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Exceptional points of order n (EPns) appear in non-Hermitian systems as points where the eigen-
values and eigenvectors coalesce. Whereas EP2s generically appear in two dimensions (2D), higher-
order EPs require a higher-dimensional parameter space to emerge. In this work, we provide a
complete characterization the appearance of symmetry-induced higher-order EPs in 2D parameter
space. We find that besides EP2s only EP3s, EP4s, and EP5s can be stabilized in 2D. Moreover,
these higher-order EPs must always appear in pairs with their dispersion determined by the sym-
metries. Upon studying the complex spectral structure around these EPs, we find that depending
on the symmetry, EP3s are accompanied by EP2 arcs, and 2- and 3-level open Fermi structures.
Similarly, EP4s and closely related EP5s, which arise due to multiple symmetries, are accompanied
by exotic EP arcs and open Fermi structures. For each case, we provide an explicit example. We also
comment on the topological charge of these EPs, and discuss similarities and differences between
symmetry-protected higher-order EPs and EP2s.

Introduction.—Exceptional points (EPs) are a well-
known phenomenon of non-Hermitian (NH) systems [1–
4], which in recent years have been extensively studied
through the lens of topology [5]. EPs are truly NH de-
generacies at which not only the eigenvalues but also the
eigenvectors coalesce. To date, most research has focused
on EPs of order 2 (EP2s), where the order is set by the
number of coalescing eigenvectors. EP2s appear gener-
ically in two-dimensional (2D) parameter space [2], and
they represent the NH analog of nodal points in Weyl
semimetals [5]. EP2s give rise to unique phenomena, such
as the appearance of bulk (i-)Fermi arcs (FAs), where
real (imaginary) parts of the eigenenergies of the system
coincide [6–8]. In higher-dimensional spaces, EP2s are
promoted to more complicated structures, such as rings
and surfaces [9–12], which form the boundaries of higher-
dimensional (i-)Fermi structures [11, 13].

In order to obtain an nth-order EP (EPn), the dimen-
sion of the parameter space must be larger or equal to
the codimension 2n − 2 of the EPn [14, 15]. It follows
that no EP with n > 2 can appear naturally in 2D pa-
rameter space. At the same time, it is well established
that unitary and anti-unitary symmetries [16] local in pa-
rameter space—namely, parity-time (PT ), particle-hole
(CP) and pseudo-Hermitian (psH) symmetry, as well as
sublattice symmetry (SLS), chiral symmetry (CS) and
pseudo-chiral symmetry (psCS) [15]—reduce the num-
ber of constraints that need to be imposed in order for
EPns to emerge [11, 14, 15, 17, 18], see Table I. As
such it is possible to induce higher-order EPs in 2D pa-
rameter space. While some theoretical models featuring
symmetry-protected EP3s [15, 19–22] and EP4s [15, 23]
were discussed and few experiments exist revealing the
existence of EP3s [24–26] and EP4s [27, 28], the generic
features of EP3s and other higher-order EPs in 2D pa-
rameter space are not yet thoroughly investigated.

In this letter, we show that in addition to the already

abundant EP2s only EPs of order n = 3, 4 and 5 can be
generically induced by symmetries in 2D. We find those
symmetry-induced EPs appear in pairs. Upon further an-
alyzing the spectral structure of n-band models, we find
the following: For n = 3, we show that PT , psH, and CP
symmetry as well as CS have a very similar effect on the
spectrum. In the presence of these symmetries, the EP3s,
which scale as ∼ k1/3 [15], are intersected by a closed
curve formed by EP2s. The EP2 curve forms the bound-
ary of a 3-level i-FS (FS) on the outside (inside) with PT
and psH symmetry (CP symmetry and CS), whereas a 2-
level FS (i-FS) appears on the inside (outside), which is
intersected by a 3-level FA (i-FA) connecting the EP3s.
The presence of SLS and psCS results in a drastically dif-
ferent phenomenology. In this case, the spectrum can be
viewed as the 2-band case with an additional flat band.
Indeed, the EP3s scale as ∼ k1/2 [15, 19], and are con-
nected via 3-level (i)-FAs. We further show that whereas
the EP3s can be demoted to EP2s in fine-tuned examples
in the presence of SLS, EP2s find no room to arise in any
3-band model with psCS.

In the case of n = 4, 5, we find the emergence of EP4s
and EP5s with rich spectral features in the presence of
any two symmetries with different spectral constraints.
For n = 4, besides the EP4, we find second-order excep-
tional lines, 4-level and 2-level (i-)FSs as well as 2-level
(i-)FAs. The EP5 case amounts to the EP4 case with an
additional flat band, and as such similar spectral features
are found but with an increased degree of degeneracy.

To explicitly show our results, we provide a minimal
example for each type of structure. Our results char-
acterize symmetry-induced EPs in 2D parameter space
completely. As such, this work provides a significant con-
tribution to the study of symmetry-protected NH phases
and higher-order EPs, while they are also highly relevant
for experiments, which are often conducted in 2D [29].

Higher-order EPs.—In order for an n-band system
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TABLE I. Number of constraints for realizing EPns in n-band
systems restricted by local (anti-)unitary symmetries

Symmetry # constraints

[spectrum] n ∈ even n ∈ odd

PT /psH

[{ϵ} = {ϵ∗}]
n−1

{
Re[det[H]],

Re[tr[Hk]].
n−1

{
Re[det[H]],

Re[tr[Hk]].

CP/CS

[{ϵ} = {−ϵ∗}]
n−1


Re[det[H]],

Re[tr[Hl]],

Im[tr[Hm]].

n−1


Im[det[H]],

Re[tr[Hl]],

Im[tr[Hm]].

psCS/SLS

[{ϵ} = {−ϵ}]
n

{
det[H],

tr[Hl].
n− 1

{
tr[Hl].

combined1

[{ϵ} = {ϵ∗}∧
{ϵ} = {−ϵ}]

n
2

{
Re[det[H]],

Re[tr[Hl]].
n−1
2

{
Re[tr[Hl]].

Here k ∈ {1, . . . n}, l ∈ {2 ≤ l < n, l ∈ even} and
m ∈ {3 ≤ m < n,m ∈ odd}. Behind the number of
constraints we write the specific quantities that need to be
set to zero to find EPns. 1Here combined encompasses the
constraints enforced by any pair of symmetries above, where
the individual symmetries have different spectral constraints.

to exhibit an EPn all terms except the leading one in
the characteristic polynomial have to vanish. If we set
tr[H] = 0, which is simply a shift in the spectrum, we
can express the characteristic polynomial in terms of the
determinant and n − 2 different traces [30]: det[H] = 0
and tr[Hk] = 0 with k = 2, ..., n−1, which can be cast as
2(n−1) real constraints, which need to be simultaneously
enforced in order to find an EPn [15]. From now on we
set tr[H] = 0 in all our models. For brevity we refer to
Ref. 15 for the general case, while we here use specific
characteristic polynomials for our n-band models.

Symmetry-induced EPns.—From all unitary and anti-
unitary symmetries only those acting local in momen-
tum space reduce the number of constraints for finding
an EPn. It is shown in Ref. 15 that these symmetries
are PT , psH and CP symmetry, as well as SLS, CS and
psCS, which are defined in Appendix A. We note that
only the conditions imposed on the spectrum are impor-
tant for the study of any type of degeneracy. Thus the
symmetries can be separated into three pairs, namely,
PT and psH symmetry, CP symmetry and CS, and psCS
and SLS. The spectral constraint of each pair and the re-
maining constraints on the occurrence of EPns in n-band
systems are derived in Ref. 15 and listed in Table I.

The mechanism of finding higher-order EPs in 2D is
as follows: Two constraints can be generically fulfilled
without any fine-tuning in a generic 2D parameter space.
Assuming periodicity, each constraint defines a closed
curve, such that at the intersections of the curves EPs
occur pairwise. If we impose symmetries on the system
that reduce the number of constraints for finding EPns
to two, EPns thus generically appear in pairs in 2D.

In the presence of a single symmetry only EP3s can be
generically realized in two dimensions, cf. Table I. How-
ever, if two symmetries with different spectral constraints
are simultaneously enforced on a system, the number of
constraints one needs to impose to obtain an EP is fur-
ther decreased, cf. the last row of Table I. Thus EP4s
and EP5s also occur in 2D in the presence of two dif-
ferent symmetries, whereas EPns with n ≥ 6 cannot be
generically induced by (anti-)unitary symmetries in 2D.
EP3s.—To study the behavior of EP3s in 3-band

systems we decompose the Hamiltonian in terms of
the traceless, linearly independent Gell-Mann matrices
Ma, with a = 1, ..., 8, which are generators of SU(3)
with the property Ma = (Ma)† (details are provided
in Appendix B). Any 3-band Hamiltonian is given by
H(k) = h(k) ·M , where M = (M1,M2, ...,M8)T is the
vector of the Gell-Mann matrices and h(k) are complex-
valued parameters that can be written as h(k) = hR(k)+
ihI(k). We introduce

ν = det[H]/2 and η = −tr[H2]/6, (1)

such that characteristic polynomial can be expressed as
P3 = ϵ3 + 3ηϵ− 2ν.
Degeneracies are obtained by setting the discriminant

of P3 to zero, i.e., D3 = −108(η3 + ν2) = 0. An EP3
occurs iff ν = η = 0, while we note that EP2s appear
when η3+ν2 = 0 [31]. The closed curves defined by ν = 0,
η = 0 and η3 + ν2 = 0 divide the parameter space into
different regions with different spectral structures. This
structure around the EP3s depends on the symmetry that
induces the EPs, as we will see in the following.
PT /psH-symmetry induced EP3s.—In the presence of

PT or psH symmetry, either all eigenvalues are real, or
one is real and the other two appear as complex conjugate
pairs. This results in ν, η ∈ R. Using Cardano’s method
we can diagonalize the Hamiltonian. With α± = (ν ±√
η3 + ν2)1/3 and β = (1+i

√
3)/2 = exp(iπ/3) the three

eigenvalues are given by

ϵ1 = α+ + α−, ϵ2 = −β∗α+ − βα−,

ϵ3 = −βα+ − β∗α−.
(2)

Let us start by considering the closed EP2 line η3 +
ν2 = 0, which contains the pair of EP3s at ν = 0 = η.
All other points on this line yield α± = 3

√
ν ̸= 0, such

that ϵ1 ̸= ϵ2 = ϵ3 with all eigenvalues real. The pair of
EP3s are thus connected by two EP2 arcs, which form
the boundaries to the regions η3+ν2 > 0 and < 0 on the
in- and outside, respectively. If η3 + ν2 > 0 and ν ̸= 0,
then α± ∈ R, and the eigenvalues are ϵ2 = ϵ∗3 ∈ C and
Re(ϵ2/3) ̸= ϵ1 ∈ R. Since Re(ϵ2) = Re(ϵ3) we obtain a
2-level FS. On the line ν = 0, we find that η3 + ν2 > 0
implies η > 0, and we obtain α± = ±√

η such that ϵ1 = 0
and ϵ2 = i

√
3η = ϵ∗3 ∈ iR. Therefore, the real part of all

three eigenvalues coincide and this line corresponds to a
3-level FA, separating the 2-level FS and connecting the
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FIG. 1. PT /psH-symmetry-induced EP3s. (a) Sketch of the generic spectral structure around a PT /psH-symmetry-induced
pair of EP3s. Note that η3 + ν2, η, ν < 0 outside the black, blue and red curves, respectively. (b)-(g) Spectral structure of the
PT -symmetric model defined in Eq. (3) with ξ = 0.1: (b) shows the maximum of the absolute value of the complex gap ∆ϵ,
which disappears at the EP3 pair. On top, we plot the curves η, ν, η3 + ν2 = 0; (c) highlights the minimum of |∆ϵ|, at which
EP2 lines appear connecting the EP3 pair; in (d) and (e) the maximum of Im(∆ϵ) and the minimum of Re(∆ϵ) emphasize
the 3-level i-FS and the 2-level FS, respectively; (f) highlights the 3-level FA separating the two 2-level FS; and (g) shows the
minimum overlap of any pair of eigenvectors, which is one at the EP3s.

EP3s. Considering η3 + ν2 < 0 instead, which implies
η < 0, we obtain α+ = α∗

− independent of the sign of ν.
As such, ϵi ∈ R and ϵ1 ̸= ϵ2 ̸= ϵ3. Since Im(ϵi) = 0 for all
three eigenvalues, the region η3 + ν2 < 0 forms a 3-level
i-FS. We show all these features in Fig. 1(a).

To explicitly show the appearance of these generic fea-
tures, let us introduce a PT -symmetric model

HPT (k) = sin(kx)M
2 + hsM

3 + sin(ky)M
4

+ iξ
(
M1 +M5 +M6

)
,

(3)

with hs = 2 − cos(kx) − cos(ky). This model obeys PT
symmetry HPT (k) = PT H∗

PT (k)(PT )−1 with the gen-

erator PT = 13

3 +M3 − M8
√
3
. In Figs. 1(b)-(g), we plot

the EP3s, EP2 lines, FSs and FAs for this model, and we
see all the predicted features. In Appendix C we show
the same features appear for a psH-symmetric model.

CP-symmetry/CS-induced EP3s.—CP symmetry and
CS [32] have a very similar effect on the band structure
as PT and psH symmetry: Indeed, also in the presence
of these symmetries, EP3s appear in pairs connected via
EP2 lines. However, due to the additional minus sign
in the constraints on the eigenvalues, cf. Table I, all
the open Fermi structures as shown in Fig. 1(a) are now
i-Fermi structures and vice versa. Moreover, those struc-
tures that appeared on the in(out)side of the EP2 curve
now appear on the out(in)side. In Appendix D we de-
rive the generic spectral features in the presence of CP
symmetry and CS explicitly, and also include examples.

psCS/SLS-induced EP3s.—Due to the spectral sym-
metry and the odd number of bands, one eigenvalue of a
psCS or SLS 3-band system is always ϵ = 0. Therefore,
we obtain ν = det[H]/2 = 0, which simplifies the expres-

sion of the remaining eigenvalues. The diagonalization of
the Hamiltonian yields

ϵ0 = 0, ϵ+ = +i
√
3
√
η, ϵ− = −i

√
3
√
η. (4)

Since η ∈ C, there are two real constraints that need
to be imposed on the system. These constraints follow
from the generic constraint η = 0, and can be written
as d2

R − d2
I = 0 and dR · dI = 0. The curve given by

dR · dI = 0 defines two rather simple FAs. In the region
with d2

R − d2
I > 0, the eigenvalues are purely real and

we obtain a 3-level i-FA. However, if d2
R − d2

I < 0, the
eigenvalues are purely imaginary and the curve defines a
3-level FA. In 3-band systems with psCS and SLS there
are no more generic spectral features in 2D.
These features are captured by the 3-band example

Hamiltonian with psCS that reads

HpsCS(k) = sin(kx)M
1 + hsM

5 + sin(ky)M
6

+ iξ
(
M1 +M5 +M6

)
,

(5)

with hs = 2 − cos(kx) − cos(ky). Here, the psCS is de-
fined by HT

psCS(k) = −XHpsCS(k)X
−1 with the genera-

tor X = 13

3 + M3 − M8
√
3
. The spectral structure of this

model is shown in Fig. 2. In Appendix C we show a
model with SLS displaying the same spectral features.
It is important to note that the constraints to find

EP3s in 3-band systems with psCS/SLS are nearly iden-
tical to those for finding EP2s in 2-band systems without
symmetries [5]. As such, these EP3s not only come in
pairs connected via FAs but also display a square-root
energy scaling [15]. We further note that in the presence
of psCS no EP2s can occur in 3-band systems. We prove
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FIG. 2. Spectral structure of psCS-induced EP3s in the model
defined in Eq. (5) with ξ = 0.5. (a) highlights the EP3 pair,
while also depicting the closed curves on which the constraints
are fulfilled; (b) and (c) show the real and imaginary 3-level
FAs, respectively; (d) displays the minimum overlap of eigen-
vector pairs of the model to verify the third-order EPs.

this no-go theorem in Appendix E. This is not the case
for SLS, where EP2s accompanied by an orthogonal flat
band can occur in fine-tuned examples. In this case, the
spectrum looks identical to that of the EP3 case and the
spectral winding numbers take equal values. Moreover,
the constraints for finding EP2s in a 3-band model with
SLS are identical to the constraints for finding EP3s. As
such, one would have to calculate the Jordan decompo-
sition to determine the order of the EPs. Alternatively,
one could study the geometric phases picked up by the
eigenvectors upon encircling an EP, which is different for
an EP2 and an EP3 with a flat band [33]: Whereas one
needs to encircle the EP twice to return to the initial
eigenvector in both cases, a geometric phase of π is picked
up if the EP is of order 2, whereas no geometric phase is
acquired in the EP3 case [33]. In Appendix E we show a
model with SLS, which hosts an EP2 pair.

Symmetry-induced EP4s and EP5s.—Lastly, we turn
to 4- and 5-band models in the presence of two sym-
metries with different spectral constraints realizing EP4s
and EP5s, respectively. We refer to Appendix F and
Appendix G, respectively, for technical details, and only
qualitatively discuss these cases here. In the 4-band case,

the eigenvalues read ϵ±1,±2 = ±1

√
η̃ ±2

√
η̃2 − ν̃ with

ν̃ = det[H], η̃ = tr[H2]/4, and ν̃, η̃ ∈ R. An EP4 is found
when ν̃ = η̃ = 0. Since ν̃ = 0 and η̃ = 0 are closed curves
in 2D parameter space the EP4s indeed appear in pairs.
The symmetry induced EP4s scale as ∼ k1/2 contrary to
generic EP4s, which scale as ∼ k1/4. Upon analyzing the
equations further, we find rich spectral features, such as

EP2 lines as well as 2- and 4-level (i-)FSs as shown in
Fig. 3. We provide a detailed discussing on the origin of
these features in Appendix F, where we also introduce
an explicit example.

For the 5-band case, we find the eigenvalues are nearly
identical to the 4-band case plus a zero-eigenvalue, i.e.,

ϵ0 = 0, ϵ±1,±2
= ±1

√
η̃ ±2

√
η̃2 − κ with η̃ = tr[H2]/4

and κ = {[tr(H2)]2 − 2tr(H4)}/8, such that the con-
straints on the eigenvalues lead to η̃, κ ∈ R. EP5s occur
if η̃ = 0 = κ. Due to the strong overlap with the EP4
case, we can straightforwardly extend the 4-band spec-
tral structure towards the 5-band case by substituting ν̃
with κ as discussed in the caption of Fig. 3. We refer
to Appendix G for a detailed derivation of the generic
features, and an explicit example Hamiltonian.

Similar to our previous considerations of EP2s in 3-
band systems with SLS, we emphasize that it is not pos-
sible to distinguish EP5s from EP4s with an orthogonal
flat band using the spectral structure alone. In fact to
any 4-band model with symmetry-induced EP4s a flat
band can be added without affecting the symmetry con-
straints. To subsequently determine whether the EP4 is
rendered an EP5 or is still an EP4, one would again have
to compute the Jordan decomposition.

Topological charge.—We note that in the presence of
PT , psH, and CP symmetry as well as CS the presence
of EP2 arcs connecting the EP3s hinders a proper def-
inition of the topological charge of an EP3. Similarly,
in the 4- and 5-band cases, the EP4s and EP5s are con-
nected via EP2 and EP3 lines, respectively, such that it is
also not possible to define a charge. Therefore, the only
instance in this letter in which one can compute a topo-
logical charge is in the 3-band case with psCS or SLS. To
define the topological charge, we generalize the vorticity
v introduced in Refs. 34 and 35 to 3-band systems with
psCS and SLS by taking the difference of the two disper-
sive bands, i.e., ∆ϵ(k) = ϵ+(k)− ϵ−(k). The vorticity is
then defined by v = −

∮
C

dk
2π · ∇karg [∆ϵ(k)] for a closed

curve C that encircles a single EP, and can take the val-
ues ±1/2. The sum over all EPs in the system must be
0, and thus the charge of the EP3s of a single pair is
opposite. We note that the EP3s with a flat band thus
have the same vorticity as EP2s. However, as mentioned
previously, the geometric phase picked up by the eigen-
vectors when encircling an EP does provide a different
signature for the EP2 and EP3 case [33].

Definition of EPns.—In the above cases, we saw that
symmetry-induced higher-order EPs often appear with
characteristics very similar to lower-order EPs. Indeed,
we find EP3s as well as EP4s and EP5s, which look like
EP2s in the sense that they have a square root disper-
sion. In this letter, we use the strict definition that an
EPn is defined as having an n-fold spectral degeneracy
accompanied by the coalescence of n eigenvectors onto
one, such that we define a 3-fold degeneracy at which 2
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FIG. 3. Spectral structure of symmetry-induced EP4s. On the left side there is a sketch of the different regions in 2D parameters
space, which are defined by the constraints we have to impose to realize EPs. Each line and region is labeled with (i)-(ix),
and on the right their generic complex spectrum is displayed. We note that (v) and (vii) also reveal a 2-level FA and i-FA,
respectively. The spectral structure of EP5s is similar to the structure of EP4s. By substituting ν̃ with κ and adding a flat
band at zero, we obtain the eigenvalue structure around an EP5 pair. The flat band promotes the EP4s to EP5s [(i)], the EP2
lines to EP3 lines [(v) and (vii)], the 4-level (i-)FSs to 5-level ones [(iv) and (viii)], and the 2-level (i)-FAs and (i-)FSs to 3-level
ones [(v)-(vii)].

eigenvectors coalesce as an EP2, cf. Appendix E. This
interpretation is further supported by the different geo-
metric phases picked up when encircling an EP2 and an
EP3 [33].

Discussion.—In this letter, we exhaustively discussed
the appearance of symmetry-induced higher-order EPs
in 2D parameter space. We showed that while several
(anti-)unitary symmetries exist that reduce the codimen-
sion of the EPs, these symmetries can be divided into
three groups based on their resulting spectral constraints.
As such, all the cases discussed in this work completely
characterize all the possible symmetry-protected multi-
band spectral features in 2D. For EP3s we derived the
full spectral structure depending on the underlying sym-
metry. We showed that each pair of EPs is accompanied
by a generic spectral structure, which generally includes
exceptional arcs as well as open Fermi structures of var-
ious degrees. Further we showed that due to multiple
symmetries EP4s and EP5s are induced in 2D parame-
ter space. These EPs also have to appear in pairs, and
the spectral structure around them is independent of the
specific symmetries of the system.

We note that 3-band models with PT symmetry and
SLS were also considered in Ref. 19 [36]. There the au-
thors identify the same features as in Fig. 1(a) except for
the 3-level FA and i-FS, whereas for the SLS case their
findings correspond to what we show in Fig. 2. More-
over, our work adds a nuance to the statement in Ref. 19,
where it is mentioned that no EP2 may occur in a 3-band
model with SLS. Here we show that while EP2s indeed do
not generically appear in the presence of this symmetry,
fine-tuned models can be found in which EP2s do arise
as shown in an explicit example in Appendix E. Instead,
we proof that there is no room for EP2s to arise in the
presence of psCS, cf. Appendix E.

This letter not only provides full theoretical insight
into symmetry-protected multi-band features in 2D but
is also highly relevant for experiment, where non-
Hermiticity finds many applications is dissipative meta-
materials [29]. Indeed, all the features discussed in this
letter are the only ones that could generically appear
in 2D besides EP2s [2, 12], and we expect they can be
straightforwardly engineered in a plethora of different
experimental platforms, ranging from optical metasur-
faces [12] to optical fibres [37] and microcavities [38],
where symmetry-protected EP3s have already been ob-
served [24, 26].
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[31] Y. S. Patil, J. Höller, P. A. Henry, C. Guria, Y. Zhang,
L. Jiang, N. Kralj, N. Read, and J. G. Harris, Mea-
suring the knot of non-hermitian degeneracies and non-
commuting braids, Nature 607, 271 (2022).

[32] We note that even though strictly speaking there is no
CS with n ∈ odd, we nevertheless consider this case here
in line with the NH literature.

[33] G. Demange and E.-M. Graefe, Signatures of three coa-
lescing eigenfunctions, Journal of Physics A: Mathemat-
ical and Theoretical 45, 025303 (2011).

[34] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and
F. Nori, Edge modes, degeneracies, and topological num-
bers in non-hermitian systems, Phys. Rev. Lett. 118,
040401 (2017).

[35] H. Shen, B. Zhen, and L. Fu, Topological band theory
for non-hermitian hamiltonians, Phys. Rev. Lett. 120,
146402 (2018).

[36] We note that in Ref. 19, SLS is referred to as chiral sym-
metry, whereas what we call CS is not discussed in that
work. Here, we use the definitions as in Refs. 15 and 16.

[37] A. Bergman, R. Duggan, K. Sharma, M. Tur, A. Zadok,
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[38] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda,
G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang,
Parity–time-symmetric whispering-gallery microcavities,
Nature Physics 10, 394 (2014).

[39] We note that even though strictly speaking there is no
CS with n ∈ odd, we nevertheless consider this case here
in line with the NH literature.

Appendix A: Local symmetries of non-Hermitian
Hamiltonians

In Table II we summarize the definitions of the sym-
metry operations of the six local unitary and antiuni-
tary symmetries that reduce the number of constraints
on EPns. Note that in this letter, we always choose the
operator A ∈ {T , C} such that AA∗ = 1 but our conclu-
sions also hold for AA∗ = −1.

https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.48550/arXiv.1708.05841
https://doi.org/10.48550/arXiv.1708.05841
https://doi.org/10.1126/science.aap9859
https://doi.org/10.1103/PhysRevLett.118.045701
https://doi.org/10.1038/s41566-019-0453-z
https://doi.org/10.1103/PhysRevB.99.041406
https://www.nature.com/articles/nature14889
https://doi.org/10.1103/PhysRevA.98.042114
https://doi.org/10.1103/PhysRevA.98.042114
https://doi.org/10.1103/PhysRevLett.127.186602
https://doi.org/10.1103/PhysRevLett.127.186602
https://doi.org/10.1103/PhysRevResearch.4.023130
https://doi.org/10.1103/PhysRevResearch.4.023130
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevB.99.041202
https://doi.org/10.1103/PhysRevB.99.041202
https://doi.org/10.1103/PhysRevLett.127.186601
https://doi.org/10.1103/PhysRevLett.127.186601
https://doi.org/10.1103/PhysRevA.101.033820
https://doi.org/10.1103/PhysRevA.101.033820
https://doi.org/10.14311/AP.2017.57.0454
https://doi.org/10.1103/PhysRevB.99.054404
https://doi.org/10.1103/PhysRevB.99.054404
https://doi.org/10.1103/PhysRevB.104.L121109
https://www.nature.com/articles/nature23280#citeas
https://doi.org/10.1038/s41598-017-03546-7
https://doi.org/10.1038/s41598-017-03546-7
https://doi.org/10.1103/PhysRevA.101.063829
https://doi.org/10.1103/PhysRevA.101.063829
https://doi.org/10.1103/PhysRevX.6.021007
https://doi.org/10.1103/PhysRevA.97.012121
https://www.nature.com/articles/s41563-019-0304-9
https://www.nature.com/articles/s41563-019-0304-9
https://doi.org/10.48550/arXiv.1212.6972
https://doi.org/10.1038/s41586-022-04796-w
https://doi.org/10.1088/1751-8113/45/2/025303
https://doi.org/10.1088/1751-8113/45/2/025303
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1038/s41467-020-20797-7
https://doi.org/10.1038/nphys2927


7

TABLE II. Summarized definitions of local (anti-)unitary
symmetries

Symmetry Symmetry constraint energy constraint

PT H(k) = PT H∗(k)(PT )−1 {ϵ(k)} = {ϵ∗(k)}
psH H(k) = ςH†(k)ς−1 {ϵ(k)} = {ϵ∗(k)}
CP H(k) = −CPH∗(k)(CP)−1 {ϵ(k)} = {−ϵ∗(k)}
CS H(k) = −ΓH†(k)Γ−1 {ϵ(k)} = {−ϵ∗(k)}
psCS HT (k) = −XH(k)X−1 {ϵ(k)} = {−ϵ(k)}
SLS H(k) = −SH(k)S−1 {ϵ(k)} = {−ϵ(k)}
Here the unitary operator U ∈ {ς,Γ, X,S,P} satisfies
U2 = 1, while the antiunitary operator A ∈ {T , C} obeys
AA∗ = 1.

Appendix B: Generalized Gell-Mann matrices

The basis matrices of n-band systems are the general-
ized Gell-Mann matrices λa with a ∈ {1, ..., n2 − 1} that
span the Lie algebra of the SU(n) group. We note that
the term Gell-Mann matrices is commonly used for the
matrices associated with SU(3), while we use the gener-
alization to higher order to describe 4-band and 5-band
systems. The matrices are traceless, i.e., tr[λa] = 0, and
self-adjoint (λa)† = λa. They satisfy the relations[

λi, λj
]
= 2ifijkλ

k, (6){
λi, λj

}
=

4

N
δij1n + 2dijkλ

k, (7)

where 1n denotes the n×n identity matrix, and dijk and
fijk the symmetric and anti-symmetric structure con-
stants, respectively, defined by

dijk =
1

4
tr
(
λi{λj , λk}

)
, (8)

fijk = − i

4
tr
(
λi[λj , λk]

)
. (9)

In the main text we use the generalized Gell-Mann ma-
trices for n = 3, 4, 5. The Gell-Mann matrices associated
with SU(3) are

M1 =

0 1 0

1 0 0

0 0 0

 , M2 =

0 −i 0

i 0 0

0 0 0

 , (10)

M3 =

1 0 0

0 −1 0

0 0 0

 , M4 =

0 0 1

0 0 0

1 0 0

 , (11)

M5 =

0 0 −i

0 0 0

i 0 0

 , M6 =

0 0 0

0 0 1

0 1 0

 , (12)

M7 =

0 0 0

0 0 −i

0 i 0

 , M8 =


1√
3

0 0

0 1√
3

0

0 0 −2√
3

 . (13)

The generalized Gell-Mann matrices spanning the SU(4)
Lie algebra are given by

Λ1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , Λ2 =


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 ,

Λ3 =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 , Λ4 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 ,

Λ5 =


0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

 , Λ6 =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 ,

Λ7 =


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 , Λ8 =


1√
3

0 0 0

0 1√
3

0 0

0 0 −2√
3

0

0 0 0 0

 ,

Λ9 =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 , Λ10 =


0 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 0

 ,

Λ11 =


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 , Λ12 =


0 0 0 0

0 0 0 −i

0 0 0 0

0 i 0 0

 ,

Λ13 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 , Λ14 =


0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0

 ,

Λ15 =


1√
6

0 0 0

0 1√
6

0 0

0 0 1√
6

0

0 0 0 −3√
6

 .

(14)



8

The generalized Gell-Mann matrices spanning the SU(5) Lie algebra are given by

W 1 =


0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , W 2 =


0 −i 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , W 3 =


1 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , (15)

W 4 =


0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , W 5 =


0 0 −i 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , W 6 =


0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

 , (16)

W 7 =


0 0 0 0 0

0 0 −i 0 0

0 i 0 0 0

0 0 0 0 0

0 0 0 0 0

 , W 8 =



1√
3

0 0 0 0

0 1√
3

0 0 0

0 0 −2√
3

0 0

0 0 0 0 0

0 0 0 0 0

 , W 9 =


0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

 , (17)

W 10 =


0 0 0 −i 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0

 , W 11 =


0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

 , W 12 =


0 0 0 0 0

0 0 0 −i 0

0 0 0 0 0

0 i 0 0 0

0 0 0 0 0

 , (18)

W 13 =


0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0

 , W 14 =


0 0 0 0 0

0 0 0 0 0

0 0 0 −i 0

0 0 i 0 0

0 0 0 0 0

 , W 15 =



1√
6

0 0 0 0

0 1√
6

0 0 0

0 0 1√
6

0 0

0 0 0 −3√
6

0

0 0 0 0 0

 , (19)

W 16 =


0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

 , W 17 =


0 0 0 0 −i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0

 , W 18 =


0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

 , (20)

W 19 =


0 0 0 0 0

0 0 0 0 −i

0 0 0 0 0

0 0 0 0 0

0 i 0 0 0

 , W 20 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

 , W 21 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i

0 0 0 0 0

0 0 i 0 0

 , (21)

W 22 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

 , W 23 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i

0 0 0 i 0

 , W 24 =



1√
10

0 0 0 0

0 1√
10

0 0 0

0 0 1√
10

0 0

0 0 0 1√
10

0

0 0 0 0 −4√
10


. (22)
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FIG. 4. Spectral structure of psH-symmetric model defined
by Eq. (23) with ξ = 0.15: (a) shows the EP3 pair by plot-
ting the largest value of the absolute value of the complex
gap ∆ϵ. Further the curves given by the constraints are plot-
ted; (b) highlights the EP2 lines connecting the EP3 pair by
showing the minimum of |∆ϵ|; (c) shows the 2-level FS and
(d) highlights the 3-level FA separating the two 2-level FSs;
; (e) emphasizes the 3-level i-FS; (f) shows the the minimum
overlap of any pair of eigenvectors to prove that the threefold
degeneracies are truly EP3s.

Appendix C: Additional 3-band models with
symmetry-induced EP3s

Model for psH-symmetry-induced EP3.—The generic
spectral structure in Fig. 1 derived in the main text can
be shown for a Hamiltonian with psH symmetry in addi-
tion to the PT -symmetric example provided in the main
text. The model Hamiltonian is given by

HpsH(k) = sin(kx)
(
M3 +M8

)
+ sin(ky)M

5

+ hsM
4 + iξ

(
M1 +M6

)
,

(23)

with hs = 2 − cos(kx) − cos(ky). This model obeys psH
symmetry HpsH(k) = ςH∗

psH(k)ς
−1 with the generator

ς = 13

3 +M3 − M8
√
3
. The spectral structure is presented

in Fig. 4 and it shows the generic features we derived.
Model for SLS-induced EP3.—For a Hamiltonian with

SLS the spectral structure derived in the main text can
be shown in addition to the psCS example. The model

0.5

0.0

1.0

1.0

0.0

0.5

0.5-1.5

0.5-1.5

0.5

-1.5

0.5

-1.5

(a) (b)

(c)

0.5-1.5

0.5-1.5

0.5

-1.5

0.5

-1.5

(d)

0.0 0.0

2.5

2.55.0

FIG. 5. Spectral structure of SLS-induced EP3s for the model
defined in Eq. (24) with ξ = 0.4. (a) highlights the EP3 pair,
while also depicting the closed curves on which the constraints
are fulfilled; (b) and (c) show the real and imaginary 3-level
Fermi arcs, respectively; (d) displays the minimum overlap of
the eigenvector pairs of the model to verify the third order
EPs.

Hamiltonian is given by

HSLS(k) = sin(kx)M
1 + hsM

6 + sin(ky)M
7

+ iξ
(
M1 +M6 +M7

)
,

(24)

with hs = 2 − cos(kx) − cos(ky). This model obeys SLS
HSLS(k) = SH∗

SLS(k)S−1 with the generator S = 13

3 +

M3 − M8
√
3
. The spectral structure is presented in Fig. 5.

We observe the EP3 pair and the two 3-level Fermi arcs
connecting them exactly as expected.

Appendix D: CP-symmetry/CS-induced EP3s

Here we study 3-band systems with CP symmetry or
CS [39]. In this case, the eigenvalues are either purely
imaginary, or one is imaginary and the other two appear
as pairs mirrored along the imaginary axis. Therefore,
the constraints are ν ∈ iR, η ∈ R and η3 + ν2 ∈ R.
As ν is imaginary in this case, we have to choose a
different branch in the third root as compared to the
case with PT or psH symmetry. We introduce γ± =
±(±ν +

√
η3 + ν2)1/3, such that the three eigenvalues

read

ϵ1 = γ+ + γ−, ϵ2 = −β∗γ+ − βγ−,

ϵ3 = −βγ+ − β∗γ−.
(25)

On the EP2 line η3 + ν2 = 0, we find γ+ = −βγ− for
Im(ν) > 0 and γ+ = −β∗γ− for Im(ν) < 0. Both cases
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FIG. 6. CP-symmetry/CS-induced EP3s. (a) Sketch of the generic spectral structure around a CP-symmetry/CS-induced pair
of EP3s. Note that η3 + ν2, η, Im(ν) < 0 outside the black, blue and red curves, respectively. (b)-(g) Spectral structure of the
CP-symmetric model in Eq. (26) with ξ = 0.2: (b) highlights the EP3 pair at which the maximum of |∆ϵ| disappears. Further
the curves η, ν, η3+ν2 = 0 are plotted; (c) emphasizes the EP2 lines connecting the EP3 pair by showing the minimum of |∆ϵ|;
(d) and (e) show the 3-level FS and the 2-level i-FS, respectively; (f) highlights the 3-level i-FA separating the two 2-level i-FS;
(g) shows the the minimum overlap of any pair of eigenvectors to verify that the threefold degeneracies are truly EP3s.

correspond to two coalescing eigenvalues, while the third
eigenvalue is different as long as ν ̸= 0. Thus the pair of
EP3s is connected by two arcs of EP2s as before. Now,
the regions η3+ν2 > 0 and < 0 lie on the out- and inside
of η3 + ν2 = 0, respectively. For η3 + ν2 > 0 the fact
that ν2 < 0 implies η > |ν|2/3 > 0. Independent of the
sign of Im(ν) we obtain γ+ = −γ∗

−, which leads to three
purely imaginary eigenvalues ϵi ∈ iR. Thus we find a
3-level FS in this region of the parameter space. If η3 +
ν2 < 0 and ν ̸= 0, then γ± ∈ C, and there is no general
relation between γ+ and γ−. In this case, the spectrum
obeys ϵ2 = −ϵ∗3 and Im(ϵ2) ̸= ϵ1 ∈ iR. Therefore, the
eigenvalues form a 2-level i-FS in this region. For ν = 0
in η3 + ν2 < 0 we can write γ± = ±

√
|η| exp(iπ/6) and

thus obtain ϵ1 = −ϵ2 ∈ R and ϵ3 = 0. Thus the imaginary
parts of all eigenvalues coincide and this yields a 3-level
FA separating the 2-level FS. The exceptional arcs and
Fermi structure of a general CP-symmetric or CS model
is sketched in Fig. 6(a).

To show the predicted features, we introduce a CP-
symmetric model Hamiltonian

HCP(k) = sin(kx)M
1 + hsM

5 + sin(ky)M
6

+ iξ
(
2M2 +M7

)
,

(26)

with hs = 2 − cos(kx) − cos(ky). The CP symmetry

is generated by CP = 13

3 + M3 − M8
√
3
, and enforced

by the constraint HCP(k) = −CPH∗
CP(k)(CP)−1. The

generic spectral features of this model can be observed
in Figs. 6(b)-(g).

The generic spectral structure in Fig. 6 can also be
shown for a Hamiltonian with CS. The model Hamilto-

nian is given by

HCS(k) = sin(kx)M
1 + sin(ky)

(
M2 +M7

)
+ hsM

6 + iξ
(
2M4 +M5

)
,

(27)

with hs = 2 − cos(kx) − cos(ky). This model obeys CS

HCS(k) = −ΓH†
CS(k)Γ

−1 with the generator Γ = 13

3 +

M3 − M8
√
3
. The spectral structure is presented in Fig. 7

and it shows the generic features we derived.

Appendix E: Possibility of indistinguishable EP2s in
presence of psCS and SLS

In the presence of psCS and SLS, the EP3s appearing
in a 3-band system look identical to a situation in which
EP2s appear together with a flat band. As such, there is
a question on how to distinguish these two cases. Here,
we show that EP2s cannot appear in a 3-band system
with psCS, whereas we present an example for EP2s in a
3-band model with SLS.
Proof of the impossibility of EP2s in 3-band systems

with psCS—Let us show that psCS prohibits the appear-
ance of an EP2 plus an orthogonal band in 3-band sys-
tems. Due to the symmetry the EP2s would have to occur
on top of the flat band at zero energy, i.e., they would
have a three-fold degeneracy in the eigenvalue spectrum
but only two eigenvectors coalesce onto one. If such a
system would exist we would be able to write it as

HEP2+1 =

HEP2
0

0

0 0 ϵ0

 , (28)
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FIG. 7. Spectral structure of CS model defined by Eq. (27)
with ξ = 0.2: (a) shows the EP3 pair by plotting the largest
value of the absolute value of the complex gap ∆ϵ. Further the
curves given by the constraints are plotted; (b) highlights the
EP2 lines connecting the EP3 pair by showing the minimum
of |∆ϵ|; (c) shows the 2-level i-FS and (d) highlights the 3-
level i-FA separating the two 2-level FSs; (e) emphasizes the
3-level FS; (f) shows the the minimum overlap of any pair of
eigenvectors to prove that the threefold degeneracies are truly
EP3s.

where ϵ0 = 0 is the energy of the flat band, and HEP2 is
traceless. If we enforce psCS on this system the symme-
try generator has to have the form

X3 =

X2
0

0

0 0 1

 , (29)

withX2 being the generator of psCS of the 2-band Hamil-
tonian HEP2, i.e., HT

EP2(k) = −X2HEP2(k)X
−1
2 with

X2
2 = 1. The physical constraints on the system are

independent of the choice of operator so we can choose
any of the three Pauli matrices for X2. Writing HEP2 =
d(k)·σ with σ the vector of Pauli matrices, and choosing
X2 = σz, we find psCS yields dy = dz = 0 [15]. The only
remaining term inHEP2 is dx = dx,R+idx,I , such that the

eigenvalue read ±
√

d2x,R − d2x,I + 2idx,Rdx,I . A two-fold

degeneracy can thus only be found iff dx,R = dx,I = 0,
which amounts to finding an ordinary degeneracy. In

0.5
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4.0 4.0

0.5

0.5

FIG. 8. Spectral structure of EP2s on top of orthogonal
flat band in the presence of psCS for the model presented in
Eq. (31) with ξ = 0.5. (a) highlights the EP2 pair, while de-
picting the closed curves on which the constraints are fulfilled;
(b) and (c) show the real and imaginary 3-level FSs, respec-
tively; (d) displays the minimum overlap of the eigenvector
pairs, which is always 0, since the flat band is orthogonal to
the EP2 structure, and (e) shows the maximum overlap of
eigenvector pairs to prove that the degeneracies are in fact
EP2s.

other words, in the presence of psCS it is not possible to
realize EP2s in a 3-band system, and the 3-fold degen-
eracies must thus always correspond to EP3s.

Model for an EP2 in a 3-band system with SLS.—Let
us start by first using the same line of reasoning as for
the psCS case. To show that one can find an EP2 in a 3-
band system with SLS, we start with the Hamiltonian in
Eq. (28). To enforce SLS, the symmetry generator reads

S3 =

 S2
0

0

0 0 1

 , (30)

where S2 is the generator of SLS in the 2-band Hamilto-
nianHEP2, i.e., HEP2(k) = −S2HEP2(k)S−1

2 and S2
2 = 1.

Writing HEP2 in terms of the Pauli matrices, we can
choose any of the Pauli matrices for S2, such that choos-
ing S2 = σz yields dz = 0 and HEP2 = dxσx + dyσy [15].
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Therefore, it is possible to find EP2s in a 3-band system
with SLS.

Let us present an example in which EP2s appear in a
3-band system. The Hamiltonian reads

HEP2+1(k) =

[
sin(kx) +

1

2
sin(ky)

]
M1+

hsM
2 + iξM1,

(31)

with hs = 2 − cos(kx) − cos(ky). Here, the generator
of SLS HEP2+1(k) = −S2HEP2+1(k)S−1

2 reads S2 =
13

3 + M3 − M8
√
3
. In this model only the first two Gell-

Mann matrices contribute and thus the third band is iso-
lated. In Fig. 8 the spectral structure is shown and it
is indistinguishable from the structure of EP3s induced
by SLS. What is more, the constraints for finding EP2s,
cf. Fig. 8(a), are identical to the constraints for finding
EP3s, cf. Fig. 2(a).

Appendix F: Spectral features of EP4s in the
presence of two symmetries

Here we explain in detail how the spectral features as
shown in Fig. 3 are recovered. For 4-band models the
Hamiltonian can be decomposed in terms of generalized
Gell-Mann matrices. These matrices Λa with a = 1, ..., 15
are the generators of SU(4), which are traceless, linearly
independent matrices and fulfill Λa = (Λa)† (see Ap-
pendix B). A general 4-band Hamiltonian can be written
as H(k) = h(k) ·Λ, where Λ = (Λ1,Λ2, ...,Λ15)T is the
vector of the generalized Gell-Mann matrices and h(k)
is a complex-valued parameter vector and can be written
as h(k) = hR(k) + ihI(k). We introduce ν̃ = det[H]
and η̃ = tr[H2]/4 with ν̃, η̃ ∈ R, where we made use of
the constraints on the eigenvalue in Table I. The char-
acteristic polynomial reads P4 = ϵ4 − 2η̃ϵ2 + ν̃ with the
discriminant given by D4 = 64(η̃2 − ν̃)ν̃, such that the

eigenvalues are ϵ±1,±2 = ±1

√
η̃ ±2

√
η̃2 − ν̃.

Degeneracies appear in the spectrum if the discrimi-
nant D4 vanishes. The arcs defined by D4 = 0 begin and
end at the EP4s.

For ν̃ = 0 (red line in Fig. 3) and η̃ ̸= 0 (blue dashed
region) there are always two eigenvalues ϵ±1,−sgn(η̃) = 0,
which results in a two-level exceptional arc. The other
two eigenvalues are given by ϵ±1,sgn(η̃) = ±1

√
2η̃ and are

therefore either purely real or imaginary, depending on
the sign of η̃: For η̃ > 0 both eigenvalues are real and
thus form a 2-level i-Fermi arc, where the imaginary part
coincides with the imaginary part of the exceptional arc,
cf. Fig. 3(vii). If η̃ < 0 the eigenvalues are purely imagi-
nary and the arc is a two-level Fermi arc with the same
real energy as the exceptional arc, cf. Fig. 3(v).

On the arcs defined by η̃2− ν̃ = 0 (black line in Fig. 3)
with ν̃ ̸= 0 ̸= η̃ the eigenvalue structure is different. The

eigenvalues are given by ϵ±1,±2
= ±1

√
η̃ and both eigen-

values are twofold degenerate. As η̃2 − ν̃ = 0 amounts
to satisfying one real constraint, we postulate that this
arc corresponds to a 2-level exceptional arcs. Again the
sign of η̃ determines whether the eigenvalues are real or
imaginary, cf. Figs. 3(ix) and (iii), respectively.
Considering η̃2 − ν̃ > 0 (outside the black curve in

Figs. 3) and ν̃ > 0 (red dashed region), we find |η̃| >√
η̃2 − ν̃, such that depending on the sign of η̃ all four

eigenvalues are either real or purely imaginary. For η̃ > 0
(blue dashed region) we thus obtain a four-level i-Fermi
surface and for η̃ < 0 (outside the blue curve) we ob-
tain a four-level Fermi surface, cf. Figs. 3 (viii) and
(iv), respectively. If ν̃ < 0 (outside the red curve) then

|η̃| <
√

η̃2 − ν̃, such that two eigenvalues are real and
two are purely imaginary. Thus in this region there is
always a two-level Fermi surface and a two-level i-Fermi
surface, cf. Fig. 3 (vi).
The condition η̃2 − ν̃ < 0 (gray region in Fig. 3), on

the other hand, implies ν̃ > 0. All eigenvalues are truly
complex, but due to the various spectral symmetry con-
straints there is a special eigenvalue structure. We always
obtain two Fermi surfaces and two i-Fermi surfaces with
the real and imaginary part symmetric around zero, cf.
Fig. 3(ii). Each eigenvalue is part of one Fermi and one
i-Fermi surface, but it shares each surface with a different
other eigenvalue.
These predicted features can be realized with a 4-band

model on which PT symmetry and SLS are imposed.
The Hamiltonian is given by

H4(k) = sin(kx)Λ
1 +

1

2
sin(ky)Λ

7 + hsΛ
13 + iξ Λ9, (32)

with hs = 2 − cos(kx) − cos(ky) and ξ = 0.2. The gen-
erator for PT symmetry H4(k) = PT 4H

∗
4 (k)(PT 4)

−1 is

PT 4 = 2√
3
Λ8 +

√
2√
3
Λ15 and SLS is defined by H4(k) =

−S4H4(k)S−1
4 with the generator S4 = Λ3 − 1√

3
Λ8 +

√
2√
3
Λ15. In this model two pairs of EP4s occur and they

are connected by exceptional arcs. This is simply a gen-
eralization of the structure for a single pair. The pa-
rameter space is divided into more regions due to multi-
ple intersections of the curves defined by the constraints.
However, for each region the previous analysis holds and
the spectral structure surrounding a single EP4 is as de-
scribed before.

Appendix G: Spectral features of EP5s in the
presence of two symmetries

We again decompose the Hamiltonian in terms of the
generalized Gell-Mann matrices that are generators of
SU(5). In terms of these traceless linearly indepen-
dent matrices W a with a = 1, ..., 24 a general 4-band
Hamiltonian can be written as H(k) = h(k) ·W , where
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W = (W 1,W 2, ...,W 24)T is the vector of the Gell-Mann
matrices and h(k) are complex-valued parameters that
can be written as h(k) = hR(k) + ihI(k). We define
η̃ = tr[H2]/4 and κ = {[tr(H2)]2−2tr(H4)}/8, such that
the constraints on the eigenvalues lead to η̃, κ ∈ R. The
characteristic polynomial simplifies to a polynomial with
only odd powers given by P5 = ϵ5 − 2η̃ϵ3 + κϵ. The dis-
criminant is given by D5 = 64(η̃2−κ)κ, and the eigenval-

ues read ϵ0 = 0, ϵ±1,±2
= ±1

√
η̃ ±2

√
η̃2 − κ. Since the

characteristic polynomial is a biquadratic fourth-order
polynomial multiplied with ϵ we obtain formally the so-
lutions of the 4-band case with the addition of a flat
zero-energy level.

To study the generic features of a 5-band model sub-
ject to two symmetries with different constraints, we note
that the same logic applies here as for the 4-band case
discussed in Appendix E because of the similarity of the
eigenvalue equations. Indeed, the role played by ν̃ for the
4-band case is now played by κ. For κ = 0, the second-
order exceptional lines at zero energy found on the curve
spanned by ν̃ = 0 in the 4-band model, cf. Figs. 3(v)
and (vii), are promoted to order three. Both 4-level (i-

)FS, cf. Figs. 3(iv) and (viii), are promoted to 5-level
surfaces, and the two 2-level FS for η̃ < 0 and ν̃ < 0,
cf. Fig. 3(vi), are 3-level surfaces in the 5-band case for
κ < 0, where the flat band is part of both. Otherwise
the spectral features are not affected by the addition of
the flat band, and the features pointed out in Figs. 3(ii),
(iii), and (ix) remain unchanged.
The predicted features can be realized with a 5-band

model on which PT symmetry and SLS are imposed.
The Hamiltonian is given by

H5(k) = sin(kx)
(
W 2 +W 23

)
+ sin(ky)W

7

+ hs

(
W 10 +W 14

)
+ iξ

(
W 1 +W 22

) (33)

with hs = 2− cos(kx)− cos(ky) and ξ = 0.2. The genera-
tors for PT symmetry H5(k) = PT 5H

∗
5 (k)(PT 5)

−1 and
SLS H5(k) = −S5H5(k)S−1

5 are identical PT 5 = S5 =
15

5 + W 3 − 1√
3
W 8 +

√
2√
3
W 15 −

√
2√
5
W 24. Here two pairs

of EP5s occur, which are connected by exceptional arcs.
Again this is simply a generalization of the structure for
a single pair, where the exceptional arcs terminate at
different EPs.
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