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Abstract

Modeling dynamics of gene regulatory networks using ordinary dif-
ferential equations (ODEs) allow a deeper understanding of disease
progression and response to therapy, thus aiding in intervention opti-
mization. Although there exist methods to infer regulatory ODEs, these
are generally limited to small networks, rely on dimensional reduc-
tion, or impose non-biological parametric restrictions — all impeding
scalability and explainability. PHOENIX is a neural ODE framework
incorporating prior domain knowledge as soft constraints to infer sparse,
biologically interpretable dynamics. Extensive experiments - on sim-
ulated and real data - demonstrate PHOENIX’s unique ability to
learn key regulatory dynamics while scaling to the whole genome.

Keywords: gene regulatory networks, time series, dynamical systems, neural
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Background

Biological systems are complex with phenotypic states, including those rep-
resenting health and disease, defined by the expression states in the entire
genome. Transitions between these states occur over time through the action
of highly interconnected regulatory processes driven by transcription factors.
Modeling molecular mechanisms that govern these transitions is essential if we
are to understand the behavior of biological systems, and design interventions
that can more effectively induce a specific phenotypic outcome. But this is
challenging since we want not only to predict gene expression at unobserved
time points but also to make these predictions in a way that explains any
prior knowledge of transcription factor binding sites. Models that accurately
encode such interactions between transcription factors (TFs) and target genes
within gene regulatory networks (GRNs) can provide insights into important
cellular processes, such as disease-progression and cell-fate decisions [1–4].

Given that many dynamical systems can be described using ordinary differ-
ential equations (ODEs), a logical approach to modeling GRNs is to estimate
ODEs for gene expression using an appropriate statistical learning technique
[3–6]. Although estimating gene regulatory ODEs ideally requires time-course
data, obtaining such data in biological systems might be difficult. One can
instead use pseudotime methods applied to cross-sectional data to order sam-
ples and subsequently estimate ODEs that capture the regulatory structure
[7, 8].

While a variety of ODE estimation methods have been proposed, most suffer
from critical issues that limit their applicability in modeling genome-wide
regulatory networks. Some systems biology models (such as those built using
COPASI [9]) formulate ODEs based solely on biochemical principles of gene
regulation and use the available data to parameterize these equations. How-
ever, such methods impose several restrictions on the ODEs and cannot
flexibly adjust to situations where the underlying assumptions do not hold;
this increases the risk of model misspecification and hinders scalability to large
networks, particularly given the enormous number of parameters necessary
to specify a genome-scale model [10, 11]. Other methods including Dynamo,
PRESCIENT, and RNA-ODE are based on non-parametric approaches to
learning regulatory ODEs, using tools such as sparse kernel regression [3],
random forests [5], variational auto-encoders [7, 12, 13], diffusion processes
[4], and neural ordinary differential equations [6, 14], but these fail to include
biologically relevant associations between regulatory elements and genes as
constraints on the models.

These latter models can be broadly placed into two classes based on the
inputs required to estimate the gradient f of the gene regulatory dynamics,
where f(x) = dx

dt . The first class consists of methods like PRESCIENT [4] and
RNAForecaster [6] that can learn f based only on time series gene expression



PHOENIX 3

input {xt0 ; xt1 ; . . . ; xtT } without additional steps or consideration of other
regulatory inputs [4, 6, 15]. In the process of learning transitions between
consecutive time points, these “one-step” methods implicitly learn the local
derivative (in the context of single cell sequencing often referred to as “RNA
velocity” [16]) dx

dt |x=xtm
, as an intermediary to estimating f . One signif-

icant issue with these approaches is scalability, and studying meaningfully
large dynamical systems (ideally those describing the entire genome) has so
far been hindered by a large performance loss and missing interpretability
[4, 6, 17, 18]. This leads to potential issues with generalizability as regulatory
processes operate genome-wide and even small perturbations can have wide-
ranging regulatory effects.

A second class of approaches consists of “two-step” methods such as Dynamo
[3], RNA-ODE [5], and DeepVelo [12] that instead only require snapshot
expression data for learning f with two separate steps [3, 5, 12], which allows
for much broader applicability to standard RNA-seq data at the cost of
performance as true timecourse data is required for reliable causal inference.
These approaches first explicitly estimate the RNA velocity (dxdt ) for each
data point in a preprocessing step, requiring spliced and unspliced transcript
counts, and one of many available velocity estimation tools [3, 16, 19–23]. In
the next step, the original task of learning f is reduced to learning a vector
field from expression-velocity tuples [xi, (

dx
dt )i] and a suitable learning algo-

rithm is deployed. Apart from needing additional inputs that may not always
be available (for example, spliced and unspliced counts are not available for
microarray data), these “two-step” methods are also sensitive to the velocity
estimation tool used, many of which suffer from a multitude of weaknesses
[19]. Still, the Jacobian of the estimated vector field can help inform whether
the learned dynamics are biologically meaningful [2, 3, 5, 8].

While the flexibility of both classes of models helps estimate arbitrary dynam-
ics, they are “black-box” methods whose somewhat opaque nature not only
makes them prone to over-fitting but also creates challenges in teasing out
interpretable mechanistic insights into regulatory control [1, 6]. These models
are optimized solely to predict RNA velocity or gene expression levels and so
the predictions are not explainable in the sense that most cannot be related
back to a sparse causal GRN. Another major issue is the scalability of these
methods; because of their computational complexity, they have not yet been
shown to feasibly scale up to tens of thousands of genes – and definitely not
to the entire genome [3, 4, 7, 12–14]. Consequently, most of these methods
either restrict themselves to a small set of highly variable genes [4, 6, 7, 12, 14]
or resort to dimension-reduction techniques (PCA, UMAP, latent-space
embedding, etc.) [3, 4, 7, 13] as a preprocessing step . Although dimensional
reduction for feature selection has proven useful in some instances, such as
in developing predictive biomarkers, such use of “metagenes” suffers from
a lack of interpretability or apparent mechanistic association. Dimensional
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reduction results in certain biological pathways being masked in the dynamics
and impedes the recovery of causal GRNs. Further, there is no obvious way to
incorporate biological constraints and prior knowledge to guide model selec-
tion and prevent over-fitting when using dimensionally reduced data [1, 24].
Given that there is a strong desire among biological scientists to understand
the dynamic properties of individual genes in health and disease, we focused
our efforts on developing a method capable of scaling to the genome, on the
original gene expression space.

We developed PHOENIX (Prior-informed Hill-like ODEs to Enhance
Neuralnet Integrals with eXplainability) as a scalable method for estimating
dynamical systems governing gene expression through an ODE-based machine
learning framework that is flexible enough to avoid model misspecification
and is guided by insights from systems biology that facilitate biological
interpretation of the resulting models [25, 26]. At its core, PHOENIX mod-
els temporal patterns of gene expression using neural ordinary differential
equations (NeuralODEs) [27, 28], an advanced computational method com-
mensurate with the scope of human gene regulatory networks – with more
than 25,000 genes and 1,600 TFs – and a limited number of samples. We
implement an innovative NeuralODE architecture that inherits the universal
function approximation property (and thus the flexibility) of neural networks
while resembling Hill–Langmuir kinetics, which have been used to model
dynamic transcription factor binding site occupancy [10, 29, 30]. It can hence
reasonably describe gene regulation by modeling the sparse yet synergis-
tic interactions of genes and transcription factors. Importantly, PHOENIX
operates on the original gene expression space and performs without any
dimensional reduction, thus preventing information loss, especially for lowly-
expressed genes that are nonetheless important for cell fate [4].

In the optimization step of PHOENIX, we introduce user-defined prior knowl-
edge in the form of a “network prior.” Here, we derive a prior based on TF
binding motif enrichment that is predicated on the understanding that the
direct regulators of gene expression are transcription factors that bind in the
region around a gene’s transcription start site (TSS). Because most transcrip-
tion factors bind to distinct sequence motifs, each transcription factor has the
potential to regulate only a fixed subset of genes. This regulatory constraint
can be expressed as a network prior by mapping transcription factors to
the promoter sequence of regulated genes, using tools such as FIMO[31] and
GenomicRanges [32].

The incorporation of user-defined prior knowledge of likely network structure
ensures that a trained PHOENIX model is explainable – it not only predicts
temporal gene expression patterns but also encodes an extractable GRN that
captures key mechanistic properties of regulation such as activating (and
repressive) edges and strength of regulation.
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The PHOENIX model

Given a time series gene expression data set, the NeuralODEs of PHOENIX
implicitly estimate the local derivative (RNA velocity) at an input data point
with a neural network (NN). We designed activation functions that resemble
Hill-kinetics and thus allow the NN to sparsely represent different patterns of
transcriptional co-regulation by combining separate additive and multiplicative
blocks that operate on the linear and logarithmic scales respectively. An ODE
solver then integrates the estimated derivative to reconstruct the steps taken
from an input xi at time ti to a predicted output x̂i+1 at time ti+1 [27]. The
trained neural network block thus encodes the ODEs governing the dynamics
of gene expression and hence encodes the underlying vector field and GRN. An
important advantage of incorporating an ODE solver is that we can predict
expression changes for arbitrarily long time intervals without relying on prede-
fined Euler discretizations, as is required by many other methods [4, 12, 18]. We
further augmented this framework by allowing users to include prior knowledge
of gene regulation in a flexible way, which acts as a domain-knowledge-informed
regularizer or soft constraint of the NeuralODE [24] (Figure 1). By combining
the mechanism-driven approach of systems biology-inspired functional forms
and prior knowledge with the data-driven approach of powerful machine learn-
ing tools, PHOENIX scales up to full-genome data sets and learns meaningful
models of gene regulatory dynamics.

Neural ordinary differential equations (NeuralODEs)

NeuralODEs [27] learn dynamical systems by parameterizing the underlying
derivatives with neural networks:

dx(t)

dt
= f(x(t), t) ≈ NNθ(x(t), t).

Given an initial condition, the output at any given time-point can now be
approximated using a numerical ODE solver S of adaptive step size

x̂(t1) = x(t0) +

∫ t1

t0

NNθ(x(t), t)dt = S(x(t0); NNθ; t0; t1).

This is the basic architecture of a NeuralODE [27], and it lends itself to loss
functions L (here, ℓ2 loss) of the form

L
(
x(t1), x̂(t1)

)
= L

(
x(t1),S(x(t0); NNθ; t0; t1)

)
.

To perform back-propagation, the gradient of the loss function with respect to
all parameters θ must be computed, which is done using the adjoint sensitivity
method [27]. Building off of the NeuralODE author’s model implementation in
PyTorch [28], we made biologically motivated modifications to the architecture
and incorporated user-defined prior domain knowledge, as described below.
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Figure 1 PHOENIX is powered by a NeuralODE engine. Given an expression vector
g(ti) ∈ R#genes at time ti, a neural network (dotted rectangle) estimates the local deriva-
tive dg(ti)/dt and an ODE solver integrates this value to predict expression at subsequent
time points ĝ(ti+1). The neural network is equipped with activation functions (ϕΣ and ϕΠ)
that resemble Hill-Langmuir kinetics, and two separate single-layer blocks (NNsums and
NNprods) that operate on the linear and logarithmic scales to model additive and multi-
plicative co-regulation respectively. A third block (NNcombine) then flexibly combines the
additive and multiplicative synergies. PHOENIX incorporates two levels of back-propagation
to parameterize the neural network while inducing domain knowledge-specific properties; the
first (red arrows with weight λdata) aims to match the observed data, while the second (blue
arrow with weight λprior) uses simulated expression vectors γ(ti) ∈ R#genes to implement
soft constraints defined by user-supplied prior models (P∗) of putative regulatory interac-
tions. Since the γ(ti)s were simulated expression values, we also refer to them as “ghost
inputs.” More details about their operationalization can be found in Supp. Methods 1.2.

Model formulation and neural network architecture

Most models for co-regulation of gene expression are structured as a simple
feedback process [29]. Given that gene regulation can be influenced by pertur-
bations across an entire regulatory network of n genes, the gene expression of
all genes gj(t) can affect a specific gi(t) at time point t:

dg(t)

dt
= freg

(
g(t)

)
− g(t),

where g(t) = {gi(t)}ni=1, freg : Rn → Rn, and freg is approximated with
a neural network. To model additive as well as multiplicative effects within
freg, we used an innovative neural network architecture equipped with acti-
vation functions that emulate - and can thus sparsely encode - Hill-kinetics
(see Figure 1). The Hill–Langmuir equation H(P ) was originally derived to
model the binding of ligands to macromolecules [30], and can be used to model
transcription factor occupancy of gene regulatory binding sites [10]:

H(P ) =
Pα

κα + Pα
=

(P/κ)α

1 + (P/κ)α
=

Y

1 + Y
,with Y = (P/κ)α,
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which resembles the softsign activation function ϕsoft(y) = 1/(1 + |y|). For
better neural network trainability, however, we shifted it to the center of
the expression values. To approximate suitable exponents α, we further log-
transformed H, since composing additive operations in the log-transformed
space with a Hadamard exp ◦ function can represent multiplicative effects.

ϕΣ(x) =
x− 0.5

1+ | x− 0.5 |
, ϕΠ(x) = log

(
x− 0.5

1+ | x− 0.5 |
+ 1

)

were employed as activation functions to define two neural network blocks
(NNsums and NNprods), representing additive and multiplicative effects

cΣ(g(t)) = WΣϕΣ(g(t)) + bΣ cΠ(g(t)) = exp ◦(WΠϕΠ(g(t)) + bΠ).

The concatenated vectors cΣ(g(t))⊕cΠ(g(t)) served as input to a third block
NNcombine (with weights W∪ ∈ Rn×2m) that flexibly combined these additive
and multiplicative effects. We found that a single linear layer was sufficient for
this purpose. Given that ODEs have difficulty with learning zero gradients,
we found it necessary (see Supp. Fig. 5) to introduce gene-specific multipliers
υ ∈ Rn for modelling steady states of genes that do not exhibit any temporal

variation
(dgi(t)

dt = 0, ∀t
)
.

Accordingly, the output derivative for each gene i was multiplied with
ReLU(υi) = max{(υi, 0)}. We expressed this using the Hadamard product
(⊙) of the previous output and the elementwise ReLU of υ as

d̂g(t)

dt
= ReLU(υ)⊙

[
W∪{cΣ(g(t))⊕ cΠ(g(t))} − g(t)

]
.

The trainable parameters θ = (WΣ,WΠ, bΣ, bΠ,W∪,υ) were learned based
on observed data and prior domain knowledge (details in Supp. Methods 1).

Structural domain knowledge incorporation

One challenge we found in interpreting PHOENIX is that NeuralODEs have
multiple solutions [33], of which many are inconsistent with our understand-
ing of the process by which specific transcription factors (TFs) regulate
the expression of other genes within the genome. Most solutions accurately
represent gene-gene correlations, but do not necessarily reflect biologically
established TF-gene regulation processes. Inspired by recent developments in
physics-informed deep learning [24], we introduced biologically motivated soft
constraints to regularize the search for a parsimonious approximation. We
started with the NeuralODE prediction for the gene expression vector

ĝ(t1) = g(t0) +

∫ t1

t0

ReLU(υ)⊙
[
W∪{cΣ(g(t))⊕ cΠ(g(t))} − g(t)

]
dt
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= S
(
g(t0); ReLU(υ)⊙

[
W∪{cΣ(g(t))⊕ cΠ(g(t))} − g(t)

]
; t0; t1

)
.

We found that the unregularized PHOENIX provides an observed gene

expression-based approximation for the local derivative dg(t)
dt , but often we have

additional structural information available about which TFs are more likely
to regulate certain target genes. Hence, one could also formulate a domain
knowledge-informed P∗(g(t)) that is a prior-based approximation as

ReLU(υ)⊙
[
W∪{cΣ(g(t))⊕ cΠ(g(t))} − g(t)

]
︸ ︷︷ ︸

PHOENIX (based on observed gene expression data)

≈ dg(t)

dt
≈ P∗

(
g(t)

)
︸ ︷︷ ︸
prior-based

.

By promoting our NeuralODE to flexibly align with such structural domain
knowledge, we automatically searched for biologically more realistic models
that still explained the observed gene expression data. To this end, we designed
a modified loss function Lmod that incorporated the effect of prior model P∗

using a set of K simulated (“ghost”) expression vectors {γk ∈ Rn}Kk=1. This
induced a preference for consistency with prior domain knowledge.

Lmod

(
g(t1), ĝ(t1)

)

=λ

loss based on matching observed gene expression data︷ ︸︸ ︷
L
[
g(t1),S

(
g(t0); ReLU(υ)⊙

[
W∪{cΣ(g(t))⊕ cΠ(g(t))} − g(t)

]
; t0; t1

)]
+ (1− λ)

1

K

K∑
k=1

L
[
P∗(γk

)
,ReLU(υ)⊙

[
W∪{cΣ(γk)⊕ cΠ(γk)} − γk

]]
︸ ︷︷ ︸

loss based on matching prior model

.

Here, λ is a tuning parameter for flexibly controlling how much weight is given
to the prior-based optimization, which we tuned with cross-validation, and
L[x, x̂] is the primary loss function, set to the L = ℓ2 loss in our experiments.

While our modeling framework is flexible regarding the nature of the prior
model P∗, we incorporated a simple linear model, a common choice for
chemical reaction networks or simple oscillating physical systems [34] as

P∗(γk

)
= A · γk − γk = (A− I) · γk.

Here, A is the adjacency matrix of likely network structure based on prior
domain knowledge, such as experimentally validated interactions, TF—gene
binding information derived from motif scans, etc., with Aij ∈ {+1,−1, 0}
representing an activating, repressive, or no prior interaction, respectively.
For cases where the signs (activating/repressive) of prior interactions were
unknown, we found that formulating A simply based on prior interaction
existence, or Aij ∈ {1, 0}, would suffice (see Supp. Table 2).
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Results

We demonstrated the utility of PHOENIX for estimating gene expression
dynamics by performing a series of in silico benchmarking experiments, where
PHOENIX exceeded even the most optimistic performance of popular black-
box RNA dynamics estimation methods. We demonstrated the scalability of
PHOENIX by applying it to genome-scale breast cancer microarray samples
ordered in pseudotime and investigated how scaling to the complete data set
improves a representation of key pathways. We further applied PHOENIX to
yeast cell cycle microarray data to show that it can capture oscillatory dynam-
ics by flexibly deviating from Hill-like assumptions when necessary. Finally,
to test PHOENIX with a different data modality, we investigated avalaible
genome-scale timecourse RNASeq data of Rituximab treated B-cells, where
PHOENIX is able to capture key molecular changes in the main mechanism
of action of Rituximab.

PHOENIX accurately and explainably learns temporal
evolution of in silico dynamical systems

We began our validation studies with simulated gene expression time-series
data so that the underlying dynamical system that produced the system’s
patterns of gene expression was known. We adapted SimulatorGRN [29, 35]
to generate time-series expression data from two synthetic S. cerevisiae gene
regulatory systems (SIM350 and SIM690, consisting of 350 and 690 genes
respectively). The activating and repressive interactions in each in silico
system were used to synthesize noisy expression “trajectories” for each gene
across multiple time points (see Methods 1.1 and 1.2). We split up the tra-
jectories into training (88%), validation (6% for hyperparameter tuning), and
testing (6%), and compared PHOENIX predictions on the test set against
the “known”/ground truth trajectories. Since PHOENIX uses user-defined
prior knowledge as a regularizer, we also corrupted the prior model at a level
commensurate with the “experimental” noise level (see Supp. Methods 4.2),
reflecting the fact that transcription factor-gene binding is itself noisy.

We found that PHOENIX accurately learned the temporal evolution of the
SIM350 and SIM690 systems (Figure 2) and was able to recover the true
test set trajectories (that is, test set trajectories pre-noise) with a reasonably
high accuracy even when the training trajectories included high levels of noise
and the prior knowledge model was strongly corrputed. Furthermore, the
shapes of the predicted trajectories (and hence the predicted steady-state lev-
els) obtained from feeding initial values (expression at t = 0) into the trained
model remained robust to noise, suggesting that a trained PHOENIX model
could be used to estimate the temporal effects of cellular perturbations.

Since the primary prediction engine of PHOENIX is a NeuralODE, we wanted
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Figure 2 We applied PHOENIX to simulated gene expression data originating from in
silico dynamical systems SIM350 (A) and SIM690 (B) that simulate the temporal expression
of 350 and 690 genes respectively. Each simulated trajectory consisted of five time points (t =
0, 2, 3, 7, 9) and was subjected to varying levels of Gaussian noise (noise σ

mean
= 0%, 5%, 10%,

20%, higher noise settings in Supp. Fig. 1). Since PHOENIX uses a user-defined prior network
model as a regularizer, we also corrupted the prior models up to an amount commensurate
with the noise level. For each noise setting we trained PHOENIX on 140 of these “observed”
trajectories and validated on 10. The performance on the validation trajectories was used to
determine the optimal value of λprior. We then tested the trained model on 10 new test set
trajectories. We display both observed and predicted test set trajectories for four arbitrary
genes in both SIM350 and SIM690, across all noise settings. We display the mean squared
error (MSE) between the predictions and the 10 pre-noise test set trajectories.

to benchmark its performance relative to “out-of-the-box” (OOTB) Neu-
ralODE models (such as RNAForecaster [6]) to understand the contributions
of our modifications to the NeuralODE architecture. We tested a range of
OOTB models where we adjusted the total number of trainable parameters to
be similar to that of PHOENIX (see Supp. Methods 3.2). Because PHOENIX
uses a domain prior of likely gene-regulation interactions in its optimization
scheme, we also tested a version (PHX0) where the weight of the prior was
set to zero (λprior = 0). For each of SIM350 and SIM690, we observed that
PHOENIX outperformed OOTB NeuralODEs on the test set in noiseless set-
tings (Supp. Fig. 2 and Supp. Table 3). When we added noise, the PHOENIX
models still generally outperformed the OOTB models, especially PHX0.
The test MSEs were more comparable between all the models in very high
noise settings. The consistently strong performance of PHOENIX suggests
that using a Hill-kinetics-inspired architecture better captures the dynamics
of the regulatory process, in part because it models the binding kinetics of
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transcription factor-gene interactions.

In terms of the contribution of the prior constraints to PHOENIX’s perfor-
mance, we saw that PHOENIX was generally outperformed by PHX0, its
unregularized version (Supp. Fig. 2 and Supp. Table 3). However, given that
the prior can be interpreted as soft biological constraints on the estimated
dynamical system [24], an important question is whether PHX0 (as well as
OOTB models) makes accurate temporal predictions by correctly learning
elements of the causal biology, or whether the lack of prior information results
in an alternate learned representation of the dynamics, which - despite pre-
dicting these particular trajectories well - does not explain the true biological
regulatory process.

To this end, we recognized that the parameters of a trained PHOENIX model
encode an estimate of the ground-truth gene regulatory network (GRN)
that causally governs the system’s evolution over time. We therefore inferred
encoded GRNs from trained PHOENIX models and compared them to the
ground truth networks GRN350 and GRN690 used to synthesize SIM350 and
SIM690 respectively (see Supp. Methods 2). Given PHOENIX’s simple Neu-
ralODE architecture, we were able to develop a GRN inference algorithm that
could predict edge existence, direction, strength, and sign, using just model
coefficients, without any need for time-consuming sensitivity analyses (unlike
other approaches [2, 12]). For comparison, we wanted to extract GRNs from
the most predictive OOTB models; given their black-box nature, OOTB model
GRNs had to be obtained via sensitivity analyses (see Supp. Methods 3.2).

We compared inferred and ground truth GRNs in terms of several metrics,
including edge recovery, out-degree correlations, and induced sparsity. We
obtained near-perfect edge recovery for PHOENIX (AUC ∈ [0.96, 0.99]) as
well as high out-degree correlations across all noise settings (Figure 3 and
Supp. Table 4). Most notably, we observed that PHOENIX predicted dynam-
ics in a more robustly explainable way than PHX0 and the OOTB models.
We measured induced sparsity by reverse engineering a metric Cmax based on
maximizing classification accuracy (see Supp. Methods 2), and found that
PHOENIX resulted in much sparser dynamics than PHX0 (Supp. Table 5).
To further assess this phenomenon, we computed the estimated model effect
between every gene pair in SIM350, and compared these values between
PHOENIX and PHX0. We found that the incorporation of priors helped
PHOENIX identify core elements of the dynamics, and predict gene expres-
sion patterns in a biologically parsimonious manner (Supp. Fig. 4).

Since the inclusion of such static prior knowledge greatly increased the
explainability of the inferred dynamics, we also investigated how explainabil-
ity was affected by misspecification of the prior. In our in silico experiments,



12 PHOENIX

we had randomly corrupted (misspecified) the prior by an amount commen-
surate with the noise level (see Supp. Methods 4.2). We compared network
representations of these misspecified prior constraints to GRNs extracted from
the PHOENIX models that used these very priors. We found that PHOENIX
was able to appropriately learn causal elements of the dynamics beyond what
was encoded in the priors (Supp. Table 1). This suggests that even though the
user-defined priors enhance explainability, PHOENIX can deviate from them
when necessary, and learn regulatory interactions from just the data itself.

PHOENIX exceeds the most optimistic performances of
current black-box methods in silico

Having established PHOENIX models as both predictive and explainable, we
compared its performance to other existing methods for gene expression ODE
estimation in silico (Supp. Table 7). As discussed earlier, these can be placed
into two groups based on the input data. The “one-step” methods estimate
dynamics by directly using expression trajectories; these include RNAFore-
caster [6] (which is an out-of-the-box NeuralODE), and PRESCIENT [4],
among others [14, 15]. PHOENIX is more similar to these methods.

“Two-step” methods such as Dynamo [3], RNA-ODE [5], and DeepVelo [12]

Figure 3 We extracted encoded GRNs from the trained PHOENIX models and the best-
performing out-of-the-box NeuralODE models, for both in silico dynamical systems SIM350
(A) and SIM690 (B) across all noise settings (see Supp. Fig. 3 for more noise settings). We
compared these GRN estimates to the corresponding ground truth GRNs used to formulate
SIM350 and SIM690, and obtained AUC values as well as out-degree correlations (ρout). We
also reverse-engineered a metric (Cmax) to inform how sparsely PHOENIX had inferred the
dynamics (see Supp. Methods 2). Furthermore, we used these Cmax values to obtain optimal
true positive and true negative rates (TPRmax and TNRmax) that were independent of any
cutoff value, allowing us to compare between “best possible” networks across all settings.
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were not directly designed for time series data, but are applicable to snapshot
RNA-seq with quantified isoforms. They estimate dynamics by first recon-
structing RNA velocity using inputs such as spliced and unspliced mRNA
counts and then estimating a vector field mapping expression to velocity.
While this comparison is not the ideal setting for such two step approaches,
we did compensate for their disadvantage by providing the ground truth
velocities as input – information that none of the one-step approaches have –
into their second step (see Supp. Methods 3.1). Further, we used the valida-
tion set to optimize key hyperparameters of all the methods (Supp. Table 7,
right-most column) before finally testing predictive performance on expression
values from held-out test trajectories. Most of the methods also provide a
means for extracting a gene network that we used to evaluate each method’s
explainability (see Supp. Methods 3.3).

In these comparisons, we confirm that the “one-step” trajectory-based meth-
ods generally yield better predictions than the “two-step” velocity-based
methods (although Dynamo sometimes achieved performance compared to
the single-step methods), which comes as little surprise as these methods were
originally designed for a slightly different setting. Overall, at reasonable noise
levels, PHOENIX outperformed even the optimistic versions of the black-box
methods by large margins both in terms of predicting gene expression (Supp.
Table 3) and explainability (based on consistency with the ground truth
network; Supp. Table 4). We found that Dynamo was the most explainable
competing method in SIM350 but that, in SIM690, DeepVelo was more
explainable. Finally, we found that the dynamics estimated by PHOENIX
were generally much sparser than any other method and that sparsity gener-
ally decreased with noise levels (Supp. Table 5).

Further ODE estimation approaches (not included in our experiments) and
their functionalities are discussed in Supp. Table 6. Code for performing such
methodological benchmarks is included with the PHOENIX release [36].
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PHOENIX predicts temporal evolution of yeast cell-cycle
genes in an explainable way

We tested PHOENIX using an experimental data set [37] from cell-cycle syn-
chronized yeast cells, consisting of two technical replicates of expression values
for 3551 genes across 24 time points (see Methods 2.1 for data processing).

Since there were two technical replicates (or trajectories), we used one of the
two yeast replicates for training, and the other replicate for testing (not seen
in any way during training). Furthermore, within the replicate for training,
we used the contiguous segment of time points t = 45, 50, 55 minutes for
validation (to choose λprior). This scheme ensured that the train and valida-
tion sets were disjunct and that we were measuring predictive performance
on a test set that was independent of the training data (see Methods 2.2).
For the domain prior we used a simple adjacency-matrix-based prior model
derived from TF motif enrichment analyisis in promoters of each of the 3551
genes (see Methods 2.2). We tuned the prior weight (to λprior = 0.05) using
the validation set to induce higher explainability by promoting a biologically
anchored structure to the dynamics.

PHOENIX was able to learn the temporal evolution of gene expression across
the yeast cycle explaining over 69% of the variation in the test set (Figure
4B and Table 1). Notably, when we visualized the estimated dynamics
by extrapolating from just initial values (expression at t = 0), we found
that PHOENIX plausibly predicted continued periodic oscillations in gene
expression, even though the training data consisted of only two full cell cycles
(Figure 4A). The amplitude of the predicted trajectories dampened across
time points, which is expected given that yeast array data tends to exhibit
underdamped harmonic oscillation during cell division possibly reflecting
de-synchronization of the yeast cells over time [38]. This performance on non
Hill-like oscillatory dynamics is indicative of the high flexibility of PHOENIX.
It inherits the universal function approximation property from NeuralODEs,
allowing it to deviate from Hill-like assumptions when necessary, while still
remaining explainable due to the integration of prior knowledge.

To test the biological explainability of the learned dynamical system, we
extracted the encoded GRN from the trained PHOENIX model (with opti-
mal λprior = 0.05 as determined by the validation set) and compared it to a
validation network of ChIP-chip transcription factor (TF) binding data [39].
PHOENIX had very impressive accuracy in predicting TF binding (AUC =
0.93), indicating that it had learned transcription factor binding information
in the process of explaining temporal patterns in expression (Figure 4C). In
the absence of any prior knowledge (λprior = 0), the explainability was poor,
highlighting the importance of such knowledge-based guidance in black-box
models [24, 25], as well as the importance of correctly tuning λprior.
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Similar to the in silico experiments, we saw that PHOENIX’s ability to pre-
dict TF binding was greater than that obtained by comparing just the prior to
the validation data (Supp. Table 1). This suggested that PHOENIX had used
the prior knowledge of cell cycle progression as a starting point to anchor the
dynamics, and then used the data itself to learn improved regulatory rules.

Figure 4 (A) We applied PHOENIX (λprior = 0.05) to 2 technical replicates of gene
expression of 3551 genes each, collected across 24 time points in a yeast cell-cycle time
course [37]. We trained on 40 transition pairs, used 3 for validation, and tested predictive
accuracy on the remaining 3. We display both observed and predicted trajectories for 3
arbitrary genes, where the predicted trajectories are extrapolations into future time points
based on just initial values (gene expression at t = 0). Additional genes plotted in Supp.
Fig. 6. (B) We correlated observed versus predicted expression levels of all 3551 genes for
the 3 expression vectors in the test set; ρ = 0.8308 implying R2 = 0.69. (C) We tested the
explainability of the learned dynamics by comparing encoded GRNs retrieved from a series
of trained models (of varying prior dependencies) against ChIP-chip data [39] to obtain ROC
curves. The λprior = 0.05 model was the one chosen based on the validation set MSE (see
Supp. Methods 1).
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Table 1 Comparison of PHOENIX with competitor methods on yeast data with all 3551
genes and separately, the 500 most variable genes. Snapshot-based methods (Dynamo,
RNA-ODE, Deepvelo) require RNA velocity at every time point as an additional input
[3, 5, 12]. Given that this information was not available in the data set, we estimated RNA
velocity using a method of finite differences applied to smooth splines through the expression
trajectories [40] (see Supp. Methods 3.1). Predictive performance is reported as the R2 on
the test set. Explainabilty AUC was calculated by comparing encoded GRNs retrieved from
each trained model (Supp. Methods 2 and Supp. Methods 3.3) against ChIP-chip data [39]

Trained on 500 genes Trained on 3551 genes

Model Test-set R2 AUC Test-set R2 AUC

PHOENIX 74.62% 0.988 69.03% 0.934
Out-of-the-box Neural ODE 38.94% 0.430 30.07% 0.511

Dynamo 70.30% 0.693 60.90% 0.527
RNA ODE 69.60% 0.675 59.83% 0.536
DeepVelo 68.75% 0.538 59.10% 0.502

In order to contextualize PHOENIX’s impressive performance on this data
set, we performed comparative analyses against Dynamo [3], RNA-ODE
[5], DeepVelo [12], and out-of-the-box NeuralODEs. As discussed in Supp.
Table 7, Dynamo, RNA-ODE, and DeepVelo are “two-step” snapshot based
methods that require RNA velocity at every time point as an additional
input [3, 5, 12]. Given that this information was not available in the data set,
we estimated RNA velocity using a method of finite differences applied to
smooth splines through the expression trajectories [40] (see Supp. Methods
3.1). Furthermore, given that it is a common approach for current methods
to only consider a subset of top-k highly variable genes [4, 6, 7, 12, 14], we
additonally performed a subsetted analysis considering only the 500 most
variable genes along the trajectory.

In both sets of analysis, we found PHOENIX to be both the most predic-
tive R2 ∈ (69%, 75%) and by far the most explainable in terms of AUC
∈ (0.93, 0.99) (Table 1). Dynamo, RNA-ODE, and DeepVelo were designed
for a predictive setting, and we see that they do perform well on the sub-
setted analysis when looking at predictive performance, albeit worse than
PHOENIX. In terms of reconstruction of the underlying GRN, they however
perform poorly considering the AUC, with a difference of about 0.30 or more
to PHOENIX. When taken in conjunction with the poor predictive perfor-
mance of out-of-the-box NeuralODEs (R2 ∈ [30%, 39%]), as well as the poor
explainability of all black-box methods, this highlights the unique strength
of PHOENIX to appropriately model important biological processes, such as
cell cycle progression, while being highly predictive on timecourse data.



PHOENIX 17

PHOENIX infers genome-wide dynamics of breast cancer
progression and identifies central pathways

Although there are several tools for inferring the dynamics of regulatory
networks, most do not scale beyond a few hundreds of genes without losing
explainability, falling far short of the 25,000 genes in the human genome
(Supp. Table 7). Given the performance improvements we saw that were
driven by PHOENIX’s use of soft constraints, we wanted to test whether
PHOENIX could be extended to human-genome scale networks. Due to the
dearth of longitudinal human studies with genome-wide expression mea-
surements, we used data from a cross-sectional breast cancer study (GEO
accession GSE7390 [41]) consisting of microarray expression values for 22000
genes from 198 breast cancer patients and ordered these samples in pseu-
dotime. For consistency in pseudotime ordering, we reused a version of this
data that was already preprocessed and ordered (using a random-walk-based
pseudotime approach) in the PROB paper [8].

After further processing (Methods 3) obtained a single pseudotrajectory of
expression values for ng = 11165 genes across 186 patients, each at a distinct
pseudotimepoint. To explore whether PHOENIX’s performance depends on
the size of the data set, we also created pseudotrajectories for ng = 500, 2000,
and 4000 genes by subsetting the data set to its ng most variable genes. We
split up the 186 time points into contiguous intervals for training (170, 90%),
validation (8, 5%), and test (8, 5%). For the domain prior network, we again
used a simplistic prior model derived from a motif map of promoter targets,
and tuned λprior using the validation set. See Methods 3.2 for further details.

For each pseudotrajectory of size ng, we trained a separate PHOENIX model,
and measured predictive performance as the variation explained (R2) in the
test trajectory by predicting the trajectory through the model from just the
initial time point (see Methods 3.2). We observed encouragingly high values
of R2 ∈ (92%, 97%) (Figure 5, top), that are, however, not what to expect
given this is frozen tumor tissue. Upon further investigation we found that
the high R2 was partly driven by most genes not showing enough dynamic
expression, which hence are easily predicted with a constant trajectory.
When we instead focused on evaluating only the top most variable genes, we
observed more reasonable values of R2 (Supp. Fig. 10, blue line). We also
considered alternate strategies of measuring predictive performance in this
setting, but found this to oversimplify the task (Supp. Fig. 10, red line). We
note here that PHOENIX’s computational cost was not excessive even when
ng = 11165 (see Supp. Table 10).

Next, we investigated PHOENIX’s ability to identify biologically relevant and
actionable information regarding gene regulation in breast cancer. First, we
tested the performance of the learned dynamical system to reconstruct a gene
regulatory network and predict TF-gene interactions. While the ground truth
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GRN is unknown, we can estimate performance by comparing a validation
network of experimental ChIP-chip binding information [42] to a subnetwork
of the encoded GRN of a trained PHOENIX model. We found excellent
alignment between the two GRNs with AUC ∈ (0.90, 0.96), even when we
scaled up to ng = 11165 genes (Figure 5). It is important to note that the
PHOENIX-based concordance with experimental data was much greater than
that obtained by comparing just the prior knowledge to the validation network
(Supp. Table 1), indicating that PHOENIX was improving upon the GRN
suggested by the prior knowledge, in addition to learning a dynamical model.

To better understand the benefits of PHOENIX’s scalability, we investigated
how estimating regulatory dynamics based on a subset of only the ng most
variable genes can alter the perceived importance of individual genes to the
regulatory system in question. We reasoned that a model trained on all
assayed genes should reconstruct biological information better than those that
are restricted to a subset of genes [6, 12, 14]. First, we performed a gene-level
analysis by perturbing in silico the PHOENIX-estimated dynamical system
from each value of ng (500, 2000, 4000, 11165). This yielded “influence scores”
representing how changes in initial (t = 0) expression of each gene affected
subsequent (t > 0) predicted expression of all other genes (see Methods 3.3).
As might be expected, the influence scores grew increasingly more concordant
with centrality measures in the ChIP validation network, consistent with the
key roles played by transcription factor genes in large GRNs (Supp. Table 10).

We observed that highly variable genes with known involvement in breast
cancer (such as WT1 [43], ESR1 [44], AR [45], and FOXM1 [46]) were gener-
ally influential across all values of ng (Supp. Fig. 7). It is interesting to note
that both FOXM1 and AR were very influential in the ng = 500 system, but
their score dropped in the full genome (ng = 11165) system. This is likely due
to the way in which we constructed the smaller subsets of the whole genome –
by selecting the most variable genes. One would expect that the most variable
transcription factor genes falling within any subset would be highly correlated
in expression with other genes falling in the same set and that the overall
effect would be diluted by adding more - potentially uncorrelated - genes to
the system. It is more interesting that genes missing in the smaller subsets
(due to low expression variability) were identified as central to the dynamics
in the full (ng = 11165) system. Among these genes, we can find some encod-
ing cancer-relevant transcription factors such as E2F1 [47, 48] CTCF [49],
and ERG [50], and DNA methyltransferase enzymes (DNMT1 [51]).

We found that the more computationally manageable systems (ng = 500, ng =
2000) yielded an incomplete picture of gene-level influences since the method
used in constructing these subsets hinders the mechanistic explainability of
the resulting regulatory model. Certain genes exhibit relatively low variability
in expression but are still central to disease-relevant genome-level dynamics;
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compared to methods that exclude such genes to make computation tractable
[4, 6, 12], PHOENIX can correctly identify such as central because of its
ability to model subtle but important genome-scale dynamics.

Finally, we performed a pathway-based functional enrichment analysis by
translating these gene influence scores to pathway influence scores using
permutation tests on the Reactome pathway database [52] (see Methods 3.4).
We reasoned that a more complete network, to have practical advantages
over smaller and more manageable models, should be able to capture a
more complete picture of biological processes that are involved in the cancer
pseudotime. Not surprisingly, the dynamical systems with fewer genes missed
many pathways known to be associated with breast cancer that were iden-
tified as over-represented in the genome-scale (ng = 11165) system (Figure
5 and Supp. Table 8). Notably, the pathways missed in the smaller networks
include apoptosis regulation (a hallmark of cancer [53]), and TP53 regulation
of caspases (relevant to apoptosis control in tumors [54]), while terms for the
estrogen-related signalling and GLI/Hedgehog signalling (whose role in cancer
is well documented [55, 56]) would have been missed or underestimated by
the smaller models.

In a parallel analysis testing for functional enrichment of GO biological process
terms, we again found the smaller systems to overlook important pathways
that were clearly influential in the genome-scale analysis; these included a
wide array of RNA metabolism processes that are increasingly recognized as
being significant to breast cancer development [57] (Supp. Fig. 8). Finally,
while the GO molecular function terms are consistently dominated by binding
terms, we can notice how the larger models are capable of detecting more spe-
cific terms such as BHLH TF binding and E-box binding, that are subgroups
of the more TF binding term, that are known for the regulation of well known
cancer-related genes such as NOTCH1 and MYC [58, 59] (Supp. Fig. 9).

These results clearly demonstrate the importance of scalable methods such as
PHOENIX that can explainably model genome-wide dynamics. Our reduced
gene sets from which we built the smaller PHOENIX models consisted of the
500, 2000, or 4000 most variable genes. These gene sets likely consist of variable
genes that are correlated with each other, meaning that we are sampling only
a portion of the biological processes driving the temporal changes in breast
cancer; the full picture only emerges when looking at regulatory processes
across the spectrum of genes that can contribute. Alternative approaches,
such as concentrating on specific pathways, risk introducing self-fulfilling
biases in the discovery process. Similarly, methods that use low-dimensional
embedding (PCA, UMAP, etc.) to reduce the complexity of modeling dynam-
ics risk losing valuable, biologically relevant insights. PHOENIX’s ability to
scale while remaining explainable offers the best potential for the discovery of
interpretable insights about the phenotypes under study.
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Figure 5 We applied PHOENIX to a pseudotrajectory of 186 breast cancer samples
(ordered along subsequent “pseudotimepoints”) consisting of ng = 11165 genes [41]. We
split up the 186 time points into contiguous intevals for training (170, 90%), validation to
tune λprior(8, 5%), and test (8, 5%). We also repeated the analysis on smaller subsets of
genes ng = 500, 2000, 4000, where we subsetted the full trajectory to only the ng most vari-
able genes in the pseudotrajectory. We measured predictive performance as the R2 on the
test trajectory by applying the trained model to just the first test time point (see Methods
3.2). We evaluated explainability performance as the AUC from comparing encoded GRNs
from trained models against a ChIP-seq validation network [42]. Finally, we used the trained
PHOENIX models to extract permutation-based influence scores for pathways in the Reac-
tome database [52] (see Methods 3.3 and 3.4), and visualized influence scores for a collection
of the most central pathways. See Supp. Table 8 and Supp. Table 9 for detailed results.
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Figure 6 We compared the performance of PHOENIX to other methods of regulatory
dynamics estimation on a pseudotrajectory of 186 breast cancer samples (ordered along
subsequent “pseudotimepoints”) consisting of ng = 11165 genes [41]. The data was processed
for model fitting via the steps described in Methods 3.2. Snapshot-based methods (Dynamo,
RNA-ODE, Deepvelo) require RNA velocity at every time point as an additional input
[3, 5, 12]. Given that this information was not available in the data set, we estimated RNA
velocity using a method of finite differences applied to smooth splines through the expression
trajectories [40] (see Supp. Methods 3.1). Once each model was trained, we sought to measure
explainability by obtaining the predicted GRN from it (Supp. Methods 2, Supp. Methods
3.3). Then, for N ranging from 50 to 11165, we calculated the concordance between the

subgraph of each ĜRN spanned by the top-N most variable genes in the data set against
the corresponding ChIP-seq validation subnetwork [42]

In order to test whether the ability to remain explainable while scaling
genome-wide is unique to PHOENIX, we performed comparative analyses on
the full set of ng = 11165 genes against Dynamo [3], RNA-ODE [5], Deep-
Velo [12], and out-of-the-box NeuralODEs. Analogous to the yeast example,
RNA velocity information was unavailable, and hence estimated using finite
differences on smooth splines[40] for the “two-step” snapshot based methods
[3, 5, 12] (see Supp. Methods 3.1). In order to better understand how well a
model trained at genome-level is still able to capture biologically meaningful

nuances all across the gene-network, we obtained the predicted ĜRN (each
with ng = 11165 nodes) from each trained model (Supp. Methods 2, Supp.
Methods 3.3), but measured explainability in an incremental manner. For N
ranging from 50 to 11165, we calculated the concordance between the induced

subgraph of each ĜRN spanned by the N -most variable genes against the
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corresponding ChIP-seq validation subnetwork [42].

The results indicated that PHOENIX is on par with the existing black-box
approaches in terms of test set predictive accuracy (Supp. Table 11) while
offering interpretable, biologically meaningful results. This is reflected in
the achieved AUC (Figure 6), where only PHOENIX is able to properly
reconstruct the underlying GRN. Most black-box methods fulfil their goal of
being highly predictive without offering much insight into the (interpretable)
underlying processes. Notably, RNA-ODE recovers a GRN when considering
only the top 100 most variable genes, which is, however, arguably not useful
in practice. PHOENIX was the only approach that both scales to the full set
of genes, being highly predictive, while being interpretable.
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PHOENIX recovers key gene regulatory changes in
Rituximab treated B cells

To challenge PHOENIX with a different data modality, we considered a lon-
gitudinal RNA-seq experiment of B-cells followed over a course of 15 hours,
where cells where either treated with Rituximab or kept untreated [60]. Rit-
uximab is used as treatment for specific leukemia, non-hodgkin lymphoma as
well as rheumatoid arthritis, binding to B-cells inducing cell death through
apoptosis, NK-cell mediated cytotoxicity, or Macrophage mediated phagocy-
tosis. Both treated and untreated B-cells were sampled at t = 0, 1, 2, 4, 7,
and 15 hours and two replicates were available for analysis.

We trained two separate PHOENIX models, one each for the treated and
untreated cells, respectively. This allowed us to compare the gene regulatory
changes after Rituximab treatment by examining the differences between the
gene regulatory networks encoded by the two trained PHOENIX models. We
split the time points in each condition into training (80%) and validation
(20%). For the domain prior network, we use a TF-binding derived prior
similar to the breast cancer study above (see Methods 4.2), and tuned λprior

using the validation set. We observed that PHOENIX was able to model gene
expression dynamics in both conditions well, with R2 values between 89%
and 92% (Supp. Table 13). We extracted the two encoded GRNs (one each
from the PHOENIX model trained on the two conditions), and subsequently
sought to examine the changes of the regulatory dynamics that were visible
between untreated B cells and those treated with Rituximab.

Aggregating the regulatory effects of a protein (input) across all (output)
genes, we then compute log-fold changes of these regulatory potentials between
the two GRNs. A closer look at the top 50 regulators in terms of changes
in regulatory dynamics (Supp. Table 12), we find several key regulators of
apoptosis, the main mechanism of action of Rituximab in this experiment, as
neither macrophages nor NK cells are present to enable NK-mediated cyto-
toxicity or M-mediated phagocytosis. Among others, we find PPP2R3C, a key
inhibitor of B-cell receptor induced apoptosis [61], PHLPP2, which acts by
dephosphorylation of AKT family members on apoptosis [62], RAB1A, which
is part of the RAS signaling cascade that acts anti-apoptotic [63], and CLUH
that regulates the mTORC1 signaling pathway and hence apoptosis [64]. All
of these show a more than 2x log-fold change in terms of regulatory dynamics
between the two conditions. Examining the two main pathways of action
of Rituximab, Apoptosis and B-cell receptor signaling, we further observe a
generally strong regulatory difference of genes annotated for those pathways
between treatment and control (see Supp. Fig. 11 and Supp. Fig. 12). Our
analysis provides further evidence that PHOENIX reflects meaningful bio-
logical signals also on RNA-seq data, even when only few unevenly sampled
measurements are available.
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Discussion

Given the importance of regulatory networks and their dynamics, there has
been a tremendous interest in inferring and modeling their physical and tem-
poral behavior. The use of NeuralODEs represents an extremely promising
technology for inferring such networks, but so far, attempts to implement
NeuralODE-based network modeling have encountered significant problems,
not the least of which has been their inability to scale to modeling genome-
wide dynamics in a biologically explainable manner.

PHOENIX represents an important new methodological extension to the
NeuralODE framework that is not only scaleable to the full human genome
but also biologically well interpretable and able to capture explicitly both
additive as well as multiplicative ways in which transcription factors coop-
erate in regulating gene expression. For a simplified analysis, the underlying
gene regulatory network can also be extracted from a learned model and
compared with experimental evidence. An optional feature of PHOENIX
that contributes significantly to its explainability is that it can be guided
by (structural) domain knowledge. Notably, PHOENIX also remains flexible
to deviate from domain knowledge when necessary and learn novel insights
consistent with the training data.

The predictive accuracy, scalability, flexibility, and biological explainabil-
ity can be attributed primarily to two things. First, our novel NeuralODE
architecture includes the use of Hill-like activation functions for capturing
the kinetic properties of molecular binding provides a massive advantage in
terms of predictive power. Second, the introduction of soft constraints based
on prior knowledge of putative network structure leads to a scalable and
biologically explainable estimate of the underlying dynamics.

Using simulated data we have shown that PHOENIX outperforms other
models for inferring regulatory dynamics (including other NeuralODE-based
models), particularly in the presence of experimental noise. Also, an appli-
cation to data from the yeast cell cycle elucidates PHOENIX’s flexibility in
modeling arbitrary dynamics. More importantly, PHOENIX is the only Neu-
ralODE method capable of extending its modeling to capture genome-scale
regulatory processes, while remaining explainable. Using data from breast
cancer patients organized in pseudotime we illustrate not only the ability of
PHOENIX to faithfully model genome-scale networks but also demonstrate
the power of extending regulatory modeling to capture seemingly subtle but
biologically important regulatory processes.

One of the challenges in modeling the evolution of network processes, of
course, is obtaining data sets for which temporal data are available. However,
we recognize that in any data set, the individual samples represent a con-
tinuum of states between health and disease and so can use pseudotemporal
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ordered samples. But this too has some limitations as there is as of yet no
established method for ordering bulk samples – although there have been
some methods for single-cell data adapted to ”bulk” tissue samples [65].
This admits an interesting possibility: one could use additional information
(such as RNA velocities, provided they are reliable) from which one could
infer pseudotime (or real-time) trajectories. In that sense, one may argue
that PHOENIX provides a general approach to infer interpretable GRNs and
ODE models from outputs of other methods (such as Dynamo [3]), which are
currently less transparent. This could provide the best of both worlds with
a reduced dimensional approach to temporal ordering providing input for a
more complete and interpretable final model.

Although PHOENIX, in its current implementation, is designed with one
“layer” of regulation to model TF-gene interactions, we recognize that there
are other regulatory elements or higher order regulatory effects in the cell
that contribute to the control of gene expression. Such additional effects could
potentially be modeled by increasing the complexity of the NeuralODE solver
by introducing additional layers to the NeuralODE framework. However, this
would increase the computational requirements by PHOENIX and reduce its
current advantage of being a light-weight method.
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Methods

1 Testing on simulated data

1.1 Defining a ground truth dynamical system

We created a ground truth gene regulatory network (GRN) by sampling from
S. cerevisiae (yeast) regulatory networks obtained from the SynTReN v1.2
supplementary data in simple interaction format (SIF) [66]. The SynTReN
file provides a directional GRN containing 690 genes and 1094 edges with
annotations (activating vs repressive) for edge types; we defined this GRN to
be a ground-truth network G690. To obtain G350, we sampled a subnetwork of
350 genes and 590 edges from G690. We used the connectivity structure of G350

and G690, to define systems of ODEs (SIM350 and SIM690) with randomly
assigned coefficients. This entire pipeline was executed using SimulatorGRN

[35], a framework used extensively by the R/Bioconductor package dcanr [29].
Please see Supp. Methods 4.1 for further ODE formulation details.

1.2 Simulating time series gene expression data

For each n ∈ {350, 690}, we used the ground truth dynamical system SIMn
to generate expression vectors g(t) ∈ Rn, across time points t. We started
by i.i.d. sampling 160 standard uniform Rn vectors to act as initial (t = 0)
conditions. We used these initial conditions to integrate SIMn and obtain
160 expression trajectories across t ∈ T = {0, 2, 3, 7, 9} using R’s desolve

package: {{g(t)i}t∈T }160i=1. We used only five time points to emulate potential
scarcities of time-series information in real data sets, while the range t = 0 to
9 generally covered the transition from initial to steady state. Lastly, we added

Gaussian noise vectors ε(t, σ)i
i.i.d∼ N (0, σ2I) of varying σ to get noisy data

sets:
{
{{g(t)i + ε(t, σ)i}t∈T }160i=1

}
σ∈S

. Since the average simulated expression

value was ≈ 0.5, using σ ∈ S = {0, 1
40 ,

1
20 ,

1
10} corresponded roughly to average

noise levels of 0%, 5%, 10%, 20%.

1.3 Model setup for training and testing

For each simulation scenario, there were 160 simulated trajectories, out of
which we used 140 (88%) for training, 10 (6%) for validation (hyperparame-
ter tuning), and 10 (6%) for testing. We provide some details on PHOENIX
implementation (such as training strategy, prior incorporation, etc.) in Supp.
Methods 1, and include finer technicalities (including learning rates) in our
GitHub repository [36]. For prior domain knowledge model, we used the simple
linear model: P∗(γk

)
= Aσ% · γk − γk, where we chose Aσ% to be noisy/cor-

rupted versions of the adjacency matrices of ground truth networks G350 and
G690 (details in Supp. Methods 4.2). We set activating edges in Aσ% to +1
and repressive edges to -1. “No interaction” was represented using 0. To vali-
date explainability we extracted GRNs from trained models, and compared to
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ground truth G350 and G690 for the existence of edges, out-degree correlations,
and induced sparsity (details in Supp. Methods 2).

2 Testing on experimental yeast cell cycle data

2.1 Data processing and normalization

GPR files were downloaded from the Gene Expression Omnibus (acces-
sion GSE4987 [37]), and consisted of two dye-swap technical replicates
measured every five minutes for 120 minutes. Each of two replicates were sep-
arately ma-normalized using the maNorm() function in the marray library in
R/Bioconductor [67]. The data were batch-corrected [68] using the ComBat()
function in the sva library [69] and probe-sets mapping to the same gene were
averaged, resulting in expression values for 5088 genes across fifty conditions.
Two samples (corresponding to the 105 minute time point) were excluded for
data-quality reasons, as noted in the original publication, and genes with-
out motif information were then removed, resulting in an expression data set
containing 48 samples (24 time points in each replicate) and 3551 genes.

2.2 Model setup for training and testing

Given that the data set contained two technical replicates of gene expression
trajectories, we used one replicate for training and the other for testing (not
seen in any way during training). Furthermore, within the replicate for train-
ing, we used a the expression values of contiguous segment of time points
t = 45, 50, 55 minutes for validation (to choose λprior). The two remaining
intervals t ∈ [0, 40] and t ∈ [60, 120] in this replicate were used for training.
This scheme resulted in train (87%) and validation (13%) sets that were dis-
joint, and crucially, a test set that was independent of the training data. We
provide more details on PHOENIX implementation (such as training strategy,
prior incorporation, etc.) in Supp. Methods 1, and include finer technicalities
(including learning rate schedule) in our GitHub repository [36].

For prior domain knowledge model we used the simple linear model:
P∗(γk

)
= A · γk − γk. We based our choice of A on the regulatory network

structure of a motif map, similar to that used in other methods, such as
PANDA [26]. We downloaded predicted binding sites for 204 yeast transcrip-
tion factors (TFs) [39]. These data include 4360 genes with tandem promoters.
3551 of these genes are also covered on the yeast cell cycle gene expression
array. 105 total TFs in this data set target the promoter of one of these 3551
genes. The motif map between these 105 TFs and 3551 target genes provides
the adjacency matrix A of 0s and 1s, representing whether or not a prior
interaction is likely between TF and gene.

We used ChIP-chip data from Harbison et al. [39] to create a network of
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TF-target interactions, and used this as a validation network to test explain-
ability. The targets of transcription factors in this ChIP-chip data set were
filtered using the criterion p < 0.001. We calculated AUC values by comparing
the encoded GRN retrieved from the trained models (see Supp. Methods 2)
to the validation network.

3 Testing on breast cancer pseudotime data

3.1 Data procurement and psuedotime ordering

The original data set comes from a cross-sectional breast cancer study (GEO
accession GSE7390 [41]) consisting of microarray expression values for 22000
genes from 198 breast cancer patients, that we sorted along a pseudotime axis.
We noted that the same data set was also used in the PROB [8] paper. PROB
is a GRN inference method that infers a random-walk-based pseudotime to
sort cross-sectional samples and reconstruct the GRN. For consistency and
convenience in pseudotime inference, we obtained the same version of this
data that was already preprocessed and sorted by PROB. We normalized the
expression values to be between 0 and 1. We limited our analysis to the genes
that had measurable expression and appeared in our prior model and obtained
a pseudotrajectory of expression values for 11165 genes across 186 patients.
We also created pseudotrajectories for ng = 500, 2000, and 4000 genes by
subsetting to the ng highest variance genes.

3.2 Model setup for training and testing

We noted that the processed data set contained expression across 186
“pseudo” time points. We excised a contiguous interval of expression across
8 time points for testing (5%), and split up the remaining 178 time points
into training (170, 90%) and validation for tuning λprior (8, 5%). To measure
predictive accuracy of the trained model, we used it calculated a predicted
trajectory based on just the first time point in the test set. We calculated the
R2 between this prediction and the remaining 7 points of the test trajectory.
Further implementation details in Supp. Methods 1 and GitHub [36].

For the prior domain knowledge model, we used the simple linear model:
P∗(γk

)
= W0 · γk − γk. We based our choice of W0 on a motif map, similar

to that used in the breast cancer analysis in OTTER [70]. The network W0

is derived from the human reference genome, for the breast tissue specif-
ically. W0 is a binary matrix with W0i,j ∈ {0, 1} where 1 indicates a TF
sequence motif in the promoter of the target gene. Sequence motif mapping
was performed using the FIMO software [31] from the MEME suite [71] and the
R package GenomicRanges [32].

Validation of explainability was challenging since there are only a few data
sets that have ChIP-seq data for many TFs from the same cells. We used
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ChIP-seq data from the MCF7 cell line (breast cancer, 62 TFs) in the
ReMap2018 database [42] to create a validation network of TF-target interac-
tions. We calculated AUC values by comparing the encoded GRNs retrieved
from the trained models (see Supp. Methods 2) to the validation network.

3.3 Gene influence scores

Given Mng
a PHOENIX model trained on the pseudotrajectory consisting of

only the ng most variable genes (ng ∈ {500, 2000, 4000, 11165}), we performed
perturbation analyses to compute gene influence scores ISng,j . We randomly
generated 200 initial (t = 0) expression vectors via i.i.d standard uniform
sampling {g(0)k ∈ Rng}200k=1. Next, for each gene j in Mng

, we created a
perturbed version of these initial value vectors {gj(0)k}200k=1, where only gene
j was perturbed in each unperturbed vector of {g(0)k}200k=1. We then fed both
sets of initial values into Mng

to obtain two sets of predicted trajectories
{{ĝ(t)k}t∈T ∈ Rng}200k=1 and {{ĝj(t)k}t∈T ∈ Rng}200k=1 across a set of time
points T . We calculated influence as the average absolute difference between
the two sets of predictions, that represented how changes in initial (t = 0)
expression of gene j affected subsequent (t > 0) predicted expression of all
other genes in the ng-dimensional system:

ISng,j =
1

200

200∑
k=1

[
1

|T |
∑
t∈T
t̸=0

(
1

ng

ng∑
i=1
i ̸=j

∣∣ĝi(t)k − ĝi
j(t)k

∣∣)]

3.4 Pathway influence scores

Having computed gene influence scores ISng,j for each gene j in each dynami-
cal system of dimension ng genes, we translated these gene influence scores into
pathway influence scores. We used the Reactome pathway data set, GO biolog-
ical process terms, and GO molecular function terms from MSigDB [72], that
map each biological pathway/process, to the genes that are involved in it. For
each system of size ng, we obtained the pathway (p) influence scores (PSng,p)
as the sum of the influence scores of all genes involved in that pathway:

PSng,p =
∑
j∈p

ISng,j

We statistically tested whether each pathway influence score is higher than
expected by chance using empirical null distributions. We randomly permuted
the gene influence scores across the genes to recompute “null” values PS0

ng,p.
For each pathway, we performed K = 1000 permutations to obtain a null
distribution {PS0

ng,p,k}
K
k=1 that can be compared to PSng,p. We could then

compute an empirical p-value as p = 1
K

∑K
k=1 IPS0

ng,p,k>PSng,p
, where I is the

indicator function. Finally, we used the mean (µ0(ng,p)) and variance (σ2
0(ng,p)

)
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of the null distribution {PS0
ng,p,k}

K
k=1 to obtain and visualize pathway z-scores

that are comparable across pathways and subset sizes (ng):

z(ng,p) =
PSng,p − µ0(ng,p)√

σ2
0(ng,p)

4 Testing on B-cell RNASeq data

4.1 Data procurement and processing

RNA-seq data of B-cells has been downloaded from the Gene expression
omnibus (GEO accession GSE100441 [60]). Filtering out genes that show
zero expression in all samples and genes that are not in the prior, we are left
with n = 14691 genes with log(FPKM + 1) transformed gene expression val-
ues. We use the same prior as in the breast cancer experiment described above.
The data spans across seven time points (t=0h, 1h, 2h, 4h, 7h, 15h after treat-
ment start) for B cells treated with Rituximab as well as parallel untreated B
cells as control. Two replicates are available for each condition.

4.2 Model setup for training and GRN extraction

Given that the data set for each condition consists of 2 technical replicates of
6 time points each, we note that it contains 10 different transition pairs, where
a transition pair consists of two consecutive expression vectors in the data set
(g(ti), g(ti+1)). We randomly split these 10 transition pairs into training (8,
80%) and validation (2, 20%), where the validation set was used to tune λprior

as well as inform an early stopping criteria. Further details on the implemen-
tation are in Supp. Methods 1 and our GitHub repository [36]. For the prior
domain knowledge model, we used the same motif-based prior as in our breast
cancer analysis (Methods 3.2), P∗(γk

)
= W0 · γk − γk.

4.3 Rituximab pathway analysis

To examine whether PHOENIX recovers meaningful biology in this challeng-
ing dataset, we focused on analysing the differences between the derived GRNs
of the Rituximab-treated and control group. Focusing on changes of regula-
tors, we first aggregate the influence score si of each regulator i by summing
the weights of outgoing edges, si =

∑n
j=1 Dji, a common approach in node-

centric analysis in GRNs. Note that our dynamics matrix D incorporates the
scaling factor but is not normalized per gene, to enable a comparison between
the dynamics of two networks (here: treated and untreated). To examine the
change of regulatory influence of each protein, we then compute the log-fold
change between influence scores in the two conditions as

δi = log2 s
t
i − log2 s

c
i ,
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where sti and sci are the influence score in the GRN of the treatment respec-
tively control group. As the primary mechanism of action of Rituximab is
known—directly induced apoptosis, complement-dependent cytotoxicity, NK-
mediated cytotoxicity, and macrophage-mediated phagocytosis—we focused
on analzying the molecular changes within these mechanisms, with a particu-
lar focus on the top 50 most changing regulators (see Supp. Table 12). As the
experiment contained only B-cells, hence NK and macrophages were not avail-
able for cell destruction, we focused on apoptosis and cytotoxicity related to
B cell receptor signaling. We provide pathway maps of these pathways colored
by (normalized) δi in Supp. Fig. 11 and Supp. Fig. 12, which were visualized
using the Pathview package (version 1.42.0) [73] in R (version 4.3.2).
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Supplementary information. The article is accompanied by an Online
Supplementary Information file containing additional results and further
details about the methodology. Also, all relevant code and data is avail-
able as open source with the PHOENIX release: https://github.com/
QuackenbushLab/phoenix, and via Zenodo (10.5281/zenodo.10412968).
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