS-AA and CTPOL model.

The parameters of a energy terms in the OPLS-AA and CTPOL models can be adjusted by

FFAFFURR. The performance of the parameterized parameters was evaluated by their ability

to reproduce DFT energies and MD simulations of zinc finger protein in solution.

The details of the studies have been summarized in Chapter 3, but there are some points I
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would like to highlight:

• A comprehensive and accurate database is essential to FFs development.

• With the development of computational physics and chemistry, the amount of QM data is

rapidly increasing. How to share this data becomes more and more important. Ontologies

can link the data in a formalized machine-understandable way. Although it takes time and

effort to create a comprehensive ontology, ontologies have great potential to organize huge

amounts of data and serve as the knowledge structure behind AI technologies.

• The polarizable FF models can better simulate metalloproteins than non-polarizable FFs.

However, some parameters of polarizable FF models may need to be re-parameterized and

sometimes specified for the system of interest.

• The parameters of FFs are interconnected to each other. Adjusting the parameters of one

energy term may affect the parameters of other energy terms. Therefore, some energy terms

may need to be adjusted jointly. FFAFFURR enables the parameterization of all energy

terms. Users can choose the parameters to tune according to the actual application.

• We perform FF optimization based on molecular/atomic properties (e.g., partial charge),

and fitting to only energies, but no forces.

• QM-driven parameterization combined with MD simulations for testing is a good way to

develop the FFs for metalloproteins.

• In addition to polarization effects, the CTPOL model explicitly includes charge transfer

effects. Moreover, the CTPOL model does not, in contrast to Drude model, add light particles

to the model, which allows simulations with the CTPOL model to take larger time steps.

These make the CTPOL model a promising method to accurately describe metalloproteins

with relatively low computational costs.

• Re-parameterization is tedious and time consuming. User friendly parameterization tools

can greatly facilitate FF development.

In summary, this thesis contributes to the development of cation-dipeptide FFs from four

aspects: (1) providing a comprehensively quantum chemistry data set of cation-dipeptides, (2)

investigating methods for QM-driven FF development and validation, (3) implementing CTPOL

model, and (4) providing free and open-source FFs parameterization tool.

Although many advances have been made in this thesis, there is still much room for further

exploration. Some ideas are listed below:

• The ontologies and knowledge graph developed in this thesis makes the data set linked. New

knowledge, relationships, or trends in the data set may be found through the investigation of

the data set by SPARQL queries. This will deepen the understanding of the cation-dipeptide

systems. The ontologies can also be linked to external ontologies to connect knowledge across

projects and fields.
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• The quantum chemistry data set is organized as knowledge graph. The data as well as meta-

data can be accessed through the SPARQL query language. It is reasonable to implement an

interface between the knowledge graph and FFAFFURR. This will lead to easy access to the

quantum chemistry data and speed up the parameterization process. It also makes it easy

to extend the quantum chemistry data by adding new data to the knowledge graph.

• There are several groups focusing on the development of better Drude models. It would

be interesting to compare the performance of the optimized Drude model and the CTPOL

model in metalloprotein simulations.

• Introducing more target properties, e.g. binding energy, may improve the predictive power

of the new parameter set.
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Appendix

A Software for ontology and knowledge graph development

Protégé

Protégé is a free, and open-source graphical program for editing and exploring ontologies. It

supports ontology visualization and reasoning, as well as SPARQL queries. It is a suitable tool for

beginners.

owlready2

Owlready2 is a python package for ontology-oriented programming. It has been used to populate

ontologies with real data.

Stardog

Stardog is a commercial software for graph data virtualization, knowledge graph exploration, and

SPARQL queries.

B The generation of OPLS-AA parameter files in xml for-

mat

OpenMM can only process parameter files in xml format. The OPLS-AA parameter file in xml

format can be generated by a python script ‘processTinkerForceField.py’. The LJ combination

rule for OPLS-AA can be performed as described at http://zarbi.chem.yale.edu/ligpargen/

openMM_tutorial.html.
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