English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Beyond conventional carbon activation : creating porosity without etching using cesium effect

MPS-Authors
/persons/resource/persons270579

Li,  Jiaxin
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121975

Völkel,  Antje
Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus       
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons228884

Lopez Salas,  Nieves       
Nieves Lopez Salas, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons271815

Odziomek,  Mateusz       
Mateusz Odziomek, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 8MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Li, J., Xu, Y., Li, P., Völkel, A., Saldaña, F. I., Antonietti, M., et al. (2024). Beyond conventional carbon activation: creating porosity without etching using cesium effect. Advanced Materials, 36(18): 2311655. doi:10.1002/adma.202311655.


Cite as: https://hdl.handle.net/21.11116/0000-000E-4DEE-1
Abstract
Facile synthesis of porous carbon with high yield and high specific surface area from low-cost molecular precursors offers promising opportunities for their industrial applications. However, conventional activation methods using potassium and sodium hydroxides or carbonates suffer from low yields (< 20%) and poor control over porosity and composition especially when high specific surface areas are targeted (> 2000 m<sup>2</sup>·g<sup>−1</sup>) because nanopores are typically created by etching. Herein, we demonstrate a non-etching activation strategy using cesium salts of low-cost carboxylic acids as the sole precursor in producing porous carbons with yields of up to 25% and specific surface areas reaching 3008 m<sup>2</sup>·g<sup>−1</sup>. The pore size and oxygen content can be adjusted by tuning the synthesis temperature or changing the molecular precursor. Mechanistic investigation unravels the non-classical role of cesium as an activating agent. The cesium compounds that form in situ, including carbonates, oxides, and metallic cesium, have extremely low work function enabling electron injection into organic/carbonaceous framework, promoting condensation and intercalation of cesium ions into graphitic stacks forming slit pores. The resulting porous carbons deliver a high capacity of 252 mAh·g<sup>−1</sup> (567 F·g<sub>−1</sup>) and durability of 100,000 cycles as cathodes of Zn-ion capacitors, showing their potential for electrochemical energy storage.