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Abstract

Low-dimensional embeddings and visualizations
are an indispensable tool for analysis of high-
dimensional data. State-of-the-art methods, such
as TSNE and UMAP, excel in unveiling local
structures hidden in high-dimensional data and
are therefore routinely applied in standard analy-
sis pipelines in biology. We show, however, that
these methods fail to reconstruct local properties,
such as relative differences in densities (Fig. 1)
and that apparent differences in cluster size can
arise from computational artifact caused by differ-
ing sample sizes (Fig. 2). Providing a theoretical
analysis of this issue, we then suggest DTSNE,
which approximately conserves local densities. In
an extensive study on synthetic benchmark and
real world data comparing against five state-of-
the-art methods, we empirically show that DT-
SNE provides similar global reconstruction, but
yields much more accurate depictions of local
distances and relative densities.

1. Introduction
Low-dimensional embeddings are an essential tool of data
analysis allowing exploration of the structure and relation-
ships encoded in the data. Given the high-dimensional
datasets that are gathered on a daily basis, such low-
dimensional embeddings have been shown to be especially
fruitful in aiding experts to identify general trends, clusters
and inter-cluster relationships, as well as extreme-valued
samples and outliers. In natural sciences, such as genomics,
they are routinely applied as a first step in data exploration,
in core machine learning they are frequently used as a tool
for understanding neural embeddings, such as given by
word or sentence encoders. The property of most high-
dimensional data that allows for such a reduction of dimen-
sions is that samples live in a lower dimensional subspace
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or manifold, which low-dimensional embeddings aim to
approximate.

While a classical projection onto the first two principal com-
ponents can be insightful and a valuable first step of anal-
ysis, the interesting regularities are often non-linear and
are, hence, not approximated well by principal components.
Different solutions have been suggested for this problem,
with most successful advances using a similarity measure
for the high-dimensional data to be reconstructed in the
low-dimensional embedding. Moreover, it is inherently
hard to correctly reconstruct relationships at all distance
scales. Instead, state-of-the-art methods focus on recon-
structing local structures correctly, in exchange allowing
to distort long-range distances, as this arguably preserves
the more interesting regularities in the data. The most
widely used are TSNE (van der Maaten & Hinton, 2008) and
UMAP (McInnes et al., 2018), as well as their recent adap-
atations LARGEVIS (Tang et al., 2016) and NCVIS (Arte-
menkov & Panov, 2020), which are by now an indispensable
part in standard data analysis pipelines in, e.g., biology.

While these methods yield arguably good overall recon-
structions and visualizations of the data, their embeddings
share an often neglected problem. Most experts are well
aware that inter-cluster distances are distorted and argue
about those with care. In contrast, individual clusters are (at
least relative to each other) often assumed to be faithfully
reconstructed locally.

This, however, turns out not to be true: Cluster sizes and den-
sities in the embedding do not model variances respectively
densities of the high-dimensional data. Two clusters with
the same number of points, as diverse as one stretched over
vasts amount of space and the other one extremely compact,
both appear equally sized for current embedding techniques,
which we visualize in a simple example in Fig. 1. In ex-
periments on real world data, these methods often yield
embeddings with different cluster sizes, which, however,
turn out to be not due to differently sized clusters in high di-
mensions, but to be different numbers of samples per cluster
artificially bloating clusters in the embedding (see Fig. 2).

These relative differences in local densities, which state-
of-the-art methods fail to model correctly, however, could
provide crucial information about the data at hand, such
as a cell types, which are evident as clusters, being more
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Figure 1. Preservation of relative densities. For data of 3 Gaussians with different densities in 2 dimensional space, we give the original
data, LARGEVIS, NCVIS, TSNE, UMAP, and DTSNE embeddings (from left to right). The state-of-the-art does not preserve the relative
densities nor the relative local distances. Our method DTSNE reflects the relative densities and local distances across clusters. The results
are consistent for higher dimensional data and we provide more information on data generation in the Appendix.
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Figure 2. Robustness to sample sizes. For data of 3 Gaussians in 2 dimensional space with different number of samples per cluster, we
give (from left to right) the original data, LARGEVIS, NCVIS, TSNE, UMAP, and DTSNE embeddings. The state-of-the-art artificially
blows up, respectively shrinks clusters based on number of samples in a cluster. Our method reflects the differences in local densities per
clusters. The results are consistent for higher dimensional data and we provide more information on data generation in the Appendix.

heterogeneous than others in a biological dataset. Here,
we provide a theoretical argument why current methods
fail to reconstruct relative densities and suggest a domain-
independent and entirely unsupervised approach to properly
account for relative local densities. In extensive experiments
on synthetic and real world data, we show that our solution
better recovers the relative differences of cluster densities
hidden in the high dimensional data, while yielding overall
performance that is on par with state-of-the-art approaches
in terms of overall reconstruction quality.

In summary, our main contributions are

• a theoretical analysis of why current methods do not
reflect local densities correctly,

• an unsupervised embedding approach preserving rela-
tive densities (DTSNE),

• a theoretical analysis of DTSNE proving its ability to
preserve densities for local neighbourhoods, and

• an extensive evaluation on synthetic and real-world
data against six state-of-the-art methods.

2. Related Work
Embeddings of high dimensional data into a low dimen-
sional space, in particular to 2 or 3 dimensions, have in
recent years become an essential tool of unsupervised anal-
ysis of high dimensional data in modern science. Clas-
sical methods of principal component analysis (Pearson,

1901), multidimensional scaling (Torgerson, 1952), lapla-
cian eigenmaps (Belkin & Niyogi, 2001), and self orga-
nizing maps (Kohonen, 1982) focus on keeping all, and in
particular the large distances intact. As high dimensional
data typically lies on a manifold (Silva & Tenenbaum, 2003),
resembling euclidean space only locally, research attention
shifted on modeling geodesic distances (Tenenbaum et al.,
2000), or focusing only on local distances trough locally lin-
ear embeddings (LLE) (Roweis & Saul, 2000) or stochastic
neighbour embeddings (SNE) (Hinton & Roweis, 2003).

The current state-of-the-art in low-dimensional embeddings
for visualizations t-distributed SNE (TSNE) by van der
Maaten & Hinton (2008) and Uniform Manifold Approx-
imation (UMAP) by McInnes et al. (2018) also focus on
modeling local distances correctly, allowing to distort long-
range distances. They successfully reveal intrinsic structures
of high dimensional data and, hence, have been adapted as
standard exploration and pre-processing tools in, e.g., ge-
nomics (Becht et al., 2019; Kobak & Berens, 2019) and
embeddings through natural language processing (Coenen
et al., 2019). As they usually yield highly similar embed-
dings when properly initialized (Kobak & Linderman, 2021),
it is a matter of taste which one to use, especially after re-
cent algorithmic improvements (Linderman et al., 2019)
also resulted in similar runtimes. Recent theoretical works
confirmed that the clustering revealed by TSNE is prov-
ably correct under simple assumptions about the data (Arora
et al., 2018; Linderman & Steinerberger, 2019) and unified
the theory behind both TSNE and UMAP through the lens
of contrastive learning (Damrich et al., 2023).
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Building on the successful application of low dimensional
embeddings to real world problems, Kobak et al. (2019) ex-
tended TSNE to reveal more pronounced and fine-grained
cluster structures. To emphasize user-specified structures,
several works proposed supervised and interactive ap-
proaches (De Ridder et al., 2003; Alipanahi & Ghodsi, 2011;
Barshan et al., 2011). Similarly, supervised approaches were
designed to account for unwanted or known variations – re-
vealing knowledge beyond what is already known – based
on user interaction (Puolamäki et al., 2018) or by removing
information given by a prior (Kang et al., 2016; 2021; Heiter
et al., 2021). To extend low-dimensional embeddings to ex-
tremely large-scale datasets in terms of samples, such as
given by huge web-crawls of newspapers, recent advances
focused on improving the runtime of different embedding
techniques (Tang et al., 2016; Artemenkov & Panov, 2020).

We are specifically interested in unsupervised low dimen-
sional embeddings and hence compare to the state-of-the-art
methods TSNE, UMAP, LLE, LARGEVIS, and NCVIS.

3. Theory
In this section, we first provide a description of the gen-
eral problem statement for low dimensional embeddings.
We then revisit the formulation of t-distributed stochastic
neighbour embedding (TSNE) thereby analyzing its inher-
ent limitations with regard to preserving (relative) local
densities. Subsequently, we propose DTSNE, an adaptation
which properly addresses modeling local densities.

3.1. Low-dimensional embeddings

Given data, X = (x1, x2, . . . , xn) of n samples, where
xi ∈ Rm is usually of large dimension m, our aim is to
find an embedding Y = (y1, y2, . . . , yn), yi ∈ Rm′ where
m′ ∈ {2, 3}, such that the important structure in X is pre-
served in Y . To model the structure in Y , first approaches
suggested to preserve the relative pairwise distances, i.e.
λ ‖yi − yj‖ ≈ ‖xi − xj‖, over a norm based on euclidean
or geodesic distances for some algorithm dependent scal-
ing factor λ, which could be e.g. based on normalizing X .
Preserving all (relative) distances, however, is usually not
possible and leads to poor results on complex data (van der
Maaten & Hinton, 2008) as a lower dimensional space can
encode less information. Consider the simple example of 4
clusters living in some higher dimensional space, all equidis-
tant to each other, then modeling all distances between clus-
ters correctly becomes infeasible in 2 dimensions.1 With
the typically used pairwise Euclidean distance, which em-
phasize modeling large distances correctly, the clusters get
distorted to maintain the inter-cluster distances.

Preserving relative local distances and only crudely approx-

1This can be immediately seen from Pythagoras’ theorem.

imating global distances offers a remedy, as it shows to
preserve the relevant structure of the data despite the loss
of information (van der Maaten & Hinton, 2008; McInnes
et al., 2018). In the example before, this would mean to
only approximating the inter-cluster distances, but keeping
the important local distances – the within-cluster distances –
intact. Next, we revisit TSNE, which is considered state-of-
the-art for low-dimensional embeddings.

3.2. TSNE

The t-distributed stochastic neighbour embedding models
the relationship between points i and j in the high dimen-
sional space X and embedding Y in terms of a similarity
metric that emphasizes local structure. In particular, sim-
ilarity of i, j in X is modeled by a normalized Gaussian
centered at xi

pj|i =
exp(−‖xi − xj‖22 /(2σ

2
i ))∑

k 6=i exp(−‖xi − xk‖
2
2 /(2σ

2
i ))

.

Through the normalization in the denominator it can be
interpreted as the conditional probability that i would pick
j as its neighbour, if neighbours were picked in proportion
to their probability density under a Gaussian centered at xi.
The conditional probabilites over all j given an i yield the
probability distribution Pi.

The deviation σi of sample i is fitted to account for the
differences in local densities across the data, i.e., for dense
regions smaller values of σi suffice to capture local struc-
ture, whereas we need large σi for sparser regions to cap-
ture enough of the local structure. In practice, TSNE em-
ploys a binary search to find the σi that produces a Pi
for fixed perplexity. The perplexity of a distribution Pi
is defined as perplexity(Pi) = 2H(Pi), where H(Pi) =
−
∑
j pj|i log pj|i is the Shannon entropy. In practice, it

is a user-set hyperparameter and can be seen as a smooth
measure of effective number of neighbours, for which we
can solve above equation for σi. For more information, we
refer to van der Maaten & Hinton (2008). Plugging the σi
into the definition of pj|i above, we obtain a probability
distribution for each point Pi =

∑
j 6=i pj|i .

To ease computation, probabilities are symmetrized to ob-
tain one joint probability P , where for n samples we get

pij =
pj|i + pi|j

2n
.

The corresponding low dimensional probabilities are mod-
eled by a t-distribution with one degree of freedom

qij =
(1 + ‖xi − xj‖22)

−1∑
k 6=l(1 + ‖xk − xl‖

2
2)
−1

,

which – in contrast to the Gaussian distribution – allows to
model large distances more flexible due to its heavy tails,
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thus avoiding the crowding problem2 in the embedding
space (van der Maaten & Hinton, 2008).

With representations of similarities for the given high dimen-
sional data, and the (unknown) embedding, both in terms
of probability distributions, we can now optimize for the
probability distribution Q to model P . In TSNE, this is
done by optimizing the Kullback-Leibler (KL) divergence

KL(P || Q) =
∑
i

∑
j

pij log

(
pij
qij

)
.

The KL divergence measures the number of additional bits
needed to encode P using a code optimal for encoding Q
and thus models how well Q approximates P . It is differ-
entiable with respect to yi and thus allows for optimization
via gradient descent approaches. A common problem of
state-of-the-art embedding techniques, including TSNE, is,
however, that relative densities in the data X , such as dif-
ferently sized clusters or different point densities within
clusters, are not captured in the embedding Y .

3.3. One size does not fit all

The state-of-the-art methods for low-dimensional embed-
dings, such as TSNE, NCVIS, LARGEVIS, and UMAP,
usually model low-dimensional distances locally as we have
seen before, using the same representation of those dis-
tances for different regions in the space, regardless of local
densities. As an example, consider TSNE, which maps
distances represented as pij , which reflects neighbourhood
density through the learned σi, σj , to qij , which is scale-
less. Hence, no matter how far stretched, or how compact a
cluster is, it will be assigned the same amount of space in
low dimensions. This is what we see happening in Fig. 1.

Why, however, do we see differently sized clusters in em-
beddings of TSNE and UMAP? For data of clusters with
same density (or variance), but varying number of samples
per cluster, we observe that TSNE and UMAP embed these
clusters as vastly differently sized in the embedding space
(see Fig. 2). What happens is that in high dimensions when
the local variance σi is very small, the resulting Gaussian Pi
is hence very narrow. The more points we have in a cluster,
the more likely it is that we have kNNs that are very close
to i and hence the neighbourhood distribution Pi becomes
narrow. Points from the same cluster, but which are further
away than the kNNs of i, hence fall into the tail of Pi and
have to be matched with a similar probability mass in Q.
This also means that they are modeled further away than
their counterparts in clusters with fewer points, where the
kNNs are further apart.

2The crowding problem is the phenomenon of assembling all
points in the center of the map, due to the accumulation of many
small attractive forces as moderate distances are not accurately
modelled.

While in these arguments we discussed the formulation
of TSNE, the same applies for NCVIS, LARGEVIS, and
UMAP. NCVIS and LARGEVIS follow a analogous formu-
lation of neighbourhood probabilities as TSNE. Although
UMAP has solid theoretical foundations in Riemannian ge-
ometry and fuzzy simplicial sets, its practical implementa-
tion has a one-to-one correspondence to TSNE as discussed
by the original authors (McInnes et al., 2018, Appendix
C). In particular, the low dimensional distribution also has
the same shape for each data point, which is why UMAP
suffers from the same issues as TSNE.

Next, we provide a theoretical argument that TSNE fails to
capture variations of local densities.

3.4. Reflecting local densities in embeddings

Theoretical insights into TSNE are rare, as the method and
the solutions to the related optimization problem do not need
to be unique. Gradient descent, which is usually employed
in this context, only seeks for a local minimum that has zero
gradient. To still be able to reason about our method we
instead argue about those solutions that best support the in-
tuition behind the design of TSNE, which is to approximate
local distances well, and that we would prefer to find with
our optimization approach. Those solutions should fulfill
the zero gradient condition by qin ≈ pin.

Let us consider two sufficiently small distances ‖xi − xj‖
and ‖xk − xl‖ so that ‖xi − xj‖2 < ε and ‖xk − xl‖2 < ε
for a small ε > 0. All involved points xp for p ∈ {i, j, k, l}
have lower dimensional representations yi, yj , yk,
yl that are obtained from an embedding method. A
good local distance preserving method would ful-
fill ‖xi − xj‖ / ‖xk − xl‖ ≈ ‖yi − yj‖ / ‖yk − yl‖
or, equivalently, ‖xi − xj‖2 / ‖xk − xl‖2 ≈
‖yi − yj‖2 / ‖yk − yl‖2. How does this quantity look for
TSNE? Let us assume that ε is small enough so that we can
approximate exp(−x2) ≈ 1− x2 +O(x4). We, thus, get

pij =
1

2n

(
1

Zi
exp

(
−‖xi − xj‖

2

2σ2
i

)

+
1

Zj
exp

(
−‖xi − xj‖

2

2σ2
j

))

≈ 1

2n

(
1

Zi
+

1

Zj

)(
1−

(
1

2σ2
i

+
1

2σ2
j

)
‖xi − xj‖2

)
,

where Zi :=
∑
k 6=i exp(−‖xi − xk‖

2
2 /(2σ

2
i )) denotes the

corresponding normalization constant. The same arguments
also apply to the distance ‖xk − xl‖. Similarly, for q we
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can approximate

qij =
1

Zq

(
1 + ‖yi − yj‖2

)−1
≈ 1

Zq

(
1− ‖yi − yj‖2

)
,

with Zq =
∑
m 6=p(1 + ‖xm − xp‖

2
2)
−1. Next, we will fur-

ther employ the assumption that the TSNE optimization was
successful so that qij ≈ pij and qkl ≈ pkl. In combination
with our above approximations, this leads to the relation

‖xi − xj‖2 ≈ 2σ̃2
ij

(
(1− cij) + cij ‖yi − yj‖2

)
,

with cij :=
2nZiZj

(Zi+Zj)Zq
and σ̃2

ij :=
σ2
i σ

2
j

σ2
i+σ

2
j

. This already
highlights the general problem with TSNE: The constant
and scaling factor of small distances depends on the neigh-
bourhood of i and j. To make the problem more explicit let
us study our quantity of interest, the preservation of relative
distances:

‖xi − xj‖2

‖xk − xl‖2
=
σ̃2
ijcij

σ̃2
klckl

1
cij
− 1 + ‖yi − yj‖2

1
ckl
− 1 + ‖yk − yl‖2

.

To simplify the expression note that since ‖xi − xj‖ is
small, the local neighbourhood is similar, thus σi ≈ σj
and therefore Zi ≈ Zj . We get

‖xi − xj‖2

‖xk − xl‖2
=
σ2
iZi

σ2
kZk

Zq

nZi
− 1 + ‖yi − yj‖2

Zq

nZk
− 1 + ‖yk − yl‖2

.

Intuitively, this means that unless the clusters are similar
in density or size, i.e., σi ≈ σk and Zi ≈ Zk, we can not
preserve relative distances. Distances are scaled by a quan-
tity that is inversely proportional to the high-dimensional
variances. A natural fix to these issues would therefore be
to scale ‖yi − yj‖2 proportional to this inverse of σ̃2

ij (or
any form of mean of σ2

i and σ2
j ) and to choose σ2

i so that
cij ≈ 1 or at least Zin ≈ Zq .

3.5. Preserving densities with DTSNE

As discussed above, to properly model relative densities, we
need a distribution for our low-dimensional point pairs that
properly reflect the density of their neighbourhood. Concep-
tually, we want to map the distances of close neighbours of
points in differently dense regions in X to regions in Y that
show a similar relative difference in scale.

Based on the above insights, for a pair of points i, j we
define the scaling factor for low-dimensional distances as

γij =

(
(σi + σj)

2
)−1

maxk,l ((σk + σl)2)
−1 ,

which is a scaling factor that is inverse proportional to the
squared average deviation of i, j, 1/(σi+σj)

2, and normal-
ized to have maximum value of 1.

By incorporating the scaling into low-dimensional probabil-
ities qij , we enable learning of relative densities as

qij =
(1 + γij ‖xi − xj‖22)

−1∑
k 6=l(1 + γkl ‖xk − xl‖22)−1

.

We further adapt the high-dimensional probabilities to be
defined analogous to our low-dimensional probabilities
in terms of the symmetry of the scaling factor. That
is, we make the distribution pj|i and, hence, pij depen-
dent on the neighbourhood of both i and j, by using
σ2
ij = (1/2(σi + σj))

2. This not only makes the distri-
butions more comparable, but also allows us to analyze the
behaviour of this method theoretically. We thus get

pj|i =
exp(−‖xi − xj‖22 /(2σ

2
ij))∑

k 6=i exp(−‖xi − xk‖
2
2 /(2σ

2
ik))

,

and symmetrize the distributions as in vanilla TSNE

pij =
pj|i + pi|j

2n
.

Deriving the KL-divergence on this new probability distri-
butions with respect to Y , we get

∂KL(P || Q)

∂yi
=

4
∑
j(pij − qij)(yi − yj)γij
(1 + γij ‖yi − yj‖22)

.

We give the derivation in App. A. Based on this gradient, we
can optimize for an embedding Y by gradient descent. We
call this method DTSNE for density preserving TSNE, and
give pseudocode in Alg. 1. By design, it closely resembles
TSNE and comes with the same computational costs of
O(n2T ) for data of n samples and descent for T iterations.
In practice, we can make use of established ways to speed
up and improve the optimization, such as early exaggeration
and PCA initialization, both improving formation of natural
clusters of the data in the embedding, and hence speeding
up the overall computations. We refer to van der Maaten &
Hinton (2008) and Kobak & Berens (2019) for details.

THEORETICAL DENSITY PRESERVATION

DTSNE is able to address the outlined issues of preserving
relative densities approximately just by rescaling the dis-
tances in q with a variance γij that is proportional to σ2

ij .

Recall that pij = wij exp
(
−‖xi − xj‖2 /(2σ2

ij)
)

, where

wij =
1
Zp

(
1
Zi

+ 1
Zj

)
with a modified definition of Zi :=∑

k 6=i exp(−‖xi − xk‖
2
2 /(2σ

2
ik)) and a global normaliza-

tion constant Zp. Furthermore, qij =
(1+γij‖yi−yj‖2)

−1

Zq
,

with Zq =
∑
k 6=l(1 + γkl ‖xk − xl‖22)−1.
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Algorithm 1 DTSNE

Input: Data X , perplexity k, iterations T , learning rate µ,
momentum δ

Output: Embedding Y
1: compute P // Use symmetrized σij
2: compute γij // Scaling factor γij
3: Y (0) ← PCA(X, 2) // Initialization of embedding
4: Y (0) ← .0001 Y (0)

std(Y (0))
// (Kobak & Linderman, 2021)

5: for t = 1 . . . T do
6: compute Q // Use scaling γij
7: compute ∂KL(P || Q)

∂Y

8: Y (t) ← Y (t−1)+γ ∂KL(P || Q)
∂Y +δ(Y (t−1)−Y (t−2))

9: end for
10: return Y (T )

Considering close points i, j and that pij ≈ qij , we can
solve pij for the distance

‖xi − xj‖2

≈ 2σ2
ij

(
log (wijZq) + log

(
1 + γij ‖yi − yj‖2

))
=

2σ2
ij

γ−1ij

(
log (wijZq) γ

−1
ij + γ−1ij log

(
1 + γij ‖yi − yj‖2

))

≈
2σ2

ij

γ−1ij

(
log (wijZq) γ

−1
ij + ‖yi − yj‖2

)
,

where the last approximation holds for sufficiently small
γij ‖yi − yj‖2. DTSNE sets γij = λ(σ2

ij)
−1 for a λ > 0 so

that we receive

‖xi − xj‖2

≈
2σ2

ij

γ−1ij

(
log (wijZq) γ

−1
ij + γ−1ij log

(
1 + γij ‖yi − yj‖2

))

≈ 2λ
(
log (wijZq)λ

−1σ2
ij

+ λ−1σ2
ij log

(
1 + λ(σ2

ij)
−1 ‖yi − yj‖2

))
≈ 2λ

(
log (wijZq)λ

−1σ2
ij + ‖yi − yj‖

2
)
,

where the last approximation applies solely to small dis-
tances. Note that the choice of λ does not affect the embed-
ding yp or the normalization constantZq , as the optimization
could just return λyp instead of yp, thus yielding the same
probability distribution q with the same Zq for any λ > 0.
λ also does not influence the scaling factor of relative local
distances, as it cancels out:

‖xi − xj‖2

‖xk − xl‖2
≈

log (wijZq)λ
−1σ2

ij + ‖yi − yj‖
2

log (wklZq)λ−1σ2
klλ+ ‖yk − yl‖2

.

We are thus free to choose λ such that the contribution of
log (wijZq)λ

−1σ2
ij or log (wklZq)λ−1σ2

kl becomes irrele-
vant in comparison with ‖yi − yj‖2 or ‖yk − yl‖2. We con-
clude that for small enough λ, DTSNE succeeds in preserv-
ing relative local distances, as ‖xi−xj‖2

‖xk−xl‖2
≈ ‖yi−yj‖

2

‖yk−yl‖2
holds

for any pair of small distances ‖xi − xj‖ and ‖xk − xl‖.
Next, we show that DTSNE also empirically preserves rela-
tive local distances.

4. Experiments
To evaluate DTSNE, we compare on both synthetic as well
as real world data against the state-of-the-art in unsupervised
low-dimensional embedding approaches UMAP (McInnes
et al., 2018), TSNE (van der Maaten & Hinton, 2008),
LLE (Roweis & Saul, 2000), LARGEVIS (Tang et al., 2016),
and NCVIS (Artemenkov & Panov, 2020). We consider
benchmarks of gaussian and uniform mixtures, the (vector-
ized) MNIST dataset of handwritten digits (Lecun et al.,
1998), two biological single-cell datasets (Wong et al., 2016;
Samusik et al., 2016), and neural sentence embeddings of
Amazon reviews (He & McAuley, 2016).

For DTSNE and TSNE, we set the learning rate as µ =
n/12 (Belkina et al., 2019), the momentum to δ = .5 in
the first 20 iterations and to δ = .8 afterwards (van der
Maaten & Hinton, 2008), and set the perplexity to k = 100
in all experiments, which showed consistently good per-
formance across all data. For all other methods, we use
the recommended parameter settings from the respective
original publications. Before embedding a given dataset,
we project it to its first 50 principal components, a com-
mon practice to improve low-dimensional embeddings. We
use the OpenTSNE3 implementation for TSNE embeddings
and use the original publicly available implementations for
other methods. An implementation of DTSNE and bench-
mark data generation is publicly available.4 On all datasets,
all methods take less than an hour to finish, with UMAP,
TSNE, LARGEVIS, and NCVIS taking seconds to a few
minutes and DTSNE showing a slightly slower computation
with 10-30 minutes depending on the data, which is due
to a less-optimized code. In particular, we stick to stan-
dard learning rates, use no fine-tuned learning rate schedule,
or early stopping, leaving this in combination with other
methods, such as FFT-based acceleration, for future work.

We compare all methods based on Pearson correlation ρ
between high- and low-dimensional distances, a common
measure of embedding quality. Any correlation measures
across all distances, however, places more importance on
reconstruction of the global arrangement of data, and much

3https://opentsne.readthedocs.io/en/
latest/

4http://eda.rg.cispa.io/dtsne/

https://opentsne.readthedocs.io/en/latest/
https://opentsne.readthedocs.io/en/latest/
http://eda.rg.cispa.io/dtsne/
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Figure 3. Experimental results. Comparison on 4 synthetic benchmark (top) and 4 real data sets (bottom). We report Pearson correlation
between all high- and low-dimensional distances as ρ (global reconstruction), correlation between high- and low-dimensional distances of
each point with its 100 closest neighbours as ρknn (local reconstruction), and correlation between radii of smallest balls enclosing the 100
neighbours of each point in high- and low-dimensional space as ρr (relative density reconstruction). We provide all numerical results in
App. Tab. 1.

less on the reconstruction of local structures, that we are
usually interested in. To evaluate how well such short-range
(local) distances are preserved we compute the Pearson cor-
relation ρknn of distances of each point to its k = 100 clos-
est neighbours between high- and low-dimensional space.
Not only short-range distances but also the relative sizes
and densities between different structures capture crucial
information. We, hence, also evaluate how good relative
densities are reconstructed in the embedding. For that we
take for each point i the radius ri of the (smallest) ball en-
closing its 100 neighbours, i.e., the distance to its 100th

neighbour. The ball serves as a proxy of how far neighbour-
ing points are spread out in the space. As we are interested
in reconstructing relative densities, we then take fractions of
each pair of radii, rirj , and measure the Pearson correlation
ρr between them in high- and low-dimensional space.

4.1. Embeddings on synthetic benchmark data

We first benchmark all methods on synthetic data with
known cluster structure, providing more details in the
App. B. Overall, we generate 6 datasets varying different
properties, such as number of samples per cluster, cluster
variances, and generating distributions. We first generate
two 2D datasets with 3 Gaussian clusters each, one where
each Gaussian has a different variance but we keep the
number of samples per cluster fixed, and one where each
Gaussian has same variance but the number of samples per
cluster is different. These two datasets serve as the basis
for Fig 1 and Fig 2, as they visually show the underlying

problem of current low-dimensional embedding algorithms.

To evaluate all methods quantitatively, we generate more
complex datasets in a 50 dimensional space. The first dataset
is made of 3 Gaussian clusters with same scale but varying
number of samples in each (G3-s). The second dataset has
3 Gaussian clusters with differing scale but same number of
samples per cluster (G3-d). The third dataset contains 10
clusters with a different scale (G10-d) and the last dataset
has 150 dimensions in which we place 5 clusters, each
drawn from a Uniform distribution with a different scale
(U5-d). The results are visualized in Fig. 3a-d.

When it comes to global reconstruction, DTSNE performs
on par with the best other methods. More interestingly, when
looking at quality of local reconstruction ρknn, which tells
how well the actual local structures that we are interested
in are preserved, we get a different picture. LLE still per-
forms worst, yet all other competitors also show comparably
bad performance, for example achieving only single-figure
correlations on G3-d. Only DTSNE achieves consistently
high quality when it comes to local reconstruction. This
trend is even more extreme when looking at preservation
of relative densities ρr, showing that all except DTSNE fail
to recover densities. While these datasets were challenging
and also DTSNE does not achieve perfect reconstruction,
for example for G3-s, the state-of-the-art does not maintain
any difference in cluster size at all. This becomes also evi-
dent when looking at the visualization of the embeddings,
for example for G10-d given in Fig. 4.
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Figure 4. G10-d embeddings. For data of 10 Gaussian clusters with different scale in a 50 dimensional space, we provide the embeddings
produced by all methods. DTSNE is the only method able to correctly reflect variation in cluster densities.

4.2. Embeddings of real world data

Among our real world datasets, Amazon reviews is the most
challenging to embed, as the reviews contain colloquial
language and abbreviations and have frequent grammatical
or spelling mistakes. This challenging problem also re-
flects in the performances, regardless of tool or metric (see
Fig. 3e). Surprisingly, TSNE performs best. DTSNE shows
almost similar performance when it comes to reconstructing
neigbourhoods and is the only other tool with decent per-
formance when it comes to reconstructing relative densities.
Intriguingly, even though TSNE performs so well, it at the
same time gives the least informative clusters – only Luxury
and Beauty products are clearly separated from the rest –
whereas other methods such as DTSNE provide slightly bet-
ter separation of individual clusters (see App. Fig. 8). These
clusters reveal informative sub-classes of products, such as
knitting and crocheting, or shooting.

For MNIST embeddings, DTSNE consistently performs
best across all measures (see Fig. 3f). Except for LLE,
which has overall bad performance, the other methods per-
form decently in terms of reconstructing global distances
and neighbourhoods, with TSNE being the best of the com-
petitors. Yet, consistent with our findings on synthetic data,
we see that the state-of-the-art is not able to reconstruct
relative densities well. Out of those competitors TSNE per-
forms decently with ρr = .38, yet has a wide gap to the .67
achieved by DTSNE. For the interested reader, we provide
visualizations of the embeddings in App. Fig. 6.

On Samusik and Wong data, we see a similar trend for
global and neighbourhood reconstruction, with DTSNE the
best and competitors performing well, with a larger gap
to DTSNE in terms of neighbourhood reconstruction (see
Fig. 3g,h). Consistent with the literature (Kobak & Lin-
derman, 2021), we see that neither UMAP nor TSNE is
consistently better than the other. When it comes to the
reconstruction of relative densities, all methods fare better
than on the MNIST data, yet have a substantially worse den-
sity reconstruction than DTSNE. We provide a visualization
of Samusik embeddings in App. Fig. 7, where we observe
that certain cell type clusters, such as pDCs and different
T-cell types, are compacted in state-of-the-art embeddings,

likely due to their small relative proportion in the overall
data. In DTSNE we see that those clusters are not that small
in comparison to others once corrected for density – these
cell types likely have similar heterogeneity than others and
are not as specialized as UMAP or TSNE suggest.

5. Discussion & Conclusion
We considered the problem of finding low-dimensional
embeddings that capture the main regularities of high-
dimensional data. On a simple benchmark, we showed
that the state-of-the-art methods fail to capture local densi-
ties at all and provided theoretical arguments on why this
is the case. Based on our findings, we proposed DTSNE,
a stochastic neighbourhood embedding approach that over-
comes these issues by accounting for local variations in
data.

As opposed to the state-of-the-art, DTSNE not only theoreti-
cally preserves relative density differences. In extensive em-
pirical experiments including synthetic benchmark as well
as real world data, we also showed that DTSNE faithfully
reconstructs relative differences in local distributions, such
as differently sized clusters. DTSNE also quantitatively pre-
serves local distances better than the state-of-the-art while
yielding similar overall reconstruction performance.

Our approach easily scales to data of thousands of sam-
ples and is, thus, ready to be used in the applications of
standard genomics or natural language processing datasets.
For exceptionally large datasets, it would be an interesting
avenue for future research to explore how we can com-
bine DTSNE with recent advances in improving runtime
for low-dimensional embeddings, such as those based on
FFTs (Linderman et al., 2019).

DTSNE represents a first solution to low-dimensional em-
beddings that preserves relative local densities. We, hence,
open up the analysis of low-dimensional embeddings and
their visualizations with respect to cluster differences and
densities. This could, for example, be used by experts as
an indicator of heterogeneity or specialization of cell types,
which are evident as clusters in embeddings of single-cell
transcriptomics data.
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and Duin, R. P. Supervised locally linear embedding.
In Artificial Neural Networks and Neural Information
Processing, pp. 333–341. Springer, 2003.

He, R. and McAuley, J. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative
filtering. In International World Wide Web Conference,
pp. 507––517, 2016.

Heiter, E., Fischer, J., and Vreeken, J. Factoring out prior
knowledge from low-dimensional embeddings. arXiv
preprint arXiv:2103.01828, 2021.

Hinton, G. E. and Roweis, S. T. Stochastic neighbor em-
bedding. In Advances in neural information processing
systems, pp. 857–864, 2003.

Kang, B., Lijffijt, J., Santos-Rodrı́guez, R., and De Bie,
T. Subjectively Interesting Component Analysis: Data
Projections that Contrast with Prior Expectations. In Pro-
ceedings of the International Conference on Knowledge
Discovery and Data Mining, pp. 1615–1624, 2016.

Kang, B., a, D., Lijffijt, J., guez, R., and De Bie, T. Condi-
tional t-SNE: more informative t-SNE embeddings. Ma-
chine Learning, 110(10):2905–2940, 2021.

Kobak, D. and Berens, P. The art of using t-sne for single-
cell transcriptomics. Nature communications, 10(1):1–14,
2019.

Kobak, D. and Linderman, G. C. Initialization is critical
for preserving global data structure in both t-SNE and
UMAP. Nature Biotechnology, 39(2):156–157, 02 2021.

Kobak, D., Linderman, G., Steinerberger, S., Kluger, Y.,
and Berens, P. Heavy-tailed kernels reveal a finer cluster
structure in t-sne visualisations. In Joint European Con-
ference on Machine Learning and Knowledge Discovery
in Databases, pp. 124–139. Springer, 2019.

Kohonen, T. Self-organized formation of topologically cor-
rect feature maps. Biological cybernetics, 43(1):59–69,
1982.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Linderman, G., Rachh, M., Hoskins, J., Steinerberger, S.,
and Kluger, Y. Fast interpolation-based t-SNE for im-
proved visualization of single-cell RNA-seq data. Nature
Methods, 16:1, 03 2019.

Linderman, G. C. and Steinerberger, S. Clustering with
t-SNE, provably. SIAM J Math Data Sci, 1(2):313–332,
2019.

McInnes, L., Healy, J., and Melville, J. Umap: Uniform
Manifold Approximation and Projection for Dimension
Reduction. arXiv preprint arXiv:1802.03426, 2018.

Pearson, K. On lines and planes of closest fit to systems
of points in space. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 2(11):
559–572, 1901.



Preserving local densities in low-dimensional embeddings
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A. DTSNE gradient
In the following, we derive the gradient for DTSNE. In particular, we compute the derivative of the Kullback-Leibler (KL)
divergence of the high and low dimensional probability distributions P,Q with respect to the embedding Y . For ease of
notation, let

T−1ij = (1 + γij ‖xi − xj‖22)
−1 and

Zq =
∑
k 6=l

(1 + γkl ‖xk − xl‖22)
−1 , then

qij =
T−1ij

Zq

and note that T−1ij = T−1ji . Recall the loss function is given by the KL-divergence

C = KL(P || Q) =
∑
i

∑
j

pij log

(
pij
qij

)
,

where pij is only determined by the high-dimensional data X and thus fixed throughout optimization. Reorganizing the
KL-divergence, we obtain

C =
∑
i

∑
j

pij log (pij)− pij log (qij) =
∑
i

∑
j

pij log (pij)− pij log
(
T−1ij

)
+ pij log (Zq) .

Deriving with respect to one sample l, we get

∂C

∂yl
=
∑
i

∑
j

∂pij log (pij)

∂yl
−
∂pij log

(
T−1ij

)
∂yl

+
∂pij log (Zq)

∂yl

=
∑
i

∑
j

−
∂pij log

(
T−1ij

)
∂yl

+
∂pij log (Zq)

∂yl
.

In the following, we will analyze the left and right term separately. Starting with the left term, we can simplify by only
looking at the terms of the sum dependent on l and use basic rules of derivation

∑
i

∑
j

−
∂pij log

(
T−1ij

)
∂yl

=
∑
k 6=l

−2pkl
∂ log

(
T−1kl

)
∂yl

=
∑
k 6=l

−2pklTkl
T−1kl

∂yl

=
∑
k 6=l

−2pklT−1kl (−2γkl(yk − yl))

= 4
∑
k 6=l

pklT
−1
kl γkl(yk − yl) .

For the right term, we get ∑
i

∑
j

∂pij log (Zq)

∂yl
=
∑
k 6=l

Z−1q
2T−1kl

∂yl

=
∑
k 6=l

2Z−1q T−2kl (−2γkl(yk − yl))

= −4
∑
k 6=l

qklT
−1
kl γkl(yk − yl) ,
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Figure 5. U5-d embeddings. For data of 5 Uniform clusters with different scales in a 150 dimensional space, we provide the embeddings
produced by all methods. DTSNE is the only method able to reflect variation in cluster densities.

where we used that
∑
k 6=l pkl = 1 the derivative of Zq can be split in the outer derivative Z−1q and the inner derivative, for

which only the two index combinations kl and lk are non-zero.

Combining the above, we arrive at

∂C

∂yl
= −4

∑
k 6=l

(pkl − qkl)T−1kl γkl(yk − yl) .

B. Experiments
In this section we provide additional information on the data generation and resulting embeddings. Numerical results are
reported in Tab. 1. Additional visualizations for U5-d, which is the other more challenging synthetic benchmark dataset (i.e.,
where clusters can not be placed in a 2D plane) are given in Fig. 5. Visualizations of real world data are given further below.

B.1. Synthetic data

We produced two different types of data, one where of the clusters are each distributed uniformly, and one where each
cluster follows a Gaussian distribution. We varied the number of clusters k the dimensionality of the data d, as well as the
number of samples s in each cluster or the spread of each cluster d.

2D DATA

We generated two 2-dimensional dataset with 3 Gaussian clusters each. The Gaussian clusters had unit variance and were
centered at (10, 0), (0, 15), and (−10, 0), respectively. For the first dataset, we drew 300 points from each Gaussian and
scaled the spread of the clusters by 1, 2, 4 (i.e., multiply the centered data by this number), respectively. For the second
dataset we drew 100, 200, 500, samples from the Gaussians, respectively, keeping the scale the same across clusters.

G3-S

For this dataset we generated 3 Gaussian clusters living in 50 dimensions, each cluster distribution ci with mean drawn
from U(0, 50) (each dimension iid from this uniform) and unit variance. We then draw 200, 400, 600 points from c1, c2, c3,
respectively, and scale the spread of the cluster by 2 (i.e., multiply the centered data by 2).

G3-D

For this dataset we generated 3 Gaussian clusters living in 50 dimensions, each cluster distribution ci with mean drawn
from U(0, 50) and unit variance. We then draw 300 points from each of the cluster distributions and scale the spread of the
c1, c2, c3 by 2, 4, 8, respectively.

G10-D

To look at data that is not easily projectable, i.e., the inter-cluster distances can be correctly modeled in 2D, for this dataset
we generated 10 Gaussian clusters living in 50 dimensions, each cluster distribution ci again with mean drawn from U(0, 50)
and unit variance. We then draw 200 points from each of the cluster distributions and scale the spread of the c1, . . . , c10 by
1, . . . , 10, respectively.
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Synthetic benchmark data Real world data
Metric Method G3-s G3-d G10-d U5-d Amazon MNIST Samusik Wong

ρ

DTSNE .99 .95 .62 .79 .27 .49 .80 .60
LARGEVIS .98 .95 .59 .85 .35 .42 .78 .43
LLE .92 .93 .16 .56 .0 −.18 .64 .22
NCVIS .95 .92 .45 .80 .35 .36 .63 .45
TSNE .100 .95 .65 .86 .38 .48 .77 .60
UMAP .98 .95 .57 .85 .33 .44 .79 .46

ρknn

DTSNE .74 .81 .71 .82 .54 .68 .85 .78
LARGEVIS .56 .08 .39 .13 .52 .47 .67 .68
LLE .15 −.08 .21 −.28 −.28 −.40 .64 .52
NCVIS .59 .09 .40 .10 .44 .49 .74 .64
TSNE .70 .12 .40 .12 .62 .61 .76 .69
UMAP .56 .06 .39 .11 .45 .44 .65 .66

ρr

DTSNE .31 .88 .91 .89 .22 .67 .66 .70
LARGEVIS .02 −.01 −.01 −.01 .15 .08 .31 .42
LLE −.06 −.02 .08 −.11 −.16 −.24 .34 .22
NCVIS .16 −.07 −.08 −.08 .01 −.01 .45 .33
TSNE .20 −.11 .01 −.09 .34 .38 .31 .44
UMAP −.02 −.05 −.02 −.01 .04 .02 .40 .38

Table 1. Results for synthetic and real-world data. Synthetic data are generated as k Gaussian or Uniform clusters and with varying
sample-sizes or varying densities across clusters. We report Spearman rank correlation between all high- and low-dimensional distances ρ
(global reconstruction), correlation between high- and low-dimensional distances of each point with its 100 closest neighbours (local
reconstruction), and correlation between radii of balls enclosing the 100 neighbours of each point in high- and low-dimensional space
(relative density reconstruction).

U5-D

To look at a different distribution and higher dimensional data, we generated 10 Uniform clusters living in 150 dimensions,
each cluster distribution ci again with mean drawn from U(0, 50) and unit variance. We then draw 200 points from each of
the cluster distributions and scale the spread of the c1, . . . , c10 by 1, . . . , 10, respectively.

B.2. Real data

For our comparison on real data, we considered 4 datasets, a simple image benchmark, two biological single-cell datasets,
and a neural sentence embedding of Amazon reviews. For the image benchmark MNIST (Fig. 6) and both single-cell
datasets we took a random subset of 5000 samples from the original publications as referenced in the main manuscript, for
MNIST we additionally vectorized the images. We provide the visualizations of embeddings for the Samusik et al. data in
Fig. 7, Wong et al. did not have informative labels available for these embeddings.

For the Amazon Review dataset, we downloaded reviews for 8 categories from https://nijianmo.github.io/
amazon/index.html that are closely related: ”Patio Lawn and Garden”, ”Tools and Home Improvement”, ”Industrial
and Scientific”, ”Sports and Outdoors”,”Amazon fashion”, ”Arts and Crafts”,”Clothing, Shoes, Jewelry”, and ”Luxury
Beauty”. We then sampled 5000 reviews that had at least 15 words in it, keeping original proportions of the categories intact.
We set the threshold of 15 words to keep only reviews that are more likely to be informative about a product, as there are
many reviews that just read ”Great product!!!” or ”Can highly recommend!”. We then use the Universal Sentence Encoder
(https://tfhub.dev/google/universal-sentence-encoder/4) to obtain a 512-dimensional embedding
of each review, resulting in the input data for our experiments. We give embeddings for the top 4 methods only, to be able to
fit on one page, in Fig. 8.

https://nijianmo.github.io/amazon/index.html
https://nijianmo.github.io/amazon/index.html
https://tfhub.dev/google/universal-sentence-encoder/4
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(c) LLE (d) NCVIS

(e) TSNE (f) UMAP

Figure 6. MNIST embeddings. Embedding of a random subset of 5000 samples from the MNIST dataset. Each sample is visualized as the
original image stripped off its background, which allows to see inter-cluster dependencies such as curvatures and writing styles of digits.
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(a) DTSNE (b) LARGEVIS

(c) LLE (d) NCVIS
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Figure 7. Samusik et al. single-cell data embeddings. Embedding of a random subset of 5000 samples from the Samusik dataset. Samples
are colored by cell type annotation from the original study. Cluster arrangement in all except LLE reflect hematopoiesis.
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Figure 8. Structure in amazon reviews. Embeddings of Universal Sentence Encoded Amazon reviews. Comparison of clusters retrieved by
DTSNE and the best performing competitors LARGEVIS, TSNE, and UMAP. Clusters are annotated by examining the review texts.


