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Abstract

Gene regulatory networks (GRNs) are effective tools for inferring complex interactions between
molecules that regulate biological processes and hence can provide insights into drivers of biological
systems. Inferring co-expression networks is a critical element of GRN inference as the correlation
between expression patterns may indicate that genes are coregulated by common factors. However,
methods that estimate co-expression networks generally derive an aggregate network representing the
mean regulatory properties of the population and so fail to fully capture population heterogeneity. To
address these concerns, we introduce BONOBO (Bayesian Optimized Networks Obtained By assim-
ilating Omics data), a scalable Bayesian model for deriving individual sample-specific co-expression
networks by recognizing variations in molecular interactions across individuals. For every sample,
BONOBO assumes a Gaussian distribution on the log-transformed centered gene expression and a
conjugate prior distribution on the sample-specific co-expression matrix constructed from all other sam-
ples in the data. Combining the sample-specific gene expression with the prior distribution, BONOBO
yields a closed-form solution for the posterior distribution of the sample-specific co-expression matri-
ces, thus making the method extremely scalable. We demonstrate the utility of BONOBO in several
contexts, including analyzing gene regulation in yeast transcription factor knockout studies, prognos-
tic significance of miRNA-mRNA interaction in human breast cancer subtypes, and sex differences in
gene regulation within human thyroid tissue. We find that BONOBO outperforms other sample-specific
co-expression network inference methods and provides insight into individual differences in the drivers
of biological processes.

Keywords— Gene regulatory network, Co-expression, individual-specific network, Bayesian inference, poste-
rior distribution
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1 Introduction
The majority of human traits and diseases are driven not by individual genes, but by networks of genes and proteins
interacting with each other [1]. Understanding how genes interact and cooperate under different conditions is a
central challenge in deciphering the complexities of cellular processes and their dysregulation in various diseases.
While differential expression analysis with conventional tools such as “limma” (or “voom”)[2] enables us to adjust
for the effects of these covariates, differences found in transcription levels alone often fail to explain biological
differences between the cohorts being compared [3].

Co-expression networks, which represent the coordinated expression patterns of genes across diverse biolog-
ical samples, can provide insights into processes that are simultaneously activated in different biological states.
However, most methods for constructing co-expression networks estimate an aggregate network for the entire pop-
ulation [4, 5, 6], thus failing to capture the heterogeneous, context-specific gene interactions present within individ-
ual samples. Trying to overcome these limitations, methods to infer sample-specific co-expression networks have
been proposed, such as Single Pearson Correlation Coefficient (SPCC) [7, 8] and Linear Interpolation to Obtain
Network Estimates for Single Samples (LIONESS) [9]. However, these methods produce co-expression matrices
that are not positive definite and/or where the estimated correlation values are assigned outside the defined range
for correlation measures (for example, [-1,1] for Pearson’s correlation coefficient). This non-positive definiteness
can pose significant challenges in downstream analyses, as it violates the fundamental assumptions of correla-
tion networks and can lead to misleading interpretations. Alternatively, other methods designed for personalized
characterization of diseases through sample-specific networks [10] and cancer-specific or group-specific networks
[11] represent differential networks with respect to an external reference population and hence are susceptible to
varying inference depending on the reference sample used.

We develop BONOBO (Bayesian Optimized Networks Obtained By assimilating Omics data), an empirical
Bayesian model that derives individual sample-specific co-expression networks (Figure 1), thus facilitating the dis-
covery of differentially co-regulated gene pairs between different conditions and/or phenotypes, while eliminating
the effects of confounders. BONOBO derives positive definite co-expression networks from input data alone, with-
out using any external reference datasets. This distinctive feature enables BONOBO to capture correlation struc-
tures that remain consistent and comparable across diverse datasets and multiple batches, providing a robust tool
for network analysis. BONOBO derives a posterior probability distribution for individual correlation matrices, allow-
ing us to test the hypothesis of whether any two pairs of genes have a non-zero correlation, within an individual
sample in the data. Based on the results of these hypotheses-testing we can infer individual sample-specific sparse
co-expression networks by pruning out non-significant edges. This is particularly important for interpretability as
empirical data suggests that biological gene networks are sparsely connected[12].

One of the key strengths of BONOBO lies in its ability to capture the inherent heterogeneity in co-expression
patterns among individuals within a population, that can be attributed to a range of biological and environmental
elements. For instance, when comparing aggregate co-expression networks between conditions, such as dis-
tinguishing between health and disease or male and female samples, results are frequently confounded by the
population’s heterogeneity stemming from nuisance parameters, such as batch effects and/or confounding clinical
covariates such as race and age. BONOBO’s individual sample-specific approach explicitly models this hetero-
geneity, enabling a deeper understanding of the gene networks underlying distinct biological states. In addition,
individual sample-specific co-expression networks derived by BONOBO can also be used as inputs to methods for
inferring gene regulatory networks that require a correlation matrix as input, such as PANDA (Passing Messages
between Biological Networks to Refine Predicted Interactions) [3], OTTER (Optimize To Estimate Regulation) [13]
and EGRET (Estimating the Genetic Regulatory Effect on Transcription factors) [14] to infer sample-specific gene
regulatory networks. These methods infer bipartite gene regulatory networks consisting of directed regulatory
edges from regulators such as transcription factors (TF) to their target genes, by combining gene co-expression
matrices with individual-specific TF-motif and/or chromatin accessibility data.

We demonstrate the advantages of BONOBO using several simulated and real datasets. First, we used sim-
ulated data to compare BONOBO’s performance with other state-of-the-art methods. We then used pseudo-bulk
gene expression data from knockout experiments in yeast cells and show that BONOBO captures global properties
of each yeast strain and also distinguishes the sample-specific effects of single transcription factor knockouts. Next,
we examined the interaction between miRNA and mRNA expression in various human breast cancer subtypes us-
ing individual-specific co-expression networks derived by BONOBO and find that the correlation patterns between
miRNA expression and immune pathways have prognostic significance in luminal A and luminal B breast cancer
subtypes. In a final application, we study sex differences in gene regulation within human thyroid. Empirical data
indicate that females are three times more likely to develop some types of thyroid conditions over their lifetime than
males [15]. Using BONOBO networks as inputs to PANDA, we infer individual-specific gene regulatory networks
and compare these between males and females, identifying regulatory differences in immune response, cell prolif-
eration, and metabolic processes, thereby providing a possible mechanism for sex bias in incidence rates of various
thyroid conditions such as hypothyroidism and Hashimoto’s disease.

BONOBO is available as open-source code in Python through the Network Zoo package (netZooPy v0.9.17;
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netzoo.github.io) [16].

2 Methods

2.1 BONOBO
Let x1, x2, . . . , xN ∼ Rg denote the log-transformed bulk gene expression values of g genes for N samples. Let us
assume that for every sample i ∈ {1, 2, . . . , N}, the centered expression vector xi − x̄ follows a multivariate normal
distribution with mean zero and an unknown sample-specific covariance matrix Vi,

xi − x̄ ∼ Ng (0g, Vi) , (1)

where 0g ∈ Rg denotes a vector of all zeros and x̄ = 1
n

∑n
i=1 xi denotes the mean expression across all samples.

Our objective is to estimate Vi, the sample-specific covariance matrix of gene expression for the i-th sample, ∀i.
We assume that for every sample i ∈ {1, 2, . . . , N}, the sample-specific covariance matrix Vi follows an inverse

Wishart prior distribution, given all other samples j ∈ {1, 2, . . . , N} \ {i},

Vi ∼ InvWishart ((νi − g − 1)Si, νi) , (2)

where νi ≥ g + 1 denotes the degree of freedom and Si denotes the sample covariance matrix computed from
N − 1 samples excluding the i-th sample. Under this assumption, the prior mean of the covariance matrix for the
i-th sample is E[Vi] = Si. In other words, we assume that the correlation between any pair of genes for each
individual is similar to the correlation between these same pair of genes across the entire population on average.

The inverse Wishart distribution is a conjugate prior for the covariance matrix of a multivariate normal distri-
bution. Therefore, under the above prior specification, the posterior distribution of the sample-specific covariance
matrix Vi also turns out to be an inverse Wishart distribution, as described by the following theorem.

Theorem 1 Under assumptions (1) and (2), the posterior distribution of Vi is

Vi|{x1, . . . , xN} ∼ InvWishart ((νi − g)Σi, νi + 1) , (3)

where Σi =
(xi−x̄)(xi−x̄)T+(νi−g−1)Si

νi−g
denotes the posterior mean of Vi.

The proof of the above theorem is given in the appendix S1.1.1.
From (3) we observe that the posterior mean of Vi, the covariance matrix of the i-th sample is a linear combi-

nation of the prior mean Si, which summarizes information from all other samples excluding the i-th sample and a
sample-specific component (xi − x̄) (xi − x̄)T , which summarizes the association between pairwise genes within
the i-th sample alone:

Σi = δi (xi − x̄) (xi − x̄)T + (1− δi)Si, (4)

where δi = 1
νi−g

. Since νi − g ≥ 1, we have 0 ≤ δi ≤ 1, which represents the relative contributions of the
sample-specific information and the prior information, while estimating the posterior mean of Vi.

As sample size n increases, the strong law of large numbers implies Si
a.s.→ Σ, where Σ denotes the population

covariance matrix. Thus the hyperparameter δi quantifies the contribution of the sample-specific information in the
posterior mean, while the complement 1− δi quantifies the contribution of the population covariance matrix Σ. For
homogeneous populations we recommend using a smaller value of δi, or equivalently, a larger value of 1 − δi,
as this would increase the contribution of the population covariance Σ and give robust estimates of the sample-
specific covariance Vi. On the other hand, if the i-th sample is an outlier with respect to the rest of the population,
we recommend using a large value of δi, thereby decreasing estimation bias. Alternatively, we can set δi = δ, ∀i to
some arbitrary value between (0, 1). In the following section we describe a computationally inexpensive data-driven
empirical procedure for calibrating δi for every sample.

2.1.1 Fixing Prior Degrees of Freedom

The hyperparameter δi = 1
νi−g

is a one-to-one function of the prior degrees of freedom νi. Hence in order to
calibrate δi, it suffices to estimate νi for every sample i in the data. The following lemma provides a data-driven
approach for calibrating νi.

Lemma 1 Under assumption (2), prior variance of the k-th diagonal entry of Vi (denoted by v(kk)i ) would be

V ar(v
(kk)
i ) =

2(s
(kk)
i )2

νi − g − 3
, (5)

where
(
skki

)2 denotes the k-th diagonal entry of Si.
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The above lemma is a direct consequence of the properties of inverse Wishart distribution [17].
From (5), summing over k = 1, . . . , g, i.e., over all genes, we get

g∑
k=1

V ar(v
(kk)
i ) =

2
∑g

k=1(s
(kk)
i )2

νi − g − 3
(6)

Simplifying the above equation gives us,

νi = g + 3 +
2
∑g

k=1(s
(kk)
i )2∑g

k=1 V ar(v
(kk)
i )

(7)

For every sample i, the right side of (7) is known except for V ar(v(kk)i ) for k = 1, . . . , g. We can approximate
this value from the data as follows:

1. Get n estimates of the variance of the k-th gene by leaving out one sample at a time: {ηk1 , ηk2 , . . . , ηkn}, where
ηkj denotes the variance of k-th coordinates of {x1, . . . , xN} \ xj .

2. Estimate η(k) = 1
N

∑N
j=1

(
ηkj − 1

N

∑N
l=1 η

k
l

)
, the variance of {ηk1 , ηk2 , . . . , ηkn}.

Replacing V ar(v
(kk)
i ) = η(k) on the right hand side of equation (7) gives us a data-driven estimate of the prior

degrees of freedom νi. Thus the estimate of the hyperparameter δi becomes

δi =
1

νi − g
= 1/

[
3 +

2
∑g

k=1(s
(kk)
i )2∑g

k=1 η
(k)

]
, ∀i ∈ {1, . . . , N} (8)

In section S1.2.5, we illustrate, via simulation experiments, that this data-driven empirical approach of cali-
brating δi delivers performance on par with the optimal performance achieved by fixing δi = δ,∀i to any arbitrary
value.

2.1.2 Hypothesis Testing

For every sample i we can derive a 100(1 − α)% posterior credible region for the correlation between any pair of
genes as follows: first we compute the posterior variance of the covariance between any two pair of genes using the
following lemma, which is a direct consequence of the properties of inverse Wishart distribution [17]. For simplicity
we remove the sample index i.

Lemma 2 Let vjk denote the covariance between the j-th and the k-th gene. Under assumptions (1) and (2), the
posterior variance of vjk would be

V ar(vjk) =
(ν − g + 1)s2jk + (ν − g − 1)sjjskk

(ν − g)(ν − g − 3)
, (9)

where skk denotes the k-th diagonal entry of the prior mean S and sjk denotes the (j, k)-th off-diagonal entry
(corresponding to the j-th row and the k-th column) of S.

Using the above lemma we can compute an approximate 100(1− α)% posterior credible region for vjk as(
σjk − ψjkz(1−α/2), σjk + ψjkz(1−α/2)

)
, where ψjk =

√
V ar(vjk), σjk is the posterior mean of vjk and z(1−α/2)

denotes the (1− α/2)-th quantile of the standard normal distribution.
Equivalently, for every pair of genes (j, k), we can reject the null hypothesis H0 : vjk = 0, in favor of the

alternative hypothesis H1 : vjk ̸= 0 at significance level α, provided 2 (1− Φ(σjk/ψjk)) ≤ α, where Φ denotes the
cumulative distribution function of the standard normal distribution.

Remark: BONOBO derives a dense (complete) network with edges between every pair of genes, where edge
weights correspond to σjk, the posterior mean of the covariance between genes j and k. We can generate a sparse
covariance network by simply pruning out edges for which the 100(1−α)% posterior credible regions contain zero,
for a suitable value of 0 < α < 1.
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3 Results

3.1 Simulated Data and comparison with other methods
Although we recognize that simulated gene regulatory networks may not capture the full complexity of the gene
expression and the effects of regulation, simulation is an important tool as it provides a measure of “ground truth”
against which various methods can be rigorously benchmarked and compared. We performed five simulation exper-
iments and compared BONOBO with two other methods for computing sample-specific co-expression: LIONESS
[9] and SPCC [7, 8]. We repeated each of the following simulation experiments 100 times and compared BONOBO
with LIONESS and SPCC based on the mean sum of squared errors (i.e. the squared Frobenius distance between
the true correlation matrix and the estimated correlation matrix) across these 100 iterations. Through samples of
varying sizes and different dimensionalities from a homogeneous population we demonstrate that (i) increasing
sample size improves the performance of BONOBO at a faster rate than other methods (Supplementary Materials
S1.2.1) while (ii) increasing the number of genes deteriorates the performance of all three methods (Supplemen-
tary Materials S1.2.2). Next, (iii) we simulated samples from a mixture of two different homogeneous populations
(Supplementary Materials S1.2.3) and demonstrated that the performance of BONOBO remains unaffected by the
mixing proportion of the two populations. In all these instances of simulation experiments, the mean squared er-
rors for BONOBO were much smaller than those for LIONESS and SPCC. In the next example, (iv) we simulated
samples from a mixture of two populations, where one population lost expression for 1% of genes. BONOBO
identified this loss of expression (Supplementary Materials S1.2.4) with better accuracy, compared to the two com-
peting methods. Finally (v) we used two simulation examples to illustrate (Supplementary Materials S1.2.5) that the
data-driven approach of calibrating hyperparameter δ described in section 2.1.1, provides comparable estimation
accuracy, compared to the optimal performance obtained by choosing an arbitrary fixed value of δ.

Taken together, we have simulated datasets that that resemble many of the scenarios encountered in biological
datasets such as different population sizes, single gene knockouts and silencing, mixtures of subpopulations. In
all these conditions, BONOBO performs better than both LIONESS and SPCC, thereby demonstrating the efficacy
of our method in capturing the “true” correlation patterns between genes, compared to the existing methods for
sample-specific coexpression estimation.

3.2 BONOBO recovers sample-specific network structure in yeast datasets
Having established the performance characteristics of BONOBO for simulated data, we want to prove that our
method is applicable and useful on experimental data. Saccharomyces Cerevisiae, i.e. yeast, is a well-studied
organism and it has been extensively used to model biological networks [18, 19, 20]. Moreover, perturbation
experiments have been key to study the connectivity between biological entities in yeast [21, 22, 23]. We reason
that using yeast experiments would allow us to test BONOBO on real data, validating our findings with those in
the literature, and testing our method’s ability to detect perturbations at the single sample level. First, we applied
BONOBO to 48 cell-cycle-synchronized yeast microarray samples [24]. With this smaller dataset we assess the
behavior of p-value thresholding in real data and we show that by using BONOBO networks we are able to detect
the fluctuations in the cell-cycle transition pathways (see Supplementary Materials S1.3).

Thus, we applied BONOBO to a yeast gene perturbation experiment [25] that includes pseudo-bulked gene
expression from 132 engineered strains that combine genetic and environmental perturbations; 11 TF knockout
(KO) genotypes target the Nitrogen Catabolite Repression (NCR) pathway, the General Amino Acid Control (GAAC)
pathway, the Ssy1-Ptr3-Ssy5-sensing (SPS) pathway, and the retrograde pathway. These strains were grown in
twelve conditions that included various nitrogen and carbon sources (Supplementary Materials S1.4). While this is
originally a scRNA-seq dataset, we created pseudo-bulk expression values for each KO-media combination. This
way we can use BONOBO to generate networks that are perturbation-specific and investigate the co-expression
changes induced by each KO and media.

Consistent with the results of the original paper, we find that BONOBO’s networks in the same growth medium
tend to be more similar than those with the same KO (Figure 2A). This makes also logical sense, since different
nutrients will perturb larger metabolic pathways, rather than one TF and its gene targets as it is the case for the TF
KOs. However, leveraging BONOBO’s sample-specific co-expression, we can analyze how much the gene deletion
affects each sample’s network by looking at the effects of a specific TF KO on the other genes and comparing
it to the other samples (Figure S5). It appears that deletion of GCN4 has the strongest effect on the network,
visibly changing the correlation patterns of the genes that have the highest edge values with GCN4 (Figure S6).
Furthermore, we can pinpoint the effects of GCN4 deletion on each network by reconstructing which edges are the
most affected by the perturbation. We then selected the top 100 genes whose edge with GCN4 is the most affected
by the perturbation, by means of checking which edges are most different between the GCN4 genotype and the
rest of the dataset. As expected, genes that are most perturbed by GCN4 deletion, that targets the GAAC pathway,
belong to many pathways related to autophagy such as exosome, phagosome, and autophagy - yeast (Figure
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2B). Interestingly, between the top perturbed genes there are known GCN4 targets [26] such as VCX1, MNN10,
ACT1,CPA1 ([27, 28], and CCW12 [29] showing that by estimating perturbation-specific co-expression networks
BONOBO is able to detect key interactors of the TF. The analysis of yeast experiments recapitulate many of the
known properties of yeast cells, showing that BONOBO works well on real data, in addition to simulated datasets.
Moreover, BONOBO allows us to investigate the effects of each combination of TF KO and growth media, which
would be impossible with conventional population-based correlation measures.

3.3 miRNA-gene Interaction in Breast Cancer Subtypes
As evidenced from the simulation experiments and the analysis of gene expression data from perturbed yeast cells,
BONOBO successfully recovers sample-specific heterogeneity in the gene co-expression networks. Furthermore,
we propose that BONOBO can serve as a useful tool for investigating interaction patterns between multiple omics
modalities, while accounting for sample-specific clinical and molecular confounders. MicroRNAs, or miRNAs have
been observed to play important parts in RNA silencing by down-regulating the expression of multiple genes and
modifications in miRNA levels have been shown to be involved in the development and prognosis of various cancer
types [30]. Here, we used individual sample-specific co-expression networks constructed using paired mRNA and
miRNA bulk expression data from multiple breast cancer subtypes (GEO accession number GSE19783 [31, 32, 33],
preprocessing steps in Supplementary Materials S1.5.1) to understand how correlation between miRNA and genes
(or biological pathways) vary across different breast cancer subtypes and whether this interaction between genes
and miRNAs have any association with breast cancer survival.

In total we have 101 sample-specific co-expression networks each of which constitutes of correlations between
pairs of genes, pairs of miRNAs and between each gene and each miRNA. From these BONOBO networks we are
interested in investigating which biological pathways are most significantly associated with miRNA expression in
various breast cancer subtypes. For each network, we account for the association between a gene and all miRNA
by summing over all edges connecting the particular gene to the miRNAs and we then applied pathway analysis
(Supplementary Materials S1.5.2).

We observed that pathways associated to immune response including Graft vs Host disease, primary immun-
odeficiency, cytokine-cytokine receptor interaction and natural killer cell mediated cytotoxicity were significantly (at
FDR cutoff 0.05) negatively correlated with miRNA expression, across all breast cancer subtypes (Figure S7).
Pathways associated to cell adhesion and cell proliferation, such as focal adhesion and ECM receptor interaction
were positively correlated with miRNA expression, especially in Basal, Normal-like and Luminal B subtypes, while
pathway associated to cell adhesion molecules was significantly (at FDR cutoff 0.05) negatively correlated with
miRNA expression in ERBB2, Luminal A and Normal-like breast cancer. These findings align with previous studies
[31] that also uncovered significant associations between the expression levels of several miRNAs and biological
pathways involved in cell proliferation, cell adhesion and immune response.

Although pathways most correlated (positively or negatively) with miRNA expression were consistent across
different breast cancer subtypes, upon closer inspection of the individual mRNA-miRNA edges in the networks, we
observe that there is significant difference in the neighborhood of individual genes across different breast cancer
subtypes. In particular, comparing individual edges between genes and miRNAs in samples from luminal A and
luminal B (Figure 3B) subtypes, we found several genes that were differentially correlated with certain miRNAs in
luminal A versus luminal B subtypes. Genes most differentially coexpressed with miRNAs include proto-oncogene
EGFR; genes involved in immune response such as PI3KCD and INFGl; genes involved in cell-cell adhesion
and cell proliferation such as CLDN1, CLDN8, CLDN10, CLDN16 etc. These differences between miRNA-gene
interactions highlight the distinct molecular landscapes of luminal A and luminal B, which might be a contributing
factor towards diverse clinical presentations observed in both the incidence rates and prognoses of these two breast
cancer subtypes. Previous research [34] has also demonstrated that the miRNA dysregulation patterns in luminal
A breast cancers differ from those in luminal B breast cancers.

Next we investigated, if the strength of association between miRNA expression and biological pathways have
any influence on the survival outcome in various breast cancer subtypes. For every pathway significantly (at FDR
cutoff 0.05) correlated (positively or negatively) with miRNA expression, we computed a pathway score, defined by
the mean of the total correlation between all miRNAs and each gene in that pathway. Then for every pathway, we
fit a Cox proportional hazard model to predict survival, using the pathway scores, while allowing the coefficient of
the Cox model to be subtype-specific by including an interaction effect between the pathway score and the breast
cancer subtype of every sample.

We observe that a higher correlation between miRNA and pathways associated with immune response such as
Chemokine signaling pathway, primary immunodeficiency, Graft vs Host disease, Hematopoietic cell lineage and
intestinal immune network for IGA production was associated with better survival among samples from luminal A
subtype, while having worse survival among samples from luminal B subtype (Figure 3A). Previous studies [35]
have also demonstrated that an increased expression of miRNAs is associated with tumor suppression among
luminal A breast cancers, thus leading to slower tumor growth and improved prognosis. Our analysis indicates
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that an up-regulation of immune pathways by miRNAs might provide a possible mechanisms for tumor suppressive
effect of miRNAs in luminal A. In contrast, in luminal B breast cancer, miRNAs may have a role in promoting immune
evasion [36], thus leading to more aggressive tumor growth and poorer survival outcome.

Previous studies [37] had identified specific immune gene expression patterns that distinguish luminal A from
luminal B subtypes and showed that these distinct immune signatures were associated with a differential ratio be-
tween ESR1 and ESR2, a higher value of which was further associated to poorer survival outcome. Our results
indicate that subtype-specific regulatory interactions between miRNAs and immune pathways in luminal A ver-
sus luminal B breast cancers might be a possible factor contributing towards estrogen receptor mediated survival
outcome. Furthermore, we also demonstrated that the genes linked to cell proliferation pathways exhibit distinct
patterns of regulation by miRNAs in luminal A versus luminal B breast cancer subtypes. Clinically, this disparity in
the regulation of cell proliferation genes might be a crucial factor contributing to the worse prognosis associated
with luminal B breast cancer, as it tends to exhibit heightened cellular proliferation [38]. In conclusion, individual-
specific heterogeneity in correlation networks between miRNAs and genes can provide valuable insights into the
distinct miRNA-gene interaction patterns that distinguish various breast cancer subtypes, which in turn might have
significant implications for breast cancer prognosis and personalized therapeutic strategies.

3.4 Sample-specific Gene Regulatory Networks Identify Sex Difference in Thy-
roid

Most thyroid disorders have sex difference in incidence rate with females being significantly more susceptible to be
affected by a thyroid condition at some point in their lives, compared to males [39]. Although sex chromosomes,
sex hormones, and the immune system [40] have often been cited as possible contributors to this sex difference in
thyroid tissue, a system-based analysis exploring the regulatory mechanisms associated to these sex-biased dis-
ease manifestation is scarce. We used sample-specific gene regulatory networks constructed from healthy thyroid
tissue samples from the Genotype Tissue Expression (GTEx) Project [41] (see Supplementary materials S1.6.1
for all preprocesing steps), to understand how the genes are differentially regulated by transcription factors (TF) in
males and females. We combined the sample-specific co-expression networks derived by BONOBO with TF-motif
prior information (Supplementary materials S1.6.2) and protein-protein interaction data ( Supplementary materi-
als S1.6.3), using the PANDA network inference algorithm[3] to derive bipartite sample-specific gene regulatory
networks that connect transcription factors (TFs) to their target genes (Figure S8).

Based on the differential targeting analysis ( Supplementary materials S1.6.4), we observed that several genes
with known relevance in various thyroid cancers and autoimmune conditions are differentially targeted by tran-
scription factors in males and females (Figure S10). The long non-coding RNA XIST showed higher targeting in
females. Previously, XIST had been observed to promote oncogenic activities in papillary thyroid carcinomas (PTC)
[42]. Among genes highly targeted in males, tumor suppresor gene KDM6A is known to regulate multiple genes
involved in immune response, suggesting its potential influence on the risks of developing various autoimmune
conditions [43]; Among other genes highly targeted in males, PCM1 mutation has also been associated with PTC
[44]; while mutation in KMT2C has been identified as a molecular marker for primary thyroid osteosarcoma [45].
Additionally, overexpression of SOS1, which also showed higher targeting in males, have been found to promote
cell proliferation and cell apoptosis in PTC cells [46].

Finally, we functionally characterised the genes differentially targeted in male and female samples (see Supple-
mentary materials S1.6.5). We observed that biological pathways associated to immune response such as humoral
immune response, B-cell receptor signaling pathway, antigen-receptor mediated signaling and positive regulation
of b-cell activation pathway were targeted more in females (Figure 4). Heightened targeting of immune pathways
in females may contribute to their increased susceptibility to autoimmune thyroid diseases including Hashimoto’s
Thyroiditis disease, which often lead to hypothyroidism. On the other hand, pathways associated to cell cycle,
cell signaling, metabolic processes and DNA repair were targeted more in males (Figure 4). Disregulation of
these pathways have been shown to play integral parts in various thyroid conditions including Graves’ Disease and
Hashimoto’s Thyroiditis [47] and therefore the differential targeting of these pathways in males suggests that they
may have a more robust defense against factors that could disrupt thyroid function or lead to the development of
these thyroid diseases.

In conclusion, sex-biased differential regulation of key genes and biological pathways might be a contributing
factor towards differential risk of various thyroid conditions across both sexes and deciphering these sex-specific
gene regulatory patterns through individual-specific gene regulatory networks can aid in developing more effective,
personalized interventions for the prevention and treatment of various thyroid diseases.

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.16.567119doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.16.567119
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Conclusion
Complex human traits and diseases are most often driven by not a single gene but rather by intricate interactions
involving multiple genes and regulators. However, the majority of network inference techniques estimate an ag-
gregate network [4, 6] that reflects the average regulatory characteristics of the population, thereby overlooking
the diversity within the population that might arise due to various biological (e.g. sex-difference) and/or environ-
mental factors (e.g. carcinogen exposure) [48]. Recognizing the inherent hererogeneity in regulatory processes
among individuals, we have introduced BONOBO, a Bayesian parametric model designed to construct personalized
sample-specific gene co-expression networks for single samples. These networks enable us to capture population
heterogeneity in gene-gene interaction, that are rarely reflected in aggregate co-expression networks constructed
by conventional algorithms.

Constructing individual-specific co-expression networks is particularly challenging in bulk expression data as
each individual do not have more than one sample. Bayesian statistics enables us to overcome this dearth of
individual-level data by incorporating prior information derived from other individuals in the same dataset. We
assume that individual-level covariance matrices come from an inverse Wishart prior, whose mean is equal to the
sample covariance matrix computed from all other individuals in the given dataset. This assumption is based on the
fact that typically samples in a bulk expression dataset come from a single tissue and from individuals having similar
conditions (e.g. primary tumor samples). Integrating this prior information with the individual-level expression data,
we estimate posterior distribution of the covarince matrix for each individual in the data. Interestingly, the mean of
the posterior distribution turns out to be a weighted average of the deviation of the individual expression from the
mean expression and the estimated population covariance from all the other individuals in the dataset. Thus for
every individual, BONOBO compensates for the lack of individual-level information by borrowing stength from all
other individuals in the data.

BONOBO is highly scalable as we use conjugate prior distribution over individual-specific covariance matrices,
which enables us to derive a closed form expression of the posterior distribution, thus eliminating the need for run-
ning computationally expensive Markov Chain Monte Carlo. In addition, the posterior distribution of the covariance
matrix for each individual is computed separately, without any influence of the posterior distribution of other indi-
viduals, thus making BONOBO highly parallelizable, further enhancing computational efficacy.BONOBO is based
on minimal assumptions and only one tuning parameter that can be efficiently calibrated using a data-driven ap-
proach. BONOBO assumes that for every individual in the data, the log transformed expression values of genes
follow multivariate Gaussian distribution with a covariance matrix unique to every sample. Through simulated ex-
amples where the samples come from a mixture of two different populations with different mean expression and
patterns of co-expression, we demonstrate that BONOBO performs better than competing methods even when the
underlying assumption of multivariate normality is violated, thus making the method adaptable to a wide range of
applications.

In addition to providing point-estimates for each pair of gene-gene correlation, BONOBO provides posterior
credible intervals for these individual-specific correlation estimates. These credible regions enable the user to
derive sparse co-expression networks by simply pruning out edges between pairs of genes that are uncorrelated
with high probability. Using a perturbed yeast cell dataset, we illustrate that these sparse networks not only reflect
the sample-specific perturbations globally, but they allow us to investigate the specific neighborhoods that are
perturbed by transcription factor KO. We demonstrate that BONOBO can be readily extended to capture interactions
between multiple omic data categories to derive individual-specific gene regulatory networks. As an example, we
analyze BONOBO networks that capture individual-specific correlation structures between genes and miRNAs in
various breast cancer subtypes. Consistent with existing literature [31] we find biological pathways associated
to immune response and cell proliferation to be significantly correlated with miRNA expression. Furthermore,
through survival analysis, we demonstrate that interactions between miRNAs and immune pathways have varying
degrees of prognostic significance between lumina A and luminal B breast cancer subtypes.BONOBO can be
combined with existing methods for estimating gene regulatory network, such as PANDA to derive individual-specific
bipartite networks with directed edges from transcription factors to target genes. To demonstrate this, we use RNA-
seq data from thyroid tissue samples in GTEx and compared the resulting networks between males and females
to understand why thyroid conditions are more prevalent among females than males [40]. Our analysis reveals
that biological pathways assocaied to cell proliferation, immune response, and various matabolic processes are
differentially regulated between males and females, thereby providing a possible mechanism that might contribute
towards the observed sex-disparity in the incidence rate of various thyroid conditions.

We also recognize that BONOBO has limitations, some of which could be addressed by future research. Al-
though in this paper we applied BONOBO exclusively on transcriptomics data, the model can be readily adapted
to uncover interactions between other omic data types (e.g. proteomics) with little to no modifications, as long as
the data can be suitably transformed to resemble a unimodal distribution over a continuous support. However, it is
important to note that BONOBO is not applicable for omics modalities characterized by binary or categorical data,
such as mutation profiles. A promising avenue for future research could involve extending our model to incorpo-
rate interactions across a broader range of omics data types, through hierarchical latent variable models and/or
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association measures other than Pearson’s correlation. Extending BONOBO to other correlation measures, such
as the Spearman’s rank correlation coefficient, would also allow to overcome Pearson’s correlation intrinsic limita-
tions. For instance, Pearson’s correlation is heavily influenced by outliers, thereby potentially impacting all individual
co-expression networks inferred by BONOBO. Moreover, Pearson’s correlation quantifies only the extent of linear
association between genes and their molecular regulators. In future research we would like to extend BONOBO to
estimate correlation networks based on Chatteejee’s correlation coefficient [49] since it is capable of capturing not
only linear association but also functional dependence between pairs of genes.

In summary, we derive BONOBO, a Bayesian statistical model for deriving individual-specific co-expression
networks, that can be further amalgamated with other network inference methods to infer individual-specific gene
regulatory networks. BONOBO can be employed to capture population heterogenerity in interaction patterns in-
volving multiple omics data types, thereby providing a more nuanced understanding of the complex mechanisms
of human traits and diseases. Through various real datasets containing multiple omic modalities, we demonstrate
that BONOBO can potentially enable network-based disease subtyping and facilitate individualized therapy design
in diverse human diseases.

Code Availability
BONOBO is available through the Network Zoo package (netZooPy v0.9.18; netzoo.github.io).

Figures
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BONOBO: Bayesian Optimized sample-specific Networks
Obtained By assimilating OMICS data

Figure 1: Schematic diagram of BONOBO: BONOBO requires a gene expression matrix as input, from
which we would like to extract sample-specific correlation networks. Then, for each of the samples,
BONOBO infers the network by using both the Pearson correlation matrix computed on N − 1 samples
and the sample specific squared-deviation about the mean. BONOBO outputs N co-expression net-
works, one for each sample, and the associated p-values for each of the gene-gene estimated edges.
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Figure 2: A) Pearson correlation between all sparsified BONOBOs computed on the engineered yeast
data. Row labels report both the gene deletion and the growth medium for each sample. As expected,
co-expression networks tend to correlate more with the strains subject to the same growth condition,
rather than those with the same deletion.B) over-representation analysis of the top 50 genes disrupted
by GCN4 perturbation. The enriched terms belong to the KEGG 2018 pathways.
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the pathway score in the Cox model; Pathways for which higher correlation with miRNAs is associated to
better survival are colored blue and pathways for which higher correlation with miRNAs is associated to
worse survival are colored red. B) Pairs of genes and miRNAs that are most differentially coexpressed
between Lumina A and Luminal B subtypes: genes nodes are represented by colored circles where the
colors correspond to the the biological pathway associated to the gene.
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Figure 4: GO biological processes most differentially regulated (at FDR cutoff 1e-10) in males and
females in GTEx thyroid samples: pathways highly targeted in males are marked in blue and pathways
highly targeted in females are marked in red.
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[1] Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. Network medicine: a network-based

approach to human disease. Nature reviews genetics, 12(1):56–68, 2011.

[2] Matthew E Ritchie, Belinda Phipson, DI Wu, Yifang Hu, Charity W Law, Wei Shi, and Gordon K Smyth. limma
powers differential expression analyses for rna-sequencing and microarray studies. Nucleic acids research,
43(7):e47–e47, 2015.

[3] Kimberly Glass, Curtis Huttenhower, John Quackenbush, and Guo-Cheng Yuan. Passing messages between
biological networks to refine predicted interactions. PloS one, 8(5):e64832, 2013.

[4] Peter Langfelder and Steve Horvath. Wgcna: an r package for weighted correlation network analysis. BMC
bioinformatics, 9(1):1–13, 2008.

[5] John A Dawson, Shuyun Ye, and Christina Kendziorski. R/ebcoexpress: an empirical bayesian framework for
discovering differential co-expression. Bioinformatics, 28(14):1939–1940, 2012.
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Wang, Carles Pons, Catherine Ross, Matej Ušaj, Bryan-Joseph San Luis, Emira Shuteriqi, Elizabeth N.
Koch, Patrick Aloy, Chad L. Myers, Charles Boone, and Brenda Andrews. Environmental robustness of the
global yeast genetic interaction network. Science, 372(6542):eabf8424. doi: 10.1126/science.abf8424. URL
https://www.science.org/doi/10.1126/science.abf8424.

[24] Tata Pramila, Wei Wu, Shawna Miles, William Stafford Noble, and Linda L. Breeden. The Forkhead
transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the
transcriptional circuitry of the cell cycle. 20(16):2266–2278. ISSN 0890-9369, 1549-5477. doi:
10.1101/gad.1450606. URL http://genesdev.cshlp.org/content/20/16/2266.

[25] Christopher A Jackson, Dayanne M Castro, Giuseppe-Antonio Saldi, Richard Bonneau, and David Gresham.
Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse
environments. eLife, 9:e51254, 2020. ISSN 2050-084X. doi: 10.7554/eLife.51254. URL
https://doi.org/10.7554/eLife.51254.

[26] Edith D Wong, Stuart R Miyasato, Suzi Aleksander, Kalpana Karra, Robert S Nash, Marek S Skrzypek, Shuai
Weng, Stacia R Engel, and J Michael Cherry. Saccharomyces genome database update: server architecture,
pan-genome nomenclature, and external resources. Genetics, 224(1):iyac191, 01 2023. ISSN 1943-2631.
doi: 10.1093/genetics/iyac191. URL https://doi.org/10.1093/genetics/iyac191.

[27] Christopher T. Coey and David J. Clark. A systematic genome-wide account of binding sites for the model
transcription factor Gcn4. 32(2):367–377. ISSN 1549-5469. doi: 10.1101/gr.276080.121.

[28] Irem Uluisik, Alaattin Kaya, Dmitri E. Fomenko, Huseyin C. Karakaya, Bradley A. Carlson, Vadim N.
Gladyshev, and Ahmet Koc. Boron stress activates the general amino acid control mechanism and inhibits
protein synthesis. 6(11):e27772. ISSN 1932-6203. doi: 10.1371/journal.pone.0027772.

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.16.567119doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.16.567119
http://creativecommons.org/licenses/by-nc-nd/4.0/
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