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1. Introductory summary  

1.1 The impact of early life on health 

1.1.1 Developmental programming 

Developmental programming suggests that the prenatal environment can influence fetal develop-
ment with long-lasting effects on future development and health.  

Originally, David Barker proposed the fetal origins hypothesis based on his observation that un-
dernutrition during pregnancy can affect fetal growth and predispose the child to cardiac and 
metabolic disorders in adulthood (Barker, 1995; Barker et al., 2002). Godfrey and Barker (2001) 
outlined these proposed associations based on evidence from different studies: Undernutrition in 
the womb may cause inadequate fetal and placental growth, leading to low birth weight and, in 
an attempt to catch-up after birth, to accelerated growth during childhood. This was in turn asso-
ciated with elevated blood pressure and a higher likelihood of developing hypertension in adult 
life, thus increasing the risk for coronary heart disease and related disorders. Later, the fetal ori-
gins hypothesis was expanded and formalized in the Developmental Origins of Health and Dis-
ease (DOHaD) hypothesis. The DOHaD hypothesis states that the prenatal environment may 
permanently program the structure and physiology of the offspring during critical periods in utero, 
thereby influencing later health outcomes (Barker, 2007; Gluckman & Hanson, 2004). To adapt 
to adverse prenatal conditions, fetal metabolism and endocrinology may change, delaying growth 
but ensuring immediate survival (Barker, 1998; Kwon & Kim, 2017). This ability of an organism to 
respond to environmental cues is known as developmental plasticity, and is evolutionarily adap-
tive (Barouki et al., 2012). Thus, it is important to not only consider the detrimental but also the 
adaptive consequences of fetal programming when studying this phenomenon. Accordingly, the 
predictive adaptive response (PAR) hypothesis suggests that cues in early life favor the develop-
ment of a well-adapted phenotype if the conditions later in life match the early environmental 
conditions (Gluckman et al., 2005). On the other hand, if the predicted and actual environment 
differ, the mismatch between prepared phenotype and environmental conditions can increase the 
risk for adverse health outcomes (Bateson et al., 2014).  

Together, these concepts highlight the importance of the earliest developmental phase in under-
standing later health trajectories and individual responses to health challenges. The DOHaD the-
ory has been supported by evidence from both animal and human studies (McMullen & Mostyn, 
2009) and can guide future research (Hagemann et al., 2021; Wadhwa et al., 2009). In fact, it has 
been expanded to many different research fields, such as molecular and developmental biology, 
human genetics and epidemiology (Suzuki, 2018). Finally, developmental programming has im-
plications for designing early prevention and intervention programs and is highly relevant for pub-
lic healthcare (Heindel et al., 2015; Jacob & Hanson, 2020). Global health initiatives, for instance, 
have noted and heeded evidence supporting developmental programming (Black et al., 2017; 
Clark et al., 2020; Kuruvilla et al., 2016). Investments during the pregnancy period have been 
proposed to be important, both from a social and economic perspective (Doyle et al., 2009; Every 
Woman Every Child, 2015; Penkler et al., 2019).  
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1.1.2 Pregnancy as a sensitive period 

Over the past years, the range of both prenatal influences and later-life outcomes investigated in 
the field of developmental programming has increased (see Abdul-Hussein et al., 2021; Ramirez 
et al., 2022). In addition to the aforementioned association between fetal undernutrition and car-
diac and metabolic diseases, fetal undernutrition has been further linked to cognitive performance 
and related outcomes later in life (Fall, 2013; Hoffman et al., 2017; Roseboom, 2019; Victora et 
al., 2008). Furthermore, several maternal characteristics have been related to child development. 
For example, maternal pre-pregnancy obesity has been linked to attention-deficit/hyperactivity 
disorder in the offspring (Li et al., 2020), maternal hypertensive disorders and preeclampsia dur-
ing pregnancy have been associated with child neurocognitive outcomes (Figueiró-Filho et al., 
2017), and maternal prenatal stress – or more generally maternal well-being – has been found to 
be an important determinant for offspring neurodevelopment and mental health later in life (Bale 
et al., 2010; O'Donnell & Meaney, 2017; Van den Bergh et al., 2020). Mental disorders linked to 
prenatal stress include autism spectrum disorder, attention-deficit hyperactivity disorder, depres-
sion, anxiety, and schizophrenia (Lautarescu et al., 2020; Manzari et al., 2019; O'Donnell et al., 
2009; Tuovinen et al., 2021). Furthermore, external environmental influences during pregnancy 
can have long-lasting impacts on the child (Almeida et al., 2019). For instance, prenatal chemical 
exposure has been associated with poor neurodevelopmental outcomes (Bellinger, 2013; 
Tohyama, 2019), air pollution has been reported to adversely affect cardiovascular, metabolic, 
respiratory and neurodevelopmental outcomes (Gheissari et al., 2022), and maternal infection 
and immune activation have been related to a higher risk for autism and schizophrenia-related 
symptoms in the child (Haddad et al., 2020; Jiang et al., 2016). On the other hand, a healthy 
maternal lifestyle and environment can promote positive outcomes. For example, exercise during 
pregnancy has been found to be beneficial for fetal and postnatal health (Moyer et al., 2016). 
However, early resiliency factors are still underexplored (Abdul-Hussein et al., 2021).  

In sum, a range of prenatal exposures reportedly affect the future health status and development 
of the offspring (Özturk & Turker, 2021). Pregnancy is an important and especially sensitive period 
in determining postnatal outcomes. The pace of fetal development exceeds that of any other pe-
riod during the life span, and fetal brain maturation in particular is rapid (Davis & Narayan, 2020). 
During the late fetal phase, for instance, approximately 40,000 new synapses are formed per 
second, and the fetal period is essential for neuron production, migration, connection and differ-
entiation (Monk et al., 2019). Because these foundations of brain development are laid prenatally, 
it is plausible that pregnancy constitutes a susceptible period that can have long-lasting effects 
on health (Cruceanu et al., 2017). Like the brain, other fetal organs are susceptible to change 
during gestation (Sly et al., 2021). For example, prenatal air pollution exposure has been linked 
to poor lung function and growth, which can increase the risk of respiratory symptoms (Hsu et al., 
2023; Korten et al., 2017); and prenatal malnutrition has been reported to impair endocrine pan-
creas development, which can increase the risk of diabetes (Moullé & Parnet, 2019; Remacle et 
al., 2007). Changes in the structure and function of cells, tissues and fetal organs could explain 
the observed long-lasting consequences of prenatal conditions for health outcomes (Barker et al., 
1993; Godfrey, 2002). Still, questions about the mechanisms underlying these changes remain. 
How can we explain developmental programming on a molecular level? 
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1.1.3 Mechanisms of developmental programming 

1.1.3.1 Importance of epigenetics 

The underlying mechanisms of developmental programming are not yet completely understood, 
but researchers suspect that epigenetic processes play an important role (Arima & Fukuoka, 
2020; Stevenson et al., 2020). Epigenetics is the study of changes in gene activity that are mitot-
ically heritable and not caused by changes in the DNA sequence itself (Jaenisch & Bird, 2003). 
The three main epigenetic mechanisms are DNA methylation (DNAm), histone modifications and 
noncoding RNAs (Gibney & Nolan, 2010; Goyal et al., 2019).  

Epigenetic modifications establish a connection between environmental cues and phenotypic out-
comes by changing gene expression patterns in a cell- and tissue-specific manner (Feil & Fraga, 
2012; Hoffman et al., 2017). The link between environment and epigenome involves receptor 
signaling, energy metabolism and signal mechanotransduction from extracellular matrix to chro-
matin (Safi-Stibler & Gabory, 2020). Epigenetic mechanisms act on both the fetal and maternal 
sides. However, the epigenome is particularly vulnerable during prenatal development, when ex-
tensive programming and reprogramming of epigenetic modifications occur (Kundakovic & Jaric, 
2017).  

Environmental influences can trigger hypothalamus-pituitary-adrenal (HPA) axis activation, im-
mune activation, microbiome dysregulation (Monk et al., 2019) or metabolic changes (Parrettini 
et al., 2020) in the mother. Processes involving the HPA axis and stress response are among the 
most researched and understood. The HPA axis is one of the main systems implicated in the 
stress response (see Arnett et al., 2016; Packard et al., 2016; Russell & Lightman, 2019). Thus, 
consequences of HPA axis dysfunction are relevant both in the mother and fetus. Alterations in 
HPA axis functioning have been related to inappropriate stress responses and neuropsychiatric 
disorders (Kinlein et al., 2015; McEwen, 2004; Sheng et al., 2020; Zorn et al., 2017).  

Evidence from animal and human studies implicates maternal prenatal stress as a source of epi-
genetic modifications, which potentially affect fetal brain development and may program the risk 
for emotional dysregulation and mental disorders over a lifetime (DeSocio, 2018). These long-
term effects of prenatal stress are at least partially mediated by glucocorticoids, HPA axis func-
tioning and epigenetic regulation of involved genes (Krontira et al., 2020; Matthews & McGowan, 
2019; Provencal & Binder, 2015). For example, one of the most commonly studied candidate 
genes is the glucocorticoid receptor gene NR3C1. DNAm levels of NR3C1 in the offspring have 
been associated with prenatal stress exposure (Palma-Gudiel, Córdova-Palomera, Eixarch, et al., 
2015; Sosnowski et al., 2018; Turecki & Meaney, 2016). In turn, epigenetic modification of this 
gene may impair HPA axis functioning, thereby increasing the risk for psychiatric disease (Palma-
Gudiel, Córdova-Palomera, Leza, et al., 2015).  

The transmission of maternal exposures and experiences to the child via epigenetic pathways is 
mediated by the placenta, which will be the focus of the next section. 

1.1.3.2 The crucial role of the placenta 

The special role of the placenta was postulated by Barker from the very beginning of his investi-
gations of fetal programming (Barker, 1998). As a regulator of fetal nutrient supply and growth, 
the placenta is critical for fetal development and programming. The placenta is a metabolic and 
endocrine organ and mediates solution transfer actively (Burton et al., 2016; Parrettini et al., 
2020). Epigenetic regulation plays an important role in placental development and functions 
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(Koukoura et al., 2012; Nelissen et al., 2011). These functions include maintaining an immuno-
logical barrier between fetus and mother, mediating the transfer of respiratory gases, water, ions 
and nutrients, and producing and secreting hormones, cytokines and signaling molecules 
(Jansson & Powell, 2007). Environmental modulation during pregnancy involves morphological 
and functional adaptions of the placenta with downstream effects on the offspring (Sferruzzi-Perri 
& Camm, 2016). The fetal or perinatal responses that might affect the development of fetal organs 
include changes in metabolism, hormone production and tissue sensitivity to hormones (Barker 
et al., 1993; Gluckman et al., 2008).  

Epigenetic signatures in human placental tissue have been associated with a range of maternal 
characteristics and environmental exposures, including maternal psychopathology, endocrine 
and metabolic status, nutrition, stress and smoking during pregnancy, and exposure to environ-
mental pollutants (Cleal et al., 2022; Palma-Gudiel et al., 2018). Furthermore, placental DNAm 
levels appear to change during gestation, possibly in response to changing cellular composition 
and cumulative environmental influences (Novakovic et al., 2011). While placental changes can 
represent adaptive mechanisms to protect the developing fetus from detrimental exposures, they 
have the potential to program the child in such a way that will later increase disease risk (Cleal et 
al., 2022; Nugent & Bale, 2015). Moreover, the placenta may only be able to protect the fetus 
from adverse exposures to a certain extent.  

The relationship between prenatal exposure and placental regulation can be demonstrated using 
prenatal stress as an example. The human placenta expresses corticotropin-releasing hormone 
(CRH), a major stress hormone (King et al., 2001). During pregnancy, maternal CRH is largely 
derived from placenta secretion and triggers secretion of maternal cortisol, which further activates 
the release of CRH from the placenta in a positive feedback loop (Alcantara-Alonso et al., 2017; 
Robinson et al., 1988). Increasing stress hormone levels throughout pregnancy constitute a nor-
mal process important for fetal maturation (Chatuphonprasert et al., 2018; Mastorakos & Ilias, 
2003; Pofi & Tomlinson, 2020). Yet, elevated stress hormone levels during pregnancy have been 
associated with fetal brain structure alterations, thereby potentially programming the fetal nervous 
system (Kassotaki et al., 2021; Sandman et al., 2011). The exposure of the fetus to glucocorti-
coids is controlled by placental expression of the enzyme 11beta-hydroxysteroid dehydrogenase 
type 2 (HSD11B2), which converts cortisol to inactive cortisone, thus buffering maternal gluco-
corticoid access to the child (Benediktsson et al., 1997; Sun et al., 1999; Togher et al., 2014; 
Wyrwoll et al., 2011). However, chronic maternal prenatal stress has been associated via placen-
tal DNAm with a decrease in HSD11B2 gene expression, thus reducing this protective effect 
(Jahnke et al., 2021; Jensen Pena et al., 2012). Consequently, stress during pregnancy could 
disturb maternal stress response systems and change epigenetic regulatory processes. This may 
influence placental glucocorticoid metabolism, which in turn has an impact on offspring neurode-
velopment.  

Notably, the importance of the placenta for fetal brain development – and implications for neuro-
behavioral disorders – has been increasingly recognized during recent years and was conceptu-
alized in the term ‘placenta-brain-axis’ (Rosenfeld, 2021). Due to increasing evidence of the pla-
centa as an active brain architect, the placenta was even referred to as a ‘third brain’ by Lester 
and Marsit (2018). In sum, the placenta is involved in the formation of the developing fetus and 
has an outstanding role in the orchestration of fetal-maternal interactions (Lapehn & Paquette, 
2022; Sferruzzi-Perri & Camm, 2016; Shallie & Naicker, 2019). 
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1.1.4 Factors influencing the relationship among prenatal exposure, epigenetics 
and child development 

When considering potential mechanisms underlying developmental programming, researchers 
should take into account a variety of factors that can modify and refine some of the observed 
associations between prenatal exposures, (placental) epigenetics and child developmental out-
comes. The most critical factors (apart from more technical considerations) are described in this 
section. 

First, fetal characteristics such as sex and genetic predisposition can influence the child’s sus-
ceptibility to different exposures. Sex-dependent differences were observed in placental function, 
implicating sex-specific placental responses (Rosenfeld, 2015). For instance, the effect of prena-
tal stress can vary by the child’s sex (Jahnke et al., 2021; Stoye et al., 2020). Furthermore, there 
is a complex interplay between genetic, epigenetic and gene expression variability (Bollati & 
Baccarelli, 2010; Capp, 2021). For example, it has been shown that interactions between genetic 
and environmental factors (GxE) can explain more DNAm variability in perinatal tissues than gen-
otype or environmental factors alone (Chatterjee et al., 2021; Czamara et al., 2019; Teh et al., 
2014). 

Second, the effect of an exposure – for instance, prenatal stress – can be influenced by the timing 
of its occurrence (see Bronson & Bale, 2016; Lautarescu et al., 2020; Van den Bergh et al., 2020). 
In general, there are different susceptible periods for different influences, and the downstream 
effects of an exposure often depend on the timepoint of its occurrence during pregnancy (Davis 
& Narayan, 2020; Langley-Evans, 2004).  

Third, beyond pregnancy, the delivery process itself should be considered as a contributor to 
epigenetics and developmental outcomes in the child. For instance, cesarean section has been 
associated with an increased risk of various diseases in later life, and one explanatory hypothesis 
suggests that the mode of delivery could affect the epigenetic state of stem cells in newborns 
(Almgren et al., 2014; Linnér & Almgren, 2020). Furthermore, the delivery mode might influence 
early gut microbiota composition, with implications for immune disorders in the child (Kristensen 
& Henriksen, 2016; Lee, 2019). 

Overall, the earliest period in life can prime the developing child to respond differently to environ-
mental exposures over the life course. Thus, studying the early life period can offer insights into 
the underlying causes of different susceptibilities to future experiences. Prenatal influences in-
clude a range of environmental exposures and maternal characteristics, which should be consid-
ered together with characteristics of the child, pregnancy and birth processes. Epigenetic mech-
anisms, especially, but not only, in the placenta, have the potential to provide insights into the 
pathways underlying this transmission of prenatal environment to child phenotypes. This is sum-
marized in Figure 1.  
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Figure 1. Illustration of developmental programming: Several factors, such as maternal charac-
teristics and environmental exposures, have been associated with fetal developmental outcomes. 
Epigenetic mechanisms (e.g., DNA methylation) suggest a pathway of how these factors can 
translate to placental and fetal biology. The placenta is crucial for fetal development, and changes 
in placental development and functioning may affect fetal tissue and organ development. This 
could, in turn, program the offspring’s physiology, with long-term consequences for health. Figure 
created with BioRender.com.  

1.2 Approaches to study prenatal human development 

1.2.1 Model systems and cohort studies 

Both research in animal models and humans contributed to understanding the impact of early life 
on health. Animal models can be used to study specific mechanisms, and can potentially show 
causality, in a wide range of tissues including the brain. However, translating these findings to 
humans is challenging (Frangogiannis, 2022; McGonigle & Ruggeri, 2014). Another promising 
modeling approach are in vitro cell cultures, which include three-dimensional organoids (de 
Souza, 2018; Richardson et al., 2020). These were successfully used to model certain brain re-
gions (Bassil et al., 2023; Luo et al., 2016) and have also been applied to model placental tissue 
(Gundacker & Ellinger, 2020; Turco & Moffett, 2019). Nevertheless, human studies remain crucial 
for gaining insight into the full complexity of human development. 

Epidemiological cohort studies have been one of the main methods of studying developmental 
programming in humans, and large-scale prospective birth cohort studies will continue to be im-
portant (Sata, 2019; Suzuki, 2018). Such studies are well suited to identify exposures and risk 
factors before disease onset and to detect gene-environment interactions related to disease 
(Manolio et al., 2006). Although cohort studies entail challenges too, they provide more unbiased 
research in a natural setting and are very powerful when they involve different environmental 
factors and phenotypes including molecular data (Wijmenga & Zhernakova, 2018). 

https://biorender.com/
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1.2.2 Gestational and perinatal tissue samples 

Human research primarily relies on accessible tissues due to concerns about ethics and invasive-
ness. The placenta is of particular interest when studying pathways of developmental program-
ming. Other peripheral tissues commonly used include buccal cells and cord blood (Sosnowski 
et al., 2018). Gestational and perinatal tissues, sampled directly after birth or even during preg-
nancy, help to gain insights into the prenatal development, as later sampling points most likely 
also reflect postnatal influences. 

The biological relevance of a tissue for the studied phenomenon is important to consider. As 
discussed previously, the placenta is highly relevant in developmental programming. Thus, pla-
cental biomarkers have the potential to identify prenatal exposures and their relation to child de-
velopment and disease risk (Cleal et al., 2022; Manokhina et al., 2017). Generally, gestational 
and perinatal tissues are target tissues for studies of prenatal development, and may even deliver 
information about processes in other, less accessible, fetal tissues. Often it is unknown whether 
a biomarker is simply an epiphenomenon or actually a component of a mechanistic pathway – 
consequently, surrogate biomarkers are not necessarily inferior (Hanson & Gluckman, 2014). 
Nevertheless, it is important to keep in mind that findings in one tissue cannot simply be extrapo-
lated to other tissues.  

Although the placenta is easily accessible after birth, it is among the most poorly researched 
organs (Benirschke, 2004; Bhattacharya et al., 2022; Shallie & Naicker, 2019). However, aware-
ness of the lack of knowledge about placenta biology, and research efforts, have increased. For 
example, the ‘Human Placenta Project’ was initiated to better understand placental functioning 
during gestation (Guttmacher et al., 2014). Furthermore, placental DNAm data is now available 
in a subset of cohorts included in the PACE (Pregnancy And Childhood Epigenetics) consortium 
(Felix et al., 2018), providing a resource for further investigations. Still, placental tissue is absent 
from some large-scale cohort studies and important established consortia, such as the GTEx 
(Genotype-Tissue expression) consortium (GTEx Consortium, 2019) and the Genetics of DNA 
Methylation Consortium (GoDMC; Min et al., 2021). It is noteworthy that placental tissue sampling 
is challenging due to regional differences that need to be considered and can lead to hetero-
genous tissue samples (Burton et al., 2014). Actually, the placenta is one of the most structurally 
diverse organs within all mammals (Rosenfeld, 2021).  

Importantly, placental tissue should not only be studied post-delivery but also during gestation 
(Guttmacher & Spong, 2015). During pregnancy, the placenta is rapidly developing (Burton et al., 
2009; Cindrova-Davies & Sferruzzi-Perri, 2022). Formed from the zygote at the start of pregnancy, 
the placenta has the same genetic composition as the fetus (Burton & Fowden, 2015; Herrick & 
Bordoni, 2022). The zygote becomes a blastocyst, consisting of an inner cell mass and a 
trophectoderm (Kojima et al., 2022). The trophoblast cell layer of the blastocyst proliferates into 
cytotrophoblast and syncytiotrophoblast cells (Carlson, 2014). Both cytotrophoblast and syncyti-
otrophoblast are part of the chorion (Herrick & Bordoni, 2022). From the chorion, vascular projec-
tions of fetal tissue form chorionic villi, which are the basic structural unit of the placenta and 
project into maternal blood (Griffiths & Campbell, 2015; Ventura Ferreira et al., 2018). Chorionic 
villi consist of an outer layer of syncytiotrophoblast (in contact with maternal blood), a layer of 
cytotrophoblasts, connective tissue and the fetal vascular endothelium (Herrick & Bordoni, 2022; 
Lewis et al., 2017). They not only provide a barrier between fetal and maternal blood systems but 
are also essential for the exchange of gas, nutrients and waste between fetus and mother (Caruso 
et al., 2012; Maltepe & Fisher, 2015; Mori et al., 2007). In order to further facilitate fetomaternal 
exchange, these villi undergo dynamic morphological changes throughout gestation (Knöfler et 
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al., 2019; Mori et al., 2007). To study the human placenta in an earlier pregnancy stage, extremely 
valuable though rare resources are first trimester chorionic villi samples (CVS), which are sam-
pled for early prenatal genetic testing if medically indicated (Hannibal et al., 2018; Vink & Quinn, 
2018).  

1.2.3 Epigenetic patterns 

1.2.3.1 DNA methylation  

In principle, all of the different epigenetic processes, including DNAm, histone modifications and 
noncoding RNAs, are of interest in investigating gene regulation. However, the most studied and 
best understood epigenetic modification in humans is DNAm (Haugen et al., 2015; Hoffman et 
al., 2017). Furthermore, the studies of this thesis are centered around DNAm. Hence, this section 
focuses on DNAm and corresponding study approaches. 

DNAm is an epigenetic mark, referring to the transfer of a methyl group onto cytosine residues 
and mainly occurring in the context of CpG dinucleotides (Bird, 1986; Dor & Cedar, 2018; Moore 
et al., 2013). The necessary writing and removal of methyl groups, and the translation into func-
tional information, is performed by a machinery of proteins in the cells (Dor & Cedar, 2018). DNAm 
can regulate gene expression by modulating the binding of transcription factors to regulatory DNA 
elements (e.g., promoters, enhancers) and determining patterns of histone modifications, thereby 
controlling transcriptional states (Héberlé & Bardet, 2019; Rose & Klose, 2014; Yin et al., 2017). 
Typically, DNAm has been associated with repressed gene transcription, but growing evidence 
indicates that the manner in which DNAm influences transcriptional activity is more complex and 
appears to be context (e.g., DNA properties, stimuli) dependent (de Mendoza et al., 2022; Dhar 
et al., 2021; Smith et al., 2020).  

Differentiated cells develop a unique and relatively stable DNAm pattern that is important for the 
regulation of tissue-specific gene expression (Khavari et al., 2010; Moore et al., 2013). Thus, an 
essential function of DNAm is to maintain cell-specific gene expression patterns established dur-
ing embryonic development (Lande-Diner et al., 2007; Razin & Szyf, 1984; Santos & Dean, 2004). 
This is crucial for the development and function of an organism (Robertson, 2005). Still, DNAm is 
dynamic to some extent and responsive to environmental influences (Jaenisch & Bird, 2003; 
Leenen et al., 2016; Martin & Fry, 2018; Meaney & Szyf, 2005). Different environmental cues, 
such chemical compounds (e.g., pollutants), lifestyle factors (e.g., nutrition, smoking, alcohol con-
sumption) and stress have been associated with DNA methylation changes, which can affect 
epigenetic gene regulation and consequently phenotypes (Feil & Fraga, 2012). In sum, DNAm 
marks reflect an interaction among environment, epigenome and genome (Dhar et al., 2021). 

Common methods to measure DNAm can be categorized into three main approaches: global 
methylation levels, targeted gene sequencing, and genome-wide methylation screening (Colwell 
et al., 2023). In epidemiological cohort studies, epigenome-wide approaches using popular and 
affordable array-based platforms are common (Campagna et al., 2021; Colwell et al., 2023; Shu 
et al., 2020). DNAm arrays used in most of these studies cover only a fraction of the human 
methylome, and some potentially missed signals might be detected when advanced technologies 
become affordable in the future (Shu et al., 2020; Stevenson et al., 2020).  

For any DNAm analysis in bulk tissue, it is extremely important to take into account that differ-
ences in DNAm levels between samples can occur due to variation in the cell type composition 
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(Jaffe & Irizarry, 2014; Ohgane et al., 2008). Cell type deconvolution algorithms can help to ad-
dress this issue in samples derived from heterogenous mixtures of cells (Titus et al., 2017). Above 
that, single-cell studies are needed to further improve the understanding of cell type-specific ef-
fects (Karemaker & Vermeulen, 2018). 

Overall, methods and approaches to use DNAm to better understand the pathways linking envi-
ronmental exposures and changes in phenotypes continue to develop. Several challenges – in-
volving tissue specificity and cell type adjustment, issues of power and comparability of findings, 
genetic influences, stochastic epigenetic variation, functional impact and causality – have to be 
addressed (Felix & Cecil, 2019; Poulsen et al., 2007). Despite these challenges, the field of pop-
ulation epigenetics is evolving, and is promising, especially in investigations of how earliest life 
influences map to measurable molecular changes on the tissue level.  

1.2.3.2 Epigenetic clocks as DNA methylation-based biomarkers 

An important research aim in the field of population epigenetics is the development of DNAm-
based biomarkers. Biomarkers can be defined as objective, quantifiable characteristics of biolog-
ical processes (Strimbu & Tavel, 2010). They have been developed using DNAm data for different 
fields of application (Nwanaji-Enwerem & Colicino, 2020; Wagner, 2022). The focus of this thesis 
will be on a biomarker for aging, which is relevant for the concept of developmental programming 
and gained popularity in the recent decade: the epigenetic clock.  

Epigenetic clocks are designed to estimate biological age from DNAm at selected CpG sites 
(Horvath, 2013; Horvath & Raj, 2018). They evolved from a combination of factors: the observa-
tion that DNAm changes with age, the better availability of large DNAm data sets, and the need 
for biomarkers for aging (Horvath & Raj, 2018). The first two epigenetic clocks were developed 
independently by Horvath (2013) and Hannum et al. (2013), and trained to predict chronological 
age. The difference between chronological age and estimated DNAm age is referred to as age 
acceleration or deceleration (Horvath, 2013). It can be interpreted as an epigenetic measure of a 
relatively faster or slower biological aging process. Until now, several epigenetic clocks have been 
built using different methods, tissues, outcome measures and purposes (see Bergsma & Ro-
gaeva, 2020; Declerck & Vanden Berghe, 2018; Oblak et al., 2021; Salameh et al., 2020; Topart 
et al., 2020). These clocks contain different proportions of chronological and biological infor-
mation, and their specific focus might become more precise in the future (Bell et al., 2019; Berna-
beu et al., 2023; Field et al., 2018).  

In adults, epigenetic aging has been related to a range of lifestyle factors and health-related phe-
notypes, including alcohol and cigarette consumption, diet, stress, sex, physical activity, neuro-
logical disorders, cancer and mortality (Dhingra et al., 2018; Galow & Peleg, 2022; Oblak et al., 
2021; Topart et al., 2020). Hence, by capturing molecular processes related to biological aging, 
epigenetic clocks serve as powerful tools to study aging, development and health across the 
lifespan (Godfrey et al., 2015; Ryan, 2020).  

However, age-related DNAm dynamics appear to be different in childhood as compared to later 
life, and epigenetic clocks for pediatric populations are required (Alisch et al., 2012; Wang & Zhou, 
2021). Childhood-specific epigenetic clocks were designed from blood (Wu et al., 2019) and buc-
cal cells (McEwen et al., 2019). Epigenetic clocks to estimate gestational age in newborns were 
developed for cord blood (Bohlin et al., 2016; Haftorn et al., 2021; Knight et al., 2016), and pla-
cental tissue (Lee et al., 2019; Mayne et al., 2017). Nevertheless, both the clocks and studies 
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applying them for the prenatal and early postnatal period have been underrepresented. For ex-
ample, no investigations have examined how gestational epigenetic age corresponds between 
different tissues.  

Yet epigenetic clocks are promising in evaluations of how environmental and contextual factors 
(such as prenatal stress or pregnancy conditions) may relate to child development on a biological 
level. For example, Knight et al. (2016) proposed that epigenetic gestational age can provide 
information about the developmental state of the newborn. That is, accelerated epigenetic age at 
birth might indicate higher developmental maturity. In more general terms, gestational epigenetic 
age acceleration/deceleration could reflect epigenetic programming by early exposures, poten-
tially affecting neonatal outcomes (Wang & Zhou, 2021). Thus, while initially designed as molec-
ular biomarker for chronological age, epigenetic clocks have the potential to function as a useful 
biomarker to evaluate the impact of early exposures and predict developmental outcomes from 
early life onwards (Wang & Zhou, 2021). 

1.3 Aims and results of this thesis 
Previous sections have emphasized the impact of the earliest phase of human development on 
future health, discussed epigenetic processes as essential mechanisms involved in developmen-
tal programming, and outlined the crucial role of the placenta for prenatal fetal development. At 
the same time, the need for further insights into the human placenta and its complexity has been 
addressed. Moreover, it has been established that DNAm itself is tissue specific (Varley et al., 
2013), which is essential to consider in any study using DNAm data. As one important tool for 
studying human development and health across the lifespan, epigenetic clocks designed as bi-
omarkers from DNAm data have been introduced.  

The first aim of this thesis is to investigate how a variety of prenatal and perinatal influences 
associate with gestational epigenetic aging in different gestational and perinatal tissues. The sec-
ond aim is to advance the understanding of human placental tissue samples and how cell type 
proportions can be considered and estimated from DNAm in these samples. Figure 2 depicts how 
the studies are embedded in the research field. The following paragraph outlines their contribution 
to filling current research gaps in more detail. 

The first publication (Dieckmann et al., 2021) provides insights into epigenetic aging patterns in 
both first trimester CVS, term placental tissue, and cord blood. Despite the promising role of epi-
genetic clocks in investigating aging and development, there is a lack of knowledge about the 
characteristics of gestational epigenetic aging in newborns, especially regarding different tissue 
samples and the relative contribution of different potential influences that may associate with ges-
tational epigenetic age. We used two Finnish cohort studies, with a total sample size of over 1,500 
samples, to explore which variables were most strongly associated with gestational epigenetic 
aging. Variables related to birth and pregnancy, as well as child and maternal characteristics were 
considered. To predict epigenetic age acceleration/deceleration in the respective tissue with 
these variables, we applied elastic net regression with bootstrapping. We found that relatively 
higher or lower epigenetic age was not generally related to either more favorable or unfavorable 
circumstances across the investigated tissues. Furthermore, the variables associated with the 
relative epigenetic age differed between the tissues. Thus, an important conclusion from our find-
ings is that the estimated gestational epigenetic age should be interpreted as an attribute of the 
specific tissue and should not simply be generalized to other newborn tissues. Even so, 
knowledge about the factors related to biological aging patterns of a tissue is important and can 
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offer even more specific insights into the early influences of human development (i.e., which in-
fluences may be particularly strong in this specific tissue). For future studies it would be interesting 
to further investigate potential pathways from prenatal environment to epigenetic aging and post-
natal outcomes of specific variables identified to be important (such as child sex, birth length, 
maternal smoking or mental disorders, parity and delivery mode). In such studies, results should 
be interpreted in relation to the specific clock and tissue used.  

As discussed previously, cell type proportions are extremely important for DNAm studies in bulk 
tissues. Furthermore, advancing our understanding of placental epigenetic regulation would be 
very valuable in the context of developmental programming, but it must be noted that the placenta 
is a highly complex organ. In order to better understand the molecular profile of placental tissue, 
we need to consider the related challenges. For instance, the placenta consists of a heterogene-
ous mix of cell populations within each sampling site (Bianco-Miotto et al., 2016; Lapehn & 
Paquette, 2022); and the differences in the methylome of each cell type must be accounted for to 
prevent biased study results (Jaffe & Irizarry, 2014). Although methods have been developed to 
estimate cell type proportions from DNAm data, such approaches have not been validated in the 
placenta (Wilson & Robinson, 2018).  

The second publication (Dieckmann et al., 2022) aimed to evaluate available cell type deconvo-
lution methods for placental DNAm data and provide insights into estimated cell type composition 
in placenta samples from different sources. We examined the performance of a newly available 
reference-based cell type estimation approach (Yuan et al., 2021) together with an established 
reference-free cell type estimation approach (Houseman et al., 2016) in first trimester (CVS) and 
birth placenta samples, using three independent studies (InTraUterine sampling in early preg-
nancy (ITU), Prediction and Prevention of Preeclampsia and Intrauterine Growth Restriction 
(PREDO), Betamethasone (BET) study), comprising over 1,000 samples. We found that both 
reference-free and reference-based estimated cell type proportions contributed to the prediction 
of DNAm levels. However, reference-based cell type estimation outperformed reference-free es-
timation for the majority of data sets and offers better interpretability by providing further insights 
into possible histological differences between the placenta samples. In sum, our investigation 
contributes to a better understanding of cell type compositions in human placenta samples that 
are reflected in DNAm data. Furthermore, this study provides a resource for future study design 
and interpretation of results involving human placental DNAm data. 
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Figure 2. Illustration of the embedding of the projects included in this thesis into the research 
field. Figure created with BioRender.com.  

1.4 Limitations and outlook 
Some of the limitations and challenges in the research field have already been mentioned. How-
ever, they should be addressed here with a greater focus on the studies included in this thesis 
and combined with an outlook on future investigations.  

As in most human epigenetic studies, the observations are correlative and generally findings 
should be replicated. Replication can be challenging due to different cohort characteristics and 
DNAm arrays, the complexity of placental sampling and other aspects of the study design. Nev-
ertheless, future studies must further evaluate both the robustness and generalizability of findings. 
The increasing interest in placental tissue might offer new opportunities for such analyses as 
larger study samples with placental tissue become available. Additionally, future studies could 
further benefit from applying more standardized and optimized placental sampling techniques 
(Burton et al., 2014). 

The interpretation of epigenetic clock analyses largely depends on the design of the underlying 
epigenetic clock. Epigenetic clocks contain both biological variation (signal) and technical varia-
tion (noise), which can be difficult to disentangle. In the future, novel computational solutions and 
improved designs may further advance epigenetic clocks (Bernabeu et al., 2023; Galow & Peleg, 
2022; Higgins-Chen et al., 2022). Apart from that, researchers are only beginning to grasp the 
mechanisms behind epigenetic aging (Li et al., 2022; Wang & Zhou, 2021). To understand the 
long-term impact of epigenetic age associations found in tissue samples assessed at birth, longi-
tudinal follow-up investigations are needed. Although it should be mentioned that the postnatal 
environment needs to be further taken into account in those studies. 

https://biorender.com/
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Sex and genetic variation are among the most critical factors that are known to influence DNAm 
(see Govender et al., 2022; Villicana & Bell, 2021). Particularly in studies involving placental tis-
sue, sex-specific differences were observed and should be further explored in future studies 
(Andrews et al., 2022). Regarding genetic variation, methylation quantitative trait loci (meQTL) 
provide a promising tool to investigate the links between genetic polymorphisms and DNAm dif-
ferences (Min et al., 2021). Moreover, integrating different levels of omics data could provide a 
more complete picture of the molecular profile in a tissue (Kreitmaier et al., 2023). To this end, 
we are currently investigating placental regulation with different quantitative trait loci (QTL) in the 
ITU cohort. More specifically, we integrate genetic, epigenetic and transcriptomic data using ex-
pression quantitative trait loci (eQTLs), expression quantitative trait methylation (eQTM) and 
meQTLs in both first trimester (CVS) and birth placental tissue. In general, we identified more 
QTL associations in birth placenta compared to CVS, while the direction of effects was prepon-
derantly congruent in both tissues. This implies that there are early established genetic regulatory 
influences that remain stable, while there is an overall increase in the number of regulatory rela-
tions among genome, methylome and transcriptome throughout gestation. Furthermore, we will 
explore how the genetic polymorphisms linked to the quantitative molecular traits overlap with 
genome-wide association studies (GWAS). This will not only help to understand placental genetic 
regulation during different pregnancy stages, but also constitutes an important step towards un-
derstanding the association of placental regulation with health and disease. 

1.5 Conclusion 
The studies included in this thesis provide critical insights into the epigenomic profile of gestational 
and perinatal tissues. They contribute to the investigation of biological pathways involved in de-
velopmental programming and approaches to design future studies. Various factors can influence 
early development, and the impact of several of these factors on epigenetic aging of cord blood 
and placental tissue was explored. Importantly, not only term placenta but also first trimester pla-
cental biopsies were examined. Furthermore, estimated cell type proportions from DNAm were 
characterized in different placental tissue samples. This is highly relevant for any epigenetic study 
involving DNAm in bulk placental tissue. The placenta is possibly the most central tissue to un-
derstand the epigenetic mechanisms involved in developmental programming (Lapehn & 
Paquette, 2022; Marsit, 2016), and is proposed to show an environmental ‘memory’ of the cir-
cumstances during pregnancy (Novakovic & Saffery, 2012). Thus, studies investigating the rela-
tionship among the placenta, epigenetics, and developmental programming will likely increase in 
the coming years. A more complete understanding of the molecular landscape of placental tissue 
promises to advance the identification of the factors and pathways crucial for healthy child devel-
opment. Ultimately, this should contribute to better prevention and healthcare programs in the 
future, providing children the best possible start in life. 
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Abstract 
Background: Epigenetic clocks have been used to indicate differences in biological states between individuals of 
same chronological age. However, so far, only few studies have examined epigenetic aging in newborns—especially 
regarding different gestational or perinatal tissues. In this study, we investigated which birth- and pregnancy-related 
variables are most important in predicting gestational epigenetic age acceleration or deceleration (i.e., the deviation 
between gestational epigenetic age estimated from the DNA methylome and chronological gestational age) in cho-
rionic villus, placenta and cord blood tissues from two independent study cohorts (ITU, n = 639 and PREDO, n = 966). 
We further characterized the correspondence of epigenetic age deviations between these tissues.

Results: Among the most predictive factors of epigenetic age deviations in single tissues were child sex, birth length, 
maternal smoking during pregnancy, maternal mental disorders until childbirth, delivery mode and parity. However, 
the specific factors related to epigenetic age deviation and the direction of association differed across tissues. In 
individuals with samples available from more than one tissue, relative epigenetic age deviations were not correlated 
across tissues.

Conclusion: Gestational epigenetic age acceleration or deceleration was not related to more favorable or unfavora-
ble factors in one direction in the investigated tissues, and the relative epigenetic age differed between tissues of the 
same person. This indicates that epigenetic age deviations associate with distinct, tissue specific, factors during the 
gestational and perinatal period. Our findings suggest that the epigenetic age of the newborn should be seen as a 
characteristic of a specific tissue, and less as a general characteristic of the child itself.

Keywords: Epigenetic clocks, Early development, Epigenetic age, Perinatal tissues, Cord blood, Placenta, Chorionic 
villi
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Background
DNA methylation (DNAm) is considered a biomarker 
of aging, with the potential to uncover differences in the 
biological age between individuals of the same chrono-
logical age [1, 2]. Epigenetic clocks make use of individ-
ual methylation patterns to estimate epigenetic age, and 

deviations between chronological and epigenetic age 
can be used to calculate relative epigenetic age accelera-
tion (epigenetic age older than chronological age) and 
epigenetic age deceleration (epigenetic age younger than 
chronological age) in underlying tissues [3–5]. Com-
monly, these measures of epigenetic aging are calculated 
as the residuals of regressing predicted epigenetic age on 
chronological age, also called epigenetic age acceleration 
residuals (EAAR).

Epigenetic age acceleration has been linked to dif-
ferences in long-term health outcomes and all-cause 
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mortality in adults [6–8]. Changes in DNA methylation 
status have been proposed to be a mechanism by which 
environmental influences may become biologically 
embedded [9–11], and in fact, epigenetic age has been 
shown to be moderated by environmental exposures and 
lifestyle risk factors, such as education, body mass index 
(BMI), nutrition and smoking, among others [12–14]. 
"ese findings underscore the utility of epigenetic clocks 
as a means to investigate aging processes in general, and 
how these relate to environmental exposures and nega-
tive health outcomes or diseases. However, despite the 
sensitivity to and importance of epigenetic programming 
during the early developmental period [15, 16], studies 
investigating epigenetic age during the earliest phase of 
life are still underrepresented.

Various epigenetic clocks have been developed, for 
different tissues, ages and purposes [7, 17–19]. Specifi-
cally for the gestational period, two clocks for cord blood 
[20, 21], as well as two clocks for placental tissue [22, 23] 
have been established. For gestational epigenetic age esti-
mation in cord blood, both the Knight [20] and Bohlin 
[21] clocks have been used in previous studies. Apply-
ing Knight’s clock, epigenetic age deceleration has been 
linked to exposure to negative pregnancy environments 
including insulin-treated gestational diabetes mellitus 
in a previous pregnancy, maternal history of depression 
and greater antenatal depressive symptoms, maternal 
Sjögren’s syndrome and a prenatal adverse environment 
assessed with the cerebroplacental ratio, as well as nega-
tive prospective child outcomes such as early childhood 
psychiatric problems [24–26]. "ese findings, together 
with the observation that epigenetic age acceleration was 
related to a lower need of respiratory interventions, led 
to the hypothesis that gestational epigenetic age decel-
eration may be related to a lower developmental matu-
rity [27]. "is seems to be supported by results from the 
Bohlin clock, where epigenetic age acceleration has been 
associated with higher birth weight and length [28], as 
well as higher head circumference, vaginal delivery, male 
sex and higher maternal pre-pregnancy BMI [29]. How-
ever, epigenetic age acceleration has also been associated 
with lower birth length, a lower 1-min Apgar score, fetal 
demise in a previous pregnancy, maternal preeclampsia, 
maternal age over 40 years at delivery and treatment with 
antenatal betamethasone [24], thus not supporting this 
hypothesis. Despite that, it should be noted that it was 
recently shown that CpGs relevant for epigenetic aging in 
general were linked to developmental processes [30].

Regarding placental tissue, Mayne et  al. [23] found 
epigenetic age acceleration to be associated with early 
onset preeclampsia. Another study using Mayne’s 
clock reported a link between higher epigenetic age 
acceleration in the placenta and lower fetal weight and 

other growth measures among males, but increased 
fetal weight and growth among females [31]. Further-
more, placental epigenetic age deceleration has been 
associated with maternal weight gain during preg-
nancy, and for mothers of male offspring with pre-
pregnancy obesity and higher blood pressure [32]. So 
far, to our knowledge, no comparable studies were per-
formed with the placental clock presented by Lee [22]. 
Although research in this field is growing since the 
development of perinatal tissue clocks, studies consid-
ering different available clocks, and various birth- and 
pregnancy-related variables in a combined fashion, are 
largely lacking. More studies are needed to achieve a 
better understanding of the associations of epigenetic 
age deviations in perinatal tissues with exposures and 
outcomes, and especially how these deviations compare 
across tissues. Such insights are critical to gain a better 
knowledge of aging and developmental processes dur-
ing the earliest phase in life and may help to find inter-
vention strategies in the long term.
"e aim of this explorative study was to I) identify fac-

tors among various birth- and pregnancy-related vari-
ables which are most predictive of epigenetic (DNAm) 
age acceleration or deceleration in first trimester pla-
cental tissue derived from chorionic villus sampling 
(CVS), term placenta and cord blood collected at birth, 
and II) characterize the relationship between epigenetic 
age deviations across gestational and perinatal tissues 
from the same individuals.

We used data from two independent Finnish cohorts, 
the intrauterine sampling in early pregnancy study 
(ITU), and the prediction and prevention of preeclamp-
sia and intrauterine growth restriction study (PREDO). 
We assessed gestational epigenetic age in early-preg-
nancy CVS samples, and cord blood and fetal-side or 
decidual-side placental tissue sampled at birth (ITU: 
693 individuals and 1176 tissue samples from CVS and/
or term fetal placenta and/or cord blood, PREDO: 966 
individuals and 1083 samples from term decidual pla-
centa and/or cord blood). We calculated the epigenetic 
age with both available clocks per tissue, and applied 
Bohlin’s clock for cord blood [21] and Lee’s clock for 
placenta [22], based on better accuracy metrics of these 
clocks in the data sets. "e predictive power of sev-
eral birth- and pregnancy-related variables for a higher 
or lower deviance between estimated epigenetic and 
chronological gestational age (GA) was tested in every 
tissue separately, and finally, cross-tissue correlations 
were evaluated.

To the best of our knowledge, this is the first study 
of epigenetic age in CVS samples, and across multi-
ple gestational/perinatal tissues assessed from the same 
individuals.
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Methods
Study populations
"e intrauterine sampling in early pregnancy study 
(ITU) consists of Finnish women and their chil-
dren born between 2012 and 2017. "e women were 
recruited through the national voluntary prenatal 
screening program for trisomy 21, available for all preg-
nant women in Finland free of charge.

ITU study comprises two study arms.  1) Women 
in the chromosomal testing arm  had been referred 
to  the  Helsinki and Uusimaa Hospital District Feto-
maternal Medical Center (FMC)  because they had 
an  increased risk of fetal chromosomal abnormalities 
based on routine serum and ultrasound screening, age, 
and patient history. "ey underwent fetal chromosomal 
testing (CVS, amniocentesis, or noninvasive prena-
tal testing) at FMC. Women were informed about the 
study during FMC visits. If the chromosomal test indi-
cated no fetal chromosomal abnormalities, those who 
had expressed interest in participating were contacted 
for final recruitment. "ose whose chromosomal test 
results suggested a fetal chromosomal abnormality 
were not recruited. 2) Women in the no chromosomal 
testing arm underwent  the same routine screening for 
fetal chromosomal abnormalities. Based on their serum 
and ultrasound screening, age and patient history, 
they were not  referred to FMC for fetal chromosomal 
testing.  "e women were informed about ITU when 
attending the routine screening at maternity clinics. 
Women who expressed interest in participating  were 
contacted for final recruitment into this study. Both 
study arms provided placenta and cord blood samples 
for this study. CVS tissue was only acquired from the 
chromosomal testing arm participants who underwent 
CVS sampling at FMC.
"e Prediction and Prevention of Preeclampsia and 

Intrauterine Growth Restriction (PREDO) study is a 
longitudinal multicenter pregnancy cohort study of 
Finnish women and their singleton, born-alive chil-
dren between 2006 and 2010 [33]. "e recruitment 
took place when the mothers attended their first ultra-
sound screening in early pregnancy. "e PREDO com-
prises two subsamples: the clinical arm recruited based 
on having risk factors for preeclampsia and intrauter-
ine growth restriction, and the epidemiological arm 
recruited from study hospitals independently of the 
presence of risk factors.

All participating women in both cohorts signed writ-
ten informed consent forms for them and their children 
to participate in the study. "e consents enabled linkage 
of nationwide health register data using unique personal 
identification numbers assigned to all Finnish citizens 
and permanent residents since 1971.

Sampling of biological tissues
In ITU, CVS samples were taken based on medical indi-
cation between  10–15  weeks of gestation. Any CVS 
surplus tissue, not needed for clinical purposes, was 
immediately stored at − 80℃.

Placenta samples were collected after birth and mid-
wives/trained staff took nine-site biopsies (within maxi-
mum 120  min after delivery for ITU, and maximum 
90  min after delivery for PREDO). In ITU, placental 
samples were taken from the fetal side of the placenta, at 
2–3  cm from umbilical cord insertion and the biopsies 
were first stored at + 5 °C and then at − 80 °C. In PREDO, 
samples were taken from the decidual side of the placenta 
and immediately stored at − 80 °C.

For both ITU and PREDO, cord blood samples were 
taken immediately after birth by a midwife.

DNA methylation
From the collected samples, DNA was extracted accord-
ing to standard procedures. Methylation analyses were 
performed at the Max Planck Institute of Psychiatry in 
Munich, Germany. We aimed to use 400  ng DNA for 
bisulfite-conversion with the EZ-96 DNA Methylation 
kit (Zymo Research, Irvine, CA). For n = 71 CVS sam-
ples, this was not feasible and we used lower amounts of 
DNA (from 48 ng upward). We saw no relation between 
the amount of DNA and our quality control measures. 
DNA samples were run on the Illumina Infinium Meth-
ylationEPIC array (Illumina, San Diego, USA), and for 
an additional set of cord blood samples from PREDO 
on the Infinium HumanMethylation450 BeadChip (Illu-
mina, San Diego, USA). In total, methylation levels 
were assessed in n = 277 CVS samples, n = 500 placen-
tal samples and n = 437 cord blood samples from ITU 
(all assessed on the EPIC array), and in n = 140 placen-
tal samples and n = 160 cord blood samples (EPIC array) 
and an additional n = 876 cord blood samples processed 
with the 450 K array from PREDO.

Preprocessing of all methylation samples was con-
ducted using the same pipeline [34] and the R package 
minfi [35]. Scan intensity signals as stored in.idat files 
were loaded into R and transformed into beta-values.

Samples with a mean detection p value > 0.05 were 
excluded (ITU: eight for CVS, one for placenta, none for 
cord blood; PREDO: none for placenta, three for cord 
blood run on EPIC, three for cord blood run on 450 K). 
Additionally, we excluded samples presenting with dis-
tribution artifacts in raw beta-values (ITU: five for CVS, 
nine for placenta, one for cord blood; PREDO: none for 
placenta, three for cord blood run on EPIC, eight for 
cord blood run on 450 K), as well as samples showing 
sex mismatches between estimated sex (using the getSex 
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function) from methylation data and confirmed phe-
notypic sex (ITU: none for CVS, four for placenta, one 
for cord blood; PREDO: one for placenta, four for cord 
blood run on EPIC, n = 19 for cord blood run on 450 K). 
Further n = 20 samples needed to be excluded from the 
PREDO cord blood data set run on the 450 K array due 
to technical artifacts. Beta-values were normalized using 
stratified quantile normalization [36], followed by BMIQ 
[37]. Afterward, beta-values were transformed into M 
values, and batch-effects were removed using Combat 
[38]. For this, we computed a principal component anal-
ysis (PCA) on the M values and checked which batches 
were most strongly associated with the principal com-
ponents. "e strongest batches for the respective data 
set were iteratively removed (for ITU these were plate, 
array and slide in CVS; plate, slide and array in placenta; 
and plate and array in cord blood; for PREDO these were 
plate, array and slide in placenta; plate and array in cord 
blood run on the EPIC array; plate and array in cord 
blood run on the 450 K array). Corrected M values were 
re-transformed into beta-values.

In a next step, we applied MixupMapper [39] to the 
genotype and methylation data to check for possible sam-
ple mix-ups. Mix-ups occurred solely in the PREDO cord 
blood data set from 450 K array and n = 12 samples were 
removed.

For cord blood samples, contamination with maternal 
blood was tested [40] and samples identified as contami-
nated were excluded from further analyses (ITU: nine 
for cord blood; PREDO: one for cord blood run on EPIC, 
n = 19 for cord blood run on 450 K).
"e final data sets from ITU comprise 264 samples 

from CVS, 486 samples from placenta and 426 samples 
from cord blood. "e final data sets from PREDO com-
prise 139 samples from placenta, 149 samples from cord 
blood from EPIC and 795 samples from cord blood from 
450 K.
"e final data sets with sample sizes are illustrated in 

Fig. 1.

Gestational epigenetic and chronological age
Gestational epigenetic age (DNAm GA) was estimated 
for cord blood using both the methods proposed by 
Knight et al. [20] and Bohlin et al. [21]. For Knight’s clock, 
the estimation of DNAm GA was based on the methyla-
tion profile of 142 from the original 148 CpGs, due to the 
lack of 6 CpGs on the EPIC array. Excluding the missing 
CpGs from the calculation was also recommended by the 
authors [20], who reported a high correlation between 
estimates from the full and reduced epigenetic age pre-
dictor. For the calculation of DNAm GA with Knight’s 
clock, we applied the script provided by the authors on 
the raw, un-normalized data. For Bohlin’s clock, the 

estimation of DNAm GA was constituted on 88 from 
96 CpGs, also following from differences between the 
underlying arrays. DNAm GA in chorionic villi and pla-
centa samples was estimated using 558 CpGs proposed 
by Lee et al. [22]. Additionally, we estimated DNAm GA 
using 57 CpGs available on the EPIC array from the origi-
nal 62 CpGs determined by Mayne et al. [23]. A list of the 
CpGs missing on the EPIC array for the respective clocks 
can be obtained from Additional file 1.

Child chronological gestational age (GA) was based on 
fetal ultrasound, performed before 24 + 0 weeks of gesta-
tion and extracted from the Finnish Medical Birth Regis-
ter (MBR).

Cell-type composition estimations
Cell-type composition into seven cell types (nucleated 
red blood cells, granulocytes, monocytes, natural killer 
cells, B cells, CD4( +) T cells and CD8( +) T cells) in cord 
blood was estimated in minfi based on the approach pro-
posed in Gervin, Salas [41].

Cell-type composition into six cell types (nucleated 
red blood cells, trophoblasts, syncytiotrophoblasts, stro-
mal, Hofbauer, endothelial) in CVS and placenta was 
estimated using a recently published reference [42] and 
implementation within the R package planet, by applying 
the robust partial correlation algorithm [43].
"e mean estimated cell types for every data set are 

given in Additional file 2.

Genotyping and ancestry-related information
Genotyping was performed on Illumina GSA-24v2-0_A1 
arrays for ITU, and on Illumina Human Omni Express 
Arrays for PREDO, according to the manufacturer’s 
guidelines (Illumina Inc., San Diego, CA). Quality con-
trol was performed in Plink 1.9 [44] and R [45]. DNA was 
extracted from cord blood, if available, otherwise placen-
tal tissue was used. SNPs with a minor allele frequency 
below 1%, a call rate below 98%, or with deviation from 
Hardy–Weinberg-Equilibrium with a p value < 1 ×  10–05 
were removed from the analysis. Furthermore, SNPs 
mapping to multiple locations as well as duplicated vari-
ants were removed. Individuals with a genotype call-
rate below 98% were also excluded. Any pair of samples 
with IBD estimates > 0.125 was checked for relatedness. 
Within PREDO, high IBD estimates could be resolved 
due to shared ethnical origin of these individuals except 
for one pair. From this pair, we excluded one sample from 
further analysis. In ITU, seven samples were removed. 
Furthermore, individuals showing discrepancies between 
phenotypic and genotypic sex (one in PREDO, none in 
ITU) were removed.

To retrieve ancestry-related information, we performed 
multi-dimensional scaling (MDS) analysis on the IBS 
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matrix of quality-controlled genotypes [46], where avail-
able. Outliers, defined as samples presenting with a posi-
tion on any of the first ten axes of variation deviating 
more than four standard deviations from the respective 

axis’ mean, were iteratively removed until no more outli-
ers were detected. Afterward, individuals presenting with 
heterozygosity values more than four standard deviations 
away from the mean heterozygosity were also iteratively 

Fig. 1 Sample overview for both cohorts used. Samples with methylation data available from different tissues in ITU and PREDO. In total, the ITU 
data set comprised 693 individuals after QC, with 264 CVS, 486 fetal placenta and 426 cord blood samples. For some individuals, samples were 
available from several tissues, indicated by overlapping circles. The final PREDO data set comprised 171 individuals after QC processed with the EPIC 
array, and additional 795 individuals processed with the 450 K array. From the EPIC data, 139 samples were available from placenta, and 149 samples 
from cord blood. The number of individuals with data from both tissues is again illustrated by the overlapping circles



Page 6 of 17Dieckmann et al. Clin Epigenet           (2021) 13:97 

removed (none in PREDO, two in ITU). "e first two 
components were extracted and included as covariates 
in following analyses. In total, ancestry-related informa-
tion for ITU was available from 587 of the 693 individuals 
included in our analyses, for 148 of the 171 individuals 
from PREDO with methylation data from the EPIC array, 
and for 787 of the 795 individuals from PREDO with 
methylation data from the 450 K array.

Birth- and pregnancy-related variables
We included 14 birth- and pregnancy-related variables 
which were available for all tissues in both data sets.

In both cohorts, child sex, birth weight (kg), birth 
length (cm) and birth head circumference (cm) were 
measured at birth and data were extracted from the 
MBR. Maternal age (years) at delivery, early pregnancy 
BMI, calculated from weight and height verified by meas-
urement at the first antenatal clinic visit, smoking during 
pregnancy (yes or no), parity (primiparous or multipa-
rous), mode of delivery (unaided vaginal delivery or aided 
delivery, including breech, forceps, vacuum, cesarean 
section), and induction of labor (yes or no) were obtained 
from the MBR. Diagnoses of maternal diabetes disorders 
(yes for both types I & II, as well as gestational diabetes 
[ICD-10: E08-E14, O24] or none) until childbirth, and 
hypertensive pregnancy disorders such as gestational 
hypertension or pre-eclampsia in the current pregnancy 
(yes [ICD-10: O10-O14] or no), were extracted combin-
ing data from the MBR and the Finnish nationwide Care 
Register for Healthcare (CRHC). "e CRHC carries pri-
mary and subsidiary diagnoses of all inpatient and outpa-
tient hospital visits in Finland and from all treatments in 
specialized public outpatient care in Finland. In PREDO, 
the CRHC and MBR diagnoses were confirmed by a clini-
cal jury, which comprised two physicians and a study 
nurse. Diagnoses of any maternal mental or behavioral 
disorder [ICD-8 and ICD-9: 290–319; ICD-10: F00-F99] 
until child birth were extracted from the CRHC. Alcohol 
use during early pregnancy was reported by the moth-
ers (for PREDO around gestational week 12–13, for ITU 
around gestational week 20).

Statistical analyses
All statistical analyses were conducted in R version 4.0.2 
[45].

Measuring deviations between epigenetic age 
and chronological age
In previous studies, two measures of epigenetic age accel-
eration were considered, one based on the raw differ-
ence between DNAm age and chronological age, and the 
other calculated as the residuals from regressing DNAm 
age on chronological age. While the former provides a 

more intuitive interpretation and the investigation of 
the disjunct effects of epigenetic age, the latter is pref-
erable in terms of its statistical properties—it addresses 
the dependency of age acceleration on chronological age 
and is comparable across studies. "erefore, we defined 
the deviation between gestational epigenetic age (DNAm 
GA) and chronological gestational age (GA) in all statis-
tical models as the residuals (epigenetic age acceleration 
residuals, EAAR ) resulting from regressing DNAm GA 
on GA, cell types of the respective tissue and the first 
two ancestry-related components derived from geno-
typic information. A positive EAAR value suggests faster 
biological aging, i.e., a higher epigenetic than chrono-
logical age (epigenetic age acceleration), and a nega-
tive EAAR value suggests slower biological aging, i.e., a 
lower epigenetic than chronological age (epigenetic age 
deceleration).

Identi"cation of factors impacting epigenetic age 
acceleration/deceleration per tissue
Our aim was to identify those of the available birth- and 
pregnancy-related variables that were most predictive of 
higher or lower EAAR. Without sufficient prior informa-
tion enabling a hypothesis-driven selection of predictors, 
we decided to choose an appropriate data-driven variable 
selection method. Further, to reduce confounding effects, 
all predictors were evaluated in one model and correla-
tions between predictors (see Fig. 2 for an overview) were 
considered, using elastic net regressions combined with 
a bootstrap approach for an evaluation of robustness. 
Separate models were run for all tissues, and cohorts, 
including placental models from ITU (fetal) and PREDO 
(decidual).

For every model, all predictor variables and the out-
come variable (EAAR) were z-standardized, to ensure 
that the penalization was fair to all regressors and to ena-
ble the interpretation of the size of coefficients in terms 
of importance. Further, only complete observations were 
included. Bootstrapping was performed with 1000 boot-
strap samples on every input data set. On every bootstrap 
sample, an elastic net regression was fitted with the R 
package ensr [47], which is built on glment [48]. Hyper-
parameters were selected by tenfold cross-validation, 
default lambda values (n = 100) and a sequence of 11 
alpha values between 0 and 1 (by steps of 0.1). "e out-
put was grouped by bootstrap and number of non-zero 
coefficients (nzero) resulting from the different alpha lev-
els. Of these, the models with minimum mean cross-val-
idation error (cvm) with the respective parameters were 
chosen as best models (for every bootstrap and number 
of nzero). Afterwards, the percentage of a variable being 
not zero was calculated over all bootstrap samples for 
every number of nzero. Further, the median cvm over the 
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bootstrap samples was plotted for every number of nzero. 
At this point, a final number of nzero must be chosen, 
with a necessary trade-off between model complexity and 
error (bias-variance tradeoff [49]). To aid the decision of 
non-zero coefficients in smoothly decreasing curves, we 
looked at the elbow in the plot of the median cvm for 
every nzero, by using a function drawing a straight line 
from the first to the last point of the curve and finding 
the data point farthest away from this line. "is point 
can indicate the position of most decreasing cvm. "e 

respective number of nzero can be used for further anal-
ysis steps. Due to the bootstrapping procedure, there 
was still variation in the variables and their coefficients 
in the final model. If a predictor was selected in > 75% of 
the bootstrap samples, we declared it as sufficiently sta-
ble and important. "is approach for variable selection 
was referred to as variable inclusion probability (VIP) in 
a previous paper, where the authors used a comparable 
method for neuroimaging data [50]. "e median coef-
ficients and 95% confidence intervals over bootstraps, 
when the variable was not zero, were also calculated. An 
illustration of the analysis steps is given in Additional 
file 3.

Replication of cord blood "ndings between cohorts
To evaluate the predictability of the chosen predictors 
in ITU in the PREDO data set, the median coefficients 
of the identified variables in ITU were used to predict 
EAAR in PREDO. "e one-tailed Pearson correlation 
between predicted and observed EAAR values was cal-
culated. Additionally, we performed the same elastic net 
analysis applied in ITU cord blood data independently 
in the PREDO cord blood data sets to confirm that the 
directions of associations are consistent with those 
observed in ITU (Additional file 4).

Cross-tissue analyses
Pearson correlations for both DNAm GA and EAAR 
were calculated between cord blood and placenta, as well 
as between CVS and placenta and CVS and cord blood, 
for persons with multiple tissue sample available. To test 
if there are significant differences in mean age accel-
eration or deceleration between the tissues, we applied 
paired Student’s t tests, or paired Wilcoxon signed-rank 
test, between EAAR values of the respective tissues.

Complementary analyses
It has been reported that child sex can be an impor-
tant factor when considering how placenta function is 
affected by direct environmental factors [51], and sex dif-
ferences in epigenetic aging have been reported [31, 32]. 
"erefore, we repeated our analyses in placenta stratified 
by sex as described in Additional file 5.

Additionally, information about maternal alcohol use 
during pregnancy was only available in 580 samples from 
ITU, 153 samples from the EPIC array in PREDO and 
693 samples from the 450 K array in PREDO.

To avoid larger reductions in sample size for the 
remaining predictors, we did not include this variable in 
the main models per tissue, but provide it in supplemen-
tary analyses (Additional file 6).

Fig. 2 Pearson correlations among the predictor variables for ITU 
(N = 693) and PREDO (N = 171)
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Results
A summary of characteristics of the available data sets is 
given in Table 1.

Performance of epigenetic clocks in the investigated 
tissues
We first evaluated the performance of the two epigenetic 
clocks for cord blood [20, 21] and for placenta [22, 23] 
in our sample. "e clocks differ in the included CpGs, 
and only share two CpGs (cg07816074, cg16536918; 
cord blood clocks) with negative weights, and one CpG 
(cg00307685; placenta clocks) with positive weight, 
respectively. Nevertheless, we observe high Pearson cor-
relations in DNAm GA between the cord blood clocks 
(r = 0.77, p < 0.001 for ITU; r = 0.76 p < 0.001 for PREDO 
EPIC data; r = 0.51, p < 0.001 for PREDO 450 K data), and 
a medium to high Pearson correlation in the placenta 
clocks (r = 0.44, p < 0.001 for ITU; r = 0.48, p < 0.001 for 
PREDO). Scatter plots are provided in Additional file 7: 
Figure S5.

To evaluate the accuracy of an epigenetic clock, three 
main metrics have been proposed: the average difference 
between DNAm age and chronological age, the median 
absolute difference between DNAm age and chrono-
logical age, and the correlation between DNAm age and 
chronological age [4]. As shown in Table  2, the overall 

accuracy of the clocks was satisfactory, with relatively 
low median absolute deviations and high Pearson cor-
relations between DNAm age and chronological age (see 
Additional file 7: Figure S6 for scatter plots). It is evident 
from these statistics that the estimations were more pre-
cise for cord blood as compared to placenta. Further-
more, Bohlin’s clock outperformed Knight’s clock for 
cord blood and Lee’s clock outperformed Mayne’s clock 
for placenta for all of the named criteria. Based on this, 
all following analyses were conducted with Bohlin’s clock 
for cord blood and Lee’s clock for placenta. Between 
these clocks, there is no overlap in the underlying CpGs.

Factors impacting the relative epigenetic age 
in gestational and perinatal tissues
"e association between epigenetic age acceleration 
residuals (EAAR) and birth- and pregnancy-related vari-
ables was tested for cord blood, CVS and placenta tissue 
separately. "e results of the elastic net regressions are 
summarized in Fig. 3, and further statistical parameters 
can be found in Additional file 9.

Analyses in cord blood
Cord blood in  ITU Cord blood samples from ITU 
with full observations were available for 385 newborns. 
As described previously in the Methods section, nzero 

Table 1 Characteristics of available data sets: Mean (SD) or N (%) for every variable

Di"erences in predictor variables between the ITU and PREDO data sets were tested using t tests for continuous variables and  Chi2 tests for categorical variables. 
Variables that showed nominal statistically signi#cant di"erences (p < .05) are indicated as follows:
a For di"erence between ITU placenta vs. PREDO placenta data sets
b For di"erence between ITU cord blood vs. PREDO EPIC cord blood data sets
c For di"erence between ITU cord blood vs. PREDO 450 K cord blood data sets

ITU PREDO

Cord blood CVS Placenta (fetal) Cord blood (EPIC) Cord blood (450 K) Placenta (decidual)

Sample size 426 264 486 149 795 139

Gestational age (weeks) 40.04 (1.55) 12.79 (0.82) 39.99 (1.60) 39.87 (1.42) 39.74 (1.67) 39.89 (1.43)

Maternal alcohol use,  yesc 40 (10) 24 (14) 48 (10) 16 (12) 115 (17) 17 (14)

Maternal smoking,  yesa,b 18 (4) 29 (11) 20 (4) 13 (9) 32 (4) 13 (9)

Maternal mental disorders, yes 46 (11) 26 (9) 55 (11) 20 (14) 63 (8) 18 (13)

Maternal diabetes,  yesa, c 93 (22) 57 (22) 105 (22) 26 (17) 222 (28) 20 (14)

Maternal hypertensive disorder,  yesa, b, c 26 (6) 23 (9) 28 (6) 36 (24) 272 (34) 33 (24)

Maternal  BMIa, b, c 23.94 (4.21) 24.20 (4.27) 23.82 (4.16) 25.23 (5.76) 27.38 (6.30) 24.85 (5.79)

Maternal age (years)a, b, c 34.70 (4.81) 34.96 (5.75) 34.59 (4.86) 32.13 (5.00) 33.33 (5.74) 32.04 (5.17)

Multiparous,  yesb, c 193 (45) 153 (58) 235 (48) 85 (57) 558 (71) 74 (53)

Induced labor, yes 114 (27) 66 (25) 125 (26) 37 (25) 240 (30) 31 (22)

Delivery mode,  aideda 129 (30) 87 (33) 145 (30) 51 (35) 233 (30) 55 (40)

Head circumference (cm) 35.10 (1.52) 35.04 (1.73) 35.07 (1.62) 35.21 (1.36) 35.13 (2.15) 35.19 (1.34)

Birth length (cm)a, b 50.23 (2.20) 50.13 (2.24) 50.17 (2.40) 49.77 (2.48) 50.21 (2.44) 49.65 (2.53)

Birth weight (g)a 3532 (489) 3489 (526) 3534 (509) 3454 (519) 3546 (559) 3425 (523)

Child sex, female 210 (49) 124 (47) 238 (49) 73 (49) 372 (47) 72 (52)
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(number of non-zero coefficients) of the elastic net model 
was chosen by finding the most decreasing median cvm 
(minimum mean cross-validation error) across bootstrap 
samples. If a predictor was selected in > 75% of bootstrap 
samples in this model, we declared it as sufficiently stable. 
For cord blood data from ITU, the model was chosen with 
nzero = 9, and five variables were selected in a sufficiently 
stable manner: maternal smoking (97% of bootstrap sam-
ples), maternal mental disorders (83%), delivery mode 
(87%), birth length (95%) and female sex (84%). Maternal 
smoking, maternal mental disorders, aided delivery and 
higher birth length were associated with relatively higher 
EAAR; female sex was associated with relatively lower 
EAAR (see Fig. 3a).

Replication of cord blood findings in PREDO Cord blood 
data were available from both cohorts which enabled a test 
of the performance of these predictors identified in ITU 
in an independent cohort (PREDO). In PREDO, 144 sam-
ples had complete data from the EPIC array, and 766 from 
the 450 K array. "e beta matrix of median coefficients 
derived from the final model in ITU was used for a pre-
diction of EAAR in PREDO. "e one-tailed Pearson cor-
relation between predicted and true EAAR was r = 0.24, 
p = 0.002 for the EPIC array and r = 0.11, p = 0.002 for 
the 450  K array (Additional file  8: Fig. S7), supporting 
that the predictors of EAAR identified in the ITU cohort 
can be predictive for relative epigenetic age acceleration/
deceleration in independent cohorts and different array 
platforms. We then further analyzed the PREDO data sets 
independently (Additional file 4) and compared the results 
with those from ITU. "e direction of effects between the 
predictors and EAAR was consistent across cohorts; how-

ever, the strength of the associations and most predictive 
variables varied between data sets.

Analyses in placental tissues
CVS in ITU For CVS, 195 samples were available with 
full information for all predictor variables and EAAR. "e 
elastic net regression model with nzero = 8 was chosen. 
Maternal smoking was the only variable with non-zero 
coefficients in more than 75% of the bootstrap models 
(81%), and associated with relatively higher EAAR (see 
Fig. 3b).

Placenta (fetal) in  ITU For fetal placenta in ITU, 427 
complete observations were available, and the model with 
nzero = 7 was chosen. In this model, three variables had 
non-zero coefficients in > 75% of the bootstrap models: 
Child sex (99%), parity (78%) and maternal mental dis-
orders (82%). Maternal mental disorders were associated 
with relatively higher EAAR, while being multipara and 
female sex of the child were related to relatively lower 
EAAR (see Fig. 3c).

Placenta (decidual) in  PREDO For decidual placenta, 
the model could be built from 117 samples, and nzero = 6 
was selected. In this model, maternal mental disorders 
occurred sufficiently stably over the bootstrap samples 
(96%) and were associated with relatively lower EAAR 
(see Fig. 3d).

Complementary analyses
Separate analyses for male and female placentas are 
described in detail in Additional file  5. "ese analyses 
showed that the strength of association of predictors 

Table 2 Performance metrics of the four clocks in all available tissues

M = mean; SD = standard deviation; MAD = median absolute deviation; r = Pearson correlation coe$cient for DNAm GA and chronological GA; DNAm GA = DNA 
methylation gestational age; ! DNAm GA = raw di"erence between estimated DNA methylation gestational age and chronological gestational age (measured in 
weeks)
* p < 0.001

Cord blood Bohlin’s clock Knight’s clock

DNAm GA ! DNAm GA r DNAm GA ! DNAm GA r

M SD M SD MAD M SD M SD MAD

ITU 39.80 0.93 − 0.23 0.94 0.92 .83* 38.91 1.47 − 1.13 1.19 1.17 .69*

PREDO (EPIC) 39.72 0.84 − 0.16 0.90 0.98 .80* 39.23 1.39 − 0.64 1.05 0.88 .72*

PREDO (450 K) 38.84 1.14 − 0.90 1.19 1.02 .70* 38.44 2.02 − 1.29 1.90 1.55 .48*

Lee’s clock Mayne’s clock

DNAm GA ! DNAm GA DNAm GA ! DNAm GA

Placenta M SD M SD MAD r M SD M SD MAD r

ITU CVS 10.55 1.48 − 2.24 1.14 1.07 .64* 11.69 1.81 − 1.09 1.63 1.57 .43*

ITU Placenta 38.53 1.40 − 1.45 1.41 1.29 .56* 32.68 1.91 − 7.31 1.91 1.73 .28*

PREDO 38.03 1.25 − 1.85 1.24 1.10 .58* 31.69 1.44 − 8.19 1.56 1.63 .41*
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Fig. 3 Outcomes of elastic net regression models in different tissues. Associations between birth- and pregnancy-related variables (predictors) 
and EAAR (adjusted for gestational age at time of sampling, cell types and ancestry-related information). Depicted are the percentages of variable 
occurrence in bootstrap models with different number of non-zero coefficients (left) and the coefficients of variables in the final model (right) 
in cord blood from ITU (a), CVS from ITU (b), fetal placenta from ITU (c) and in decidual placenta from PREDO (d). The color coding shows the 
percentage of occurrence of a variable in the model over bootstraps and the size of the circle is proportional
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with epigenetic age acceleration/deceleration can dif-
fer between males and females. Further, some predictors 
showed tendencies of different directions of associations 
between males and females, but as these patterns were 
not sufficiently stable and strong in our analyses, this 
needs to be confirmed with larger sample sizes in future 
studies.

We additionally report analyses including maternal 
alcohol use (smaller sample sizes, n = 367 in cord blood, 
n = 133 in CVS, n = 412 in placenta from fetal side (ITU), 
and n = 106 in placenta from decidual side (PREDO)) in 
Additional file 6. Overall, maternal alcohol use does not 
seem to be strongly related to epigenetic age acceleration 
or deceleration in gestational and perinatal tissues; only a 
weak association was found with relatively higher EAAR 
in decidual placenta.

Cross-tissue analyses
To evaluate how epigenetic age and acceleration or decel-
eration relate between the tissues, we calculated Pear-
son correlations between the DNAm GAs and EAARs, 
respectively. We further tested for statistically significant 
differences in epigenetic age acceleration/deceleration 
between tissues using paired Student’s t test or paired 
Wilcoxon signed-rank test in case of unfulfilled assump-
tions for the parametric test. We illustrate the differences 
in EAARs between tissues from the same individuals in 
Fig. 4. For n = 60 children from ITU with complete tissue 
data (cord blood, CVS and fetal placenta), we illustrate 
individual differences in EAAR in Fig. 4d.

Cord blood and placenta
"e correlation between DNAm GAs of cord blood and 
placenta was significant in both ITU, r = 0.48, p < 0.001, 
and PREDO, r = 0.48, p < 0.001. "is was expected, as 
the DNAm GA is an estimator of GA, which is the same 
for these tissues at birth. However, there was no signifi-
cant correlation between the EAARs, neither in ITU, 
r = −  0.03, p = 0.53, nor in PREDO, r = 0.09, p = 0.32 
(Fig.  4a). "is suggests that individual epigenetic age 
acceleration does not correspond between cord blood 
and fetal placenta, nor between cord blood and decidual 
placenta. Furthermore, there was no indication of gen-
erally higher or lower age acceleration/deceleration in 
cord blood (M = −  0.01, SD = 0.49) and fetal placenta 
(M = − 0.02, SD = 1.11) from ITU, t = 0.16, p = 0.88, nor 
in cord blood (M = − 0.01, SD = 0.48) and decidual pla-
centa (M = 0.01, SD = 0.90) from PREDO, t = −  0.27, 
p = 0.79.

CVS and (fetal) placenta
"e correlation between DNAm GAs of CVS (at sam-
pling) and fetal term placenta in ITU was significant 
r = 0.27 p = 0.01. However, there was no significant cor-
relation between the EAARs at sampling in CVS and 
fetal placenta, r = 0.18, p = 0.11 (see also Fig. 4b). Over-
all, epigenetic age acceleration/deceleration was not sig-
nificantly higher or lower in CVS (M = 0.03, SD = 0.93) 
versus fetal placenta (M = 0.14, SD = 1.0), t =  − 0.73, 
p = 0.47.

CVS and cord blood
Neither the correlation between DNAm GAs of CVS and 
cord blood in ITU r = 0.09, p = 0.46, nor the correlation 
between the EAARs at sampling in CVS and cord blood, 
r = 0.12, p = 0.34 was significant (see Fig.  4c). Paired 
Wilcoxon signed-rank test showed no significant differ-
ence in epigenetic age acceleration/deceleration between 
CVS (M = 0.08, SD = 0.95) and cord blood (M = − 0.07, 
SD = 0.54), p = 0.32.

Discussion
Our analyses uncovered the strength and direction of 
associations between several birth- and pregnancy-
related variables with gestational epigenetic age accel-
eration or deceleration in CVS, cord blood, fetal and 
decidual placenta tissue. Further, we showed that the fac-
tors related to epigenetic aging differ between the tissues, 
and that there is no correspondence in individual epige-
netic age deviations across these tissues.

Insights from single tissue analyses
We will first discuss variables that showed associations 
with epigenetic age deviations. Among the considered 
child characteristics, we found newborn anthropometric 
data, especially birth length, to be associated with rela-
tively higher epigenetic age acceleration in cord blood. 
"is is in accordance with two other studies applying 
Bohlin’s clock [28, 29]. In contrast, anthropometric char-
acteristics of the child seem to be less associated with 
epigenetic aging in placental tissues. Female child sex was 
related to relatively lower epigenetic age acceleration in 
both cord blood and fetal placenta.

Regarding maternal characteristics, smoking during 
pregnancy was associated with relatively higher epige-
netic age acceleration. We observed this in cord blood as 
well as CVS tissue, but neither in fetal, nor decidual term 
placenta.

Furthermore, maternal mental disorders showed an 
association with epigenetic age acceleration in cord blood 
and in fetal placenta within the ITU cohort. However, in 
PREDO, maternal mental health disorders were not asso-
ciated with cord blood epigenetic age, but these disorders 
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were associated with epigenetic age deceleration in 
decidual placenta. Medical treatment can be of relevance 
when considering mental diagnoses, for example, the 

influence of considering SSRIs was reported in a previ-
ous study [52]. However, the differences between ITU 
and PREDO are unlikely to be due to differences in the 

Fig. 4 Relationship of epigenetic age acceleration/deceleration between different tissues. In children with more than one tissue available, the 
relationship of epigenetic age acceleration or deceleration between the respective tissues can be illustrated. Depicted are the scatter plots of 
EAAR for (a) cord blood and placenta from both ITU (n = 363) and PREDO (n = 116), (b) CVS and placenta from ITU (n = 78), and (c) CVS and cord 
blood from ITU (n = 66). The regression line is plotted together with a 95% confidence interval, and the Pearson correlation coefficient is depicted. 
Individual differences in EAARs between CVS, placenta and cord blood from ITU are further illustrated (d) for n = 60 children from ITU, where each 
color represents one individual.
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prevalence or treatment of mental disorders between the 
samples: the rate of mental disorders was similar across 
samples and both cohorts had similar access to care 
through the Finnish healthcare system. In both cohorts, 
lifetime occurrence of any mental disorder up to child-
birth was identified in the same way based on national 
register data. Nevertheless, some differences between the 
cohorts remain: while PREDO was enriched for partici-
pants with risk factors of pre-eclampsia and intrauterine 
growth restriction, ITU was enriched for participants 
who underwent prenatal fetal chromosomal testing. It is 
possible that these differences in the populations explain 
some discrepancies between the findings. Furthermore, 
differences in epigenetic aging may also arise from dis-
tinct biological characteristics of the two placental 
regions with different functions and tissue composition. 
In fact, cell count estimates between CVS and placenta 
but also between fetal and decidual placenta showed 
substantial differences (see Additional file 2). Altogether, 
our results support the hypothesis that maternal mental 
disorders associate with epigenetic age deviations in peri-
natal tissues. We encourage future studies, e.g. with both 
decidual- and fetal-side samples from the same individu-
als, to further evaluate tissue specificity.

Another predictor related to the mother and pregnancy 
was parity, which showed an association with epigenetic 
age deceleration in fetal placenta. Out of the variables 
related to the delivery process itself, aided delivery was 
associated with relatively higher epigenetic age accelera-
tion in cord blood.

Overall, relevant predictors for relative epigenetic age 
acceleration in gestational and perinatal tissues span 
the whole spectrum from child and mother to birth and 
pregnancy characteristics.

Our results indicate that relatively lower or higher 
epigenetic age deviation cannot be clearly assigned to 
birth- and pregnancy-related variables that are consid-
ered as being more favorable versus unfavorable in the 
context of disease risk. "is suggests that gestational 
epigenetic age acceleration or deceleration itself may 
not be linked to a higher risk for diseases per se, but 
that these associations are more complex and depend-
ent on the condition and tissue during the earliest 
phase of life. It has been proposed that adjustments 
to the maturational tempo may explain why children 
in both favorable and unfavorable environments can 
exhibit epigenetic age acceleration, as this possibly con-
stitutes specific adaptations to future challenges [53, 
54]. Recent studies in adult populations also reported 
large differences in associations with lifestyle risk fac-
tors among studies and clocks [14, 55, 56], and it was 
assumed that different epigenetic clocks may capture 

the consequences of different environmental stimuli 
[14]. Overall, it has to be noted that the mechanistic 
underpinnings of biological age and epigenetic clocks 
are still discussed and not fully understood [3, 19, 54].

Cross-tissue relationships
In addition to looking at factors associated with gesta-
tional epigenetic aging in single tissues, we investigated 
the epigenetic age relationship between tissues. "e 
estimated epigenetic age was congruent between cord 
blood and placenta, which has also been reported for 
most tissues investigated in adults so far with only few 
exceptions [7].
"ere was no evidence for one tissue being in general 

epigenetically older or showing remarkable biases toward 
epigenetic age acceleration or deceleration. However, the 
relative epigenetic age acceleration or deceleration in the 
different tissues was not concordant, i.e. a child with rela-
tively high EAAR in one tissue did not necessarily display 
relatively high EAAR in another tissue (see Fig. 4d). "is 
is in accordance with the fact that we observed different 
predictors as being the most related to epigenetic aging 
in the different tissues, and in line with the proposition 
of different characteristics of epigenetic age acceleration 
between diverse tissues [19, 57]. Although we can only 
speculate about the underlying processes at this point, 
these results suggest that the factors with strongest influ-
ence on gestational epigenetic age acceleration and decel-
eration vary between functionally different parts of one 
tissue (fetal vs. decidual placenta), developmental stage 
of the placenta (CVS vs. term placenta), and between 
placental and cord blood tissues. "is indicates that 
with the currently available epigenetic clocks for spe-
cific gestational/perinatal tissues, the epigenetic age of 
the newborn should be seen as a characteristic linked to 
the respective tissue, and less as a general characteristic 
of the child itself. "us, future health and developmen-
tal trajectories associated with gestational epigenetic age 
can be expected to show a more tissue dependent pat-
tern, too, which should be kept in mind when interpret-
ing results from one tissue. It would be interesting to see 
if a cross-tissue or phenotypic clock for the gestational 
and perinatal period, as developed for adults [4, 58], also 
shows more congruent associations of epigenetic age 
acceleration and deceleration in newborns with different 
predictors and outcomes. However, it may also be that 
tissue-specific effects are generally more pronounced in 
gestational and perinatal tissues, probably because of the 
particularly dynamic (epigenetic) processes taking place 
in these tissues, and therefore especially important to 
consider and disentangle.
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Strengths and limitations
A major strength of the present study is the inclusion of 
three different perinatal tissues. Insights into epigenetic 
age acceleration in CVS are unique, as well as the exami-
nation of epigenetic aging across gestational and peri-
natal tissues. In addition, we were able to compare and 
contrast tissues from two independent Finnish cohorts. 
While the context of recruitment for the two studies 
was different, as elaborated above, the individual predic-
tors were comparable across studies and showed very 
similar correlation structure (see Table  1 and Fig.  2). 
To thoroughly assess the impact of the different fac-
tors and account for confounding, we chose a modeling 
approach that enables the inclusion of all variables in 
one model, can deal with correlations among predictors 
and performs variable selection [59]. We restricted the 
analysis to the set of variables which were available for 
both cohorts and all tissues. On the one hand, this is a 
strength, as this approach allowed us to identify impor-
tant predictors of epigenetic aging (in cord blood) in one 
cohort, and then test these predictors in a second, inde-
pendent, cohort, to validate the findings. "ese predic-
tors are also likely to be available in many clinical settings 
and study cohorts. On the other hand, this approach has 
its limitations, as there are likely additional factors influ-
encing gestational epigenetic age acceleration/decelera-
tion, which were beyond the scope of the current study. 
Additional assessments of biological maternal variables, 
such as hormone levels, immune status and placental 
functional, could be important to better characterize 
influences on gestational epigenetic aging. Further, the 
presented results are of correlative nature, and we refer to 
perinatal factors as predictors even when they occurred 
after the measurement of the outcomes, which was done 
for consistency, modeling reasons and ease of interpreta-
tion, but does not imply a causal assumption. Studies in 
animal models or in vitro may help to better understand 
in which cases epigenetic age acceleration or deceleration 
is a cause versus consequence of other factors. Addition-
ally, we did not include any postnatal measures in this 
analysis. "us, future studies should test whether epige-
netic age deviations in any of these tissues associate with 
altered health trajectories. Furthermore, investigating 
the relationship between genetic architecture and epige-
netic aging during the gestational period was beyond the 
scope of the current analysis, but further studies incorpo-
rating similar approaches as already used for adults [60, 
61] may also provide additional insights for the earliest 
developmental phase. Apart from this, both cohorts are 
of Finnish origin, which could reduce the generalizabil-
ity of findings to other ethnicities and countries with, for 
example, lower socioeconomic status and prenatal health 
care, as well as for clinical samples. Despite the relatively 

large data resource, missing values led to a reduction of 
sample sizes, and biospecimens for more than one tis-
sue were only available for a smaller proportion of indi-
viduals. When considering differences between fetal and 
decidual placenta, it is necessary to take into account that 
these samples were not only taken from different sides 
of the placenta, but also from different individuals and 
cohorts. Future studies sampling the same placenta from 
different sides are needed to better understand potential 
biological differences.

Conclusions
Our results suggest that factors affecting the deviation 
between gestational epigenetic and chronological age 
differ between gestational and perinatal tissues. In addi-
tion, more or less favorable birth- and pregnancy-char-
acteristics were not associated with either accelerated or 
decelerated epigenetic age in a consistent direction. "is 
indicates that both epigenetic age acceleration and decel-
eration are associated with distinct risk and protective 
factors, and possibly distinct, tissue specific, develop-
mental trajectories in newborns. In line with this, there 
is no concordance between epigenetic age acceleration/
deceleration in different gestational and perinatal tissues 
from the same individual. Overall, when using the cur-
rently available tissue specific clocks, the epigenetic age 
of the newborn should be evaluated on the tissue-level 
rather than on the individual level. Considering this can 
lead to important insights in health trajectories which 
may be distinct depending on the epigenetic aging profile 
of the underlying tissue.
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Abstract
The placenta is a central organ during early development, influencing trajectories of health and disease. DNA methylation 
(DNAm) studies of human placenta improve our understanding of how its function relates to disease risk. However, DNAm 
studies can be biased by cell type heterogeneity, so it is essential to control for this in order to reduce confounding and increase 
precision. Computational cell type deconvolution approaches have proven to be very useful for this purpose. For human 
placenta, however, an assessment of the performance of these estimation methods is still lacking. Here, we examine the per-
formance of a newly available reference-based cell type estimation approach and compare it to an often-used reference-free 
cell type estimation approach, namely RefFreeEWAS, in placental genome-wide DNAm samples taken at birth and from 
chorionic villus biopsies early in pregnancy using three independent studies comprising over 1000 samples. We found both 
reference-free and reference-based estimated cell type proportions to have predictive value for DNAm, however, reference-
based cell type estimation outperformed reference-free estimation for the majority of data sets. Reference-based cell type 
estimations mirror previous histological knowledge on changes in cell type proportions through gestation. Further, CpGs 
whose variation in DNAm was largely explained by reference-based estimated cell type proportions were in the proximity 
of genes that are highly tissue-specific for placenta. This was not the case for reference-free estimated cell type proportions. 
We provide a list of these CpGs as a resource to help researchers to interpret results of existing studies and improve future 
DNAm studies of human placenta.

Keywords Cell type estimation · DNA methylation · Human placenta · Chorionic villi · Reference-based deconvolution · 
Reference-free deconvolution

Introduction

Since the Developmental Origins of Health and Disease 
(DOHaD) hypothesis was proposed, converging evidence 
supports the high importance of intrauterine conditions for 
development, as well as for health and disease outcomes 
later in life [1–3]. The placenta is a complex organ with a 
central role in fetal development and regulation of the intra-
uterine environment throughout pregnancy [4–6]. Thus, a 
better understanding of the placenta’s critical role for early 
development and its molecular landscape is key to disen-
tangling some of the mechanisms driving DOHaD-related 
developmental aspects [7]. Epigenetic processes are essential 
for placental development and function, and correspondingly 
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healthy fetal development [8, 9]. Consequently, human stud-
ies of the placental epigenome are valuable and can help 
to increase our knowledge about trajectories of health and 
disease originating in early life.

DNA methylation (DNAm) is one of the most commonly 
studied epigenetic marks and it is known to be highly tis-
sue- and cell-type-specific. Accordingly, it is important to 
distinguish direct (true) associations between the exposure 
of interest and DNAm from associations mediated trough 
or otherwise caused by placental cell type distributions [10, 
11].

To this end, cell type deconvolution algorithms have been 
developed to retrieve information about cell type compo-
sition from DNAm data. They can be mainly categorized 
into reference-based and reference-free methods [10]. Ref-
erence-based cell type deconvolution algorithms rely on bio-
logically defined 5′-C-phosphate-G-3′ (CpG) sites that are 
uniquely methylated in purified cell types and were identi-
fied in a reference sample. For reference-free deconvolution, 
no a-priori knowledge about differential methylation from 
purified cell types is necessary, but cell types are predicted 
directly from DNAm using a computational approach [12]. 
The first reference-based method to infer changes in the dis-
tribution of white blood cells using DNAm signatures was 
proposed in 2012 by Houseman et al. [13], and pioneering 
algorithms for reference-free cell type deconvolution were 
published in 2014 [14, 15]. While reference-free methods 
are useful when no reference is available, reference-based 
methods are preferred if a reference is available and there 
is no evidence for other confounders [10, 16]. To date, the 
effectiveness of reference-free cell type deconvolution for 
placenta has not been assessed, and only recently a reference 
profile for placenta was published [17]. The establishment 
and validation of this reference in 28 samples constitutes 
important progress and now allows a reference-based cell 
type estimation in placenta.

However, an assessment of the performance of this ref-
erence-based versus reference-free cell type estimation in 
placenta with larger study samples is crucial for informing 
future research. In the current study, we demonstrate the 
impact of reference-based versus reference-free estimated 
cell types on DNAm in placental tissue and compare their 
informativeness. Further, we provide an overview of esti-
mated cell types in placental samples from three independ-
ent studies, taken at birth (n = 470, n = 139, n = 137) and, 
in the largest of these three studies, also during the first tri-
mester (n = 264). Our study contributes to a more detailed 
understanding of human placental characteristics regarding 
the relatedness of DNAm and cell type composition and 
underscores the importance of considering cell types in 
future DNAm studies using placental tissue.

Materials and methods

Study populations

Placental tissue samples were collected from the InTraUter-
ine sampling in early pregnancy (ITU) study, the Prediction 
and Prevention of Preeclampsia and Intrauterine Growth 
Restriction (PREDO) study [18], and the Betamethasone 
(BET) study [19].

ITU and PREDO are Finnish cohort studies consisting 
of women and their children who were followed through-
out pregnancy and beyond. In ITU, women were recruited 
through the national voluntary prenatal screening program 
for trisomy 21. If this screening indicated an increased risk 
of fetal chromosomal abnormalities based on routine serum, 
ultrasound screening, age and patient history, women were 
offered further testing including chorionic villus sampling 
(CVS) at the Helsinki and Uusimaa Hospital District Feto-
maternal Medical Center (FMC). During this visit, women 
were informed about the ITU study. If the chromosomal 
test indicated no fetal chromosomal abnormality, those who 
had expressed interest in participating were contacted for 
final recruitment. Another set of women were informed 
about ITU when attending the routine screening at mater-
nity clinics. If interest in participating was expressed, they 
were contacted for final recruitment into the ITU study. In 
PREDO, the recruitment took place when women attended 
their first routine ultrasound screening. Some of the women 
were recruited based on having clinical risk factors for 
preeclampsia and intrauterine growth restriction, others 
were recruited independently of these factors [18]. The aim 
of the BET study was to investigate the effect of antenatal 
betamethasone on the transplacental cortisol barrier and fetal 
growth [19]. Pregnant women with preterm labor and cervi-
cal shortening were treated with a single course of antena-
tal BET  (Celestan®, MSD GmbH, Haar, Germany) for fetal 
maturation between 23 + 5 and 34 + 0 weeks of gestation and 
were recruited prospectively before birth. A gestational-age-
matched control group consisted of pregnant women who 
received no antenatal BET.

Placental tissue samples

In the ITU study, first-trimester placental biopsies were 
obtained from leftover CVS, following indications of ele-
vated risk for chromosomal abnormalities between 10 and 
15 weeks of gestation. Placenta samples were also collected 
at birth, whereby midwives/trained staff took nine-site biop-
sies (within maximum 120 min after delivery) from the 
fetal side of the placenta, at 2–3 cm from umbilical cord 
insertion. In the PREDO study, placenta nine-site biopsies 
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(within maximum 90 min after delivery) were taken from 
the decidual side of the placenta. In the BET study, full-
thickness placental biopsies were taken by a uniform random 
sampling protocol [20, 21] from both peripheral and central 
areas. All samples were stored at − 80 °C.

Throughout the manuscript, we refer to all placental sam-
ples collected at birth as ‘term placenta’, and to all placental 
CVS samples collected during early pregnancy as ‘CVS’.

DNA methylation (DNAm)

From the collected samples, DNA was extracted accord-
ing to standard procedures and DNAm was assessed using 
the Illumina Infinium MethylationEPIC array (Illumina, 
San Diego, USA). In total, DNA methylation levels were 
assessed in 1055 samples: n = 277 CVS samples (ITU), and 
n = 500 placental samples (ITU), n = 140 placental samples 
(PREDO), and n = 138 placental samples (BET) taken at 
birth. All DNAm data were pre-processed in the same way, 
using an adapted pipeline from Maksímovíc et al. [22] and 
the R package minfi [23]. Beta values were normalized using 
stratified quantile normalization [24], followed by BMIQ 
[25]. Batch-effects were removed using ComBat [26].

The final data sets comprised 264 CVS samples from ITU 
(n = 716,331 probes) and 486 placental samples (n = 665,190 
probes) from ITU, 139 placenta samples (n = 755,154 
probes) from PREDO and 137 placenta samples (n = 708,222 

probes) from the BET study. Of these, 652,341 probes over-
lapped across all four data sets.

Gestational age, child sex and ethnicity variables

Gestational age (GA) at sampling was based on fetal ultra-
sound. Child sex was extracted from the Finnish Medical 
Birth Register (MBR) in ITU and PREDO and obtained 
from postnatal assessment in the BET study. To retrieve 
information about genetic background, we performed multi-
dimensional scaling (MDS) analysis on the identity-by-state 
(IBS) matrix of quality-controlled genotypes [27]. We used 
the first two components for ITU and PREDO and the first 
four components for the BET study, as it was ethnically more 
heterogenous. In the following, we refer to these MDS com-
ponents as ‘PC 1/2/3/4 ethnicity’, respectively. This informa-
tion was available for n = 200 individuals with CVS tissue 
in ITU, and n = 439 individuals with term placental tissue 
in ITU, in n = 118 individuals with term placental tissue in 
PREDO and n = 136 individuals with term placental tissue 
in BET. Genotyping was performed on Illumina Infinium 
Global Screening arrays for BET and ITU and on Illumina 
Human Omni Express Arrays for PREDO. DNA for geno-
typing was extracted from cord blood in ITU and PREDO, if 
available, otherwise placental tissue was used in ITU. DNA 
was extracted from placental tissue in the BET study. Fur-
ther details about genotypic assessment and quality control 

Table 1  Study sample 
characteristics [Mean (SD) or N 
(%) for each variable]

ITU PREDO BET
CVS Placenta Placenta Placenta

Sample size 264 470 139 137
Phenotypes
 Gestational age 12.79 (0.82) 39.99 (1.55) 39.89 (1.43) 38.16 (1.95)
 Child sex (male) 140 (53%) 238 (51%) 67 (48%) 70 (51%)

Reference-based cell types
 Trophoblasts 0.26 (0.06) 0.01 (0.03) 0.04 (0.05) 0.13 (0.06)
 Stromal 0.17 (0.06) 0.01 (0.02) 0.04 (0.03) 0.11 (0.02)
 Hofbauer 0.00 (0.01) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00)
 Endothelial 0.00 (0.01) 0.01 (0.02) 0.08 (0.03) 0.11 (0.02)
 nRBC 0.00 (0.01) 0.04 (0.03) 0.00 (0.01) 0.00 (0.00)
 Syncytiotrophoblasts 0.57 (0.04) 0.93 (0.06) 0.83 (0.08) 0.66 (0.08)

Reference-free cell types
 C1 0.26 (0.14) 0.11 (0.09) 0.43 (0.19) 0.35 (0.2)
 C2 0.30 (0.15) 0.07 (0.07) 0.51 (0.20) 0.46 (0.2)
 C3 0.14 (0.07) 0.23 (0.13) – 0.14 (0.1)
 C4 0.10 (0.07) 0.13 (0.09) – –
 C5 0.14 (0.10) 0.13 (0.09) – –
 C6 – 0.11 (0.08) – –
 C7 – 0.09 (0.07) – –
 C8 – 0.08 (0.07) – –
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in the ITU and PREDO cohorts, as well as in the BET study, 
have been published elsewhere [28, 29].

An overview of study sample characteristics is given in 
Table 1.

Cell type composition estimation

Reference-based cell type composition into six cell types 
(nucleated red blood cells, trophoblasts, syncytiotropho-
blasts, stromal, Hofbauer, endothelial) was estimated using 
a reference recently published by Yuan et al. [17] and imple-
mented within the R package planet, by applying the robust 
partial correlation algorithm [30].

The result of this cell type estimation is the amount of the 
respective cell types in every person, while all estimated cell 
types add up to 100%.

Reference-free cell types were estimated following the 
protocol suggested in the R package RefFreeEWAS [31], 
which led to five estimated ‘cell types’ in CVS (ITU), and 
eight estimated ‘cell types’ (ITU), two estimated ‘cell types’ 
(PREDO) and three estimated ‘cell types’ (BET) in term 
placenta. We refer to cell types here, although the output of 
this procedure does not give explicit cell types, but latent 
quantities and their respective proportion for every person.

Statistical analyses

All statistical analyses were performed in R, version 
4.0.5/4.1.1 [32].

Filtering of invariable probes in DNAm

To assess the influence of cell types on DNAm, we first 
filtered for variable CpGs by excluding placenta-specific 
non-variable CpGs. We applied a procedure described by 
Edgar et al. [33] to the overlapping CpGs (n = 652,341) of all 
four placental methylation data sets from the EPIC array, to 
identify sites with < 5% range between 10 and 90th percen-
tile in DNAm beta values using our data sets. This resulted 
in 120,548 CpGs (listed in Supplementary Table S1) that 
we identified as non-variable for placental EPIC methyla-
tion data and excluded from further analyses. Identifying 
these CpGs is useful to reduce dimensionality, and becomes 
especially relevant for future studies, e.g., epigenome-wide 
association studies (EWAS), aiming to use our resources. 
Furthermore, the 1050 CpGs used to predict cell type com-
position in the model by Yuan et al. [17] were excluded from 
the following analyses to prevent circular conclusions.

Capturing DNAm variance through principal components 
and filtering of individuals

To capture the major variance in DNAm, we performed 
singular value decomposition on methylation beta values, 
and extracted the first principal component (PC1) explain-
ing most of the variance for every data set (Supplementary 
Fig. S1). For term placenta from ITU we identified n = 16 
outliers representing values greater than three times inter-
quartile-range in PC1 (see Supplementary Fig. S2a). The 
same samples showed lower sample-sample correlations in 
DNAm beta values with the other placenta samples (Sup-
plementary Fig. S2b) and presented different cell type pro-
portions (Supplementary Fig. S2c). Thus, we excluded these 
samples from the ITU placenta data set, resulting in n = 470 
term placenta samples from the ITU cohort. We calculated 
the principal components (PC) without these outliers in the 
ITU term placenta data set. For CVS from ITU and term 
placenta data sets from PREDO and BET no such outliers 
were identified.

Correlation of reference-free estimated cell types 
with reference-based estimated cell types and phenotypes

Spearman's rank correlations were calculated both between 
reference-free and reference-based estimated cell types and 
between reference-free estimated cell types and phenotypes 
(GA, child sex, ethnicity PCs and additionally fetal chro-
mosomal testing and BET administration status in the ITU 
and BET placenta, respectively) in every tissue. Adjustment 
for multiple testing was done using Bonferroni correction.

Models to predict DNAm by cell type proportions 
(reference-based versus reference-free)

To compare the impact of reference-based versus reference-
free estimated cell types on the main variance in DNAm, 
PC1 of DNAm beta values was regressed linearly on differ-
ent predictors in six models for every data set:

1. PC methylation ~ 1
2. PC methylation ~ GA at sampling + child sex + PCs eth-

nicity
3. PC methylation ~ reference-based estimated cell types
4. PC methylation ~ reference-based estimated cell 

types + GA at sampling + child sex + PCs ethnicity
5. PC methylation ~ reference-free estimated cell types
6. PC methylation ~ reference-free estimated cell 

types + GA at sampling + child sex + PCs ethnicity

Using cross-validation with 10 folds, 500 repeats and 
RMSE as loss function, implemented in the R package 
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xvalglms [34], enabled us to evaluate which model best 
explains variability in placental DNAm. This is defined by 
the number of times a particular model wins in the repeated 
cross-validation procedure, i.e., the number of times that the 
model has a smaller prediction error (RMSE, in our case) 
than all other models considered. RMSE is on the same scale 
as the outcome variable and the partitions of data were the 
same for all models. As RMSE is not comparable between 
the data sets, we additionally report the adjusted R2 values 
of the winning models.

For the BET data set, we observed outliers in RMSE in 
some of the repeats (see Supplementary Fig. S3a). After 
further exploration it became evident that these were driven 
by five samples, which were different in Hofbauer and nRBC 
cell type proportions, i.e., all samples apart from these five 
had no estimated proportions of Hofbauer and nRBC cells 
(see Supplementary Fig. S3b). We also tested if outliers in 
any of the other estimated cell types (see Supplementary Fig. 
S3c) changed the behavior of the model, but this was not the 
case. Furthermore, outliers were present in all data sets and 
are not suspicious per se in samples from heterogenous tis-
sue like placenta. Thus, we only excluded the five samples 
presenting very different in estimated Hofbauer and nRBC 
cells in the BET data set from this analysis.

We further tested how much of DNAm variability in all 
single CpGs could be explained by either reference-based or 
reference-free estimated cell types. Linear models were fitted 
for every CpG by predicting DNAm (beta values) with either 
reference-based or reference-free cell types. For every CpG, 
the adjusted R2 was extracted (see Supplementary Fig. S4 for 
a histogram of R2 values). Afterwards, CpGs with adjusted 
R2 > 0.30 in all four data sets were extracted and considered 
as CpGs at which variability of DNAm (beta values) was 
relatively strongly influenced by cell type proportions. We 
decided to use this criterion based on an evaluation of the 
histograms (Fig. S4) and as the mean adjusted  R2 values of 
the 90% quantile of all data sets was R2

Adjusted = 0.30, and 
our aim to only extract the most informative CpGs, i.e., to be 
rather strict in this selection. For the following enrichment 
analyses, the genes (20,038) mapping to all CpGs (534,510) 
overlapping between the data sets were used as background.

Enrichment analyses

All CpGs were mapped to the closest gene using the R 
package bumphunter functions annotateTranscripts and 
matchGenes [35]. Afterwards, the genes corresponding to 
the extracted CpGs were used as input for the TissueEnrich 
package [36], while the genes corresponding to all CpGs 
overlapping between the data sets (without any filtering for 
R2) were considered as background genes (n = 20,038). The 
same input and background genes were further used for the 
PlacentaCellEnrich Tool [37]. Human placental single-cell 

RNA-Sequencing data [38] were used to retrieve enrich-
ments for placenta cell-specific expression patterns. For both 
enrichment analyses we used an adjusted p value of 0.01 as 
threshold for enrichment, as recommended by the authors of 
the PlacentaCellEnrich Tool [37].

Cell type composition analyses

Differences in reference-based cell type proportions between 
the three term placenta data sets were analyzed using non-
parametric global multivariate analysis of variance [39] 
implemented in the R package npmv [40]. To test for sig-
nificant differences between the study groups, we applied 
the global test using the R function nonpartest with default 
settings, which provides F-distribution approximations, per-
forms multivariate permutation and calculates nonparamet-
ric relative effects. The global test was supplemented with a 
more detailed comparison (R function ssnonpartest) of study 
groups and cell types using the F approximation of Wilks’ 
lambda, to identify which variables/factor levels contribute 
to the significant differences, while controlling for the fami-
lywise error rate (α = 0.01).

Differences in reference-based cell type proportions 
between CVS and term placenta from the same individuals 
(n = 85, ITU) were calculated using paired Wilcoxon signed-
rank tests. All p values were corrected for multiple testing 
(n = 6 cell types) using Bonferroni correction and compared 
to α = 0.01.

Spearman correlations and Wilcoxon signed-rank tests 
were performed to test for relationships between reference-
based cell type proportions and GA and child sex (for 
every cell type separately and corrected for multiple testing 
among the n = 6 cell types using Bonferroni correction and 
α = 0.01).

Results

Reference-free estimated cell types do not map 
to reference-based estimated cell types and are 
correlated with child sex

For an illustration of the correspondence between reference-
based and reference-free estimated cell types, Spearman 
correlation coefficients are shown in Fig. 1. Although there 
were some correlations between reference-based and refer-
ence-free estimated cell types, there was no clear matching 
between reference-based estimated cell types and specific 
reference-free components. Furthermore, Spearman correla-
tion coefficients for reference-free estimated cell types and 
included phenotypes are depicted in Fig. 2. It can be seen 
that especially child sex was correlated with the reference-
free estimated cell type components.   
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Fig. 1  Plot of the Spearman correlation coefficients (**p < 0.001, 
*p < 0.01) between reference-based and reference free estimated cell 
types in a first trimester placenta (CVS) from ITU, b term placenta 
form ITU, c term placenta from PREDO and d term placenta from 
the BET study
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Fig. 2  Plot of the Spearman correlation coefficients (**p < 0.001, 
*p < 0.01) between reference free estimated cell types and phenotypes 
in a first trimester placenta (CVS) from ITU, b term placenta form 
ITU, c term placenta from PREDO and d term placenta from the BET 
study
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For the majority of data sets, reference-based 
methods predict variability of DNAm better 
than reference-free methods

To evaluate the impact of phenotypic variables (GA, 
child sex, ethnicity) vs. reference-based vs. reference-free 
cell type composition on the main variance in DNAm (PC1), 
we compared the predictive performance of six compet-
ing models: an intercept-only model (model 1), phenotype 
model (model 2), reference-based cell type model with or 
without phenotypes (model 3 and 4) and reference-free cell 
type model with or without phenotypes (model 5 and 6). 
All models were tested in each data set among individuals 
with complete information available (n = 200 for CVS from 
ITU, n = 425 for term placenta from ITU, n = 118 for term 
placenta from PREDO and n = 136 for term placenta from 
the BET study with five outliers excluded (see “Materials 
and methods”) resulting in n = 131).

The results of the cross-validation procedure for model 
selection are shown in Fig. 3. Models including cell type 
estimations always performed better than the intercept-only 
model (model 1) or a model including only phenotypes (GA, 
sex, ethnicity; model 2). In CVS data (Fig. 3a), the model 
including reference-based cell types only (model 3) gave the 
most accurate out-of-sample predictions of PC1 (80% of the 
wins), with an average prediction error of 79.58 (95% CI 
[78.57, 80.89]), followed by the model including reference-
based cell types and phenotypes. The adjusted R2 of the win-
ning model was R2

Adjusted = 0.90.
Placental samples taken from the fetal side at birth in the 

ITU cohort were the only data set where reference-free cell 
types outperformed reference-based cell types in the pre-
diction of PC1 DNAm (Fig. 3b). In this data set, the model 
including both reference-free cell types and phenotypes 
(model 6) always won, presenting with an average predic-
tion error of 72.62 (95% CI [71.97, 73.34]). The adjusted 
R2 of the winning model was R2

Adjusted = 0.92. These results 
did not change when information about fetal chromosomal 
testing (yes or no) was included as an additional phenotype 
variable in the models. In PREDO (Fig. 3c), where the pla-
cental samples were taken from the decidual side at birth, 
the model including reference-based cell types together with 
phenotypes (model 4) performed best (79% of wins) with an 
average prediction error of 111.44 (95% CI [107.08, 121.70]. 
In the BET study (Fig. 3d), where placental biopsies span-
ning from the decidual to the fetal side were collected at 
birth, the model including reference-based cell types (model 
3) won in most of the repeats (99% of wins) with an aver-
age prediction error of 87.84 (95% CI [86.48, 89.54]. When 
including BET (administered or not) as a phenotype variable 
for the BET study, the winning model was still model was 
still the model including only reference-based estimated cell 

types (model 3). The adjusted R2 of the winning model was 
R2

Adjusted = 0.86 in both the PREDO and BET placenta.
In both PREDO and BET, the second-best model was 

the other model including either both reference-based esti-
mated cell types and phenotypes (model 4, for BET) or only 
reference-based cell types (model 3, for PREDO).

The conclusions from predicting DNAm variability in 
single CpGs by either reference-based or reference-free esti-
mated cell types were concordant with the model for PC1 in 
DNAm. On average, reference-based cell types explained more 
variance (adjusted R2) in DNAm compared to reference-free 
cell types among CpGs in CVS from ITU (n = 264; R2

Adjusted 
M = 0.13, SD = 0.17 vs. M = 0.12, SD = 0.12), and in placen-
tal tissues at birth in PREDO (n = 139; R2

Adjusted M = 0.11, 
SD = 0.16 vs. M = 0.05, SD = 0.06), and in BET (n = 137; 
R2

Adjusted M = 0.10, SD = 0.13 vs. M = 0.06, SD = 0.07). Only 
placental tissues sampled at birth in ITU (n = 470), reference-
free estimated cell types explained more of the variance in 
DNAm (R2

Adjusted M = 0.18, SD = 0.18) than reference-based 
estimated cell types (R2

Adjusted M = 0.11, SD = 0.15).

CpGs with larger proportions of variability 
explained by reference-based cell types map 
to placenta-specific genes

CpGs where estimated cell type composition explained 
more than 30% of variance (adjusted R2 > 0.3) in all four 
data sets were considered as CpGs at which variability was 
relatively strongly influenced by cell type proportions. A 
list of these CpGs and corresponding genes can be found in 
Supplementary Table S2. For the reference-based model, 
this was the case for 26,092 CpGs mapping to 8511 genes. 
For the reference-free model, this was true for 531 CpGs 
mapping to 398 genes.

The results of the tissue enrichment analyses can be 
seen in Fig. 4. When using the reference-based estimated 
cell types, genes mapping to CpGs where variability was 
strongly influenced by cell types were enriched for placenta-
specific genes (Fig. 4a, p < 0.001 and fold-change = 1.291. 
We provide a list of these 186 placenta-specific genes in 
Supplementary Table S3. For reference-free estimated cell 
types, genes mapping to CpGs where variability is strongly 
influenced by cell types were not enriched for placenta-
specific genes (Fig. 4b): only 10 genes were found to be 
placenta-specific. However, there was an enrichment for 
cerebral cortex, with p < 0.001, fold-change = 2.209.

Next, we ran cell-specific enrichment analysis using a 
placenta-specific dataset (PlacentaCellEnrich Tool). Cell-
specific expression patterns can be seen in Fig. 5. Again, 
the results reflect a higher placenta-specificity when using 
the reference-based approach (Fig. 5a), showing a signifi-
cant enrichment for a number of placental cells as follows: 
syncytiotrophoblasts, villous cytotrophoblast, extravillous 
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Fig. 3  Cross-validation results 
for predicting PC1 of DNAm 
comparing 6 models (model 
1 = intercept-only; model 
2 = phenotypes (gestational 
age (GA), child sex, ethnicity); 
model 3 = reference-based esti-
mated cell types; model 4 = ref-
erence-based estimated cell 
types and phenotypes; model 
5 = reference-free estimated 
cell types; model 6 = reference-
free estimated cell types and 
phenotypes). The upper panel 
illustrates the proportions of 
wins among all repetitions for 
each model (models with zero 
wins overlap and hence not all 
colors are displayed), and the 
winning model is listed. The 
panel below shows the boxplots 
of the prediction error (root 
mean square error of prediction, 
RMSEp) for all six models with 
the number of wins for each 
model displayed at the top. The 
panel on the right is a graph 
of density estimates for the 
prediction errors. Models were 
compared independently in four 
different tissue samples, a first 
trimester placenta (CVS) from 
ITU, b term placenta form ITU, 
c term placenta from PREDO 
and d term placenta from the 
BET study
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Fig. 4  Tissue enrichment 
among genes mapped to CpGs 
with a minimum of 30% 
explained variance in DNAm 
predicted by cell type propor-
tions from a reference-based 
cell type estimation and b 
reference-free cell type estima-
tion

0

2

4

6

Plac
en

ta
Skin

Cere
bra

l C
ort

ex

Hea
rt M

us
cle

Smoo
th 

Mus
cle

Gall
bla

dd
er

Adip
os

e T
iss

ue

Adre
na

l G
lan

d

Eso
ph

ag
us
Ova

ry

Ske
let

al 
Mus

cle

Thy
roi

d G
lan

d

End
om

etr
ium
Kidn

ey

Sple
en

Ly
mph

 N
od

e

Cerv
ix,

 ut
eri

ne

Fa
llo

pia
n T

ub
e
Lu

ng

Duo
de

nu
m

Sem
ina

l V
es

icle

Stom
ac

h

Urin
ary

 Blad
de

r

Pros
tat

e

Small
 In

tes
tin

e

App
en

dix

Bon
e M

arr
ow
Brea

st
Colo

n
Liv

er

Pan
cre

as

Rec
tum

Sali
va

ry 
Glan

d
Te

sti
s

To
ns

il

−l
og

10
 (p
−a

dj
us

te
d)

0

2

4

6

Cere
bra

l C
ort

ex

Ske
let

al 
Mus

cle

Cerv
ix,

 ut
eri

ne

End
om

etr
ium

Sem
ina

l V
es

icle

Adre
na

l G
lan

d

Smoo
th 

Mus
cle

Thy
roi

d G
lan

d

Adip
os

e T
iss

ue
Ova

ry

Gall
bla

dd
er

Stom
ac

h
Brea

st

Kidn
ey
Lu

ng

Pan
cre

as

Plac
en

ta

Fa
llo

pia
n T

ub
e

Eso
ph

ag
us

Sali
va

ry 
Glan

d
Skin

App
en

dix

Pros
tat

e

Bon
e M

arr
ow
Colo

n

Duo
de

nu
m

Hea
rt M

us
cleLiv

er

Ly
mph

 N
od

e

Rec
tum

Small
 In

tes
tin

e

Sple
en
Te

sti
s

To
ns

il

Urin
ary

 Blad
de

r

−l
og

10
 (p
−a

dj
us

te
d)

a

b



 L. Dieckmann et al.

1 3

  115  Page 10 of 18

Fig. 5  Enrichment for placental 
cell-specific genes among genes 
mapped to CpGs with a mini-
mum of 30% explained variance 
in DNAm predicted by cell type 
proportions from a reference-
based cell type estimation 
and b reference-free cell type 
estimation

0

2

4

6

8

10

12

14

Syn
cy

tio
tro

ph
ob

las
t

Villo
us

 cy
tot

rop
ho

bla
st

Extr
av

illo
us

 tro
ph

ob
las

t

Fe
tal

 Fibr
ob

las
ts 

Clus
ter

 1

Stro
mal 

ce
lls 

Clus
ter

 2

End
oth

eli
al 

ce
lls 

(M
ate

rna
l)

End
oth

eli
al 

ce
lls 

(Fe
tal

)

Fe
tal

 Fibr
ob

las
ts 

Clus
ter

 2

Stro
mal 

ce
lls 

Clus
ter

 1

Dec
idu

a P
eri

va
sc

ula
r c

ell
s C

lus
ter

 1

End
oth

eli
al 

ce
lls 

(L)

Stro
mal 

ce
lls 

Clus
ter

 3

Epit
he

lia
l g

lan
du

lar
 ce

lls 
Clus

ter
 1

Hofb
au

er 
ce

lls

Epit
he

lia
l g

lan
du

lar
 ce

lls 
Clus

ter
 2

Inn
ate

 ly
mph

oc
yte

 ce
lls 

3

Dec
idu

al 
na

tur
al 

kill
er 

Clus
ter

 1

Dec
idu

a P
eri

va
sc

ula
r c

ell
s C

lus
ter

 2

Dec
idu

al 
na

tur
al 

kill
er 

Clus
ter

 3

Bloo
d N

atu
ral

 Kille
r C

ell
s C

D16
+

Plas
ma

Dec
idu

al 
na

tur
al 

kill
er 

Clus
ter

 2

Dec
idu

al 
mac

rop
ha

ge
s C

lus
ter

 2

Bloo
d N

atu
ral

 Kille
r C

ell
s C

D16
−

T ce
lls

Dec
idu

al 
mac

rop
ha

ge
s C

lus
ter

 1

Den
dri

tic
 ce

lls 
Clus

ter
 1

Dec
idu

al 
mac

rop
ha

ge
s C

lus
ter

 3

Gran
ulo

cy
tes

Mac
rop

ha
ge

s

Dec
idu

al 
na

tur
al 

kill
er 

pro
life

rat
ive

Den
dri

tic
 ce

lls 
Clus

ter
 2

−l
og

10
 (p
−a

dj
us

te
d)

0

2

4

6

8

10

12

14

Villo
us

 cy
tot

rop
ho

bla
st

Syn
cy

tio
tro

ph
ob

las
t

Dec
idu

a P
eri

va
sc

ula
r c

ell
s C

lus
ter

 2

Fe
tal

 Fibr
ob

las
ts 

Clus
ter

 2

Extr
av

illo
us

 tro
ph

ob
las

t

Stro
mal 

ce
lls 

Clus
ter

 1

Dec
idu

a P
eri

va
sc

ula
r c

ell
s C

lus
ter

 1

End
oth

eli
al 

ce
lls 

(Fe
tal

)

Epit
he

lia
l g

lan
du

lar
 ce

lls 
Clus

ter
 2

Fe
tal

 Fibr
ob

las
ts 

Clus
ter

 1

Inn
ate

 ly
mph

oc
yte

 ce
lls 

3

Stro
mal 

ce
lls 

Clus
ter

 2

Dec
idu

al 
na

tur
al 

kill
er 

Clus
ter

 3

Stro
mal 

ce
lls 

Clus
ter

 3
T ce

lls

End
oth

eli
al 

ce
lls 

(M
ate

rna
l)

Gran
ulo

cy
tes

Bloo
d N

atu
ral

 Kille
r C

ell
s C

D16
+

Dec
idu

al 
mac

rop
ha

ge
s C

lus
ter

 3

Dec
idu

al 
na

tur
al 

kill
er 

Clus
ter

 1

Dec
idu

al 
na

tur
al 

kill
er 

Clus
ter

 2

Den
dri

tic
 ce

lls 
Clus

ter
 1

End
oth

eli
al 

ce
lls 

(L)

Mac
rop

ha
ge

s

Plas
ma

Dec
idu

al 
mac

rop
ha

ge
s C

lus
ter

 1

Dec
idu

al 
mac

rop
ha

ge
s C

lus
ter

 2

Bloo
d N

atu
ral

 Kille
r C

ell
s C

D16
−

Dec
idu

al 
na

tur
al 

kill
er 

pro
life

rat
ive

Den
dri

tic
 ce

lls 
Clus

ter
 2

Epit
he

lia
l g

lan
du

lar
 ce

lls 
Clus

ter
 1

Hofb
au

er 
ce

lls

−l
og

10
 (p
−a

dj
us

te
d)

a

b



Reliability of a novel approach for reference-based cell type estimation in human placental…

1 3

Page 11 of 18   115 

trophoblast, fetal fibroblasts, stromal cells, endothelial cells 
and decidua perivascular cells. These represent the major 
cell types in the placenta [41], indicating that this approach 
accounted for the majority of confounding possible from 
cell type heterogeneity. Using the reference-free approach 
(Fig. 5b) there was only an enrichment of villous cytotropho-
blasts. A summary of parameters of the cell-specific enrich-
ment can be found in Supplementary Table S4.

Cell type composition

We next wanted to estimate the cell type proportions in the 
different study samples using the reference-based method 
(Fig. 6).

Cell type proportions in term placentas show differences 
between studies

While cell type estimates were highly similar for samples 
within a study, we observed significantly different esti-
mated cell type proportions among the three studies with 
placental samples collected at birth, according to each of 
the four test criteria (ANOVA type, Lawley-Hotelling type, 
Bartlett–Nanda–Pillai type, and Wilks’ lambda type). Test 
statistics are given in Supplementary Table S5. Nonpara-
metric relative effects, quantifying the probability that 
a value obtained from one study sample is larger than a 
value randomly chosen from the other study samples, are 
provided in Supplementary Table S6. The post-hoc testing 
procedure following the global test determined that sam-
ples from all three studies and all cell types contributed to 
these significant differences. In all three term placenta data 
sets, syncytiotrophoblasts were the main estimated cell 
type, but the highest proportion was estimated in term pla-
centa from ITU. Estimates for proportions of trophoblasts, 
stromal and endothelial cells were highest in the BET 
study sample, followed by term placenta from PREDO.

Cell type proportions show intra-individual changes 
from CVS to term Placenta

The estimated cell type proportions differed significantly 
between early-pregnancy CVS and placenta sampled at 
birth for a number of cell types. Largest differences in 
estimates were observed for stromal cells (Mdn = 17.4% 
in CVS vs. Mdn = 0.0% at birth, Z = 8.0, p < 0.001), syn-
cytiotrophoblasts (Mdn = 56.9% in CVS vs. Mdn = 95.3% 

at bir th, Z  = −  8.0, p < 0.001), and trophoblasts 
(Mdn = 24.8% in CVS vs. Mdn = 0.0% at birth, Z = 8.0, 
p < 0.001) followed by endothelial cells (Mdn = 0.0% in 
CVS vs. Mdn = 0.4% at birth, Z = − 6.1, p < 0.001), nRBC 
(Mdn = 0.0% in CVS vs. Mdn = 3.2% at birth, Z = − 7.7, 
p < 0.001). This was based on 85 individuals from the ITU 
cohort for whom both CVS and placenta tissue at birth 
were available. Syncytiotrophoblasts were the most abun-
dant estimated cell type in both CVS and term placenta 
tissue, but there was a strong median increase of 38.4% in 
this cell type from early-pregnancy to birth. The largest 
decrease from early-pregnancy to birth was in estimated 
trophoblasts from CVS to term placenta (median decrease 
of 24.8%), followed by estimated stromal cells (median 
decrease of 17.4%).

Associations between reference-based estimated cell types 
and gestational age

Finally, we wanted to see whether the estimated cell type 
proportions follow physiological changes over gestation.

Higher GA at sampling was significantly related to lower 
estimated trophoblast proportions in CVS (rs = −  0.32, 
p < 0.001) and term placenta from the BET study 
(rs = − 0.42, p < 0.001), and to higher estimated syncytio-
trophoblast proportions in CVS (rs = 0.36, p < 0.001) and 
term placenta from the BET study (rs = 0.37, p < 0.001). The 
effects were not significant, though in the same direction, 
for the other two data sets (term placenta from ITU and 
PREDO), where GA was more skewed towards higher ges-
tational age. The relationship of estimated trophoblast and 
syncytiotrophoblast proportions with GA is shown in Fig. 7.

We observed no significant relationships with GA among 
the other estimated cell types.

Similar to Yuan et al. [17] we observed no significant 
sex-specific differences in estimated cell type proportions 
in any of the study samples.

Discussion

In this study, we examined a new DNAm-based reference 
which enables reference-based cell type estimation in pla-
centa [17] in a large data set comprising over 1000 samples 
from three independent studies, with n = 746 placental sam-
ples collected at birth, and n = 264 during the first trimester 
of pregnancy. We investigated intra- as well as inter-individ-
ual differences in estimated cell type proportions. Further-
more, we compared the reference-based to a reference-free 
approach (namely, RefFreeEWAS) [31], regarding its poten-
tial to control for cell type proportions in DNAm studies of 
human placenta. We provide lists of CpGs from the EPIC 
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Fig. 6  Depicted are the mean 
and standard deviation of the 
reference-based estimated cell 
type’s proportion (raw estimates 
using the reference by Yuan 
et al. [17] and robust partial 
correlation algorithm) together 
with an illustration of the rela-
tive estimated cell type propor-
tion in a n = 264 individuals in 
CVS from ITU, b n = 470 indi-
viduals in term placenta from 
ITU, c n = 139 individuals in 
term placenta from PREDO and 
d n = 137 individuals in term 
placenta from the BET study

a

b

c

d
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array which we found to be (1) non-variable in placental 
tissue (Supplementary Table S1), and (2) highly influenced 
by cell types (Supplementary Table S2).

Using a cross-validation model focusing on the prediction 
of the major variance in DNAm, as well as an investigation 
at single CpGs level, we confirmed the importance of cell 
type composition for variability in DNAm.

At the same time, the latter shows that it is a select sub-
set of CpGs where the impact of cell type proportions on 
DNAm is especially important (Supplementary Table S2).

Both reference-free and reference-based cell type estima-
tion methods can account for variability in DNAm. However, 
for the majority of data sets, the reference-based approach 
better predicted variability of DNAm.

Generally, reference-based cell type estimation allows for 
a more direct interpretation of cell type composition. This 

Fig. 7  Scatterplots showing 
the Spearman correlation (**p 
value < 0.001) of trophoblast 
and syncytiotrophoblast propor-
tions with gestational age in a 
first trimester placenta (CVS) 
from ITU (n = 264), b term 
placenta form ITU (n = 470), 
c term placenta from PREDO 
(n = 139) and d term placenta 
from the BET study (n = 137)
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was underscored by the fact that the overlap in CpGs with 
high amount of DNAm variability explained by estimated 
placental cell types was much more consistent among the 
different data sets when using reference-based cell types 
(26,092 CpGs) versus reference-free cell types (531 CpGs). 
Furthermore, genes mapping to these CpGs with high pro-
portions of DNAm variability explained by estimated ref-
erence-based cell types were enriched for placenta-specific 
genes, while this was not the case when using the reference-
free approach (see Fig. 4). A possible reason for this could 
be that the reference-free methods do not only depict cell 
types, but further unknown sources of variance, and as such 
it is difficult to interpret what the estimated reference-free 
‘cell types’ actually reflect. This also becomes clear from 
Figs. 1 and 2, where we depict that reference-based esti-
mated cell types are not highly correlated with a specific 
reference-free cell type component, but rather with child 
sex. This might also explain why in one of the term pla-
centa data sets DNAm variability was better explained by 
reference-free compared to reference-based estimated cell 
types - probably not only cell types were covered by the esti-
mated ‘cell types’ which contributed to DNAm variability 
in the complex tissue samples. This could suggest that even 
though reference-based cell type correction approaches out-
perform reference-free approaches in most settings, cohort-
specific differences may affect the performance of these 
methods.

Overall, considering the performance of the reference-
based cell type estimation, it may be advisable to use refer-
ence-based methods, such as from Yuan et al. [17] in future 
studies investigating DNAm in human placenta.

Higher GA was associated with higher proportions of 
syncytiotrophoblasts and lower proportions of trophoblasts 
in the placenta samples collected at birth (Fig. 7). This find-
ing was congruent with the changes in estimated cell type 
composition we observed from first trimester to birth pla-
centa samples from the same individuals: trophoblast cells 
showed the largest decrease, syncytiotrophoblasts the largest 
increase. These differences in the estimated cell type propor-
tions between early and late pregnancy are probably reflec-
tive of placental maturation process [42]. Trophoblasts give 
rise to further subpopulation of cells and syncytiotropho-
blasts expand during pregnancy [5]. Yuan et al. [17] reported 
an increase in estimated syncytiotrophoblasts and endothe-
lial cells and decrease in stromal cells from first trimester to 
term placenta samples, which is again concordant with our 
results despite their comparison of samples from different 
individuals, in contrast to our within-sample design in 85 
individuals. Nevertheless, it should be mentioned that we 
cannot rule out that some of the differences in estimated 
cell type proportions may arise from differences in sampling 
and storage conditions of the CVS and the placental tissue.

Regarding child sex, Yuan et al. did not find any associa-
tion with estimated cell composition [17]. We can confirm 
this result, as there was no evidence for sex-specific differ-
ences in reference-based estimated cell type composition.

Additionally, the use of three independent studies (ITU, 
PREDO, BET) enabled us to investigate between-study 
differences in estimated cell type proportions at birth. We 
observed that cell type composition was rather consistent 
among samples within a study but different between studies. 
The larger variance in cell type proportions between studies 
(versus between individuals within a study) might reflect the 
different sampling schemes of placental tissue (see “Materi-
als and methods”). The placenta is a highly complex organ, 
which makes the sampling procedure difficult and particu-
larly prone to differences between studies [21, 43].

An important strength of our study is that we were able to 
investigate placental cell type composition in a large num-
ber of placentas from different independent studies. In addi-
tion to examining placental DNAm at birth, we included 
early-pregnancy placental CVS samples: in a subset of 85 
individuals, longitudinal data on placental DNAm both in 
early pregnancy and at birth were available, giving us the 
rare chance to examine change over time within the same 
placentas. We also provide resources that can be used for 
the interpretation and design of DNAm studies in placenta, 
especially EWAS. However, there are also some limitations: 
we rely on bioinformatic indirect deconvolution, which also 
limits our investigation to the cell types included in the refer-
ence sample [17]. This was in turn limited by the availabil-
ity of unique markers suitable for cell type selection using 
fluorescence-activated cell sorting, and dissection accuracy. 
Future tools based on single-nucleus DNA methylation anal-
yses would undoubtedly improve cell type accuracy as well 
as diversity, thus improving usefulness for deconvolution in 
bulk tissue analyses. Furthermore, we only compared one 
reference-based deconvolution to one of several (semi-) ref-
erence-free approaches available [16]. Thus, our comparison 
of performance between methods is limited to these chosen 
approaches and is only an indication of the ability of the 
reference-based method to account for variability in DNAm 
compared to another often-used reference-free approach, but 
not generalizable to all reference-free methods. Additionally, 
we only used the first principal component of DNAm in the 
cross-validation procedure for model comparison, which is 
a reduction of dimensionality and improves interpretability, 
but at the same time can only capture part of the total vari-
ation in the data.

Overall, addressing cell type heterogeneity in studies of 
DNAm is important to avoid misinterpretation of results, to 
limit confounding and increase precision by distinguishing 
changes in cell type proportions from epigenetic changes 
due to other factors, such as for example environmental 
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exposures [44]. Apart from this, cell type composition is 
also an important factor to consider for understanding gene 
regulatory mechanisms in human tissues [45] and tissue 
function overall. This study contributes to a more detailed 
understanding of the interrelation between DNAm and esti-
mated cell type composition in human placenta and stands as 
a resource to help researchers design future DNAm studies 
of human placenta and interpret results of both existing and 
future studies.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00018- 021- 04091-3.
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