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Abstract
We prove an evaluation for the stuffle-regularised alternating multiple t value
t∗,V (1, . . . , 1, 1, 1, . . . , 1) in terms of V , the regularisation parameter, log(2), ζ(k)
and β(k). This arises by evaluating the corresponding generating series using the
Evans-Stanton/Ramanujan asymptotics of a zero-balanced hypergeometric function
3F2, and an evaluation established by Li in an alternative approach to Zagier’s eval-
uation of ζ(2, . . . , 2, 3, 2, . . . , 2). We end with some discussion and conjectures on
possible motivic applications.

Keywords Multiple zeta values · Multiple t values · Alternating MZVs · Motivic
MZVs · Special values · Hypergeometric functions

Mathematics Subject Classification Primary 11M32 · Secondary 33C20

1 Introduction and statement

The multiple zeta values (MZVs) and multiple t values (MtVs) with signs εi ∈ S1 =
{z ∈ C : |z| = 1}, and arguments ki ∈ Z>0, such that (kd , εd) �= (1, 1) for conver-
gence, are defined by

ζ
(ε1, . . . , εd

k1, . . . , kd

)
:=

∑
0<n1<···<nd

ε
n1
1 · · · εndd
nk11 · · · nkdd

,

t
(ε1, . . . , εd

k1, . . . , kd

)
:=

∑
0<n1<···<nd

ε
n1
1 · · · εndd

(2n1 − 1)k1 · · · (2nd − 1)kd
.
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2 S. Charlton

Here, d is called the depth and k1 + · · · + kd is called the weight of the MZV or MtV.
If all signs εi are (independently) equal to ±1, we obtain the so-called alternating
MZVs andMtVs, respectively. It is then common to simplify the notation (see [1, §1])
by combining the signs and arguments into a single string; in position i of the new
string, one writes ki if εi = 1 and ki if εi = −1. For example

ζ(k1, k2, k3, k4, k5) := ζ

(−1,−1, 1, 1, −1
k1, k2, k3, k4, k5

)
.

The related Dirichlet beta function is defined by

β(s) :=
∞∑
n=0

(−1)n

(2n + 1)s

so that t(k) = −β(k), for k ∈ Z>0.
MZVs and by extension MtVs and other related objects are of significant interest

in number theory (see [7, 12] for the foundational results around MZVs although
Euler already studied the case d ≤ 2, and see [8] for the recent (re-)introduction of
MtVs following Nielsen’s study of the case d = 1). They are also of interest for
their applications to high energy physics (see [2] as a starting point). Typically one is
interested in understanding identities and relations between MZVs and MtVs, either
particular cases or the general structures thereof.

The main theorem of this note is an explicit evaluation and generating series for the
stuffle-regularised t∗,V ({1}a, 1, {1}b), where {k}n denotes the string k, . . . , k with n
repetitions of k. Therefore, we briefly recall the idea of stuffle regularisation of MZVs
(see [9] for more details) and correspondingly MtVs. The truncated ζM (1) is well
known to satisfy

ζM (1) :=
M∑
n=1

1

n
= log(M) + γ + O

(
1

M

)
,

where γ = 0.577 . . . is the Euler–Mascheroni constant. So by application of the stuffle
product (for example

ζ(k1)ζ(�1) =
∑
0<n1

∑
0<m1

1

nk11
· 1

m�1
1

=
( ∑

0<n1<m1

+
∑

0<m1<n1

+
∑

0<n1=m1

)
1

nk11 m�1
1

= ζ(k1, �1) + ζ(�1, k1) + ζ(�1 + k1) ,

in the case of two single-zeta values; when signs are present, they will be multiplied
in the n1 = m1 term), one has by induction that any truncated MZV satisfies
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On the evaluation of t(1, . . . , 1, 1, 1, . . . , 1) 3

ζM (k1, . . . , kd) :=
∑

0<n1<···<nd<M

1

nk11 · · · nkdd
= Z∗(k1, . . . , kd ; log(M) + γ ) + O

(
logJ M

M

)
,

for some polynomial Z∗(k1, . . . , kd ;U )with convergent MZV coefficients, and some
J . This polynomial defines the regularised version of ζ ∗,U (k1, . . . , kd), with parameter
ζ ∗,U (1) = U ; in particular ζ ∗,U (k1, . . . , kd) = ζ(k1, . . . , kd), for kd �= 1. Essentially,
one can formally extend the stuffle product to allow trailing 1’s, then by considering,
for kd �= 1, the difference

ζ ∗,U (k1, . . . , kd , {1}α) − 1

α
ζ ∗,U (k1, . . . , kd , {1}α−1)ζ ∗,U (1) ,

one obtains an expression with strictly fewer trailing 1’s. This writes every (alter-
nating) MZV as a polynomial in ζ ∗,U (1) := U with convergent (alternating) MZV
coefficients. The same process works for (alternating) MtVs, in particular, we have

t∗,V ({1}m, 1) = t∗,V ({1}m)t∗,V (1) −
m−1∑
i=0

t∗,V ({1}i , 1, {1}m−i )

−
m−1∑
i=0

t∗,V ({1}i , 2, {1}m−1−i )

= t({1}m)V −
m−1∑
i=0

t({1}i , 1, {1}m−i ) −
m−1∑
i=0

t({1}i , 2, {1}m−1−i ) . (1)

The main theorem of this note is now as follows.

Theorem 1.1 Consider the following generating series of the multiple t values
t∗,V ({1}a, 1, {1}b), with stuffle regularisation t∗,V (1) = V if necessary,

FV (x, y) =
∑
a,b≥0

(−1)a+bt∗,V ({1}a, 1, {1}b)xa yb .

Then the generating series has the following closed form expression

FV (x, y) = 1

2

(
cos

(πx

4

)
+ sin

(πx

4

))

·
(
A
( x − y

4

)
− A

( x + y

4

)
+ 2A

( x + y

2

)
− log(2) + 2V

)

+ 1

2

(
cos

(π y

4

)
+ sin

(π y

4

))

·
(
−A

( x − y

8

)
+ A

( x − y

4

)
− 2C

( x + y

2

)
+ log(2)

)
,
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4 S. Charlton

where

A(z) = ψ(1) − 1
2 (ψ(1 + z) + ψ(1 − z)) =

∞∑
r=1

ζ(2r + 1)z2r ,

C(z) = 1
8

(
ψ

( 1
4 + z

4

) − ψ
( 1
4 − z

4

) − ψ
( 3
4 + z

4

) + ψ
( 3
4 − z

4

)) =
∞∑
r=1

β(2r)z2r−1 ,

withψ(x) = d
dx log
(x) the digamma function. In particular, each t∗,V ({1}a, 1, {1}b)

is a polynomial in V , Riemann zeta values ζ(k), log(2) and Dirichlet beta values β(k).

Recall, {k}n denotes the string k, . . . , k with n repetitions of k. Then following
evaluation follows directly from the generating series; using β(1) = π

4 this verifies
the claimed polynomial form of the reduction. (Note that FV (x, y) is the generating
series for (−1)a+bt∗,V ({1}a, 1, {1}b), so after extracting the relevant coefficient, we
must still multiply by (−1)a+b to remove the extraneous signs from the MtV.)

t∗,V ({1}a, 1, {1}b)

=
a+b+1∑
r=2
even

(−1)�(a+b−r−1)/2	

2 (a + b − r)!
(π

4

)a+b−r
(
r

b

)(
1

4r
− (−1)b

4r
− 2

2r

)
ζ(r + 1)

+
a+b+1∑
r=2
even

(−1)�(a+b−r−1)/2	

2 (a + b − r)!
(π

4

)a+b−r
(
r

a

)(
(−1)a

8r
− (−1)a

4r

)
ζ(r + 1)

−
a+b+1∑
r=1
odd

(−1)�(a+b−r−1)/2	

2 (a + b − r)!
(π

4

)a+b−r
(
r

a

)(
2

2r

)
β(r + 1)

+ δa=0
(−1)�−b/2	

2 · b!
(π

4

)b
log(2) + δb=0

(−1)�−a/2	

2 · a!
(π

4

)a
(2V − log(2)) .

2 Proof of Theorem 1.1

Firstly, recall that the pFp−1 hypergeometric function is defined as follows:

pFp−1

[
a1, . . . , ap
b1, . . . , bp−1

; x
]

:=
∞∑

m=0

(a1)m · · · (ap)m
(b1)m · · · (bp−1)m

xm

m! ,

where (a)m = a(a+1) · · · (a+m−1) is the ascending Pochhammer symbol. Asymp-
totic and transformation properties of the 3F2 function will play a key role in the proof
of our generating series evaluation.
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On the evaluation of t(1, . . . , 1, 1, 1, . . . , 1) 5

Introduce the multivariable Ti-function

Tik1,...,kd (z1, . . . , zd) :=
∑

0<n1<···<nd

zn11 · · · zndd
(2n1 − 1)k1 · · · (2nd − 1)kd

.

(Note this is slightly different to the version in [4]; here the arguments in the numerator
have exponent ni , which is more suited to the case of alternating t values.) Then
for (kd , εd) �= (1, 1), we find Tik1,...,kd (ε1, . . . , εd) evaluates to the alternating MtV
with arguments k1, . . . , kd and signs ε1, . . . , εd . We consider the generating series of
Ti{1}n+m+1({−1}m, z, {−1}n) and seek to carefully evaluate the limit thereof as z →
1−, somehow dealing with the divergence caused by Ti1,...,1(−1, . . . ,−1, z)

z→1−−−−→
t({1}n, 1).

Consider

G(x, y; z) :=
∑
a,b≥0

(−1)a+bTi{1}a+b+1({−1}a, z, {−1}b)xa yb

=
∞∑
r=1

∏
0<k<r

(
1 − (−1)k x

2k − 1

) zr

2r − 1

∏
�>r

(
1 − (−1)�y

2� − 1

)
.

Using standard evaluations, one can show

∞∏
k=1

(
1 − (−1)k y

2k − 1

)
= cos

(π y

4

)
+ sin

(π y

4

)
,

and so we can rewrite G(x, y; z) as follows.

G(x, y; z) =
(
cos

(π y

4

)
+ sin

(π y

4

))

·
∞∑
r=1

∏
0<k<r

(
1 − (−1)k x

2k − 1

) zr

2r − 1

∏
0<�≤r

(
1 − (−1)�y

2� − 1

)−1
.

We split the summation inG(x, y; z) into odd- and even- indexed terms, and sum each
separately. We can check the following (where (x)k = x(x + 1) · · · (x + k − 1) is, as
already mentioned, the ascending Pochhammer symbol):

(r = 2m + 2)
∏

0<k<r

(
1 − (−1)k x

2k − 1

) zr

2r − 1

∏
0<�≤r

(
1 − (−1)�y

2� − 1

)−1

= (1 + x)z2

(3 − y)(1 + y)
· (1)m

( 3
4 − x

4

)
m

( 5
4 + x

4

)
m( 7

4 − y
4

)
m

( 5
4 + y

4

)
m

(z2)m

m! ,
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6 S. Charlton

(r = 2m + 1)
∏

0<k<r

(
1 − (−1)k x

2k − 1

) zr

2r − 1

∏
0<�≤r

(
1 − (−1)�y

2� − 1

)−1

= z

1 + y
· (1)m

( 3
4 − x

4

)
m

( 1
4 + x

4

)
m( 3

4 − y
4

)
m

( 5
4 + y

4

)
m

(z2)m

m! .

Both of these are in exactly the right form to sum to a 3F2-hypergeometric function
(the summation index in both cases starts at m = 0), and so we obtain

G(x, y; z) =
(
cos

(π y

4

)
+ sin

(π y

4

))

·
{

(1 + x)z2

(3 − y)(1 + y)
· 3F2

[
1, 3

4 − x
4 , 5

4 + x
4

7
4 − y

4 , 5
4 + y

4

; z2
]

+ z

1 + y
· 3F2

[
1, 3

4 − x
4 , 1

4 + x
4

3
4 − y

4 , 5
4 + y

4

; z2
]}

.

We now consider how the divergence in Ti{1}m+1({−1}m, z) arises, so we can com-
pensate for it in the generating series. We have by the stuffle multiplication of Ti,
that

Ti{1}m ,1({−1}m, z) = Ti{1}m ({−1}m)Ti1(z)

−
m−1∑
j=0

Ti{1}m+1({−1} j , z, {−1}m− j )

−
m−1∑
j=0

Ti{1} j ,2,{1}m−1− j ({−1} j ,−z, {−1}m−1− j ) .

On rearranging and taking the generating series of both sides, we find that

∑
m≥0

(−1)mTi{1}m ,1({−1}m, z)xm − Ti1(z)
∑
m≥0

(−1)mTi{1}m ({−1}m)xm

= −
∑
m≥0

(−1)m
( m−1∑

j=0

Ti{1}m+1({−1} j , z, {1}m− j )

+
m−1∑
j=0

Ti{1} j ,2,{1}m−1− j ({−1} j ,−z, {−1}m−1− j )
)
xm

z→1−−−−→ −
∑
m≥0

(−1)m
( m−1∑

j=0

t({1} j , 1, {1}m− j ) +
m−1∑
j=0

t({1} j , 2, {1}m−1− j )
)
xm

=
∑
m≥0

(−1)mt∗,V=0({1}m, 1)xm ,
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On the evaluation of t(1, . . . , 1, 1, 1, . . . , 1) 7

as z → 1−. Here, we have recognised the limiting generating series as that of
t∗,V=0({1}m, 1), where t∗,V=0 represents the stuffle regularisation polynomial of
t({1}m, 1) evaluated at V = 0. (This is the regularisationwherewe take t∗,V=0(1) = 0,
cf. (1).) We also notice that

Ti1(z) = √
z tanh−1(

√
z) ,

and from [8, Corollary 6.1], the generating series of t({1}m) is given by

∑
m≥0

(−1)mt({1}m)xm = cos
(πx

4

)
+ sin

(πx

4

)
. (2)

We, hence, find the limit of the following combination gives the generating series of
t∗,V=0({1}a, 1, {1}b), with a suitably stuffle-regularised variant t∗,V=0({1}a, 1) in the
case b = 0.

lim
z→1− G(x, y; z) − √

z tanh−1(
√
z) ·

(
cos

(πx

4

)
+ sin

(πx

4

))

=
∑

a≥0,b>0

(−1)a+bt({1}a, 1, {1}b)xa yb +
∑
a≥0

(−1)at∗,V=0({1}a, 1)xa =: F(x, y) .

We now want to take the limit limz→1− G(x, y; z)−√
z tanh−1(

√
z) · ( cos (

πx
4

)+
sin

(
πx
4

))
. For this, we recall the following result [5, Theorem 3] (proving a claim of

Ramanujan), which treats the asymptotics of the 0-balanced hypergeometric function
3F2, which both of the hypergeometric series in G(x, y; z) are.
Theorem 2.1 (Evans-Stanton 1984 [5], Ramanujan) If a+b+c = d+e, andRe(c) >

0, then as u → 1−,


(a)
(b)
(c)


(d)
(e)
· 3F2

[
a, b, c

d, e
; u

]
= − log(1 − u) + L + O((1 − u) log(1 − u)) ,

where

L = −2γ − ψ(a) − ψ(b) +
∞∑
k=1

(d − c)k(e − c)k
(a)k(b)kk

.

Here, γ = 0.577 . . . is the Euler–Mascheroni constant, ψ(x) = d
dx log
(x) is the

digamma function, and (x)k = x(x +1) · · · (x + k−1) is the ascending Pochhammer
symbol.

If we apply it to both of the above 3F2 functions, with c = 1 after appropriately
permuting the arguments, then we find (after some simplification of the prefactor and
the resulting gamma function combination) that
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8 S. Charlton

(
cos

(π y

4

)
+ sin

(π y

4

))
· (1 + x)z2

(3 − y)(1 + y)
· 3F2

[
1, 3

4 − x
4 , 5

4 + x
4

7
4 − y

4 , 5
4 + y

4

; z2
]

= 1

4
z2

(
cos

(πx

4

)
+ sin

(πx

4

))(
− 2γ − ψ

(
3
4 − x

4

)
− ψ

(
5
4 + x

4

)
− log(1 − z2)

+
∞∑
k=1

( 3
4 − y

4

)
k

( 1
4 + y

4

)
k

k
( 3
4 − x

4

)
k

( 5
4 + x

4

)
k

)
+ O((1 − z) log(1 − z))

and

(
cos

(π y

4

)
+ sin

(π y

4

))
· z

1 + y
· 3F2

[
1, 3

4 − x
4 , 1

4 + x
4

3
4 − y

4 , 5
4 + y

4

; z2
]

= 1

4
z
(
cos

(πx

4

)
+ sin

(πx

4

))(
− 2γ − ψ

( 3
4 − x

4

) − ψ
( 1
4 + x

4

) − log(1 − z2)

+
∞∑
k=1

(− 1
4 − y

4

)
k

( 1
4 + y

4

)
k

k
( 3
4 − x

4

)
k

( 1
4 + x

4

)
k

)
+ O((1 − z) log(1 − z)) .

Since

lim
z→1−

(
cos

(πx

4

)
+ sin

(πx

4

))

·
(1
4
z2 log(1 − z2) + 1

4
z log(1 − z2) + √

z tanh−1(
√
z)

)

= 3

2
log(2)

(
cos

(πx

4

)
+ sin

(πx

4

))
,

we find these asymptotic formulae lead to following limit for G(x, y; z) that we seek

F(x, y) = lim
z→1− G(x, y; z) − √

z tanh−1(
√
z) ·

(
cos

(πx

4

)
+ sin

(πx

4

))

= 1

4

(
cos

(πx

4

)
+ sin

(πx

4

))

·
(

− 4γ − 6 log(2) − ψ
( 1
4 + x

4

) − 2ψ
( 3
4 − x

4

) − ψ
( 5
4 + x

4

)

+
∞∑
k=1

( 3
4 − y

4

)
k

( 1
4 + y

4

)
k

k
( 3
4 − x

4

)
k

( 5
4 + x

4

)
k

+
∞∑
k=1

(− 1
4 − y

4

)
k

( 1
4 + y

4

)
k

k
( 3
4 − x

4

)
k

( 1
4 + x

4

)
k

)
.

Using the same observation as in Proposition 1 of [13], wemay rewrite these Pochham-
mer sums in a more useful way. Specifically we have

∞∑
k=1

(a)k(b)k
k(c)k(d)k

= d

dZ

∣∣∣∣
Z=0

3F2

[
a, b, Z

c, d
; 1

]
,
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On the evaluation of t(1, . . . , 1, 1, 1, . . . , 1) 9

so it follows that

F(x, y) = 1

4

(
cos

(πx

4

)
+ sin

(πx

4

))

·
{
−4γ − 6 log(2) − ψ

( 1
4 + x

4

) − 2ψ
( 3
4 − x

4

) − ψ
( 5
4 + x

4

)

+ d

dZ

∣∣∣∣
Z=0

(
3F2

[ 3
4 − y

4 , 1
4 + y

4 , Z
3
4 − x

4 , 5
4 + x

4

; 1
]

+ 3F2

[− 1
4 − y

4 , 1
4 + y

4 , Z
3
4 − x

4 , 1
4 + x

4

; 1
])}

.

Apply to the second hypergeometric term, the following contiguous function relation
(with arguments in this order)

(a − b)p · 3F2
[
a, b, c

p, q
; z

]

= b(a − p) · 3F2
[
a, b + 1, c

p + 1, q
; z

]
− a(b − p) · 3F2

[
a + 1, b, c

p + 1, q
; z

]
,

and we find

F(x, y) = 1

4

(
cos

(πx

4

)
+ sin

(πx

4

))

·
{
−4γ − 6 log(2) − ψ

( 1
4 + x

4

) − 2ψ
( 3
4 − x

4

) − ψ
( 5
4 + x

4

)

+ d

dZ

∣∣∣∣
Z=0

(
3F2

[ 3
4 − y

4 , 1
4 + y

4 , Z
3
4 − x

4 , 5
4 + x

4

; 1
]

+ x − y − 4

2(x − 3)
· 3F2

[− 1
4 − y

4 , 5
4 + y

4 , Z
7
4 − x

4 , 1
4 + x

4

; 1
]

+ x + y − 2

2(x − 3)
· 3F2

[ 3
4 − y

4 , 1
4 + y

4 , Z
7
4 − x

4 , 1
4 + x

4

; 1
])}

. (3)

All three terms are of the following form, with X = 1
4 + y

4 ,Y = 1
4 + x

4 , then
X = − 1

4 − y
4 ,Y = 3

4 − x
4 and then X = 1

4 + y
4 ,Y = 3

4 − x
4 , respectively:

d

dZ

∣∣∣∣
Z=0

3F2

[
X , 1 − X , Z

1 − Y , 1 + Y
; 1

]

= ψ(1 + Y ) + ψ(1 − Y ) − ψ(1 − X + Y ) − ψ(1 − X − Y )

− sin(πX)

sin(πY )

[
ψ(1 − X + Y ) − ψ(1 − X − Y ) − ψ

(
1 − X−Y

2

) + ψ
(
1 − X+Y

2

)]
.

(4)

This evaluation is given in Eq. 9 of [10], and hence, reduces F(x, y) to a combination
of digamma functions.
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After substituting in the indicated X ,Y values, and some amount of simplification
(see Remark 2.2 below), we find

F(x, y) = 1

2

(
cos

(πx

4

)
+ sin

(πx

4

))

·
(
A
( x − y

4

)
− A

( x + y

4

)
+ 2A

( x + y

2

)
− log(2)

)

+ 1

2

(
cos

(π y

4

)
+ sin

(π y

4

))

·
(
−A

( x − y

8

)
+ A

( x − y

4

)
− 2C

( x + y

2

)
+ log(2)

)
, (5)

where A and C are certain generating series of ζ - and β-values as defined below. The
series A is defined as in [13], namely

A(z) := ψ(1) − 1
2 (ψ(1 + z) + ψ(1 − z)) =

∞∑
r=1

ζ(2r + 1)z2r .

The generating C is defined as follows, to give an analogous Dirichlet-β generating
series:

C(z) := 1
8

(
ψ

( 1
4 + z

4

) − ψ
( 1
4 − z

4

) − ψ
( 3
4 + z

4

) + ψ
( 3
4 − z

4

)) =
∞∑
r=1

β(2r)z2r−1 .

This formula for C follows by interchanging the summation, and applying partial
fractions to the result, in

∞∑
r=1

β(2r)z2r−1 =
∞∑
r=1

∞∑
k=1

−(−1)k

(2k − 1)2r
z2r−1

=
∞∑

m=1

(−1)m

2(1 − 2m + z)
− (−1)m

2(1 − 2m − z)
.

Remark 2.2 Since the steps of simplification of F(x, y) are rather involved,we indicate
some strategy to follow in the verification process. The goal is to check I = (3)–(5)
= 0 , where (3) is evaluated via the formula for d

dZ of a certain 3F2 hypergeometric
series given in (4).

Via the functional equation,

ψ(z + 1) − ψ(z) = 1

z
,

every argument of (x − 3)I (we multiply by (x − 3) to eliminate rational function
coefficients at this point) can be reduced to one of the form α + βx + δy, where
α = − 1

4 , 0,
1
4 ,

1
2 . Using the functional equation
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ψ(−z) = ψ(z) + 1

z
+ π cot(π z) , (6)

we can also reduce the α = − 1
4 arguments to 1

4 . In particular, we are left with only
the following arguments:

{
ψ

(− x
2 − y

2

)
, ψ

(− x
4 − y

4

)
, ψ

( x
4 − y

4

)
, ψ

( 1
4 − x

8 − y
8

)
,

ψ
( x
8 − y

8

)
, ψ

(− x
8 + y

8

)
, ψ

( 1
2 − x

8 + y
8

)
, ψ

( 1
4 + x

8 + y
8

)
,

ψ
(− x

4 + y
4

)
, ψ

( x
4 + y

4

)
, ψ

( 1
2 + x

4 + y
4

)
, ψ

( x
2 + y

2

)}
.

Applying the symmetry in (6) further times, reduces− x
2 − y

2 ,− x
4 − y

4 ,− x
4 + y

4 ,− x
8 + y

8
to their positive counterparts. Using (6) (again, undoing the previous step in one case!)
and the functional equation

ψ(2z) = 1
2

(
ψ

(
z + 1

2

) + ψ(z)
) + log(2) , (7)

with z = z′ − 1
4 , we can express ψ

( 1
4 − x

8 − y
8

)
in terms of ψ

(− 1
4 + x

8 + y
8

)
first, then

in terms of ψ
( 1
4 + x

8 + y
8

)
and ψ

(− 1
2 − x

4 − y
4

)
.

Use (6) to reduce ψ
( − 1

2 + z
)
to ψ

( 1
2 + z

)
, and apply (7) to reduce this to ψ(z)

and ψ(2z), where necessary. Then using (6), we can finally reduce all arguments to
the following set of 5 possibilities:

{
ψ

( x
4 − y

4

)
, ψ

( x
8 − y

8

)
, ψ

( 1
4 + x

8 + y
8

)
, ψ

( x
4 + y

4

)
, ψ

( x
2 + y

2

)}
.

At this point, the coefficients of each of these 5 arguments are a trigonometric rational
function, as is the constant coefficient of theψ-polynomial. Each of these trig functions
can be written as a rational function (with

√
2-coefficients) in

cos
(πx

8

)
, sin

(πx

8

)
, cos

(π y

8

)
, sin

(π y

8

)
,

using the addition formulae for sin, cos, and then reducing πx
2 - and πx

4 -arguments to
the above via the double-angle formulae. (For cosine, cos(2x) = cos(x)2 − sin(x)2

seems to be the more useful variant.) At this point, the coefficients of ψ’s vanish
identically (without relating powers of sin and cos), whereas the constant coefficient
factors into an expression involving cos2

(
πx
8

) + sin2
(

πx
8

) − cos2
(π y

8

) − sin2
(π y

8

)
,

which is 0 via Pythagoras. This shows that (3)–(5) = 0 as claimed, hence verifying the
expression for F(x, y) given in (5).

At this point, we have the generating series involving (for b = 0) the regularised
values t∗,V=0 at V = 0; however, for MtVs, the most natural stuffle regularisation
would seem to be V = log(2). Fortunately, since t({1}m, 1) only involves a single
argument 1, the regularisation polynomial is given (cf. (1)) by

t∗,V ({1}m, 1) = t({1}m)V + t∗,V=0({1}m, 1) ,
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12 S. Charlton

meaning that we can (re-)construct the entire polynomial from this constant term. In
particular (see (2)),

∑
m≥0

(−1)mt∗,V ({1}m, 1)xm

= V
(
cos

(πx

4

)
+ sin

(πx

4

))
+

∑
m≥0

(−1)mt∗,V=0({1}m, 1)xm .

We can, therefore, give the arbitrary stuffle regularisation generating series as follows:

FV (x, y) = 1

2

(
cos

(πx

4

)
+ sin

(πx

4

))

·
(
A
( x − y

4

)
− A

( x + y

4

)
+ 2A

( x + y

2

)
− log(2) + 2V

)

+ 1

2

(
cos

(π y

4

)
+ sin

(π y

4

))

·
(
−A

( x − y

8

)
+ A

( x − y

4

)
− 2C

( x + y

2

)
+ log(2)

)
. (8)

The final step is to extract an explicit evaluation for t({1}a, 1, {1}b) from this gen-
erating series. One can check easily that

[xa yb]
∞∑
i=0

f (i)xi ·
∞∑
j=0

g( j)(x + y) j =
a+b∑
n=0

(
n

b

)
g(a + b − n) f (n) ,

where [xa yb] denotes the coefficient of xa ya in the terms thereafter. So we can readily
extract the following formulae from FV (x, y), where as before {k}n denotes the string
k, . . . , k with n repetitions of k. (Remember that, FV (x, y) is the generating series
for (−1)a+b t∗,V ({1}a, 1, {1}b), so one must take (−1)a+b[xa yb]FV (x, y), in order
to obtain the following formula.)

t∗,V ({1}a, 1, {1}b)

=
a+b+1∑
r=2
even

(−1)�(a+b−r−1)/2	

2 (a + b − r)!
(π

4

)a+b−r
(
r

b

) (
1

4r
− (−1)b

4r
− 2

2r

)
ζ(r + 1)

+
a+b+1∑
r=2
even

(−1)�(a+b−r−1)/2	

2 (a + b − r)!
(π

4

)a+b−r
(
r

a

)(
(−1)a

8r
− (−1)a

4r

)
ζ(r + 1)

−
a+b+1∑
r=1
odd

(−1)�(a+b−r−1)/2	

2 (a + b − r)!
(π

4

)a+b−r
(
r

a

)(
2

2r

)
β(r + 1)

+ δa=0
(−1)�−b/2	

2 · b!
(π

4

)b
log(2) + δb=0

(−1)�−a/2	

2 · a!
(π

4

)a
(2V − log(2)) .
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This completes the proof of Theorem 1.1, and the explicit evaluation thereafter. �

3 Potential motivic applications

In [3] and [13] with the case ζ({2}a, 3, {2}b), in [11] with t({2}a, 3, {2}b) and in [4]
with the case t∗,V=0({2}a, 1, {2}b), the various identities (and the arithmetic of their
coefficients) were applied to show linear independence and/or basis results on the
motivic level. It should, therefore, be possible to lift Theorem 1.1 to a motivic version
and show on the motivic level some independence and/or basis results for alternating
MtVs.

Equivalently (after extending coefficients to Q(i)), one should also obtain results
about coloured MZVs of level N = 4 (i.e. εi ∈ {±1,±i}, roots of unity of order
N = 4). In general, we have the following expression for MtVs of level N in terms
of coloured MZVs of level 2N (after fixing some choice of square roots, which we
symmetrise over anyway)

t
(ε1, . . . , εd

k1, . . . , kd

)
=

∑
0<n1<···<nd

(1 − (−1)n1)ε
n1+1
2

1

2 nk11
· · · (1 − (−1)nd )ε

nd+1
2

d

2 nkdd

= 1

2d
∑

η21=ε1
...

η2d=εd

η1 · · · ηdζ
(η1, . . . , ηd

k1, . . . , kd

)
.

So alternating MtVs are expressed in terms of coloured MZVs of level N = 4; note,
however that η1 · · · ηd = ±1 if an even number of εi = −1, and η1 · · · ηd = ±i if an
odd number of εi = −1. In particular, the MtVs correspond to the real part of purely
real, respectively, the imaginary part of purely imaginary, combinations in each case.

Optimistically one expects some result of the following form,where {1, 1}× denotes
the set of all words with entries 1 or 1.

Idea 3.1 The stuffle-regularised alternating MtVs

{t∗,V (w) | w ∈ {1, 1}×}

are linearly independent and form a basis for the space of alternating MtVs.

Some issues do arise in attempting to investigate this, both from the motivic view-
point and from the classical viewpoint. The issues should not be insurmountable, but
we do postpone the motivic investigation for the moment.

As just noted, for ki ∈ Z>0 ∪Z>0 (with ki denoting the argument ki has associated
sign εi = −1), one only has that

i#{ki∈Z>0}t(k1, . . . , kd)
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14 S. Charlton

is aQ-linear combination of coloured MZVs of level N = 4. So that one must extend
the coefficients to Q(i), in order to say anything about level N = 4 coloured MZVs
from an MtV result, and vice versa.

Second, one must redevelop the background in [11], and [4] to extend the formulae
for the motivic derivations D2r+1 to the case of alternating t values. An deeper issue
here is that there are more primitive elements at level N = 4, so that ker D<N =
ζm(N )Q ⊕ ζm

( i
N

)
Q is no longer one dimensional (see [6, Corollary 5.1.3]). Lifting

identities by application of the period map requires identifying 2 unknown rational
coefficients. Working over Q, one can appeal to the real and imaginary parts for this,
but after tensoring by Q(i), this is not necessarily so straightforward.

Finally, the natural regularisation V = log(2), for t∗,V (1) immediately fails to give
a basis in Idea 3.1. One has that

t∗,V (1, 1) = 1

2
t∗,V (1)2 − 1

2
t(2) = 1

2
V 2 − π2

16

t(1, 1) = 1

2
G − π

8
log(2)

t∗,V (1, 1) = t(1)t∗,V (1) − t(1, 1) − t(2) = −π

4
V + 1

2
G + π

8
log(2)

t(1, 1) = 1

2
t(1)2 − 1

2
t(2) = −π2

32

Here, G = β(2) = 0.9159 . . . is the Catalan constant. We refer to [8, Sect. 6] for these
evaluations. In the case V = log(2), we have

t∗,V=log(2)(1, 1) = −π

8
log(2) + 1

2
G = t(1, 1) .

So the stuffle-regularised t∗,V (w), w ∈ {1, 1}× cannot be a basis for V = log(2).
The case V = 1

2 log(2) does seem to give a basis, though, and the regularisation

t∗,V= 1
2 log(2)(1) = 1

2 log(2) is also a very natural one to take, based on the expression
for t(n) = 1

2

(
ζ(n) − ζ(n)

)
, extended to n = 1. A more durable conjecture would be

as follows.

Conjecture 3.2 For any rational λ ∈ Q, with 0 < λ < 1, the stuffle-regularised
alternating MtVs with V = λ log(2), of the following form:

{t∗,V (w) | w ∈ {1, 1}×}

are linearly independent and form a basis for the space of alternating MtVs.

Those rational λ for which the regularisation t∗,V , V = λ log(2) does not give
a basis in Conjecture 3.2 should be termed singular regularisation parameters. The
following V = λ log(2) are singular regularisation parameters, first appearing at the
indicated weight.
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N 1 2 3 4 5 6 7 8 9 10 11

λ 0 1 −2 13
11 − 220

203
4971
3911 − 428854

506177
8829285
6699031 − 12070249400

16117649299
91040059801
67506970721 − 917750647910294

1321840200143647

A new singular regularisation parameter λ appears in each weight, corresponding
to a reduction of

t∗,V ({1}n, 1) =
n−1∑
i=0

ci t({1}i , 1, {1}n−i ) ,

for some ci ∈ Q. For example, when V = 13
11 log(2) in weight 4, we have

t∗,V= 13
11 log(2)(1, 1, 1, 1) = 41

33
t(1, 1, 1, 1) − 15

11
t(1, 1, 1, 1) + 15

11
t(1, 1, 1, 1) ,

as can be verified with the evaluation in Theorem 1.1. In weight N + 1, this reduction
can also be obtained directly from the identity in Theorem 1.1, when written in matrix
form with rows indexed by ci and columns by ζ(2r + 1) and β(2r); the factor (π

4 )i is
fixed by weight, so can be discarded. The singular regularisation parameter in weight
N + 1 then corresponds to the determinant of the resulting matrix vanishing.

The sequence (λi )
∞
i=1 of singular regularisation parameters appears to satisfy a

number of properties.

Conjecture 3.3 The sequence (λi )
∞
i=1 = (

0, 1,−2, 13
11 ,− 220

203 , . . .
)
of singular regu-

larisation parameters satisfies the following, discounting the λ1 = 0 term:

(i) the sign of λi is (−1)i for all i > 1,
(ii) the odd-indexed and even-indexed subsequences are increasing: λ2i+2 > λ2i and

λ2i+3 > λ2i+1 for all i ≥ 1.
(iii) the odd-indexed and even-indexed subsequences are bounded as follows: λ2i ≤ 3

2
and λ2i+1 ≤ − 1

2 for all i ≥ 1.
(iii′) the odd-indexed and even-indexed subsequences have the following limits:

limi→∞ λ2i = 3
2 and limi→∞ λ2i+1 = − 1

2

As a final observation, based on the expression of the alternating MtVs as
real/imaginary parts of coloured MZVs of level N = 4, depending on the parity
of the number of εi = −1, and the expected motivic results related to this, we should
have the following.

Conjecture 3.4 Any relation between alternating MtVs is homogeneous in the number
of signs εi = −1, counted modulo 2.

Example 3.5 In weight 5, and with V = 1
2 log(2), we have the numerically checked

identity
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t(1, 2, 2)

?= − 143368
3215 t(1, 1, 1, 1, 1) + 121464

3215 t(1, 1, 1, 1, 1) + 183472
16075 t

∗,V= 1
2 log(2)(1, 1, 1, 1, 1)

− 48t(1, 1, 1, 1, 1) + 48t(1, 1, 1, 1, 1) − 24
5 t

∗,V= 1
2 log(2)(1, 1, 1, 1, 1)

+ 24
5 t

∗,V= 1
2 log(2)(1, 1, 1, 1, 1) − 24

25 t
∗,V= 1

2 log(2)(1, 1, 1, 1, 1)

+ 4t∗,V= 1
2 log(2)(1, 1, 1, 1, 1) − 4t∗,V= 1

2 log(2)(1, 1, 1, 1, 1) .

One sees immediately that each term has either 2 or 4 barred entries, corresponding
to 2 or 4 arguments with associated sign εi = −1.

Acknowledgements I am grateful to Michael Hoffman for frequent discussions on MtVs, MZVs and
various related subjects during his extended stay at the Max-Planck Institute für Mathematik in Bonn,
through spring and summer 2020. I am also grateful to the MPIM for extended support, which facilitated
these discussions with Michael Hoffman and precipitated the start of this work. I am grateful to both Adam
Keilthy and Danylo Radchenko for some discussions and suggestions on how to tackle the hypergeometric
series which arise during the evaluation of the t({2}a , 1, {2}b) generating series which appears in [4], and
directly informed the results of this note. During the preparation of this work at Universität Hamburg, I
was supported by Deutsche Forschungsgemeinschaft Eigene Stelle grant CH 2561/1-1, for Projektnummer
442093436. During the revision process, I was supported by the MPIM, to whom I am again grateful.

Funding Open Access funding enabled and organised by Projekt DEAL.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflict of interest The corresponding author states that there is no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Borwein, J.M., Bradley, D.M., Broadhurst, D.J.: Evaluations of k-fold Euler/Zagier sums: a com-
pendium of results for arbitrary k. Electron. J. Comb. 4(2), #5 (1997). arXiv:hep-th/9611004.
http://www.combinatorics.org/Volume_4/Abstracts/v4i2r5.html. The Wilf Festschrift, Philadelphia,
PA (1996)

2. Broadhurst, D.J., Kreimer, D.: Association of multiple zeta values with positive knots via Feynman
diagrams up to 9 loops. Phys. Lett. B 393(3–4), 403–412 (1997). arXiv:hep-th/9609128. https://doi.
org/10.1016/S0370-2693(96)01623-1

3. Brown, F.: Mixed Tate motives over Z. Ann. Math. (2) 175(2), 949–976 (2012). https://doi.org/10.
4007/annals.2012.175.2.10

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-th/9611004
http://www.combinatorics.org/Volume_4/Abstracts/v4i2r5.html
http://arxiv.org/abs/hep-th/9609128
https://doi.org/10.1016/S0370-2693(96)01623-1
https://doi.org/10.1016/S0370-2693(96)01623-1
https://doi.org/10.4007/annals.2012.175.2.10
https://doi.org/10.4007/annals.2012.175.2.10


On the evaluation of t(1, . . . , 1, 1, 1, . . . , 1) 17

4. Charlton, S.: Onmotivicmultiple t values, Saha’s basis conjecture, and generators of alternatingMZV’s
(2021). arXiv:2112.14613

5. Evans, R.J., Stanton, D.: Asymptotic formulas for zero-balanced hypergeometric series. SIAM J.Math.
Anal. 15(5), 1010–1020 (1984). https://doi.org/10.1137/0515078

6. Glanois, C.: Periods of the motivic fundamental groupoid of {mathbbP1 \ {0, μN , ∞}. PhD the-
sis, Pierre and Marie Curie University (Paris 6) (2016). arXiv:1603.05155. https://www.theses.fr/
2016PA066013

7. Hoffman, M.E.: Multiple harmonic series. Pac. J. Math. 152(2), 275–290 (1992). http://projecteuclid.
org/euclid.pjm/1102636166

8. Hoffman, M.E.: An odd variant of multiple zeta values. Commun. Number Theory Phys. 13(3), 529–
567 (2019). arXiv:1612.05232

9. Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta values.
Compos. Math. 142(2), 307–338 (2006). https://doi.org/10.1112/S0010437X0500182X

10. Li, Z.-H.: Another proof of Zagier’s evaluation formula of the multiple zeta values
ζ(2, . . . , 2, 3, 2, . . . , 2). Math. Res. Lett. 20(5), 947–950 (2013). https://doi.org/10.4310/MRL.2013.
v20.n5.a10

11. Murakami, T.: On Hoffman’s t-values of maximal height and generators of multiple zeta values.
Mathematische Annalen, pp. 1–38 (2021). https://doi.org/10.1007/s00208-021-02209-3

12. Zagier, D.: Values of zeta functions and their applications. In: First EuropeanCongress ofMathematics,
Vol. II (Paris, 1992), volume 120 of Progress in Mathematics, pp. 497–512. Birkhäuser, Basel (1994)

13. Zagier, D.: Evaluation of the multiple zeta values ζ(2, . . . , 2, 3, 2, . . . , 2). Ann. Math. (2) 175(2),
977–1000 (2012). https://doi.org/10.4007/annals.2012.175.2.11

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2112.14613
https://doi.org/10.1137/0515078
http://arxiv.org/abs/1603.05155
https://www.theses.fr/2016PA066013
https://www.theses.fr/2016PA066013
http://projecteuclid.org/euclid.pjm/1102636166
http://projecteuclid.org/euclid.pjm/1102636166
http://arxiv.org/abs/1612.05232
https://doi.org/10.1112/S0010437X0500182X
https://doi.org/10.4310/MRL.2013.v20.n5.a10
https://doi.org/10.4310/MRL.2013.v20.n5.a10
https://doi.org/10.1007/s00208-021-02209-3
https://doi.org/10.4007/annals.2012.175.2.11

	On the evaluation of the alternating multiple  t  value  t(overline1,…,overline1, 1, overline1,…,overline1) 
	Abstract
	1 Introduction and statement
	2 Proof of Theorem 1.1
	3 Potential motivic applications
	Acknowledgements
	References




