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Exceptional points of order n (EPns) appear in non-Hermitian systems as points where the eigenvalues and
eigenvectors coalesce. They emerge if 2(n − 1) real constraints are imposed, such that EP2s generically appear in
two dimensions (2D). Local symmetries have been shown to reduce this number of constraints. In this work, we
provide a complete characterization of the appearance of symmetry-induced higher-order EPs in 2D parameter
space. We find that besides EP2s only EP3s, EP4s, and EP5s can be stabilized in 2D. Moreover, these higher-
order EPs must always appear in pairs with their dispersion determined by the symmetries. Upon studying the
complex spectral structure around these EPs, we find that depending on the symmetry, EP3s are accompanied by
EP2 arcs, and two- and three-level open Fermi structures. Similarly, EP4s and closely related EP5s, which arise
due to multiple symmetries, are accompanied by exotic EP arcs and open Fermi structures. For each case, we
provide an explicit example. We also comment on the topological charge of these EPs, and discuss similarities
and differences between symmetry-protected higher-order EPs and EP2s.
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I. INTRODUCTION

Exceptional points (EPs) are a well-known phenomenon
of non-Hermitian (NH) systems [1–4], which in recent years
have been extensively studied through the lens of topology
[5]. EPs are truly NH degeneracies at which not only the
eigenvalues but also the eigenvectors coalesce. To date, most
research has focused on EPs of order 2 (EP2s), where the
order is set by the number of coalescing eigenvectors. EP2s
appear generically in two-dimensional (2D) parameter space
[2], and they represent the NH analog of nodal points in Weyl
semimetals [5]. EP2s give rise to unique phenomena, such as
the appearance of bulk (i-)Fermi arcs (FAs), where real (imag-
inary) parts of the eigenenergies of the system coincide [6–8].
In higher-dimensional spaces, EP2s are promoted to more
complicated structures, such as rings and surfaces [9–12],
which form the boundaries of higher-dimensional (i-)Fermi
structures such as 2D Fermi surfaces (FSs) [11,13].

In order to obtain an nth-order EP (EPn), the dimension
of the parameter space must be larger or equal to the codi-
mension 2n − 2 of the EPn [14,15]. It follows that no EP
with n > 2 can appear naturally in 2D parameter space. At
the same time, it is well established that unitary and antiu-
nitary symmetries [16] local in parameter space—namely,
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parity-time (PT ), parity-particle-hole (CP) and pseudo-
Hermitian (psH) symmetry, as well as sublattice symmetry
(SLS), chiral symmetry (CS) and pseudo-chiral symmetry
(psCS) [15], cf. Table I—reduce the number of constraints
that need to be imposed in order for EPns to emerge
[11,14,15,17,18], see Table II. As such it is possible to induce
higher-order EPs in 2D parameter space. While some theo-
retical models featuring symmetry-protected EP3s [15,19–22]
and EP4s [15,23] were discussed and few experiments exist
revealing the existence of EP3s [24–26] and EP4s [27,28], the
generic features of EP3s and other higher-order EPs in 2D
parameter space are not yet thoroughly investigated.

In this work, we show that in addition to the already
abundant EP2s only EPs of order n = 3, 4, and 5 can be
generically induced by symmetries in 2D. We find those
symmetry-induced EPs appear in pairs in periodic parame-
ter spaces. Upon further analyzing the spectral structure of
periodic n-band models, we find the following. For n = 3,
we show that PT , psH, and CP symmetry as well as CS
have a very similar effect on the spectrum. In the presence
of these symmetries, the EP3s, which scale as ∼k1/3 [15],
are intersected by a closed curve formed by EP2s. The EP2
curve forms the boundary of a three-level i-FS (FS) on the
outside (inside) with PT and psH symmetry (CP symme-
try and CS), whereas a two-level FS (i-FS) appears on the
inside (outside), which is intersected by a three-level FA (i-
FA) connecting the EP3s. The presence of SLS and psCS
results in a drastically different phenomenology. In this case,
the spectrum can be viewed as the two-band case with an
additional flat band. Indeed, the EP3s scale as ∼k1/2 [15,19],
and are connected via three-level (i)-FAs. We further show
that whereas the EP3s can be demoted to EP2s in fine-tuned
examples in the presence of SLS, EP2s find no room to arise
in any three-band model with psCS.
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In the case of n = 4 and 5, we find the emergence of EP4s
and EP5s with rich spectral features in the presence of any
two symmetries with different spectral constraints. For n = 4,
besides the EP4, we find second-order exceptional lines, four-
level and two-level (i-)FSs as well as two-level (i-)FAs. The
EP5 case amounts to the EP4 case with an additional flat
band, and as such similar spectral features are found with an
increased degree of degeneracy.

Our results straightforwardly generalize to nonperiodic 2D
parameter spaces relevant for experiments. In this case, the
EPs do not have to appear in pairs anymore. Instead, in the ex-
perimentally accessible parameter space symmetry-protected
EP3s, EP4s, and EP5s might appear as single points with the
same local spectral structure as for the EPs in the periodic
systems. All the EP lines and FAs are then promoted to open
arcs, whereas the bounded FSs will appear as unbounded
surfaces.

To explicitly show our results, we provide a minimal ex-
ample for each type of structure. Our results characterize
symmetry-induced EPs in 2D parameter space completely.
As such, this work provides a significant contribution to the
study of symmetry-protected NH phases and higher-order
EPs, while they are also highly relevant for experiments,
which are often conducted in 2D [29].

This paper is organized as follows. In Sec. II, we provide
a general discussion on finding EPs in 2D. We then focus on
EP3s in Sec. III, and EP4s and EP5s in Sec. IV. Section V
presents a discussion and conclusion.

II. GENERAL CONSIDERATIONS

In order for an n-band system to exhibit an EPn, all terms
except the leading one in the characteristic polynomial have to
vanish. If we set tr[H] = 0, which is simply a shift in the spec-
trum, we can express the characteristic polynomial in terms of
the determinant and n − 2 different traces [30]: det[H] = 0
and tr[Hk] = 0 with k = 2, . . . , n − 1, which can be cast as
2(n − 1) real constraints, which need to be simultaneously
enforced in order to find an EPn [15]. From now on, we set
tr[H] = 0 in all our models. For brevity, we refer to Ref. [15]
for the general case, while we here use specific characteristic
polynomials for our n-band models.

The number of the real constraints can be reduced by
imposing symmetries on the system. From all unitary and
antiunitary symmetries only those acting local in momentum
space reduce the number of constraints for finding an EPn. It is
shown in Ref. [15] that these symmetries are PT , psH and CP
symmetry, as well as SLS, CS and psCS, which are defined in
Table I. We note that CP symmetry is sometimes referred to as
anti-PT symmetry in the literature [31]. Each symmetry is de-
fined here in terms of some unitary generator. For any choice
of generator, we find different allowed contributions to the
Hamiltonian. The interpretation of the symmetry then depends
on the specific generator chosen, but we will not focus on this,
but rather work out generic features of all symmetric Hamilto-
nians. A specific choice of generator and Hamiltonian is only
made to construct exemplary Hamiltonians, with which we
show the spectral features, but we stress that we made an ar-
bitrary choice of nontrivial unitary generator matrix there. We
emphasize that only the conditions imposed on the spectrum

TABLE I. Definitions of local (anti)unitary symmetries.

Symmetry Symmetry constraint Energy constraint

PT H (k) = AH∗(k)A−1 {ε(k)} = {ε∗(k)}
psH H (k) = ςH†(k)ς−1 {ε(k)} = {ε∗(k)}
CP H (k) = −�H∗(k)�−1 {ε(k)} = {−ε∗(k)}
CS H (k) = −�H†(k)�−1 {ε(k)} = {−ε∗(k)}
psCS HT (k) = −XH (k)X −1 {ε(k)} = {−ε(k)}
SLS H (k) = −SH (k)S−1 {ε(k)} = {−ε(k)}
Here the unitary operator U ∈ {ς, �,S, X } satisfies U 2 = 1, while
the unitary operator A ∈ {A,�} obeys AA∗ = 1.

are important for the study of any type of degeneracy. Thus the
symmetries can be separated into three pairs, namely, PT and
psH symmetry, CP symmetry and CS, and psCS and SLS. The
spectral constraint of each pair and the remaining constraints
on the occurrence of EPns in n-band systems are derived in
Ref. [15] and listed in Table II.

The mechanism of finding higher-order EPs in 2D is as
follows. Two constraints can be generically fulfilled without
any fine-tuning in a generic 2D parameter space. Assuming
periodicity, each constraint defines a closed curve, such that
at the intersections of the curves EPs occur pairwise. If we
impose symmetries on the system that reduce the number of
constraints for finding EPns to two, EPns thus generically
appear in pairs in 2D.

Even though we focus on periodic parameter spaces in
this work, our results can be straightforwardly generalized to
nonperiodic parameter spaces. This can be seen from the fact
that the reduction of the number of constraints due to sym-
metries works independent of the type of parameter space. In
nonperiodic parameters spaces, the constraints define curves
that are not necessarily closed. If open curves intersect in the
parameter space, we may find single symmetry-induced EPs.
If a constraint curve is closed instead we find EPs stabalized
on these curves must appear in pairs. In the following we will
focus on the periodic two-dimensional parameter space. How-
ever, every spectral structure found there can be generalized to
the nonperiodic parameter space. This is done by promoting
all closed arcs and surfaces to open ones for single EPs. In
any experiment, the local spectral structure at an EP would
be probed, and this is identical for periodic and nonperiodic
parameter spaces.

In the presence of a single symmetry only EP3s can be
generically realized in two dimensions, cf. Table II. However,
if two symmetries with different spectral constraints are si-
multaneously enforced on a system, the number of constraints
one needs to impose to obtain an EP is further decreased, cf.
the last row of Table II. Thus EP4s and EP5s also occur in 2D
in the presence of two different symmetries, whereas EPns
with n � 6 cannot be generically induced by (anti)unitary
symmetries in 2D.

In this work, we use the strict definition that an EPn is
defined as having an n-fold spectral degeneracy accompanied
by the coalescence of n eigenvectors onto one, such that we
define a threefold degeneracy at which two eigenvectors co-
alesce as an EP2, cf. Ref. [32]. This interpretation is further
supported by the different geometric phases picked up when
encircling an EP2 and an EP3 [33].
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TABLE II. Number of constraints for realizing EPns in n-band systems restricted by local (anti)unitary symmetries.

Symmetry Spectral symmetry Number of constraints

n ∈ even n ∈ odd

PT /psH {ε} = {ε∗} n − 1

{
Re[det[H]]

Re[tr[Hk]]
n − 1

{
Re[det[H]]

Re[tr[Hk]]

CP/CS {ε} = {−ε∗} n − 1

⎧⎪⎨
⎪⎩

Re[det[H]]

Re[tr[Hl ]]

Im[tr[Hm]]

n − 1

⎧⎪⎨
⎪⎩

Im[det[H]]

Re[tr[Hl ]]

Im[tr[Hm]]

psCS/SLS {ε} = {−ε} n

{
det[H]

tr[Hl ]
n − 1{tr[Hl ]

combined1 {ε} = {ε∗} ∧ {ε} = {−ε} n

2

{
Re[det[H]]

Re[tr[Hl ]]

n − 1

2
{Re[tr[Hl ]]

Here k ∈ {1, . . . n}, l ∈ {2 � l < n, l ∈ even} and m ∈ {3 � m < n, m ∈ odd}. Behind the number of constraints we write the specific quanti-
ties that need to be set to zero to find EPns.
1Here combined encompasses the constraints enforced by any pair of symmetries above, where the individual symmetries have different
spectral constraints.

III. EXCEPTIONAL POINTS OF ORDER THREE

To study the behavior of EP3s in three-band systems,
we decompose the Hamiltonian in terms of the trace-
less, linearly independent Gell-Mann matrices Ma, with a =
1, . . . , 8, which are generators of SU(3) with the property
Ma = (Ma)† (details are provided in Ref. [32]). Any three-
band Hamiltonian is given by H (k) = h(k) · M, where M =
(M1, M2, . . . , M8)T is the vector of the Gell-Mann matrices
and h(k) are complex-valued parameters that can be written
as h(k) = hR(k) + ihI (k). We introduce

ν = det[H]/2 and η = −tr[H2]/6, (1)

such that characteristic polynomial can be expressed as P3 =
ε3 + 3ηε − 2ν.

Degeneracies are obtained by setting the discriminant of
P3 to zero, i.e., D3 = −108(η3 + ν2) = 0. An EP3 occurs iff
ν = η = 0, while we note that EP2s appear when η3 + ν2 = 0
[34]. The closed curves defined by ν = 0, η = 0 and η3 +
ν2 = 0 divide the parameter space into different regions with
different spectral structures. This structure around the EP3s
depends on the symmetry that induces the EPs, as we will see
in the following.

A. PT and psH-symmetry induced EP3s

In the presence of PT or psH symmetry, either all eigen-
values are real, or one is real and the other two appear as
complex conjugate pairs. This results in ν, η ∈ R. Using Car-
dano’s method, we can diagonalize the Hamiltonian. With
α± = (ν ±

√
η3 + ν2)1/3 and β = (1 + i

√
3)/2 = exp(iπ/3)

the three eigenvalues are given by

ε1 = α+ + α−, ε2 = −β∗α+ − βα−,

ε3 = −βα+ − β∗α−. (2)

Let us start by considering the closed EP2 line η3 + ν2 =
0, which contains the pair of EP3s at ν = 0 = η. All other
points on this line yield α± = 3

√
ν �= 0, such that ε1 �= ε2 = ε3

with all eigenvalues real. The pair of EP3s are thus connected
by two EP2 arcs, which form the boundaries to the regions

η3 + ν2 > 0 and <0 on the inside and outside, respectively. If
η3 + ν2 > 0 and ν �= 0, then α± ∈ R, and the eigenvalues are
ε2 = ε∗

3 ∈ C and Re(ε2/3) �= ε1 ∈ R. Since Re(ε2) = Re(ε3)
we obtain a two-level FS. On the line ν = 0, we find that
η3 + ν2 > 0 implies η > 0, and we obtain α± = ±√

η such
that ε1 = 0 and ε2 = i

√
3η = ε∗

3 ∈ iR. Therefore the real part
of all three eigenvalues coincide and this line corresponds to
a three-level FA, separating the two-level FS and connecting
the EP3s. Considering η3 + ν2 < 0 instead, which implies
η < 0, we obtain α+ = α∗

− independent of the sign of ν. As
such, εi ∈ R and ε1 �= ε2 �= ε3. Since Im(εi ) = 0 for all three
eigenvalues, the region η3 + ν2 < 0 forms a three-level i-FS.
We show all these features in Fig. 1(a).

To explicitly show the appearance of these generic features,
let us introduce a PT -symmetric model

HPT (k) = sin(kx )M2 + hsM
3 + sin(ky)M4

+ iξ (M1 + M5 + M6) (3)

=

⎛
⎜⎝ hs −i(sin(kx ) − ξ ) sin(ky) + ξ

i(sin(kx ) + ξ ) −hs iξ
sin(ky) − ξ iξ 0

⎞
⎟⎠

(4)

with hs = 2 − cos(kx ) − cos(ky). This model obeys PT sym-
metry HPT (k) = AH∗

PT (k)A−1 with the generator A = 13
3 +

M3 − M8√
3

= diag(1,−1, 1). In Figs. 1(b)–1(g), we plot the
EP3s, EP2 lines, FSs, and FAs for this model, and we see all
the predicted features. In Ref. [32], we show the same features
appear for a psH-symmetric model.

B. CP-symmetry and CS-induced EP3s

Here we study three-band systems with CP symmetry or
CS.1 In this case, the eigenvalues are either purely imaginary,

1We note that even though strictly speaking there is no CS with
n ∈ odd, we nevertheless consider this case here in line with the NH
literature.
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FIG. 1. PT /psH-symmetry-induced EP3s. (a) Sketch of the generic spectral structure around a PT /psH-symmetry-induced pair of EP3s.
Note that η3 + ν2, η, ν < 0 outside the black, blue and red curves, respectively. [(b)–(g)] Spectral structure of the PT -symmetric model
defined in Eq. (3) with ξ = 0.1: (b) shows the maximum of the absolute value of the complex gap �ε, which disappears at the EP3 pair. On
top, we plot the curves η, ν, η3 + ν2 = 0; (c) highlights the minimum of |�ε|, at which EP2 lines appear connecting the EP3 pair; in (d) and
(e), the maximum of Im(�ε) and the minimum of Re(�ε) emphasize the three-level i-FS and the two-level FS, respectively; (f) highlights the
three-level FA separating the two two-level FS; and (g) shows the minimum overlap of any pair of eigenvectors, which is one at the EP3s.

or one is imaginary and the other two appear as pairs mirrored
along the imaginary axis. Therefore the constraints are ν ∈ iR,
η ∈ R and η3 + ν2 ∈ R. As ν is imaginary in this case, we
have to choose a different branch in the third root as compared
to the case with PT or psH symmetry. We introduce γ± =
±(±ν +

√
η3 + ν2)1/3, such that the three eigenvalues read

ε1 = γ+ + γ−, ε2 = −β∗γ+ − βγ−,

ε3 = −βγ+ − β∗γ−. (5)

On the EP2 line η3 + ν2 = 0, we find γ+ = −βγ− for
Im(ν) > 0 and γ+ = −β∗γ− for Im(ν) < 0. Both cases
correspond to two coalescing eigenvalues, while the third
eigenvalue is different as long as ν �= 0. Thus the pair of EP3s
is connected by two arcs of EP2s as before. Now, the regions
η3 + ν2 > 0 and <0 lie on the out- and inside of η3 + ν2 = 0,
respectively. For η3 + ν2 > 0 the fact that ν2 < 0 implies
η > |ν|2/3 > 0. Independent of the sign of Im(ν) we obtain
γ+ = −γ ∗

−, which leads to three purely imaginary eigenvalues
εi ∈ iR. Thus we find a three-level FS in this region of the
parameter space. If η3 + ν2 < 0 and ν �= 0, then γ± ∈ C, and
there is no general relation between γ+ and γ−. In this case,
the spectrum obeys ε2 = −ε∗

3 and Im(ε2) �= ε1 ∈ iR. There-
fore the eigenvalues form a two-level i-FS in this region. For
ν = 0 in η3 + ν2 < 0, we can write γ± = ±√|η| exp(iπ/6)
and thus obtain ε1 = −ε2 ∈ R and ε3 = 0. Thus the imaginary
parts of all eigenvalues coincide and this yields a three-level
FA separating the two-level FS. The exceptional arcs and
Fermi structure of a general CP-symmetric or CS model is
sketched in Fig. 2(a).

To show the predicted features, we introduce a CP-
symmetric model Hamiltonian

HCP (k) = sin(kx )M1 + hsM
5 + sin(ky)M6

+ iξ (2M2 + M7) (6)

=

⎛
⎜⎝ 0 sin(kx ) + 2ξ −ihs

sin(kx ) − 2ξ 0 sin(ky) + ξ

ihs sin(ky) − ξ 0

⎞
⎟⎠
(7)

with hs = 2 − cos(kx ) − cos(ky). The CP symmetry is gener-
ated by � = 13

3 + M3 − M8√
3

= diag(1,−1, 1), and enforced

by the constraint HCP (k) = −�H∗
CP (k)�−1. The generic

spectral features of this model can be observed in Figs. 2(b)–
2(g). Identical features emerge for a CS model, which we
show in SM2 [32].

CP symmetry and CS have a very similar effect on the
band structure as PT and psH symmetry. Indeed, also in the
presence of these symmetries, EP3s appear in pairs connected
via EP2 lines. However, due to the additional minus sign in the
constraints on the eigenvalues, cf. Table II, all the open Fermi
structures as shown in Fig. 1(a) are now i-Fermi structures and
vice versa. Moreover, those structures that appeared on the
in(out)side of the EP2 curve now appear on the out(in)side.

C. psCS and SLS-induced EP3s

Due to the spectral symmetry and the odd number of
bands, one eigenvalue of a psCS or SLS 3-band system is
always ε = 0. Therefore we obtain ν = det[H]/2 = 0, which
simplifies the expression of the remaining eigenvalues. The
diagonalization of the Hamiltonian yields

ε0 = 0, ε+ = +i
√

3
√

η, ε− = −i
√

3
√

η. (8)

Since η ∈ C, there are two real constraints that need to be
imposed on the system. These constraints follow from the
generic constraint η = 0, and can be written as d2

R − d2
I = 0

and dR · d I = 0. The curve given by dR · d I = 0 defines
two rather simple FAs. In the region with d2

R − d2
I > 0, the

eigenvalues are purely real and we obtain a three-level i-
FA. However, if d2

R − d2
I < 0, the eigenvalues are purely
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FIG. 2. CP-symmetry/CS-induced EP3s. (a) Sketch of the generic spectral structure around a CP-symmetry/CS-induced pair of EP3s.
Note that η3 + ν2, η, Im(ν ) < 0 outside the black, blue and red curves, respectively. [(b)–(g)] Spectral structure of the CP-symmetric model
in Eq. (6) with ξ = 0.2: (b) highlights the EP3 pair at which the maximum of |�ε| disappears. Further the curves η, ν, η3 + ν2 = 0 are plotted;
(c) emphasizes the EP2 lines connecting the EP3 pair by showing the minimum of |�ε|; (d) and (e) show the three-level FS and the two-level
i-FS, respectively; (f) highlights the three-level i-FA separating the two two-level i-FS; and (g) shows the minimum overlap of any pair of
eigenvectors to verify that the threefold degeneracies are truly EP3s.

imaginary and the curve defines a three-level FA. In three-
band systems with psCS and SLS, there are no more generic
spectral features in 2D.

These features are captured by the three-band example
Hamiltonian with psCS that reads

HpsCS(k) = sin(kx )M1 + hsM
5 + sin(ky)M6

+ iξ (M1 + M5 + M6) (9)

=

⎛
⎜⎝ 0 sin(kx ) + iξ −ihs + ξ

sin(kx ) + iξ 0 sin(ky) + iξ
ihs − ξ sin(ky) + iξ 0

⎞
⎟⎠
(10)

with hs = 2 − cos(kx ) − cos(ky). Here, the psCS is defined
by HT

psCS(k) = −XHpsCS(k)X −1 with the generator X = 13
3 +

M3 − M8√
3

= diag(1,−1, 1). The spectral structure of this
model is shown in Fig. 3. In Ref. [32]. we show a model with
SLS displaying the same spectral features.

It is important to note that the constraints to find EP3s
in three-band systems with psCS/SLS are nearly identical to
those for finding EP2s in 2-band systems without symmetries
[5]. As such, these EP3s not only come in pairs connected
via FAs but also display a square-root energy scaling [15].
We further note that in the presence of psCS no EP2s can
occur in three-band systems. The idea behind the proof of this
no-go theorem is that one can show that psCS in two-band
systems prevents the emergence of EP2s. Indeed, in this case
H (k) only has one nonzero component with one of the two-
dimensional Pauli matrices, i.e., H (k) ∼ σi, such that an EP2
can never occur. In Ref. [32], we show in detail how this ex-
tends to three-band systems. There is no such no-go theorem
for SLS, where EP2s accompanied by an orthogonal flat band
can occur in fine-tuned examples. In this case, the spectrum
looks identical to that of the EP3 case and the spectral winding
numbers take equal values. To define the spectral winding,

we generalize the vorticity v introduced in Refs. [35,36] to
three-band systems with psCS and SLS by taking the dif-
ference of the two dispersive bands, i.e., �ε(k) = ε+(k) −
ε−(k). The vorticity is then defined by v = − ∮

C
dk
2π

·
∇karg[�ε(k)] for a closed curve C that encircles a single EP,
and can take the values ±1/2. The sum over all EPs in the
system must be 0, and thus the charge of the EP3s of a single
pair is opposite. We note that the EP3s with a flat band thus
have the same vorticity as EP2s. Moreover, the constraints for
finding EP2s in a three-band model with SLS are identical to

FIG. 3. Spectral structure of psCS-induced EP3s in the model
defined in Eq. (9) with ξ = 0.5. (a) highlights the EP3 pair, while
also depicting the closed curves on which the constraints are fulfilled;
(b) and (c) show the real and imaginary three-level FAs, respectively;
and (d) displays the minimum overlap of eigenvector pairs of the
model to verify the third-order EPs.
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FIG. 4. Spectral structure of symmetry-induced EP4s. On the left side there is a sketch of the different regions in 2D parameters space,
which are defined by the constraints we have to impose to realize EPs. Each line and region is labeled with (i)–(ix), and on the right their
generic complex spectrum is displayed. We note that (v) and (vii) also reveal a two-level FA and i-FA, respectively. The spectral structure of
EP5s is similar to the structure of EP4s. By substituting ν̃ with κ and adding a flat band at zero, we obtain the eigenvalue structure around an
EP5 pair. The flat band promotes the EP4s to EP5s [(i)], the EP2 lines to EP3 lines [(v) and (vii)], the four-level (i-)FSs to five-level ones [(iv)
and (viii)], and the two-level (i)-FAs and (i-)FSs to three-level ones [(v)–(vii)].

the constraints for finding EP3s. As such, one would have to
calculate the Jordan decomposition to determine the order of
the EPs. Alternatively, one could study the geometric phases
picked up by the eigenvectors corresponding to the dispersive
bands upon encircling an EP, which is different for an EP2 and
an EP3 with a flat band [33]: Whereas one needs to encircle
the EP twice to return to the initial eigenvector in both cases,
a geometric phase of π is picked up if the EP is of order 2,
whereas no geometric phase is acquired in the EP3 case [33].
In Ref. [32], we show a model with SLS, which hosts an EP2
pair.

IV. SYMMETRY-INDUCED EXCEPTIONAL
POINTS OF ORDER FOUR AND FIVE

Lastly, we turn to four- and five-band models in the pres-
ence of two symmetries with different spectral constraints
realizing EP4s and EP5s, respectively. We will see that the
general considerations and subsequent results are very similar
for both these cases.

A. Exceptional points of order four

For four-band models the Hamiltonian can be decomposed
in terms of generalized Gell-Mann matrices. These matrices
�a with a = 1, . . . , 15 are the generators of SU(4), which
are traceless, linearly independent matrices and fulfill �a =
(�a)† (see Ref. [32]). A general four-band Hamiltonian can be
written as H (k) = h(k) · �, where � = (�1,�2, . . . , �15)T

is the vector of the generalized Gell-Mann matrices and h(k)
is a complex-valued parameter vector and can be written as
h(k) = hR(k) + ihI (k). We introduce ν̃ = det[H] and η̃ =
tr[H2]/4 with ν̃, η̃ ∈ R, where we made use of the constraints
on the eigenvalue in Table II. The characteristic polynomial
reads P4 = ε4 − 2η̃ε2 + ν̃ with the discriminant given by
D4 = 64(η̃2 − ν̃)ν̃, such that the eigenvalues read

ε±1,±2 = ±1

√
η̃ ±2

√
η̃2 − ν̃. (11)

An EP4 is found when ν̃ = η̃ = 0. Since ν̃ = 0 and η̃ = 0 are
closed curves in 2D parameter space the EP4s indeed appear
in pairs. The symmetry induced EP4s scale as ∼k1/2 contrary
to generic EP4s, which scale as ∼k1/4.

Degeneracies appear in the spectrum if the discriminant D4

vanishes. The arcs defined by D4 = 0 begin and end at the
EP4s.

For ν̃ = 0 (red line in Fig. 4) and η̃ �= 0 (blue dashed re-
gion), there are always two eigenvalues ε±1,−sgn(η̃) = 0, which
results in a two-level exceptional arc. The other two eigenval-
ues are given by ε±1,sgn(η̃) = ±1

√
2η̃ and are therefore either

purely real or imaginary, depending on the sign of η̃: For
η̃ > 0 both eigenvalues are real and thus form a two-level
i-Fermi arc, where the imaginary part coincides with the imag-
inary part of the exceptional arc, cf. Fig. 4(vii). If η̃ < 0 the
eigenvalues are purely imaginary and the arc is a two-level
Fermi arc with the same real energy as the exceptional arc, cf.
Fig. 4(v).

On the arcs defined by η̃2 − ν̃ = 0 (black line in Fig. 4)
with ν̃ �= 0 �= η̃ the eigenvalue structure is different. The
eigenvalues are given by ε±1,±2 = ±1

√
η̃ and both eigenvalues

are twofold degenerate. As η̃2 − ν̃ = 0 amounts to satisfying
one real constraint, we postulate that this arc corresponds to
a two-level exceptional arcs. Again the sign of η̃ determines
whether the eigenvalues are real or imaginary, cf. Figs. 4(ix)
and 4(iii), respectively.

Considering η̃2 − ν̃ > 0 (outside the black curve in Fig. 4)
and ν̃ > 0 (red dashed region), we find |η̃| >

√
η̃2 − ν̃, such

that depending on the sign of η̃ all four eigenvalues are either
real or purely imaginary. For η̃ > 0 (blue dashed region),
we thus obtain a four-level i-FS and for η̃ < 0 (outside the
blue curve) we obtain a four-level FS, cf. Figs. 4(viii) and
4(iv), respectively. If ν̃ < 0 (outside the red curve) then |η̃| <√

η̃2 − ν̃, such that two eigenvalues are real and two are purely
imaginary. Thus in this region there is always a two-level FS
and a two-level i-FS, cf. Fig. 4(vi).

The condition η̃2 − ν̃ < 0 (gray region in Fig. 4), on the
other hand, implies ν̃ > 0. All eigenvalues are truly complex,
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but due to the various spectral symmetry constraints there is
a special eigenvalue structure. We always obtain two FSs and
two i-FSs with the real and imaginary part symmetric around
zero, cf. Fig. 4(ii). Each eigenvalue is part of one Fermi and
one i-FS, but it shares each surface with a different other
eigenvalue.

These predicted features can be realized with a four-band
model on which PT symmetry and SLS are imposed. The
Hamiltonian is given by

H4(k) = sin(kx )�1 + 1

2
sin(ky)�7 + hs�

13 + iξ �9 (12)

=

⎛
⎜⎜⎝

0 sin(kx ) 0 iξ
sin(kx ) 0 −i sin(ky)/2 0

0 i sin(ky)/2 0 hs

iξ 0 hs 0

⎞
⎟⎟⎠

(13)

with hs = 2 − cos(kx ) − cos(ky) and ξ = 0.2. The gener-
ator for PT symmetry H4(k) = A4H∗

4 (k)A−1
4 is A4 =

2√
3
�8 +

√
2√
3
�15 = diag(1, 1,−1,−1) and SLS is defined

by H4(k) = −S4H4(k)S−1
4 with the generator S4 = �3 −

1√
3
�8 +

√
2√
3
�15 = diag(1,−1, 1,−1). In this model two pairs

of EP4s occur and they are connected by exceptional arcs.
This is simply a generalization of the structure for a single
pair. The parameter space is divided into more regions due to
multiple intersections of the curves defined by the constraints.
However, for each region the previous analysis holds and the
spectral structure surrounding a single EP4 is as described
before.

B. Exceptional points of order five

For the five-band case, we find the spectral structure
nearly identical to the four-band case plus a zero eigen-
value. We again decompose the Hamiltonian in terms of

the generalized Gell-Mann matrices that are generators of
SU(5). In terms of these traceless linearly independent
matrices W a with a = 1, . . . , 24 a general four-band Hamil-
tonian can be written as H (k) = h(k) · W , where W =
(W 1,W 2, . . . ,W 24)T is the vector of the Gell-Mann matrices
and h(k) are complex-valued parameters that can be writ-
ten as h(k) = hR(k) + ihI (k). We define η̃ = tr[H2]/4 and
κ = {[tr(H2)]2 − 2tr(H4)}/8, such that the constraints on the
eigenvalues lead to η̃, κ ∈ R. The characteristic polynomial
simplifies to a polynomial with only odd powers given by
P5 = ε5 − 2η̃ε3 + κε. The discriminant is given by D5 =
64(η̃2 − κ )κ , and the eigenvalues read

ε0 = 0, ε±1,±2 = ±1

√
η̃ ±2

√
η̃2 − κ. (14)

Since the characteristic polynomial is a biquadratic fourth-
order polynomial multiplied with ε we obtain formally the
solutions of the four-band case with the addition of a flat
zero-energy level.

To study the generic features of a five-band model subject
to two symmetries with different constraints, we note that the
same logic applies here as for the four-band case discussed
above because of the similarity of the eigenvalue equations.
Indeed, the role played by ν̃ for the four-band case is now
played by κ . For κ = 0, the second-order exceptional lines
at zero energy found on the curve spanned by ν̃ = 0 in the
four-band model, cf. Figs. 4(v) and 4(vii), are promoted to
order three. Both 4-level (i-)FS, cf. Figs. 4(iv) and 4(viii), are
promoted to five-level surfaces, and the two two-level FS for
η̃ < 0 and ν̃ < 0, cf. Fig. 4(vi), are three-level surfaces in the
five-band case for κ < 0, where the flat band is part of both.
Otherwise the spectral features are not affected by the addition
of the flat band, and the features pointed out in Figs. 4(ii),
4(iii), and 4(ix) remain unchanged.

The predicted features can be realized with a five-band
model on which PT symmetry and SLS are imposed. The
Hamiltonian is given by

H5(k) = sin(kx )(W 2 + W 23) + sin(ky)W 7 + hs(W
10 + W 14) + iξ (W 1 + W 22) (15)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −i(sin(kx ) − ξ ) 0 −ihs 0

i(sin(kx ) + ξ ) 0 −i sin(ky) 0 0

0 i sin(ky) 0 −ihs 0

ihs 0 ihs 0 −i(sin(kx ) − ξ )

0 0 0 i(sin(kx ) + ξ ) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(16)

with hs = 2 − cos(kx ) − cos(ky) and ξ = 0.2. The generators
for PT symmetry H5(k) = A5H∗

5 (k)A−1
5 and SLS H5(k) =

−S5H5(k)S−1
5 are identical A5 = S5 = 15

5 + W 3 − 1√
3
W 8 +

√
2√
3
W 15 −

√
2√
5
W 24 = diag(1,−1, 1,−1, 1). Here two pairs of

EP5s occur, which are connected by exceptional arcs. Again
this is simply a generalization of the structure for a single pair,
where the exceptional arcs terminate at different EPs.

Similar to our previous considerations of EP2s in three-
band systems with SLS, we emphasize that it is not possible
to distinguish EP5s from EP4s with an orthogonal flat band
using the spectral structure alone. In fact to any four-band
model with symmetry-induced EP4s, a flat band can be
added without affecting the symmetry constraints. To sub-
sequently determine whether the EP4 is rendered an EP5 or
is still an EP4, one would again have to compute the Jordan
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decomposition. Here we cannot construct the geometric phase
of the eigenvectors upon encircling an EP4 or EP5, because of
the EP lines originating at the respective EPs.

V. DISCUSSION AND CONCLUSION

In this work, we exhaustively discussed the appearance of
symmetry-induced higher-order EPs in 2D parameter space.
We showed that while several (anti)unitary symmetries exist
that reduce the codimension of the EPs, these symmetries
can be divided into three groups based on their resulting
spectral constraints. As such, the cases discussed in this work
completely characterize all the possible symmetry-protected
multiband spectral features in 2D. For EP3s we derived the
full spectral structure depending on the underlying symme-
try. We gave for each symmetry minimal examples featuring
the induced higher-order EPs. We note that for these ex-
amples we chose a convenient generator, and subsequently
derived the Hamiltonian. We would like to emphasize that the
choice of generator is indeed a choice. Instead, we could have
chosen a different generator in which case we would have
found a different example Hamiltonian obeying the relevant
symmetry.

We showed that each pair of EPs is accompanied by a
generic spectral structure, which generally includes excep-
tional arcs as well as open Fermi structures of various degrees.
Further we showed that due to multiple symmetries EP4s and
EP5s are induced in 2D parameter space. These EPs also have
to appear in pairs, and the spectral structure around them is
independent of the specific symmetries of the system. We
saw that symmetry-induced higher-order EPs often appear
with characteristics very similar to lower-order EPs. Indeed,
we find EP3s as well as EP4s and EP5s, which look like
EP2s in the sense that they have a square-root dispersion.
Nevertheless the spectral structure is a distinct feature that
identifies the EPs according to the symmetries imposed on the
system. If a symmetry-induced EP is parametrically encircled,
the eigenvalues exchange with each other in a manner fully
determined by the symmetry. We note that in the presence
of PT , psH, and CP symmetry as well as CS the presence
of EP2 arcs connecting the EP3s hinders a proper definition
of the topological charge of an EP3. Similarly, in the four-
and five-band cases, the EP4s and EP5s are connected via EP2
and EP3 lines, respectively, such that it is also not possible to
define a charge. Therefore the only instance in which one can
compute a topological charge is in the three-band case with
psCS or SLS.

The EPs discussed here can be probed in experiments
described by a Hamiltonian H with two tunable parameters
that span the parameter space. Upon probing an induced EP
experimentally, the rich spectral structure predicted in this
work can be utilised. From the Hamiltonian H describing the
experiment, the EP3s, EP4s, and EP5s can be determined by
requiring ν = η = 0, ν̃ = η̃ = 0, and κ = η̃ = 0, respectively.
This tuning can be achieved by varying the two tuning param-

2We note that in Ref. [19], SLS is referred to as chiral symmetry,
whereas what we call CS is not discussed in that work. Here, we use
the definitions as in Refs. [15,16].

eters. However, due to noise in the experimental setup and
thus in the parameters of H the EPs themselves might not
be measurable directly. Instead a single EP can be encirled
parametrically by measuring the eigenvalue spectrum in pa-
rameter space on a closed loop surrounding the EP. Depending
on the symmetry in the system, a specific spectral pattern
should be visible upon performing the loop. For example, in
the case of a PT - or psH-symmetric three-band Hamiltonian,
this loop has to cross each two second-order EPs and a three-
level Fermi arc originating at the EP3 once. If these signatures
are visible in the spectrum when performing the loop, there
has to be at minimum a single symmetry-induced higher-order
EP inside the parameter loop. By contracting the loop the
exact position of the EP might be measured. We emphasize
that the qualitative spectral structure does not depend on the
length or the shape of the loop but only on the presence of a
single EP, which is surrounded.

We note that three-band models with PT symmetry and
SLS were also considered in Ref. [19].2 There the authors
identify the same features as in Fig. 1(a) except for the three-
level FA and i-FS, whereas for the SLS case their findings
correspond to what we show in Fig. 3. Moreover, our work
adds a nuance to the statement in Ref. [19], where it is men-
tioned that no EP2 may occur in a three-band model with
SLS. Here we show that while EP2s indeed do not gener-
ically appear in the presence of this symmetry, fine-tuned
models can be found in which EP2s do arise as shown in
an explicit example in Ref. [32]. Instead, we proof that there
is no room for EP2s to arise in the presence of psCS, cf.
Ref. [32].

From Table II, we see that EP3s can also be stabilized in 1D
in the presence of two symmetries with different constraints.
Similar to the EP5 case, this amounts to a situation very simi-
lar to having symmetry-induced EP2s in 1D with an additional
flat band at zero.

This work not only provides full theoretical insight into
symmetry-protected multiband features in 2D but is also
highly relevant for experiment, where non-Hermiticity finds
many applications in dissipative metamaterials [29,37]. In-
deed, all the features discussed in this work are the only
ones that could generically appear in 2D besides EP2s [2,12],
and we expect they can be straightforwardly engineered in
a plethora of different experimental platforms, ranging from
optical metasurfaces [12] to optical fibres [31] and microcav-
ities [38], where symmetry-protected EP3s have already been
observed [24,26].

ACKNOWLEDGMENTS

We are grateful to Jacob Fauman and Emil J. Bergholtz
for insightful discussions. We acknowledge funding from the
Max Planck Society Lise Meitner Excellence Program 2.0.
We acknowledge funding from the European Union via the
ERC Starting Grant “NTopQuant” (101116680). Views and
opinions expressed are however those of the authors only
and do not necessarily reflect those of the European Union
or the European Research Council (ERC). Neither the Euro-
pean Union nor the granting authority can be held responsible
for them.

023205-8



SYMMETRY-INDUCED HIGHER-ORDER EXCEPTIONAL … PHYSICAL REVIEW RESEARCH 6, 023205 (2024)

[1] T. Kato, Perturbation Theory of Linear Operators, edited by A.
Cappelli and G. Mussardo (Springer, Berlin, 1966).

[2] W. D. Heiss, The physics of exceptional points, J. Phys. A:
Math. Theor. 45, 444016 (2012).

[3] M.-A. Miri and A. Alù, Exceptional points in optics and pho-
tonics, Science 363, eaar7709 (2019).

[4] Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv.
Phys. 69, 249 (2020).

[5] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. 93,
015005 (2021).

[6] M. V. Berry, Physics of nonhermitian degeneracies, Czech. J.
Phys. 54, 1039 (2004).

[7] V. Kozii and L. Fu, Non-Hermitian topological theory of finite-
lifetime quasiparticles: prediction of bulk Fermi arc due to
exceptional point, arXiv:1708.05841.

[8] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu, J. D.
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